挠曲线的近似微分方程

合集下载

积分法求梁的位移

积分法求梁的位移
EI
2. 取w’0
x
M
y
M<0 w″<0
x
M
y
M>0 w″>0
M x w
EI
M x w
EI
EIw M x
EIw M xd x C EIw [ M xd x]d x Cx D
例:弯曲刚度为EI的悬臂梁如图,求梁的挠曲线方程
及其最大挠度wmax。
q
解: x截面处弯矩方程为:
0
A
x
AD段: 1
w1
Fb 2lEI
1 3
l2 b2
x
2
Fbx
w1 6lEI
l2 b2 x2
DB段:2 w2
Fb 2lEI
l b
x
a2
1 3
l2 b2
x
2
w2
Fb 6lEI
l b
x
a
3
l2
b2
x
x
3
A y
l/2 Ⅰ
A
x1 a
F
C
DⅡ
wC
wmax
B
b
B x
当载荷作用在梁的中点,即a=b=l/2时,其最大转 角和挠度为:
x A
F
D
B
x
a
b
l y
解: 1)求弯矩方程
AD段:M1x
Fb l
x
DB段:M2 x
Fb l
x
Fx
a
2)梁的挠曲线方程
AD段:EIw1
M1x
F
b l
x
DB段:EIw2
M
2
x
F
b l
x
Fx

材料力学-弯曲变形

材料力学-弯曲变形

错!
错!
当弯矩方程需要分段建立时,在相邻梁
段的交接处,应具有相同的挠度和转角。
例1:悬臂梁在自由端受集中力F作用,试 求梁的转角方程和挠度方程,并求最大转角和 最大挠度。设梁的弯曲刚度为 EI。
P125 例6-1
边界条件
x = 0 时: w0
w 0
M (x) F (l x) EIw M (x) F (l x)
C1x
D1
DB段( a ≤x ≤l ):
M 2 (x)
Fb l
x
F(x
a)
EIw2
Fb l
x
F
(x
a)
EIw2
EIq 2
Fb l
x2 2
F
(x a)2 2
C2
EIw2
Fb l
x3 6
F
(x
a)3 6
C2 x
D2
确定积分常数 连续条件
x = a 时:
w1 w2 w1 w2
边界条件
x = 0 时: w1 0 x = l 时: w2 0
等直梁: E I w =- M(x)
E I 为常量 EIq M (x) dx C 积 分
EIw [ M (x) dx] dx Cx D 法
积分常数由边界条件、连续条件确定。
挠曲线上某些点的已知位移(挠度和 转角)条件 —— 边界条件
wA = 0 wB = 0
wA = 0
qA = 0
挠曲线的任意点上,有唯一确定的挠 度和转角 —— 连续条件
wB (q ) + wB (FB ) = 0
wB =
ql 4
8EI

FBl 3
3EI

0

弯曲变形——精选推荐

弯曲变形——精选推荐

第六章弯曲变形判断弯曲变形1、“平面弯曲梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线”2、“由于挠曲线的曲率与弯矩成正比,因此横截面的挠度与转角也与横截面的弯矩成正比”3、“只要满足线弹性条件,就可以应用挠曲线的近似微分方程”4、“两梁的抗弯刚度相同、弯矩方程相同,则两梁的挠曲线形状相同”5、“梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,梁的挠曲线仍然是一条光滑、连续的曲线。

”6、“最大挠度处的截面转角一定为0”7、“最大弯矩处的挠度也一定是最大”8、“梁的最大挠度不一定是发生在梁的最大弯矩处。

”9、“只要材料服从虎克定律,则构件弯曲时其弯矩、转角、挠度都可以用叠加方法来求”10、“两根几何尺寸、支撑条件完全相同的静定梁,只要所受的载荷相同,则两梁所对应的截面的挠度和转角相同,而与梁的材料是否相同无关”11、“一铸铁简支梁在均布载荷的作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力和变形均相同”选择弯曲变形1、圆截面的悬臂梁在自由端受集中力的作用,当梁的直径减少一半而其他条件不变时,最大正应力是原来的倍;最大挠度是原来的倍。

若梁的长度增大一倍,其他条件不变,最大弯曲正应力是原来的倍,最大挠度是原来的倍。

A:2; B:16 C:8 D:4;2、y’’=M(x)/EI在条件下成立。

A:小变形; B:材料服从虎克定律;C:挠曲线在xoy面内; D:同时满足A、B、C;3、等直梁在弯曲变形时,挠曲线最大曲率发生在处。

A:挠度最大; B:转角最大 C:剪力最大; D:弯矩最大;4、在简支梁中,对于减少弯曲变形效果最明显。

A:减小集中力P; B:减小梁的跨度;C:采用优质钢; D:提高截面的惯性矩5、板条弯成1/4圆,设梁始终处于线弹性范围内:①σ=My/I Z,②y’’=M(x)/EI Z哪一个会得到正确的计算结果?A:①正确、②正确;B:①正确、②错误; C:①错误、②正确; D:①错误、②错误;6、应用叠加原理求横截面的挠度、转角时,需要满足的条件是。

挠曲线近似微分方程

挠曲线近似微分方程

C1
Fb 6l
l2 b2
,
C2
Fab 6l
l
a
Page 14
材料力学 第六章 弯曲变形
四 积分法总结
❖ 优点:适用范围广、精确 ❖ 缺点:计算繁琐
五 刚度条件
w
max ቤተ መጻሕፍቲ ባይዱax
w
练习:写边界条件和连续性条件
A
B
C
D
边界条件 wA 0; wB 0
连续性条件 wC wC;C C 或wC' wC' wD wD;D D 或wD' wD'
Mi EI wi" M EIw" M
w
wi
Page 19
材料力学 第六章 弯曲变形
例一:求图示简支梁C点挠度
y A
l/2
F
C l/2
x B
=
y
y
F
A
C
+ x
B
A
x
C
B
l/2
l/2
l/2
l/2
wC
wC q
wC F
5ql4 384EI
Fl 3 48EI
材料力学 第六章 弯曲变形
Page 20
Page 16
材料力学 第六章 弯曲变形
练习(续)
y
a
x
b
l
边界条件 w 0; 0
x0
x0
连续性条件
w w ;
w w ;
xa
xa xa
xa
xb
xb xb
xb
Page 17
材料力学 第六章 弯曲变形
一 叠加§原理6.4 用叠加法求梁的变形

§6-2梁的挠曲线近似微分方程及其积分(精)

§6-2梁的挠曲线近似微分方程及其积分(精)

大挠度fmax和最大转角max。
解: 由对称性可知梁的两个支反力为
RA
q
RB
ql RA RB 2
A
B
x
y
l
例题 6 -2 图
此梁的弯矩方程及挠曲线微分方程分别为
ql 1 2 q M ( x) x qx (lx x 2 ) 2 2 2 q 2 EI ' ' M ( x) (lx x ) 2
EI ' ' M ( x) Pl Px (2)
例题 6-1 图
对挠曲线近似微分方程进行积分, 得
Px 2 EI ' Plx C1 (3) 2 Plx 2 Px 3 EI C1 x C 2 (4) 2 6
边界条件为 :
x
A
l x
B x
x 0, 0 x 0, ' 0
EIυ [ M ( x )dx ]dx C1x C2

C1 EI '| x 0 EI 0 C2 EI 0
式中,θ 0 和 v0 分别代表坐标原点处截面的转角和挠度。
例题6-3 图示一抗弯刚度为EI的简支梁, 在D点处受一集中 力P的作用。试求此梁的挠曲线方程和转角方程,并求其最大 挠度和最大转角。
两段梁的挠曲线方程分别为
1 挠曲线方程 转角方程 挠度方程
( 0 «x «a)
2
( a«x « l )
b " P x EIv1 M1 l
b EIv2 " M 2 P x P( x a) l
3 θA ql θ max θB 24 EI
x
q

材料力学-压杆稳定

材料力学-压杆稳定

1.直线型经验公式
对于柔度(λs≤λ<λp)的中柔 度杆(中长压杆),临界应力 与λ的关系采用直线公式:
cr a b 13 8
式(13-8)中的系数a,b可查书中表 13-1。 λ的最低界限:
s
a
s
b
(塑性材料)
b
a
b
b
(脆性材料)
---------(13-9)
图13-3
2.抛物线型经验公式
式中有c1,c2,k三个未知量。根据边界条件:当x=0时, yA=0;代入式(c)得c2=0。式(c)成为
y c1 sinkx (d )
当x=l时,yB=0;代入式(d)后可得 c1 sinkl 0 (e)
要满足式(e),必然是c1或sinkl等于零,若c1=0,则压杆 上各点的位移都为零,这显然与压杆在微弯状态下保持平衡 的前提不符,故必须是sinkl=0。要满足这一条件的kl值为:
kl 0, ,2 ,L ,n (n为正整数)
由k P n 可得:
EI l
P
n2 2 EI
l2
(
f
)
使压杆可能在微弯状态下保持平衡的最大轴向压力,应
该是式(f) 中n=1时的P值,这就是所求的两端铰支压杆的临
界力Pcr,即
Pcr
2 EI
l2
(13 1)
式(13-1)习惯上称为两端铰支压杆的欧拉公式。当各个 方向的支承情况相同时(如两端为球铰),压杆总是在它的 抗弯能力最小的纵向平面内失稳,所以式(13-1)中的EI是压 杆的最小抗弯刚度,即I应取截面的最小形心主惯性矩Imin。
2
图13-4 对于柔度(λ<λc)的杆件,临界应力与λ的关系采用抛物线公式:

工程力学(天津大学)第11章答案

工程力学(天津大学)第11章答案

第十一章 梁弯曲时的变形习 题11−1 用积分法求下列简支梁A 、B 截面的转角和跨中截面C 点的挠度。

解:(a )取坐标系如图所示。

弯矩方程为:xlM M e=挠曲线近似微分方程为:xlM y EI e-=''积分一次和两次分别得:Cxl My EI e +-='22, (a )DCx xlMEIy e++-=36 (b)边界条件为:x =0时,y =0,x =l 时,y =0, 代入(a )、(b)式,得:0,6==D l M Ce梁的转角和挠度方程式分别为:)62(12l M xlMEIy e e+-=',)66(13lx M xlMEIyee+-=所以:EIlM y l EIMθEIl M θe C eB e A 16,3,62=-==(b )取坐标系如图所示。

AC 段弯矩方程为:)20(11l x x lM M e≤≤=BC段弯矩方程为:)2(22l x l Mx lM M ee≤≤-=两段的挠曲线近似微分方程及其积分分别为:(a)(b)习题11−1图xAC 段:11x lM y EI e-=''12112C x l My EI e+-=', (a ) 1113116D x C x lMEIye++-= (b)BC 段:eeMx lM y EI +-=''2222222C Mx l My EI ee++-=', (c )22223226D x C x M x lMEIye e+++-= (d)边界条件为:x 1=0时,y 1=0,x 2=l 时,y 2=0, 变形连续条件为:2121212y y y y l x x '='===,时,代入(a )、(b)式、(c )、(d)式,得:,8D 0,2411,2422121l M D l M C l MC eee==-==,梁的转角和挠度方程式分别为:AC 段:)242(121l M x lMEIy e e+-=',)246(11311lx Mx lMEIy ee+-=BC 段:)24112(12222l M x M x lMEIy e e e-+-=',)8241126(12222322l M lx M x M x lMEIy e eee+-+-=所以:0,24,24===C eB e A y l EIMθEIl M θ11−2 用积分法求下列悬臂梁自由端截面的转角和挠度。

材料力学 积分法求梁的变形

材料力学  积分法求梁的变形
一、挠曲线近似微分方程
M ( x ) = r EI Z 1
1 = ± r d 2 w dx 2 d w é 2 ù 1 + ( ) ê ú dx ë û
3
±
d 2 w dx 2 d w 2 ù é 1 + ( ) ú ê dx û ë
3
M ( x ) = EI Z
边界条件、连续条件应用举例
弯矩图分三段,共6 个积分常数需6个边界条 件和连续条件 A B
P C D
w
铰连接
ω A点: A = 0, q A = 0
B 点 : w B 左 = w B 右
C点 : w C左 = w C右
D点:w D = 0
q C 左 = q C 右
边界条件、连续条件应用举例
y
边界条件
3 qL C1 = 6 EI z
EI zw =
1 (L - x )4 + C q 1 x + C 2 24
x = 0 x = 0 x = L
q = 0 w = 0
qL3 q B = 6 EI z
q =-
3 qL C2 =24 EI z
挠曲线方程应分两段AB,BC.
F A
a
q
B
EI z
L
共有四个积分常数
C
x
边界条件
x = a x = a + L
连续条件
w B = 0 wC = 0
y
x = a
w B1 = w B 2 q B1 = q B 2
例题 5.4 &
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件

工程力学第1节 挠曲线近似微分方程

工程力学第1节 挠曲线近似微分方程

挠曲轴线 近似微分方程 结论
M ( x) y EI
两种情况下弯矩与曲线的二阶导数均同号,微分 方程式应取正号,即: 挠曲轴线 近似微分方程
M ( x) y EI
梁的挠曲轴线近似微分方程的适用条件:梁的变 形是线弹性的小变形。
M ( x) y EI
微分方程弯矩M与曲线的二阶导数 y的正负号关系
1)如图a所示,梁的挠曲轴线是一下凸曲线,梁的下 侧纤维受拉,弯矩 M >0,曲线的二阶导数 y >0;
2)如图b所示,梁的挠曲轴线是一上凸曲线,梁的下 侧纤维受压,弯矩 M <0,曲线的二阶导数 y <0;
第十章
梁的弯曲变形
一、挠曲轴线近似微分方程
挠曲轴线:图示悬臂 梁在纵向对称面内的 外力 F 的作用下,将 产生平面弯曲,变形 后梁的轴线将变为一 条光滑的平面曲线, 称梁的挠曲轴线。
挠曲轴线方程
y f ( x)
y f ( x)
挠度:截面形心线位移的垂直分量称为该截面的 挠度,用 y 表示。
第ቤተ መጻሕፍቲ ባይዱ章
梁的弯曲变形
工程中的很多结构或构件在工作时, 不但要满 足强度条件,同时对于弯曲变形都有一定的要求:
第一类是要求梁的位移不得超过一定的数值。例如 若机床主轴的变形过大,将会影响齿轮的正常啮合 以及轴与轴承的正常配合,造成不均匀磨损、振动 及噪音,缩短了机床的使用寿命,还影响机床的加 工精度。因此,在工程中进行梁的设计时,除了必 须满足强度条件之外,还必须限制梁的变形,使其 不超过许用的变形值。 第二类是要求构件能产生足量的变形。例如车辆钢 板弹簧,变形大可减缓车辆所受到的冲击;跳水起 跳板大变形,以确保运动员被弹起。
转角:横截面绕中性轴转动产生了角位移,此角 位移称转角,用 表示。小变形时,转角 很小, 则有以下关系:

材料力学(土木类)第五章 梁弯曲时的位移(2)

材料力学(土木类)第五章  梁弯曲时的位移(2)
逆时针) (逆时针)
3 3 3
利用叠加原理求图示弯曲刚度为EI的悬臂梁 例5-6 利用叠加原理求图示弯曲刚度为 的悬臂梁 自由端B截面的挠度和转角 截面的挠度和转角。 自由端 截面的挠度和转角。
F A l C EI l F D l B
原荷载可看成为图a和 两种荷载的叠加 两种荷载的叠加, 解:原荷载可看成为图 和 b两种荷载的叠加,对应 的变形和相关量如图所示。 的变形和相关量如图所示。
Fl θ C1 = 2 EI
2
3
由位移关系可得此时B截面的挠度和转角为: 由位移关系可得此时 截面的挠度和转角为: 截面的挠度和转角为
Fl 3 Fl 2 4 Fl 3 wB1 = wC1 + θ C1 ⋅ BC = + × 2l = 向下) (向下) 3EI 2 EI 3EI Fl θ B1 = θ C1 = 2 EI
q ( x) x 2 dθ B = dθ ( x) = dx 2 EI
范围对q(x)dx的作用进行叠加,相当于 的作用进行叠加, 在x=0, l范围对 范围对 的作用进行叠加 对上两式在前述范围内积分, 对上两式在前述范围内积分,即:
wB = ∫ d wB = ∫
0
l
l
0
11q 0 l q ( x ) x (3l − x ) dx = 6 EI 120 EI
上次课回顾: 上次课回顾:
1、度量梁变形的两个基本位移量:挠度和转角 度量梁变形的两个基本位移量: 2、挠曲线近似微分方程
EIw′′ = − M ( x )
3、挠曲线近似微分方程的积分 、
EIw ' ( x ) = ∫ ( − M ( x )) dx + C1
EIw ( x ) =

§8 2 挠曲线近似微分方程

§8 2 挠曲线近似微分方程

§8-2 挠曲线近似微分方程
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也
② 转角
梁横截面绕中性轴转过的角度θ ,逆时针转动为正。
§8-2 挠曲线近似微分方程
③梁的挠曲线方程
y
A
q
x
F
q y
B
x
B1
④转角方程(小变形下):转角与挠度的关系—
y f (x)
q tgq dy y f '(x)
dx 计算位移的目的:校核刚度、解超静定梁。
§8-2 挠曲线近似微分方程 二、梁的挠曲线近似微分方程
环滁/皆山也。其/西南诸峰,林壑/尤美,望之/蔚然而深秀者,琅琊也。山行/六七里,渐闻/水声潺潺,而泻出于/两峰之间者,酿泉也。峰回/路转,有亭/翼然临于泉上者,醉翁亭也。作亭者/谁?山之僧/曰/智仙也。名之者/谁?太守/自谓也。太守与客来饮/于此,饮少/辄醉,而/年又最高,故/自号曰/醉翁也。醉翁之意/不在酒,在乎/山水之间也。山水之乐,得之心/而寓之
§8-2 挠曲线近似微分方程
在外力作用下,梁的轴线有直线变为曲线。 梁的挠曲线 梁的轴线变形后所形成的光滑连续的曲线。 外力作用在纵向对称面内,挠曲线也在纵向对称面内。

梁的挠曲线近似微分方程

梁的挠曲线近似微分方程

由边界条件:
x 0,yA 0 ; D 0
xl,
yB 0 ;
C ql3 24
q
A
x θA
θB
y
l
B
x
EIy ql x3 q x4 Cx D 12 24
EIy ql x2 q x3 ql3 4 6 24
q (l3 6lx2 4x3)
ql x3 q x4 ql3 x 12 24 24
24EI
最大转角和最大挠度分别为:
y qx (l3 2lx2 x3) 24EI
ymax
y
x l 2
5ql 4 384EI
max
A
B
ql3 24 EI
外伸梁,承受集中载荷作用,试绘制挠曲线的大致形状图。 设弯矩刚度EI为常数。
§6-3 用积分法求梁的变形
解:1、绘制挠曲线的基本依据
1 y M (x)
(x)
EI z
根据弯矩的正、负、零值点或零值区,确定挠曲线的凹、
凸、拐点或直线区。
在梁的被约束处,应满足位移边界条件;在分段处,则 应满足位移连续条件。
载荷作用。试求此梁的转角方程和挠度方程,并确定最大转角
和最大挠度。
y
q
解:
FRA
FRB
ql 2
A
B
x
M(x) ql x q x2 22
x
l
EIy ql x q x2 22
EIy ql x2 q x3 C 46
EIy ql x3 q x4 Cx D 12 24
§6-3 用积分法求梁的变形
§6-3 用积分法求梁的变形
梁的挠曲线近似微分方程:
d 2 y M (x) dx2 EI

材料力学第7章

材料力学第7章

积分一次: Fb 2 EIw1 x C1 2l 积分二次: Fb 3 EIw1 x C1 x D1 6l
11
CB段(a x l): 弯矩方程:
Fb M 2 x x F x a l
挠曲线近似微分方程:
Fb EIw2 x F x a l Fb 2 F 2 x x a C2 积分一次: EIw2 2l 2
ቤተ መጻሕፍቲ ባይዱ 1 x 0
Fab l b , B 2 6lEI
Fab l a B = 6lEI
Fl 3 Fl 3 Fl 3 2 EI 6 EI 3EI
7
wmax w x l
例题7.2:图示弯曲刚度为EI的简支梁,受集度为q的均布 荷载作用,试求梁的挠曲线方程和转角方程,并确定其最 大挠度和最大转角。 解:由平衡方程得支座反力 ql FA FB 2 建立坐标系,得梁的弯矩方程为 1 1 2 M x qlx qx 2 2 梁挠曲线近似微分方程
1 3 C ql , D 0 24
9
梁的转角方程
q w (4 x3 6lx 2 l 3 ) 24 EI
梁的挠曲线方程
(5)
qx w ( x3 2lx 2 l 3 ) 24 EI
最大转角
(6)
max
ql 3 A B 24 EI
2
最大挠度
M ( x) F l x
1
挠曲线近似微分方程
EIw M x F l x 2 两次积分,得 1 2 EIw Flx Fx C 2 1 1 3 2 EIw Flx Fx Cx D 2 6

建筑力学习题第七章

建筑力学习题第七章

1. 图为一阶梯杆,两段的横截面面积为A1=2cm2,A2=4cm2。

杆端的荷载P1=4kN,C截面的荷载P2=10kN,材料的弹性模量E=2×105 MPa,试求杆端B的水平位移ΔB 。

解端截面B的水平位移实际上就是AB杆长度的变化量ΔL,由于杆的横截面不是常数,杆件的轴力AC段N AC = 6kN (拉),CB段N CB =4kN(压),故应分三段(AC段、CD段、DB段)来计算杆的变形,然后取其代数和。

设DB段的变形为ΔL1,则ΔL1 =N DB L1/EA1= -4×103×0.5/2×1111×2×10-4 = -0.05×10-3 m (缩短)设CD段的变形为ΔL2,则ΔL2 =N CD L2/EA2= -4×103×0.5/2×1111×4×10-4 = -0.025×10-3 m (缩短)设AC段的变形为ΔL3,则ΔL3 =N AC L3/EA3= 6×103×0.5/2×1111×4×10-4 = -0.0375×10-3 m (伸长)因此,杆件总变形为:ΔB=ΔL1+ΔL2+ΔL3 = -0.0375 mm (缩短)2. 求悬挂的等直杆由于自重引起的最大正应力和总伸长。

设杆件长度L,容重γ,弹性模量E。

解1. 计算杆件内的最大正应力在距离下端点x处截取m - m横截面,取杆件x段为脱离体,则此截面上的轴力为:Nx=γAx根据方程绘制轴力图。

轴力沿杆长按直线变化,最大值发生在上端截面,x=L,其大小为:Nmax =γALm - m横截面上的正应力为:σx=N x/A =γAx /A =γx由此式可知,正应力沿杆长直线变化,最大正应力也发生在上端截面上,其值为σx =γAL2. 计算杆件的伸长由于各截面上的轴力是不等的,故计算整个杆件的伸长时,应先计算dx微段的伸长。

概述梁的挠曲线近似微分方程及其积分用积分

概述梁的挠曲线近似微分方程及其积分用积分

y
a
P
A x1
C
x2
L
x B
EIw
0
P(a
x1)
(0 x1 a) (a x2 L)
EIw
P 2
x12
Pax1
C1
C2
EIw
P
6
x13
Pa 2
x12
C1x1
D1
C2 x2 D2
确定积分常数 边界条件
EI 0 x1 0
EI w 0 x1 0
C1 0 D1 0
连续性条件
当 x1 x2 a 时,
讨论题:指出下列梁的边界条件。
q
q
A
A
B
a
l
a
B L
连续性条件: 挠曲线上任意点有唯一确定的挠度和转角。 若连续性条件不满足,则挠曲线就不连续(图a)和不光滑(图b)。
A
C
B
A
C
B
(图a)
(图b)
对上述梁:
边界条件: wA 0, wB 0
连续性条件: wC左 wC右 , C 左 C 右
挠曲线近似微分方程
(x2 )
dw(x2 ) dx2
Pa 2 2EI
y
a
P
C
Bx
C wB
L
例2 求图示梁自由端的转角和挠度。
P
EI
2EI
解: 建立坐标系并写出弯矩方程
A x1
B x2 C
a
a
AB段 (0 x1 a)
M 1 Px1
BC段 (0 x2 a)
M 2 P(a x2 )
写出挠曲线微分方程并积分
AB段 EIw1 M1 Px1
3 2EI

挠曲线的近似微分方程

挠曲线的近似微分方程

Bx FBy
解:弯矩方程 :
M x 1 qlx 1 qx2
22
挠曲线的近似微分方程:
w

1 EI z

1 2
qlx

1 2
qx2

进行一次积分得:
w

1 EI z

1 4
qlx2

1 6
qx3
C

再进行第二次积分得:
w

1 EI z
1 12
qlx3
Tmax 180 [] GIp
一般传动轴, [φ’] = 0.5 ~1/m
例4 图为一圆截面轴 AC ,受扭转力偶矩MA,MB 与Mc作用。 已知MA =90 N·m , MB =160 N·m , MC =70 N·m , l=2 m, G=80 GPa , IP=3.0×105 mm4 , [φ’] =0.3 (o)/m 。试计算 该轴的总扭转角 φAC (即截面C对截面A的相对转角),并 校核轴的刚度。
F C、D为积分常数,它由位移边界与连续条件确定。
边界条件:梁截面的已知位移条件 固定端的挠度和转角均为零,铰支座处的挠度为零。
A
wA=0 θA=0
F B
A wA=0
F C
B
wC1=wC2 wB=0 θC1=θC2
$ 挠曲轴在C点连续且光滑 连续条件:分段处挠曲轴应满足的连续、光滑条件
例6 如图所示图形为一外伸梁,承受集中载荷作用,试绘制
B
w xl
ql3 6EI z
ql 4
wB
w xl
8EI z
根据挠度和转角的符号规定,上述结果表明转角为顺时针,挠度方 向为向下。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Tmax 180 [] GIp
一般传动轴, [φ’] = 0.5 ~1/m
例4 图为一圆截面轴 AC ,受扭转力偶矩MA,MB 与Mc作用。 已知MA =90 N·m , MB =160 N·m , MC =70 N·m , l=2 m, G=80 GPa , IP=3.0×105 mm4 , [φ’] =0.3 (o)/m 。试计算 该轴的总扭转角 φAC (即截面C对截面A的相对转角),并 校核轴的刚度。

u x
ab线段的平均正应变
lim u ab0 x
a △x b△ub’
a点沿ab方向的正应变
正应变特点:
• 正应变是无量纲量; • 过同一点,不同方位的正应变一般不同。
2、切应变
b b’ a
直角bac的改变量——直角bac的切应变

tan

lim
ba 0


Bx FBy
解:弯矩方程 :
M x 1 qlx 1 qx2
22
挠曲线的近似微分方程:
w

1 EI z

1 2
qlx

1 2
qx2

进行一次积分得:
w

1 EI z

1 4
qlx2

1 6
qx3
C

再进行第二次积分得:
w

1 EI z
1 12
qlx3
三、应变 构件的形状是用它各部分的长度和角度来表示。因此
构件的变形也可以归结为长度的改变和角度的改变,即
线变形和角变形。
棱边长度改变
棱边夹角改变
b’ b
a
b b’
a
构件整体的变形并不能准确地描述构件的变形程度,为了准确描述杆 件的变形程度,引入另外一个概念:应变。
1、正应变
m

ab ab ab
表示的弯曲变形公式为
1M
EIz
横力弯曲中,如果忽略剪力的影响,则梁轴线的曲率为
1 M (x) (x) EIz
由微积分的基本知识,挠曲线与曲率满足以下关系
d2w
1
( x)


dx 2
1


dw dx
3
2 2


则:
d2w
dx2
3
1


x
F C C' 凸曲线
例7 如图所示悬臂梁,在自由端受一集中力 F的作用,EIZ 为常数。试求梁的自由端的挠度 ωB和转角 θB 。
y
F
A x
B
l
Bx
wB
解:弯矩方程 :
M x F l x
挠曲线的近似微分方程:
w 1 Fl Fx
EI z
进行一次积分得:
w

1 EI z
挠曲线的大致形状图。设弯曲刚度EIZ为常数。
y
2F
F
1 w M x

EI z
A a
D
B
Cx
a 3 2a 3
a
Q 挠曲线大致形状的画法
(a)
M Fa 2
F 根据弯矩图定凹凸性, F 弯矩图过零点处为拐点, F 支座限定支座处的位移。
4a 3
Fa (b)
2F
A
D
B
凹曲线
D' 拐点
(c)
CD0
将C、D代入挠度和转角的表达式可得转角方程和挠曲线方程


w

1 EI z


1 2
ql2 x
1 2
qlx2

1 6
qx
3

w

1 EI z


1 4
ql 2 x2

1 6
qlx3

1 24
qx4

最后,把 x=l 分别代入转角和挠曲线方程,就可得到梁自由端的转 角和挠度:
x
w 0 (从数学) M 0 (本书规定)
w 0
M 0
应用条件: max p 小变形
x
d2w M (x) dx2 EIz
三、 用积分法求梁的位移
w M x
EIZ


dw dx


M x
EIZ
dx

C
M x
w EIZ dx Cx D
答疑课程:工程力学《一》 2015-11-08
目录
变形与应变 圆轴的扭转变形与刚度条件 梁的弯曲变形与刚度条件 提高杆件刚度的措施
1、变形和应变
一、变形的概念 物体形状及体积的变化,称为变形。 小变形——变形量远小于构件的原始尺寸。在计算构件
的受力平衡时,可以按构件的原始尺寸进行计算。 二、研究变形的目的 1、建立刚度条件,构件的变形应限制在允许的范围之内; 2、求解静不定问题。

1 24
qx4

Cx

D

边界条件为
x 0, w 0 x l,w 0
将边界条件带入相应的表达式可得两个积分常数
ql 3 C ,D0
24
将积分常数代入转角和挠度的表达式可得梁的转角方程和挠度方程


w

1 EIz

1 qlx2 4

1 qx3 6

ql 3 24

Flx


Fx2 2

C


再进行第二次积分得:
1 Flx2 Fx3

w

EI z

2

6
Cx D
边界条件为
y
x 0, w 0 A
x l,w 0
x
B
l
将边界条件带入相应的表达式可得两个积分常数
F Bx
wB
CD0
将积分常数代入转角和挠度的表达式可得梁的转角方程和
15 16
[
]
π

15 16


40
106
Pa
(2)按刚度条件求所需外直径D
πD4
Ip 32
14
πD4 15
32 16
D 32Tmax 180 1
4


15 16

π
[]
Tmax 180 []
GIp π
32 9.56103 N m 180 1 125.5 103 m

w

1 EI z

1 12
qlx
3

1 qx4 24

ql 3 24
x

最大挠度发生在梁跨中点(转角为零),最大转角发生在梁的两个
端截面上(弯矩为零)。将 x l 代入挠度方程中得 2
5ql 4 wmax wxl 2 384EIz
负号表示的方向向下,与坐标轴的正方向相反。将代入转角方程 中可得

0.585 102
rad
AC AB BC 0.75102 rad 0.585102 rad 0.165102 rad
(2)刚度校核: 轴AC为等截面轴,而AB段的扭矩最大,所以,应校 核该段轴的扭转刚度。AB段的扭转角变化率为
m ax

T1 GIp
F C、D为积分常数,它由位移边界与连续条件确定。
边界条件:梁截面的已知位移条件 固定端的挠度和转角均为零,铰支座处的挠度为零。
A
wA=0 θA=0
F B
A wA=0
F C
B
wC1=wC2 wB=0 θC1=θC2
$ 挠曲轴在C点连续且光滑 连续条件:分段处挠曲轴应满足的连续、光滑条件
例6 如图所示图形为一外伸梁,承受集中载荷作用,试绘制
2

bac

bc 0
c 切应变特点:
•切应变为无量纲量 •切应变单位为 rad
2、圆轴的扭转变形与刚度条件
一、圆轴扭转变形公式
d T
dx GI P
微段dx的扭转变形 d T dx
GI P
相距l 的两横截面的扭转角


l
d

l
T GI
dx
P
GIp
圆轴截面扭转刚度。
对于扭矩T、切变模量G及极惯性矩Ip都不随轴线变化 的情况, 相距l的两截面的相对扭转角为:
dw dx
2


2
M (x) EI z
1 M (x)
(x) EIz
小变形时:w2 1
d2w dx2


M (x) EI Z
正负号确定——确定坐 w 向上为
标系:

w
d2w
dx2
3
1


dw dx
2

2
M (x) EI z
A
x0


ql 3 24EIz
负号表示为顺时针转动。
例10 如图所示一简支梁,受一集中载荷F作用, EIZ 为常数。试求此梁的最大挠度ωmax以及最大转角θmax 。
y
a
b
A FAy
解:弯矩方程 :
l2 /3 l/2
x1
F C D wmax x2 l
B x
FBy
M1
x

Fb l
x1
M2
B
w xl
相关文档
最新文档