高中数学必修一《集合与函数的概念》经典例题
高中数学必修1第一章集合与函数概念专项练习题(附答案)
高中数学必修1第一章集合与函数概念专项练习题一、单选题1.若函数f(x)= |x +2| 的单调递增区间是( )A. (0,+∞)B. (−∞,+∞)C. [2,+∞)D. [−2,+∞)2.设全集 U ={-2,-1,0,1,2} , A ={−2,−1,0} , B ={0,1,2} ,则图中阴影部分所表示的集合为( )A. {0}B. {−2,−1}C. {1,2}D. {0,1,2} 3.函数 f(x)=2xe x +e −x 的大致图像是( )A. B. C. D.4.已知集合A={x|y= √(1−x)(x +3) },B={x|log 2x≤1},则A∩B=( ) A. {x|﹣3≤x≤1} B. {x|0<x≤1} C. {x|﹣3≤x≤2} D. {x|x≤2}5.设函数 f(x)={|x +1|,x ≤0,|log 4x|,x〉0, 若关于 x 的方程 f(x)=a 有四个不同的解 x 1,x 2,x 3,x 4, 且 x 1<x 2<x 3<x 4, 则 x 3(x 1+x 2)+1x32x 4 的取值范围是( )A. (−1,72] B. (−1,72) C. (−1,+∞) D. (−∞,72]6.已知全集U=N ,集合P ={1,2,3,4,6},P ={1,2,3,5,9}则P ∩(C U Q )=( )A. {1,2,3}B. {5,9}C. {4,6}D. {1,2,3,4,6} 7.函数 y =√−x 2−3x+4的定义域为( )A. (−4,−1)B. (−4,1)C. (−1,1)D. (−1,1]8.已知实数 a >0 , a ≠1 ,函数 f(x)=log a |x| 在 (−∞,0) 上是减函数,又 g(x)=a x +1a x ,则下列选项正确的是( )A. g(−2)<g(1)<g(3)B. g(1)<g(−2)<g(3)C. g(3)<g(−2)<g(1)D. g(−2)<g(3)<g(1)9.已知奇函数 y =f(x) 在 (−∞,0) 上单调递减,且 f(1)=0 ,若 a =f(log 318) , b =f(log 214) , c =f(log 23) ,则 a,b,c 的大小关系是( )A. c <b <aB. a <b <cC. a <c <bD. c <a <b10.设a=√2+√3 , M={x|x≤√10},给出下列关系:①a ⊂M ; ②M ⊇{a}; ③{a}∈M ; ④{Ф}⊆{a}; ⑤2a ∉M ; 其中正确的关系式共有( )A. 2个B. 3个C. 4个D. 5个 11.集合 A ={−1,0,1,2,3} , B ={x|log 2(x +1)<2} ,则 A ∩B 等于( )A. {−1,0,1,2}B. {0,1,2}C. {−1,0,1,2,3}D. {0,1,2,3} 12.函数 y =xe cosx (−π≤x ≤π) 的大致图象为( )A. B. C. D.13.若定义在R 上的偶函数f (x )在[0,+∞)上是减函数,则有( )A. f (3)<f (﹣2)<f (1)B. f (1)<f (﹣2)<f (3)C. f (﹣2)<f (1)<f (3)D. f (3)<f (1)<f (﹣2) 14.设f (x )的定义域为D ,若f (x )满足下面两个条件,则称f (x )为闭函数.①f (x )在D 内是单调函数;②存在[a,b ]⊆D , 使f (x )在[a,b ]上的值域为[a,b ] , 如果f (x )=√2x +1+k 为闭函数,那么k 的取值范围是( )A. −1<k ≤−12 B. 12≤k <1 C. k >−1 D. k <1 15.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=sinxcosx ; ②f (x )=2sin (x+π4);③f (x )=sinx+√3cosx ; ④f (x )=√2sin2x+1. 其中“同簇函数”的是( )A. ①②B. ①④C. ②③D. ③④ 16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A. y =−x 2+1B. y =lg |x |C. y =1x D. y =e −x 17.下列函数中,是偶函数且在区间 (0,+∞) 上为增函数的是( ) A. y =2ln x B. y =|x 3| C. y =x −1x D. y =cosx18.已知 f(12x −1)=2x +3,f(m)=6 ,则 m 等于( ) A. −14 B. 14 C. 32 D. −32 19.若函数y=x 2﹣3x ﹣4的定义域为[0,m],值域为 [−254,−4] ,则m 的取值范围是( )A. (0,4]B. [−254,−4] C. [32,3] D. [32,+∞)20.下列函数中,既是偶函数又存在零点的是( )A. y=x 2+1B. y=|lgx|C. y=cosxD. y=e x ﹣1二、填空题21.已知集合A={1,m+2,m 2+4},且5∈A ,则m=________.22.已知函数 f(x)={x +1,x ≤1f(log 2x),x >1 ,则 f(4)= ________; f(x) 的零点为________.23.函数f (x )=lg (2sinx ﹣1)的定义域为________.24.已知函数 f(x) 是定义在R 上的奇函数,当 x ≥0 时, f(x)=2x −c ,则 f(−2)= ________ 25.已知集合 A ={x|x 2−3x +2=0,x ∈R},B ={x|0<x <5,x ∈N} ,则满足条件 A ⊆C ⊆B 的集合 C 的个数为________.26.若函数 f(x)=lnx −kx 在区间 [1,+∞) 上单调递减,则实数 k 的取值范围是________ 27.设集合A={x|x 2﹣2ax+a=0,x ∈R},B={x|x 2﹣4x+a+5=0,x ∈R},若A 和B 中有且仅有一个是∅,则实数a 的取值范围是________.28.已知函数f (x )满足f (x ﹣1)=x 2﹣x+1,则f (3)=________. 29.函数 f(x)=lg(x −3)+(x−2)0x+1的定义域是________30.函数 y =√5+4x −x 2 的值域是________.31.已知函数f (x )= {log 2(1−x),x ≤0f(x −1)−f(x −2),x >0,则f (2016)=________32.已知定义在R 上的奇函数f (x ),当x≥0时,f (x )=x 2﹣3x .则关于x 的方程f (x )=x+3的解集为________. 33.如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1 , x 2 , 都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数①y=x 2;②y=e x +1;③y=2x ﹣sinx ;④f (x )={ln |x |,x ≠00,x =0.以上函数是“H 函数”的所有序号为 ________. 34.已知函数f (x )= {(2−a)x +1(x <1)a x (x ≥1) 在(﹣∞,+∞)上单调递增,则实数a 的取值范围是________.35.函数 y =√3−xlog2(x+1)的定义域是________ .三、解答题36.设f (x )=x 2﹣2|x|+3(﹣3≤x≤3) (1)证明f (x )是偶函数; (2)指出函数f (x )的单调增区间; (3)求函数f (x )的值域.37.已知函数f(x)=(x+1)(x+a)x为奇函数. (1)求实数a的值;(2)当x∈[1m ,1n](m>0,n>0)时,若函数f(x)的值域为[3−3m,3−3n],求m,n的值.38.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?39.设函数f(x)=x2−2|x−a|+3,x∈R.(1)王鹏同学认为,无论a取何值,f(x)都不可能是奇函数,你同意他的观点吗?请说明你的理由;(2)若f(x)是偶函数,求a的值;(3)在(2)的情况下,画出y=f(x)的图象并指出其单独递增区间.40.已知集合A={a,b,2},B={2,b2,2a},若A=B,求实数a,b的值.41.设f(x)=14x+2,先分别求f(0)+f(1),f(﹣1)+f(2),f(﹣2)+f(3),然后归纳猜想一般性结论,并给出证明.42.已知函数f(x)=log a(x+1),g(x)=log a(4−2x)(a>0,且a≠1),设F(x)=f(x)−g(x).(1)求函数F(x)的定义域;(2)求使函数F(x)的值为正数的x的取值范围.43.求函数y=2x﹣3+ √13−4x的值域.44.某通讯公司需要在三角形地带OAC 区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC 内,乙中转站建在区域AOB 内.分界线OB 固定,且OB=(1+ √3 )百米,边界线AC 始终过点B ,边界线OA 、OC 满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x (3≤x≤6)百米,OC=y 百米.(1)试将y 表示成x 的函数,并求出函数y 的解析式;(2)当x 取何值时?整个中转站的占地面积S △OAC 最小,并求出其面积的最小值.45.已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值.46.已知 y =f(x) 为二次函数,其图象顶点为 (1,−3) ,且过坐标原点. (1)求 y =f(x) 的解析式;(2)求 y =f(x) 在区间 [0,m] 上的最大值.47.设全集U=R ,集合A={x|﹣2<x <2},集合B={x|x 2﹣4x+3>0} 求A∩B ,A ∪B ,A∩∁U B .48.已知函数 f(x)=√x , g(x)=|x −2| . (1)求方程 f(x)=g(x) 的解集;(2)定义: max{a,b}={a,a ≥bb,a <b .已知定义在 [0,+∞) 上的函数 ℎ(x)=max{f(x),g(x)} . ①求 ℎ(x) 的单调区间;②若关于 x 的方程 ℎ(x)=m 有两个实数解,求 m 的取值范围.49.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象,并根据图象写出函数f(x)(x∈R)的递增区间;(2)写出函数f(x)(x∈R)的值域;(3)写出函数f(x)(x∈R)的解析式.50.已知函数f(x)=|x+1|−|x|.(1)解关于x的不等式f(x)+f(x−1)<1;(2)若关于x的不等式f(x)−f(x−1)<m−2|x|有解,求m的取值范围.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】B9.【答案】D10.【答案】A11.【答案】B12.【答案】A13.【答案】A14.【答案】A15.【答案】C16.【答案】A17.【答案】B18.【答案】A19.【答案】C20.【答案】C二、填空题21.【答案】3或122.【答案】2;-123.【答案】(π6+2kπ,5π6+2kπ),k∈Z24.【答案】25.【答案】426.【答案】[1,+∞)27.【答案】(﹣1,0]∪[1,+∞)28.【答案】1329.【答案】(3,+∞)30.【答案】[0,3]31.【答案】032.【答案】{2+ √7,﹣1,﹣3}33.【答案】②③34.【答案】 [ 32 ,2) 35.【答案】 (−1,0)∪(0,3] 三、解答题36.【答案】 (1)证明:f (x )的定义域为{x|﹣3≤x≤3},关于原点对称 又f (﹣x )=(﹣x )2﹣2|﹣x|+3=x 2﹣2|x|+3=f (x ),∴f (x )是偶函数;(2)解: f(x)={x 2+2x +3=(x +1)2+2(−3≤x ≤0)x 2−2x +3=(x −1)2+2(0<x ≤3) 作出函数的图象,如图,可知:f (x )的单调增区间为[﹣1,0]和[1,3](3)解:由(2)知,x=±1时,函数取得最小值;x=±3时,函数取得最大值 ∴函数f (x )的值域为[2,6].37.【答案】 (1)解:函数f (x )的定义域为: {x ∈R|x ≠0} , f(x)=(x+1)(x+a)x=x +ax+1+a ,∴ f(−x)+f(x)=−x −ax +1+a +x +ax +1+a =0 , ∴ a =−1 ;(2)解:由(1)可知: f(x)=x −1x , 显然 f(x)=x −1x 在 [1m ,1n ] 上单调递增,∴{1m −m =3−3m 1n−n =3−3n,∴ m , n 是方程 2x 2−3x +1=0 的两个实根,且 m >n , ∴ m =1,n =12 .38.【答案】 解:(Ⅰ)当每辆车的月租金定为3600元时, 未租出的车辆数为 ,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x 元, 则租赁公司的月收益为,整理得.所以,当x=4050时,f (x )最大,最大值为f (4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元 39.【答案】 (1)解:我同意王鹏同学的看法,理由如下: f(a)=a 2+3,f(−a)=a 2−4|a|+3若 f(x) 为奇函数,则有 f(a)+f(−a)=0 , ∴a 2−2|a|+3=0显然 a 2−2|a|+3=0 无解, 所以 f(x) 不可能是奇函数(2)解:若 f(x) 为偶函数,则有 f(x)=f(−x) ∴2|a|=0 , 解得 a =0 ,此时 f(x)=x 2−2|x|+3 ,是偶函数.(3)解:由(2)知 f(x)=x 2−2|x|+3 ,其图象如图所示其单调递增区间是 (−1,0) 和 (1,+∞) .40.【答案】 解:由已知 A =B ,得 {a =2a b =b 2 (1)或 {a =b 2b =2a .(2) 解(1)得 {a =0b =0 或 {a =0b =1 , 解(2)得 {a =0b =0 或 {a =14b =12,又由集合中元素的互异性 得 {a =0b =1 或 {a =14b =12 . 41.【答案】解:f (0)+f (1)= , 同理可得:f (﹣1)+f (2)= ,f (﹣2)+f (3)=.一般性结论:或写成“若x 1+x 2=1,则f (x 1)+f (x 2)=.”证明: ==42.【答案】 (1)解:∵函数 f(x)=log a (x +1) , g(x)=log a (4−2x) ∴ F(x)=f(x)−g(x)=log a (x +1)−log a (4−2x) ∴其定义域满足: {x +1>04−2x >0 ,解得 −1<x <2∴函数 F(x) 的定义域为 (−1,2)(2)解:要使函数 F(x) 的值为正数,等价于 f(x)>g(x) ,即 log a (x +1)>log a (4−2x) . ①当 a >1 时,可得 x +1>4−2x ,解得 x >1 . ∵定义域为 (−1,2)∴实数 x 的取值范围是 (1,2)②当 0<a <1 时,可得 x +1<4−2x ,解得 x <1 . ∵定义域为 (−1,2)∴实数 x 的取值范围是 (−1,1)综上,当 a >1 时,解集为 (1,2) ;当 0<a <1 ,解集为 (−1,1) 43.【答案】解:令则,t≥0 ∴y=﹣3+t=﹣t 2+t+=﹣ (t ﹣1)2+4(t≥0)根据二次函数的性质可知,当t=1即x=3时,函数有最大值4 故答案为:(﹣∞,4]44.【答案】 (1)解:结合图形可知,S △BOC +S △AOB =S △AOC .于是, 12 x (1+ √3 )sin30°+ 12 y (1+ √3 )sin45°= 12 xysin75°,解得:y= √2xx−2 ,(其中3≤x≤6)(2)解:由(1)知,y= √2x x−2 (3≤x≤6),因此,S △AOC = 12 xysin75°= 1+√34 • x 2x−2= 1+√34[(x ﹣2)+ 4x−2 +4] ≥2+2 √3 (当且仅当x ﹣2= 4x−2 ,即x=4时,等号成立).∴当x=400米时,整个中转站的占地面积S △OAC 最小,最小面积是(2+2 √3 )×104平方米. 45.【答案】解:当k =0时,原方程变为-8x +16=0,所以x =2,此时集合A 中只有一个元素2.当k≠0时,要使一元二次方程kx 2-8x +16=0有一个实根,需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A 中只有一个元素4.综上可知k =0或146.【答案】 (1)解:设 f(x) 解析式为: f(x)=a(x −1)2−3 ∵f(x) 过坐标原点 ∴f(0)=a −3=0 ,解得: a =3∴f(x)=3(x −1)2−3=3x 2−6x(2)解:由(1)知: f(x) 为开口方向向上,对称轴为 x =1 的二次函数 ①当 0<m <2 时, f(x)max =f(0)=0 ,当 m =2 时, f(x)max =f(0)=f(m)=0 , ②当 m >2 时, f(x)max =f(m)=3m 2−6m47.【答案】解:全集U=R ,集合A={x|﹣2<x <2},集合B={x|x 2﹣4x+3>0}={x|x <1或x >3},所以A∩B={x|﹣2<x <1},A ∪B={x|x <2或x >3},∁U B={x|1≤x≤3},所以A∩∁U B={x|1≤x <2}48.【答案】 (1)解:当 x ≥2 时,方程 f(x)=g(x) 为 √x =x −2 ,即 (√x −2)(√x +1)=0 ,解得 x =4 ,当 0≤x <2 时,方程 f(x)=g(x) 为 √x =2−x ,即 (√x +2)(√x −1)=0 ,解得 x =1 , 综上,方程 f(x)=g(x) 的解集为 {1,4} .(2)解:① f(x)≥g(x)⇒1≤x ≤4 , f(x)<g(x)⇒0≤x <1 或 x >4所以 ℎ(x)=max{f(x),g(x)}={2−x,0≤x <1√x,1≤x ≤4x −2,x >4 ,所以, ℎ(x) 的单调递增区间为 [1,+∞) ,单调递减区间为 [0,1) .②由①知 ℎ(x)min =ℎ(1)=1 , ℎ(0)=2 ,当 1<m ≤2 时,方程 ℎ(x)=m 有两个实数解, 综上,实数 m 的取值范围为 (1,2] .49.【答案】 (1)解:根据偶函数的图象关于y 轴对称,作出函数在R 上的图象, 结合图象可得函数的增区间为(﹣1,0)、减区间为(1,+∞)(2)解:结合函数的图象可得,当x=1,或 x=﹣1时,函数取得最小值为﹣1, 函数没有最大值,故函数的值域为[﹣1,+∞)(3)解:当x >0时,﹣x <0,再根据x≤0时,f (x )=x 2+2x ,可得f (﹣x )=(﹣x )2+2(﹣x )=x 2﹣2x .再根据函数f (x )为偶函数,可得f (x )=x 2﹣2x .综上可得,f (x )= {x 2+2x,x ≤0x 2−2x,x >050.【答案】 (1)解: f(x)+f(x −1)<1⇔|x +1|−|x −1|<1⇔{x ⩽−1−x −1−1+x <1 或 {−1<x <1x +1−1+x <1 或 {x ⩾1x +1−x +1<1⇔x ⩽−1 或 −1<x <12⇔x <12所以,原不等式的解集为 (−∞,12)(2)解: f(x)−f(x −1)<m −2|x| 有解即 |x +1|+|x −1|<m 有解则 m >(|x +1|+|x −1|)min 即可.由于 |x +1|+|x −1|⩾|(x +1)−(x −1)|=2 ,当且仅当 (x +1)(x −1)≤0 ,即当 −1≤x ≤1 时等号成立,故 m >2 . 所以, m 的取值范围是 (2,+∞) .。
高中数学必修一第一章《集合与函数概念》单元测试题(含答案)
⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。
高中数学必修1集合与函数概念
集合与函数概念一、选择题1.已知集合A={0mm2-3m+2}且2∈A则实数m的值为() A.2 B.3C.0或3 D.0或2或32.已知M={y∈R|y=|x|}N={x∈R|x=m2}则下列关系中正确的是()A.M N B.M=NC.M≠N D.N M3.如图所示U是全集AB是U的子集则阴影部分所表示的集合是()A.A∩B B.A∪B C.B∩∁U A D.A∩∁U B4.设集合U={12345}M={123}N={25}则M∩(∁U N)等于() A.{2} B.{23} C.{3} D.{13}5.集合A={02a}B={1a2}.若A∪B={012416}则a的值为() A.0 B.1 C.2 D.46.设集合S={x|x>5或x<-1}T={x|a<x<a+8}S∪T=R则a的取值范围是()A.-3<a<-1 B.-3≤a≤-1C.a≤-3或a≥-1 D.a<-3或a>-17.定义集合运算:A*B={z|z=xyx∈Ay∈B}.设A={12}B={02}则集合A *B 的所有元素之和为( )A .0B .2C .3D .68.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =k 2+14,k ∈Z N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 4+12,k ∈Z x 0∈M 则x 0与N 的关系是( )A .x 0∈NB .x 0∉NC .x 0∈N 或x 0∉ND .不能确定9.已知集合A ={x |a -1≤x ≤a +2}B ={x |3<x <5}则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题每小题5分共20分请把正确答案填在题中横线上)13.用列举法表示集合:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x +1∈Z ,x ∈Z=________ 14.集合M ={x |x 2-3x -a 2+2=0a ∈R }的子集的个数为________. 15.已知集合A ={x |x ≥2}B ={x |x ≥m }且A ∪B =A 则实数m 的取值范围是________.16.已知全集U ={x |1≤x ≤5}A ={x |1≤x <a }若∁U A ={x |2≤x ≤5}则a =________三、解答题(本大题共6个小题共70分解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知全集U 为R 集合A ={x |0<x ≤2}B ={x |x <-3或x >1}. 求:(1)A ∩B ;(2)∁U A∩∁U B;(3)∁U(A∪B).18.(本小题满分12分)已知集合M={23a2+1}N={a2+a-42a+1-1}且M∩N={2}求a的值.19.(本小题满分12分)已知集合A={x|2≤x≤8}B={x|1<x<6}C={x|x>a}U=R(1)求A∪B∁U A∩B;(2)若A∩C≠∅求a的取值范围.20.(本小题满分12分)设A ={x |2x 2+ax +2=0}B ={x |x 2+3x +2a =0}且A ∩B ={2}. (1)求a 的值及集合AB ;(2)设全集U =A ∪B 求∁U A ∪∁U B ; (3)写出∁U A ∪∁U B 的所有子集.21.(本小题满分12分)已知集合A ={x |0<x -a ≤5}B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-a 2<x ≤6 (1)若A ∩B =A 求a 的取值范围; (2)若A ∪B =A 求a 的取值范围.22.(本小题满分12分)若集合A ={x |x 2+x -6=0}B ={x |x 2+x +a =0}且B ⊆A 求实数a 的取值范围.详解答案第一章 集合与函数概念(一)(集 合) 名师原创·基础卷]1.D 解析:ABC 中符号“∈”“⊆”用错. 2.D 解析:由题意知A ⊆{01}∴A 有4个. 3.A 解析:如图所示∴a ≥2解题技巧:由集合的基本关系确定参数的取值范围可借助于数轴分析但应注意端点是否能取到.4.B 解析:若m =2则m 2-3m +2=0与集合中元素的互异性矛盾∴m ≠2m 2-3m +2=2则m =3或m =0(舍去).5.B 解析:∵M ={y ∈R |y =|x |}={y ∈R |y ≥0}N ={x ∈R |x =m 2}={x ∈R |x ≥0}∴M =N6.C 解析:由V enn 图可知阴影部分为B ∩∁U A7.D 解析:∁U N ={134}M ∩(∁U N )={123}∩{134}={13}.8.D 解析:由题意知⎩⎪⎨⎪⎧ a =4,a 2=16或⎩⎪⎨⎪⎧a 2=4,a =16(无解).∴a =49.A 解析:借助数轴可知:⎩⎪⎨⎪⎧a <-1,a +8>5.∴-3<a <-110.D 解析:∵A *B ={024}∴所有元素之和为611.A 解析:M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k +14,k ∈Z N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k +24,k ∈Z 对k 取值列举得M =⎩⎨⎧⎭⎬⎫…,-34,-14,14,34,…N ={…-34-12-140141234…} ∴M N ∵x 0∈M 则x 0∈N12.B 解析:由于a -1≤a +2∴A ≠∅由数轴知⎩⎪⎨⎪⎧a -1≤3,a +2≥5,∴3≤a ≤413.{-3-201} 解析:∵2x +1∈Z ∴-2≤x +1≤2-3≤x ≤1当x =-3时有-1∈Z ; 当x =-2时有-2∈Z ; 当x =0时有2∈Z ; 当x =1时有1∈Z ∴A ={-3-201}.14.4 解析:∵Δ=9-4(2-a 2)=1+4a 2>0 ∴M 恒有2个元素所以子集有4个.解题技巧:确定集合M 子集的个数首先确定集合M 中元素的个数. 15.m ≥2 解析:∵A ∪B =A 即B ⊆A ∴m ≥2 16.2 解析:∵A ∪∁U A =U ∴A ={x |1≤x <2}.∴a =2 17.解:(1)在数轴上画出集合A 和B 可知A ∩B ={x |1<x ≤2}.(2)∁U A ={x |x ≤0或x >2}∁U B ={x |-3≤x ≤1}.在数轴上画出集合∁U A 和∁U B 可知∁U A ∩∁U B ={x |-3≤x ≤0}.(3)由(1)中数轴可知A ∪B ={x |x <-3或x >0}. ∴∁U (A ∪B )={x |-3≤x ≤0}. 18.解:∵M ∩N ={2}∴2∈N ∴a 2+a -4=2或2a +1=2 ∴a =2或a =-3或a =12 经检验a =2不合题意舍去 故a =-3或a =1219.解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∁U A ={x |x <2或x >8}. ∴∁U A ∩B ={x |1<x <2}.(2)∵A ∩C ≠∅∴a <8即a 的取值范围为(-∞8).20.解:(1)由A ∩B ={2}得2是方程2x 2+ax +2=0和x 2+3x +2a=0的公共解∴2a +10=0则a =-5此时A =⎩⎨⎧⎭⎬⎫12,2B ={-52}. (2)由并集的概念得U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2 由补集的概念易得∁U A ={-5}∁U B =⎩⎨⎧⎭⎬⎫12所以∁U A ∪∁U B =⎩⎨⎧⎭⎬⎫-5,12(3)∁U A ∪∁U B 的所有子集即集合⎩⎨⎧⎭⎬⎫-5,12的所有子集:∅⎩⎨⎧⎭⎬⎫12{-5}⎩⎨⎧⎭⎬⎫-5,12 21.解:A ={x |a <x ≤a +5}B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-a 2<x ≤6(1)由A ∩B =A 知A ⊆B故⎩⎨⎧a ≥-a 2,a +5≤6,解得⎩⎪⎨⎪⎧a ≥0,a ≤1,故0≤a ≤1即实数a 的取值范围是{a |0≤a ≤1}.(2)由A ∪B =A 知B ⊆A 故-a2≥6或⎩⎨⎧a ≤-a 2,a +5≥6,解得a ≤-12或⎩⎪⎨⎪⎧a ≤0,a ≥1,故a ≤-12所以实数a 的取值范围是{a |a ≤-12}. 解题技巧:A ∩B =A ⇔A ⊆BA ∪B =A ⇔B ⊆A 22.解:A ={x |x 2+x -6=0}={-32} 对于x 2+x +a =0 ①当Δ=1-4a <0即a >14时B =∅B ⊆A 成立; ②当Δ=1-4a =0即a =14时B =⎩⎨⎧⎭⎬⎫-12B ⊆A 不成立;③当Δ=1-4a >0 即a <14时若B ⊆A 成立 则B ={-32}∴a =-3×2=-6综上a 的取值范围为⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a >14或a =-6。
高一数学必修一集合与函数的概念单元测试题附答案解析
高一数学必修一集合与函数的概念单元测试附答案解析时间:120分钟满分:150分一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=A.{0} B.{2} C.{0,2} D.{-2,0}3.fx是定义在R上的奇函数,f-3=2,则下列各点在函数fx图象上的是A.3,-2 B.3,2 C.-3,-2 D.2,-34.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是A.1 B.3 C.5 D.95.若函数fx满足f3x+2=9x+8,则fx的解析式是A.fx=9x+8 B.fx=3x+2 C.fx=-3x-4 D.fx=3x+2或fx=-3x-4 6.设fx=错误!则f5的值为A.16 B.18 C.21 D.247.设T={x,y|ax+y-3=0},S={x,y|x-y-b=0},若S∩T={2,1},则a,b的值为A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-18.已知函数fx的定义域为-1,0,则函数f2x+1的定义域为A.-1,1 C.-1,09.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f0>f1的映射有A.3个B.4个C.5个D.6个10.定义在R上的偶函数fx满足:对任意的x1,x2∈-∞,0x1≠x2,有x2-x1fx2-fx1>0,则当n∈N时,有A.f-n<fn-1<fn+1 B.fn-1<f-n<fn+1C.fn+1<f-n<fn-1 D.fn+1<fn-1<f-n11.函数fx是定义在R上的奇函数,下列说法:①f0=0;②若fx在0,+∞上有最小值为-1,则fx在-∞,0上有最大值为1;③若fx在1,+∞上为增函数,则fx在-∞,-1上为减函数;④若x>0时,fx=x2-2x,则x<0时,fx=-x2-2x.其中正确说法的个数是A.1个 B.2个 C.3个 D.4个12.fx满足对任意的实数a,b都有fa+b=fa·fb且f1=2,则错误!+错误!+错误!+…+错误!=A.1006 B.2014 C.2012 D.1007二、填空题本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.函数y=错误!的定义域为________.14.fx=错误!若fx=10,则x=________.15.若函数fx=x+abx+2a常数a,b∈R是偶函数,且它的值域为-∞,4,则该函数的解析式fx=________.16.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.三、解答题本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.本小题满分10分已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.1求A∪B,U A∩B;2若A∩C≠,求a的取值范围.18.本小题满分12分设函数fx=错误!.1求fx的定义域;2判断fx的奇偶性;3求证:f错误!+fx=0.19.本小题满分12分已知y=fx是定义在R上的偶函数,当x≥0时,fx=x2-2x.1求当x<0时,fx的解析式;2作出函数fx的图象,并指出其单调区间.20.本小题满分12分已知函数fx=错误!,1判断函数在区间1,+∞上的单调性,并用定义证明你的结论.2求该函数在区间1,4上的最大值与最小值.21.本小题满分12分已知函数fx的定义域为0,+∞,且fx为增函数,fx·y=fx+fy.1求证:f错误!=fx-fy;2若f3=1,且fa>fa-1+2,求a的取值范围.22.本小题满分12分某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下表所示的关系:1在所给的坐标图纸中,根据表中提供的数据,描出实数对x,y的对应点,并确定y与x 的一个函数关系式.2设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润1.解析M={x|xx+2=0.,x∈R}={0,-2},N={x|xx-2=0,x∈R}={0,2},所以M∪N={-2,0,2}.答案D2. 解析依题意,得B={0,2},∴A∩B={0,2}.答案C3. 解析∵fx是奇函数,∴f-3=-f3.又f-3=2,∴f3=-2,∴点3,-2在函数fx的图象上.答案A4. 解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y =1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案C5. 解析∵f3x+2=9x+8=33x+2+2,∴fx=3x+2.答案B6. 解析f5=f5+5=f10=f15=15+3=18.答案B7. 解析依题意可得方程组错误!错误!答案C8. 解析由-1<2x+1<0,解得-1<x<-错误!,故函数f2x+1的定义域为错误!.答案B9. 解析当f0=1时,f1的值为0或-1都能满足f0>f1;当f0=0时,只有f1=-1满足f0>f1;当f0=-1时,没有f1的值满足f0>f1,故有3个.答案A10.解析由题设知,fx在-∞,0上是增函数,又fx为偶函数,∴fx在0,+∞上为减函数.∴fn+1<fn<fn-1.又f-n=fn,∴fn+1<f-n<fn-1.答案C11. 解析①f0=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.答案C12. 解析因为对任意的实数a,b都有fa+b=fa·fb且f1=2,由f2=f1·f1,得错误!=f1=2,由f4=f3·f1,得错误!=f1=2,……由f2014=f2013·f1,得错误!=f1=2,∴错误!+错误!+错误!+…+错误!=1007×2=2014.答案B13. 解析由错误!得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14. 解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5不合题意,舍去.∴x=-3.答案-315. 解析fx=x+abx+2a=bx2+2a+abx+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又fx的值域为-∞,4,∴a≠0,b=-2,∴2a2=4.∴fx=-2x2+4.答案-2x2+416. 解析设一次函数y=ax+ba≠0,把错误!和错误!代入求得错误!∴y=-10x+9000,于是当y=400时,x=860.答案86017. 解1A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.A={x|x<2,或x>8}.U∴U A∩B={x|1<x<2}.2∵A∩C≠,∴a<8.18. 解1由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数fx的定义域为{x∈R|x≠±1}.2由1知定义域关于原点对称,f-x=错误!=错误!=fx.∴fx为偶函数.3证明:∵f错误!=错误!=错误!,fx=错误!,∴f错误!+fx=错误!+错误!=错误!-错误!=0.19. 解1当x<0时,-x>0,∴f-x=-x2-2-x=x2+2x.又fx是定义在R上的偶函数,∴f-x=fx.∴当x<0时,fx=x2+2x.2由1知,fx=错误!作出fx的图象如图所示:由图得函数fx的递减区间是-∞,-1,0,1.fx的递增区间是-1,0,1,+∞.20. 解1函数fx在1,+∞上是增函数.证明如下:任取x1,x2∈1,+∞,且x1<x2,fx-fx2=错误!-错误!=错误!,1∵x1-x2<0,x1+1x2+1>0,所以fx1-fx2<0,即fx1<fx2,所以函数fx在1,+∞上是增函数.2由1知函数fx在1,4上是增函数,最大值f4=错误!,最小值f1=错误!.21. 解1证明:∵fx=f错误!=f错误!+fy,y≠0∴f错误!=fx-fy.2∵f3=1,∴f9=f3·3=f3+f3=2.∴fa>fa-1+2=fa-1+f9=f9a-1.又fx在定义域0,+∞上为增函数,∴错误!∴1<a<错误!.22. 解1由题表作出30,60,40,30,45,15,50,0的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则错误!错误!∴y=-3x+1500≤x≤50,且x∈N,经检验30,60,40,30也在此直线上.∴所求函数解析式为y=-3x+1500≤x≤50,且x∈N.2依题意P=yx-30=-3x+150x-30=-3x-402+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学集合与函数概念试题答案及解析
高一数学集合与函数概念试题答案及解析1.如图所示,是全集,是的子集,则阴影部分所表示的集合是()A.A∩B B.B∩A C.D.A∩B【答案】B【解析】根据韦恩图可知,阴影部分所表示的集合是B∩ A.【考点】本小题主要考查集合关系的判断.点评:判断集合的关系可以借助韦恩图进行.2.(本小题12分)已知函数的定义域为集合A,的值域为B.(1)若,求A∩B(2) 若=R,求实数的取值范围。
【答案】(1)A∩B=(2)【解析】依题意,整理得,,(1)当时,,所以A∩B=. ……6分(2)分析易知,要使,需要解得. ……12分【考点】本小题主要考查函数的定义域、值域的求法和集合的运算,考查学生的运算求解能力. 点评:函数的定义域、值域必须写成集合或区间的形式,进行集合的运算时,一般要借助数轴进行.3.下列函数中是偶函数的是()()A.B.C.D.【答案】A【解析】因为选项A是偶函数,选项B,定义域不关于原点对称,不是偶函数,选项C中,是奇函数,选项D,非奇非偶函数。
选A.4.(本小题满分12分)已知函数(∈R).(1)画出当=2时的函数的图象;(2)若函数在R上具有单调性,求的取值范围.【答案】(1);(2)。
【解析】本试题主要是考查了分段函数的图像以及函数单调性的运用。
(1)先分析当时,然后利用描点连线,作图。
(2)因为函数在R上具有单调性,则每段都有单调性,且在分段点处函数值满足不等式关系,得到结论。
(1)当时图象如右图所示(2)由已知可得①当函数在R上单调递增时,由可得②当函数在R上单调递减时,由可得综上可知,的取值范围是5.(12分)设.(1)若在上的最大值是,求的值;(2)若对于任意,总存在,使得成立,求的取值范围;【答案】(1);(2)【解析】本试题主要是考查了二次函数的最值问题,以及函数与方程思想的综合运用(1)因为在(0,1)上的最大值,可知函数的解析式中a的值。
时,,所以时不符题意舍去时,最小值为,其中,而得到结论。
高一数学必修1《集合与函数概念》测试卷(含答案)
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
高一数学集合与函数的概念试题答案及解析
高一数学集合与函数的概念试题答案及解析1. 设集合,,则() A .B .C .D .【答案】A【解析】由题意得,,,∴,故选A.【考点】1.解一元二次不等式;2.集合的交集.2. 下列命题正确的是( ) A .∁U (∁U P )={P}B .若M={1,∅,{2}},则{2}⊆MC .∁R Q=QD .若N={1,2,3},S={x|x ⊆N},则N ∈S【答案】D【解析】根据集合的定义和补集运算法则,集集合子集的性质,对A 、B 、C 、D 四个选项进行一一判断;解:A 、∁U (∁U P )=p ,∵{P},∴p ∈{P},故A 错误;B 、集合M 中的元素,有1和,∅,{2},知1是数,∅,{2}是集合,∴1和,∅,{2},不能构成集合B ,故B 错误;C 、∵∁R Q 为无理数集,而Q 为有理数集,故C 错误;D 、∵N={1,2,3},S={x|x ⊆N},∴N 的所有子集构成集合S ,∴N ∈S ,故D 正确; 故选D .点评:此题主要考查集合的定义及其元素与集合的关系,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.3. 已知M={y|y=x 2+1,x ∈R},N={y|y=﹣x 2+1,x ∈R},则M∩N=( ) A .{0,1} B .{(0,1)} C .{1} D .以上均不对【答案】C【解析】根据函数值域求得集合M=[1,+∞),N}=(﹣∞,1],根据集合交集的求法求得M∩N . 解;集合M={y|y=x 2+1,x ∈R}=[1,+∞), N={y|y=﹣x 2+1,x ∈R}=(﹣∞,1], ∴M∩N={1} 故选C .点评:此题是个基础题.考查交集及其运算,以及函数的定义域和圆的有界性,同时考查学生的计算能力.4. 集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合A={a ,b ,c}的不同分拆种数为多少?【答案】27种【解析】考虑集合A 1为空集,有一个元素,2个元素,和集合A 相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可求出值.当A 1为A 时,A 2可取A 的任何子集,此时A 2有8种情况,故拆法为8种;总之,共27种拆法. 解:当A 1=φ时,A 2=A ,此时只有1种分拆;当A1为单元素集时,A2=∁AA1或A,此时A1有三种情况,故拆法为6种;当A1为双元素集时,如A1={a,b},A2={c}、{a,c}、{b,c}、{a,b,c},此时A1有三种情况,故拆法为12种;当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;综上,共27种拆法.点评:本题属于创新型的概念理解题,准确地理解拆分的定义,以及灵活运用集合并集的运算和分类讨论思想是解决本题的关键所在.5.已知a∈R,b∈R,A={2,4,x2﹣5x+9},B={3,x2+ax+a},C={x2+(a+1)x﹣3,1}:求(1)A={2,3,4}的x值;(2)使2∈B,B⊊A,求a,x的值;(3)使B=C的a,x的值.【答案】(1)x=2或x=3;(2)当x=2时,a=﹣;当x=3时,a=﹣;(3){x|x=﹣1或3} {a|a=﹣6或﹣2}.【解析】(1)解方程x2﹣5x+9=3即可求得x值;(2)由x2+ax+a=2与x2﹣5x+9=3联立即可求得a,x的值;(3)x2+(a+1)x﹣3=3与x2+ax+a=1即可求得a,x的值.解:(1)依题意,x2﹣5x+9=3,∴x=2或x=3;(2)∵2∈B,B⊊A,∴x2+ax+a=2且x2﹣5x+9=3,当x=2时,a=﹣;当x=3时,a=﹣;(3)∵B={3,x2+ax+a}=C={x2+(a+1)x﹣3,1},∴整理得:x=5+a,将x=5+a代入x2+ax+a=1得:a2+8a+12=0,解得a=﹣2或a=﹣6.当a=﹣2时,x=3或﹣1;当a=﹣6时,x=﹣1或x=7(当a=﹣6,x=7时代入x2+(a+1)x﹣3="3" 不成立所以舍去).综上所述{x|x=﹣1或3} {a|a=﹣6或﹣2}.点评:本题考查集合关系中的参数取值问题,考查方程思想运算能力,属于中档题.6.若,则的值为A.0B.1C.D.1或【答案】C【解析】由已知得,则有,又,。
高中数学必修一《集合与函数的概念》经典例题
高中数学必修一第一章《集合与函数概念》综合测试题试题整理:周俞江一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分).1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A ( )A.}{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2.若{{}|0,|12A x x B x x =<<=≤<,则A B=( ) A .{}|0x x ≤ B .{}|2x x ≥ C.{0x ≤≤ D .{}|02x x <<3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.xx y y ==,1 B .1,112-=+⨯-=x y x x y C.55,x y x y == D .2)(|,|x y x y == 4.函数x xx y +=的图象是( )5.0≤f 不是映射的是A .1:3f x y x −−→= B .1:2f x y x −−→= C .1:4f x y x −−→= D .1:6f x y x −−→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ).A .1B .0C .0或1D .1或27.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( )A .2-≥kB .2-≤kC .2->kD .2-<k8.已知函数24)12(x x f =-,则)3(f =( )A.4B.16C.7D.129.有下面四个命题:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ).其中正确命题的个数是( ).A .1B .2C .3D .410.图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B11.若函数))(12()(a x x x x f -+=为奇函数,则=a ( ) A.21 B.32 C.43 D.112.已知函数x x x x f 2211)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x21+ B.x x 212+- C.x x 212+ D.x x 21+-13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ).A .f (1)<f (2)<f (4)B .f (2)<f (1)<f (4)C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1)14.已知函数[](]⎪⎩⎪⎨⎧∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或415.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是A .增函数B .减函数C .奇函数D .偶函数二、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.16.已知全集}5,4,3,2,1{=U ,}4,3{},3,2,1{==B A ,则=B C A U ;17. 已知函数⎩⎨⎧<≥-=0,0,)(2x x x x x f ,则=-))3((f f ________________; 18.已知)(x f y =为奇函数,当0≥x 时)1()(x x x f -=,则=)1-(f ;则当0≤x 时,=)(x f . 19.已知f (x ) 是定义在[)2,0-∪(]0,2上的奇函数,当0>x 时,f (x ) 的图象如右图所示,那么,f (x ) 的值域是 . 三、解答题:本大题共5小题,每小题12分,共计60分.请在指定区域内作答,解答时应写出文字说明、证明或演算步骤.20.画出函数)(x f =x 2-6x +10在区间(2,10)上的大致图像,判断)(x f 在区间(4,10)上的单调性,并用定义法写出证明过程. 21.已知函数的定义域为集合A ,2x 13)(++-=x x f }|{a x x B <= (1)若B A ⊆,求a(2)若全集}4|{≤=x x U ,a=1-,求A C U 及)(B C A U22.(本小题满分14分)(1)已知)(x f 是一次函数,且3)2(3)1(2=+f f ,1)0()1(2-=--f f ,求)(x f 的解析式;(2)已知:2f (x )+f (1x)=3x ,x ≠0,求f (x )的解析式. 23.已知函数]5,5[,2)(2-∈++=x ax x x f ,(1)当1-=a 时,画出函数)(x f 的单调大致图像,并求出最大值与最小值.(2)若函数)(x f 在]5,5[-上增函数,求a 的取值范围。
高一数学集合与函数的概念(含答案)
高一年数学第一次月考试卷说明:1.本卷分第Ⅰ卷(选择题),第Ⅱ卷(填空题与解答题),第ⅠⅡ卷的答案写在答题卷的答案纸上,学生只要交答题卷.第Ⅰ卷1.集合},{b a 的子集有 ( )A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则AB = ( ) A .(4,3)- B .(4,2]-C .(,2]-∞D .(,3)-∞3.已知()5412-+=-x x x f ,则()x f 的表达式是( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x4.下列对应关系:( )①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根 ②,,A R B R ==f :x x →的倒数 ③,,A R B R ==f :22x x →-④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④D .②③5.下列四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)x x y x x⎧-≤⎪=⎨->⎪⎩.其中值域为R 的函数有 ( )A .1个B .2个C .3个D .4个6. 已知函数212x y x ⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是( )A .-2B .2或52-C . 2或-2D .2或-2或52-7.下列函数中,定义域为[0,+∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y 8.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( )A . 0)0(=f 且)(x f 为奇函数B .0)0(=f 且)(x f 为偶函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数 9.下列图象中表示函数图象的是 ( )10.若*,x R n N ∈∈,规定:(1)(2)(1)n xx x x x n H=++⋅⋅⋅⋅⋅+-,例如:( ) 44(4)(3)(2)(1)24H -=-⋅-⋅-⋅-=,则52()x f x x H -=⋅的奇偶性为A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数第Ⅱ卷(本题共5小题,每小题4分,共20分)11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B = .12.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .13.设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时,)(x f 的图象如右图,则不等式()0f x <的解集是 ..域为__________.15.已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q ,那么f(36)= .三.解答题(本题共6道小题,其中前四题各13分,后两题14分,共计80分,解答应写出文字说明、证明过程或演算步骤). 16.(本小题满分13分)已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-,求实数a 的值.17. (本小题満分13分)已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R . (Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.18. (本小题満分13分)(1)求函数y =x +1+(x -1)0lg (2-x )的定义域;(2)求函数422+-=x x y 的值域19.已知函数2()21f x x =-.(Ⅰ)用定义证明()f x 是偶函数;(Ⅱ)用定义证明()f x 在(,0]-∞上是减函数;(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值. yox20.(本小题满分13分)如图,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE=x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积为S ,试写出左边部分的面积S 与x 的函数关系,并画出大致的图象。
高一数学必修一第一章集合与函数概念练习题难题带答案
高一数学集合与函数概念一.选择题(共30小题)1.已知f(x)=lnx﹣+2,若对∀x1∈(0,1],∀x2∈[﹣1,1],都有f(x1)≥g(x2),则a的取值范围为()A.(﹣∞,2﹣e]B.(﹣2,2﹣e]C.D.2.已知集合,若B⊆A,则实数m的取值范围为()A.(4,+∞)B.[4,+∞)C.(2,+∞)D.[2,+∞)3.已知函数,对任意的x∈R恒有,且在区间上有且只有一个x0使得f(x0)=3,则ω的最大值为()A.B.8C.D.4.已知f(x)=32x﹣(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,2﹣1)C.(﹣1,2﹣1)D.(﹣2﹣1,2﹣1)5.已知f(x)=x2+px+q和是定义在上的函数,对任意的x∈A,存在常数x0∈A,使f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则f(x)在A上的最大值为()A.B.C.5D.6.已知f(x)为奇函数,当x∈[0,1]时,f(x)=1﹣2|x﹣|,当x∈(﹣∞,﹣1],f(x)=1﹣e﹣1﹣x,若关于x的不等式f(x+m)>f(x)有解,则实数m的取值范围为()A.(﹣1,0)∪(0,+∞)B.(﹣2,0)∪(0,+∞)C.(﹣﹣ln2,﹣1)∪(0,+∞)D.(﹣﹣ln2,0)∪(0,+∞)7.我们把形如的函数因其图象类似于汉字“囧”字,故生动地称为“囧函数”,并把其与y 轴的交点关于原点的对称点称为“囧点”,以“囧点”为圆心凡是与“囧函数”有公共点的圆,皆称之为“囧圆”,则当a=1,b=1时,所有的“囧圆”中,面积的最小值为()A.2πB.3πC.4πD.12π8.在下列四个函数中,当x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是()A.f(x)=B.f(x)=x2 C.f(x)=2x D.f(x)=9.集合M={x|x∈Z且},则M的非空真子集的个数是()A.30个B.32个C.62个D.64个10.设集合P={3,4,5},Q={4,5,6,7},定义P⊕Q={(a,b)|a∈P,b∈Q},则P⊕Q的真子集个数()A.23﹣1B.27﹣1C.212D.212﹣111.已知定义在R上的函数f(x)=﹣(x﹣1)3,则不等式f(2x+3)+f(x﹣2)≥0的解集为()A.(﹣∞,]B.(0,]C.(﹣∞,3]D.(0,3]12.已知函数f(x)=x2﹣2(a+1)x+a2,g(x)=﹣x2+2(a﹣1)x﹣a2+2,记H1(x)=,H2(x)=,则H1(x)的最大值与H2(x)的最小值的差为()A.﹣4B.4C.a2﹣a+4D.a2+a+813.若关于x的不等式e2x﹣alnx≥a恒成立,则实数a的取值范围是()A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]14.设函数f(x)的定义域为R,满足2f(x)=f(x+2),且当x∈[﹣2,0)时,f(x)=﹣x(x+2).若对任意x∈(﹣∞,m],都有f(x)≤3,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.[,+∞)D.[,+∞)15.已知函数f(x)=,若|f(x)|≥mx恒成立,则实数m的取值范围为()A.[2﹣2,2]B.[2﹣2,1]C.[2﹣2,e]D.[2﹣2,e]16.设集合S={1,2,3,…,2020},设集合A是集合S的非空子集,A中的最大元素和最小元素之差称为集合A的直径.那么集合S所有直径为71的子集的元素个数之和为()A.71•1949B.270•1949C.270•37•1949D.270•72•194917.已知k∈R,设函数,若关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为()A.[0,e2]B.[2,e2]C.[0,4]D.[0,3]18.已知函数若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.[0,2]D.19.已知若f[(m﹣1)f(x)]﹣2≤0在定义域上恒成立,则m的取值范围是()A.(0,+∞)B.[1,2)C.[1,+∞)D.(0,1)20.设函数f(x)的定义域为R,满足f(x+2)=2f(x),且当x∈(0,2]时,f(x)=﹣x(x﹣2).若对任意x∈(﹣∞,m],都有,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.(﹣∞,7]D.(﹣∞,]21.已知函数,g(x)=ax2+2x+a﹣1.若对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,则实数a的取值范围为()A.B.C.D.22.已知函数f(x)=ax2﹣bx+c(a<b<c)有两个零点﹣1和m,若存在实数x0,使得f(x0)>0,则实数m的值可能是()A.x0﹣2B.C.D.x0+323.设函数f(x)=﹣x(x﹣a)2(x∈R),当a>3时,不等式f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,则θ的可能取值是()A.﹣B.C.﹣D.24.已知函数,若对任意,都有f(x+m)≥3f(x),则实数m的取值范围是()A.[4,+∞)B.C.[3,+∞)D.25.若关于x的不等式≤1在区间(1,2]上恒成立,则实数a的取值范围为()A.(0,ln2]B.(﹣∞,ln2]C.(ln2,+∞)D.(﹣∞,1]26.对于函数y=f(x),若存在区间[a,b],当x∈[a,b]时的值域为[ka,kb](k>0),则称y=f(x)为k倍值函数.若f(x)=e x+2x是k倍值函数,则实数k的取值范围是()A.(e+1,+∞)B.(e+2,+∞)C.(e+,+∞)D.(e+,+∞)27.已知函数f(x)=(x>2),若f(x)恒成立,则整数k的最大值为()A.2B.3C.4D.528.若存在,使得不等式2xlnx+x2﹣mx+3≥0成立,则实数m的最大值为()A.B.C.4D.e2﹣129.设|AB|=10,若平面上点P满足对任意的λ∈R,恒有,则一定正确的是()A.B.C.D.∠APB≤90°30.已知函数y=f(x)为定义域R上的奇函数,且在R上是单调递增函数,函数g(x)=f(x﹣5)+x,数列{a n}为等差数列,且公差不为0,若g(a1)+g(a2)+…+g(a9)=45,则a1+a2+…+a9=()A.45B.15C.10D.0二.填空题(共5小题)31.设a为实数,对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,则a的最大值是.32.已知实数x,y>0,则的最大值为.33.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),且当0≤x≤1时,f(x)=log2(x+a),若对于x属于[0,1]都有3,则实数t的取值范围为34.已知二次函数f(x)=ax2+bx+c,且4c>9a,若不等式f(x)>0恒成立,则的取值范围是.35.已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有个元素.三.解答题(共5小题)36.已知定义在R上的函数f(x)满足:①对任意实数x,y,都有f(x+y)=f(x)•f(y);②对任意x>0,都有f (x)>1.(1)求f(0),并证明f(x)是R上的单调增函数;(2)若|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)对x∈R恒成立,求实数a的取值范围;(3)已知g(x)=,方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)有三个根x1<x2<x3,若x3﹣x2=2(x2﹣x1),求实数m.37.设集合A,B是非空集合M的两个不同子集.(1)若M={a1,a2},且A是B的子集,求所有有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},且A的元素个数比B的元素个数少,求所有有序集合对(A,B)的个数.38.已知集合A={x|2x2﹣5x﹣12≥0},B={y|y=3x+1(x>0)}.(1)求集合A∩B,(∁R A)∪B;(2)若集合C={x|m﹣2≤x≤2m}且(∁R A)∩C=C,求m的取值范围.39.已知a∈R,函数f(x)=(﹣x2+ax)•e x.(1)a=2时,求函数f(x)的单调区间;(2)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.40.已知函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.(Ⅰ)设函数f(x)存在大于1的零点,求实数m的取值范围;(Ⅱ)设函数f(x)有两个互异的零点α,β,求m的取值范围,并求α•β的值.参考答案与试题解析一.选择题(共30小题)1.【解答】解:g′(x)=x(x﹣2),∴﹣1<x<0时,g′(x)>0,0<x<1时,g′(x)<0,g(x)max=g(0)=2,∴f(x)=lnx﹣+ex≥2在(0,1]恒成立,即a≤xlnx+ex2﹣2x在(0,1]恒成立,令h(x)=xlnx+ex2﹣2x(0<x≤1),h′(x)=lnx+2ex﹣1,h″=+2e≥恒成立,∴h′(x)在x∈(0,1]单调递增,又x→0时,h(x)→﹣∞,h(1)=e﹣2>0,故存在x0∈(0,1],使得0<x<x0,h′(x)<0,x0<x<1,h′(x)>0,即h′(x0)=lnx0+2ex0﹣1=0,解得x0=,∴h(x)min=h()=﹣+e•()2﹣2•=﹣,∴a≤﹣,故选:D.2.【解答】解:由题得A={x|x>2或x<﹣2},∵m>0,∴B={x|m<x<2m}且B≠∅,∵B⊆A,∴m≥2或2m≤﹣2,解得m≥2,即m∈[2,+∞),故选:D.3.【解答】解:由题意知,k1,k2∈Z,则,k,k'∈Z,其中k=k2﹣k1,k'=k1+k2=k+2k1,故k与k'同为奇数或同为偶数.f(x)在上有且只有一个最大值,且要求ω最大,则区间包含的周期应该最多,所以,得0<ω≤8,即≤8,所以k≤4当k=4时,ω=,k'为偶数,φ=,此时x+∈(,),当x1+=0.5π或2.5π或6.5π时,f(x0)=3都成立,舍去;当k=3时,ω=,k'为奇数,φ=,此时x+∈(,),当且仅当x+=2.5π时,f(x0)=3成立.故ω的最大值为,故选:C.4.【解答】解:令3x=t(t>0),则g(t)=t2﹣(k+1)t+2,若x∈R时,f(x)恒为正值,则g(t)=t2﹣(k+1)t+2>0对t>0恒成立.∴①或②解①得:﹣1<k<﹣1+;解②得:k≤﹣1.综上,实数k的取值范围是(﹣∞,2﹣1).故选:B.5.【解答】解:由已知函数f(x)=x2+px+q和g(x)=x+在区间[1,]上都有最小值f(x0),g(x0),又因为g(x)=x+在区间[1,]上的最小值为g(2)=4,f(x)min=f(2)=g(2)=4,所以得:,即:,所以得:f(x)=x2﹣4x+8≤f(1)=5.故选:C.6.【解答】解:若x∈[﹣1,0],则﹣x∈[0,1],则f(﹣x)=1﹣2|﹣x﹣|=1﹣2|x+|,∵f(x)是奇函数,∴f(﹣x)=1﹣2|x+|=﹣f(x),则f(x)=2|x+|﹣1,x∈[﹣1,0],若x∈[1,+∞),则﹣x∈(﹣∞,﹣1],则f(﹣x)=1﹣e﹣1+x=﹣f(x),则f(x)=e﹣1+x﹣1,x∈[1,+∞),作出函数f(x)的图象如图:当m>0时,f(x+m)的图象向左平移,此时f(x+m)>f(x)有解,满足条件.当m<0时,f(x+m)的图象向右平移,当f(x+m)的图象与f(x)在x>1相切时,f′(x)=e x﹣1,此时对应直线斜率k=2,由e x﹣1=2,即x﹣1=ln2,得x=ln2+1.此时y=e x﹣1﹣1=e ln2+1﹣1﹣1=2﹣1=1,即切点坐标为(1+ln2,1),设直线方程为y=2(x﹣a)此时1=2(1+ln2﹣a),即=1+ln2﹣a,得a=+ln2,0<﹣m<+ln2,得﹣﹣ln2<m<0,综上﹣﹣ln2<m<0或m>0综上m的取值范围是(﹣﹣ln2,0)∪(0,+∞),故选:D.7.【解答】解:当a=1,b=1时,函数的定义域为{x|x≠±1,x∈R},且为偶函数,其图象如图所示.函数图象与y轴的交点为B(0,﹣1),其关于原点的对称点为C(0,1),所以“囧点”为(0,1),即“囧圆”的圆心为C(0,1).要求所有“囧圆”的面积的最小值,只需求所有“囧圆”的半径的最小值.由图知,“囧函数”有三部分组成,其图象关于y轴对称,故只需考虑y轴及y轴右侧的函数图象.当圆C过点B时,其半径为2,这是和x轴下方的函数图象有公共点的所有“囧圆”中,半径的最小值;当圆C和x轴上方且y轴右侧的函数图象有公共点A时,设A(m,),(其中m>1),则点A到圆心C的距离的平方为d2=m2+(﹣1)2,令=t,(t>0),则d2=(1+)2+(t﹣1)2=t2++﹣2t+2=(t﹣)2﹣2(t﹣)+4,再令t﹣=μ,(其中μ∈R),则d2=μ2﹣2μ+4=(μ﹣1)2+3≥3,所以当圆C和x轴上方且y轴右侧的函数图象有公共点时,最小半径为.又2>,综上可知,在所有的“囧圆”中,半径的最小值为.故所有的“囧圆”中,圆的面积的最小值为3π.故选:B.8.【解答】解:当x1>x2>1时,能使成立的函数是凸函数,其图象类似:所以选项正确;B,C,D都不正确.故选:A.9.【解答】解:由题意集合M={x|x∈Z且}={x|x=0,1,2,3,5,11},由对于含有n个元素的集合,利用公式2n﹣2计算出M的非空真子集个数,∴M的非空真子集的个数是26﹣2=62,故选:C.10.【解答】解:由所定义的运算可知,集合P⊕Q中元素(x,y)中的x取自3,4,5三个的一个,y取自4,5,6,7四个的一个,故根据乘法原理,P⊕Q中实数对的个数是:3×4=12,∴P⊕Q的所有真子集的个数为212﹣1.故选:D.11.【解答】解:令t=x﹣1,则f(t+1)=,则f(t+1)是奇函数,则当t≥0时,y==﹣t3=﹣t3=﹣t3=﹣1﹣t3,为减函数,∴当x≥1时,f(x)为减函数,即g(x)=f(x+1)是奇函数,则f(2x+3)+f(x﹣2)≥0等价为f(2x+2+1)+f(x﹣3+1)≥0,即g(2x+2)+g(x﹣3)≥0,则g(2x+2)≥﹣g(x﹣3)=g(3﹣x),则2x+2≤3﹣x,得3x≤1,x≤,即原不等式的解集为(﹣∞,],故选:A.12.【解答】解:f(x)﹣g(x)=2x2﹣4ax+2a2﹣2=2(x﹣a﹣1)(x﹣a+1).故当x≥a+1或x≤a﹣1时,f(x)≥g(x);当a﹣1<x<a+1时,f(x)<g(x).又H1(x)=,H2(x)=,,,∴,.设H1(x)的最大值为A,H2(x)的最小值为B.结合二次函数的性质可知,A=H1(a﹣1)=(a﹣1)2+2(a﹣1)(a﹣1)﹣a2+2=3﹣2a;B=H2(a+1)=(a+1)2﹣2(a+1)(a+1)+a2=﹣2a﹣1.故A﹣B=3﹣2a﹣(﹣2a﹣1)=4.∴H1(x)的最大值与H2(x)的最小值的差为4.故选:B.13.【解答】解:当a<0时,f(x)=e2x﹣alnx为(0,+∞)的增函数,f(x)无最小值,不符合题意;当a=0时,e2x﹣alnx≥a即为e2x≥0显然成立;当a>0时,f(x)=e2x﹣alnx的导数为f′(x)=2e2x﹣,由于y=2e2x﹣在(0,+∞)递增,设f′(x)=0的根为m,即有a=2me2m,当0<x<m时,f′(x)<0,f(x)递减;当x>m时,f′(x)>0,f(x)递增,可得x=m处f(x)取得极小值,且为最小值e2m﹣alnm,由题意可得e2m﹣alnm≥a,即﹣alnm≥a,化为m+2mlnm≤1,设g(m)=m+2mlnm,g′(m)=1+2(1+lnm),当m=1时,g(1)=1,m>1时,g′(m)>0,g(m)递增,可得m+2mlnm≤1的解为0<m≤1,则a=2me2m∈(0,2e2],综上可得a∈[0,2e2],故选:C.14.【解答】解:函数f(x)的定义域为R,满足2f(x)=f(x+2),可得f(0)=2f(﹣2)=0,当x∈[﹣2,0)]时,函数f(x)在[﹣2,﹣1)上递增,在(﹣1,0)上递减,所以f(x)max=f(﹣1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈[﹣4,﹣2)时,f(x)max=f(﹣3)=,当x∈[0,2)时,f(x)max=f(1)=2,当x∈[2,4)时,f(x)max=f(3)=4,设x∈[2,4)时,x﹣4∈[﹣2,0),f(x﹣4)=﹣(x﹣4)(x﹣2)=f(x),即f(x)=﹣4(x﹣4)(x﹣2),x∈[2,4),由﹣4(x﹣4)(x﹣2)=3,解得x=或x=,根据题意,当m≤时,f(x)≤3恒成立,故选:A.15.【解答】解:作出函数|f(x)|的图象如图所示;当x≤0时;令x2+2x+2=mx,即x2+(2﹣m)x+2=0,令△=0,即(2﹣m)2﹣8=0,解得,结合图象可知,;当x>0时,令e2x﹣1=mx,则此时f(x)=e2x﹣1,h(x)=mx相切,设切点,则,解得m=2,观察可知,实数m的取值范围为.故选:A.16.【解答】解:设集合A中最大元素为a,最小元素为b,所以满足b﹣a=71的组合有2020﹣71=1949个,集合A中元素最多为72个,而集合A中包含a,b所有子集元素之和个数为2+3+4+ (72)设m=2+3+4+......+72,则m=72+71+70+ (2)所以2m=74+74+74+……+74=74×270,即m=37×270,因此,集合S所有直径为71的子集的元素个数之和为270•37•1949.故选:C.17.【解答】解:(1)当x≤1时,f(x)=x2﹣2kx+2k,∴f(x)的对称轴为x=k,开口向上.①当k<1时,f(x)在(﹣∞,k)递减,(k,1)递增,∴当x=k时,f(x)有最小值,即f(k)≥0,∴0≤k<1;②当k≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1,∴1≥0显然成立,此时k≥1.综上得,k≥0;(2)当x>1时,f(x)=(x﹣k﹣1)e x+e3,∴f'(x)=(x﹣k)e x,①′当k≤1时,f(x)在(1,+∞)上递增,∴f(x)>f(1)=﹣ke+e3≥0,∴k≤e2,∴此时k≤1;②′当k>1时,f(x)在(1,k)递减,(k,+∞)递增,∴f(x)≥f(k)=﹣e k+e3≥0,∴k≤3,∴此时1<k≤3.综上:0≤k≤3,∵关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为0≤k≤3,故选:D.18.【解答】解:(1)当x≤1时,f(x)=x2﹣2ax+2a,∴f(x)的对称轴为x=a,开口向上.①当a<1时,f(x)在(﹣∞,a)递减,(a,1)递增,∴当x=a时,f(x)有最小值,即f(a)=﹣a2+2a≥,解得0≤a<1;②当a≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1≥,∴1≤a≤2.综合①②得:当x≤1时,0≤a≤2;(2)当x>1时,f(x)=2x﹣alnx,∴f'(x)=2﹣=,①′当a≤0时,f'(x)>0,f(x)在(1,+∞)上递增,∴f(x)>f(1)=2≥,∴a≤4,∴此时a≤0;②′当0<≤1,即0<a≤2时,f(x)在(1,+∞)上递增,同理可得0<a≤2;③′当>1,即a>2时,f(x)在(1,)递减,(,+∞)递增,∴f(x)≥f()=a﹣aln≥,∴ln≤,解得2<a≤2.综合①′②′③′得:当x>1时,a≤2;∵关于x的不等式在R上恒成立,∴0≤a≤2,故选:C.19.【解答】解:∵,∴当﹣1<x<8时,log3(x+1)∈(﹣∞,2),|log3(x+1)|∈[0,2),x∈(﹣1,0)时,f(x)=|log3(x+1)|单调递减,x∈(0,8)时,f(x)单调递增,且当x=﹣时,f(x)=2①.当x≥8时,f(x)=单调递减且f(x)∈(0,2]②,其图象如下:若f[(m﹣1)f(x)]﹣2≤0,则f[(m﹣1)f(x)]≤2,∴(m﹣1)f(x)≥﹣,当f(x)=0时,m∈R;当f(x)>0时,m﹣1>,当f(x)→+∞时,→0,∴m﹣1≥0,解得:m≥1.故选:C.20.【解答】解:当x∈(0,2]时,函数f(x)在(0,1)上递增,在(1,2)上递减,所以f(x)max=f(1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈(﹣2,0]时,f(x)max=f(﹣1)=,当x∈(2,4]时,f(x)max=f(3)=2,当x∈(4,6]时,f(x)max=f(5)=4,设x∈(6,8]时,x﹣6∈(0,2],f(x﹣6)=﹣(x﹣6)(x﹣8)=f(x),即f(x)=﹣8(x﹣6)(x﹣8),x∈(6,8],由﹣8(x﹣6)(x﹣8)=,解得x=或x=,根据题意,当m≥时,f(x)≤恒成立,故选:B.21.【解答】解:由题意,函数f(x)图象如下:结合图象,可知函数f(x)的值域为(,+∞).∵对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,∴函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.①当a=0时,g(x)=2x﹣1,此时g(x)在区间[0,+∞)上值域为[﹣1,+∞),满足题意;②当a<0时,二次函数g(x)=ax2+2x+a﹣1开口朝下,很明显不符合题意;③当a>0时,对称轴x=﹣<0,g(0)=a﹣1,此时g(x)在区间[0,+∞)上值域为[a﹣1,+∞),则必须a﹣1≤,即a≤.即0<a≤满足函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.综上所述,可得实数a的取值范围为[0,].故选:A.22.【解答】解:∵﹣1是函数f(x)=ax2﹣bx+c的一个零点,∴a+b+c=0,∵a<b<c,则a<0,c>0,∵﹣1×m=<0,∴m>0.由a<b,a<0,得<1①,由0=a+b+c>a+b+b=a+2b,得﹣<,即>﹣②,由①②得:﹣<<1.函数f(x)=ax2﹣bx+c的图象是开口向下的抛物线,其对称轴方程为x=,则﹣<<.∴零点﹣1到对称轴的距离d∈(,),另一零点为m>0,∴m﹣(﹣1)=m+1=2d∈(,3),因为f(x0)>0,所以x0∈(﹣1,m),故0<m﹣x0<(2d)min,∴x0<m+x0,综合四个选项,实数m的值可能是+x0.故选:C.23.【解答】解:由f(x)=﹣x(x﹣a)2,得f'(x)=﹣(3x﹣a)(x﹣a).令f'(x)=0,得或x=a,当a>3时,,∴f(x)在区间,[a,+∞)上单调递减,在区间上单调递增;当a>3时,,则f(x)在区间(﹣∞,1]上为减函数,又k∈[﹣1,0],sinθ∈[﹣1,1],则﹣2≤﹣k﹣sinθ﹣1≤1,∴﹣1≤k2﹣sin2θ≤1.∵f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,∴对任意的k∈[﹣1,0]恒成立,∴恒成立,∴,即,∴θ的可能取值是.故选:D.24.【解答】解:∵f(﹣x)==﹣f(x),∴函数,为R上的奇函数,又x≥0时,f(x)=x2为增函数,∴f(x)为定义域R上的增函数.又f()=3,∴f(x+m)≥3f(x)=f(x),∵对任意,f(x+m)≥3f(x)=f(x),f(x)为定义域R上的增函数,∴m≥[(﹣1)x]max=(﹣1)(+3),即(1﹣)m=m≥3(﹣1),解得:m≥2.即实数m的取值范围是[2,+∞),故选:B.25.【解答】解:关于x的不等式不等式≤1在区间(1,2]上恒成立⇔关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.显然当a≤0时,关于x的不等式不等式≤1在区间(1,2]上恒成立当a>0时,在同一坐标系内分别作出y=a(x﹣1)2,y=lnx的图象,所以关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.⇔A点的位置不低于B点的位置⇔ln2≥a(2﹣1)2⇔0<a≤ln2.综上,实数a的取值范围为(﹣∞,ln2].故选:B.26.【解答】解:f(x)在定义域R内单调递增,∴f(a)=ka,f(b)=kb,即e a+2a=ka,e b+2b=kb,即a,b为方程e x+2x=kx的两个不同根,∴,设g(x)=,,∴0<x<1时,g′(x)<0;x>1时,g′(x)>0,∴x=1是g(x)的极小值点,∴g(x)的极小值为:g(1)=e+2,又x趋向0时,g(x)趋向+∞;x趋向+∞时,g(x)趋向+∞,∴k>e+2时,y=k和y=g(x)的图象有两个交点,方程有两个解,∴实数k的取值范围是(e+2,+∞).故选:B.27.【解答】解:当k=5,x=3时,f(x)=f(3)==1+ln2,==,∴f(x)<,故k =5不成立;当k=4,x=3时,f(x)=f(3)=1+ln2<=2,所以k=4也不成立;当k=3时,f(x)>(x>2)⇔1+ln(x﹣1)﹣(1﹣)×3>0,令g(x)=1+ln(x﹣1)﹣3+,x>2则g′(x)=﹣=,∴2<x<4时,g′(x)<0;x>4时,g′(x)>0,∴g(x)在(2,4)上递减,在(4,+∞)上递增,∴g(x)min=g(4)=ln3﹣1>0,∴k=3时,f(x)>在(2,+∞)上恒成立,符合题意.故整数k的最大值为3.故选:B.28.【解答】解:由存在,使得不等式2xlnx+x2﹣mx+3≥0成立,得:m≤2lnx+x+,x∈[,e]有解,令y=2lnx+x+,则y′=,故x∈(,1)时,y′<0,函数是减函数,x∈(1,e)时,y′>0,函数是增函数,故x=时,y=3e+﹣2,x=e时,y=2+e+,又(3e+﹣2)﹣(2+e+)=2e﹣4﹣>0,故函数y=2lnx+x+的最大值是3e+﹣2,m≤3e+﹣2,故选:A.29.【解答】解:以线段AB的中点为原点,以AB所在的直线为x轴,以其中垂线为y轴,建立直角坐标系,则A(﹣5,0)、B(5,0)、设点P(x,y),则,,则,即有(2x+10﹣10λ)2+4y2≥64,整理为以为元的一元二次不等式,即100λ2﹣(200+40x)λ+4x2+40x+4y2+36≥0,由于上述不等式对任意λ∈R恒成立,则△≤0必然成立,△=(200+40x)2﹣4×100×(4x2+40x+4y2+36)≤0,解得|y|≥4,即y≥4或者y≤﹣4,动点P位于直线y=4上或其上方部分,或者直线y=﹣4上或者其下方的区域内,用动态的观点看问题,我们让点P位于点(﹣5,4)处,则,故A错误;让点P位于点(0,4)处,则,故B错误;此时,|AB|=10,用余弦定理计算,∠APB>90°故D错误;我们进一步确定C选项的正确性,,,则,其中x∈R,y2≥16,故x2+y2﹣25≥x2+16﹣25≥﹣9,即,故C正确.故选:C.30.【解答】解:根据题意,函数y=f(x)为定义域R上的奇函数,则有f(﹣x)+f(x)=0,设h(x)=g(x)﹣5=f(x﹣5)+(x﹣5),若g(a1)+g(a2)+…+g(a9)=45,即f(a1﹣5)+a1+f(a2﹣5)+a2+…+f(a9﹣5)+a9=45,变形可得f(a1﹣5)+(a1﹣5)+f(a2﹣5)+(a2﹣5)…+f(a9﹣5)+(a9﹣5)=0,即h(a1﹣5)+h(a2﹣5)+…+h(a9﹣5)=0,又由y=f(x)为定义域R上的奇函数,则h(x)=f(x﹣5)+(x﹣5)关于点(5,0)对称,而数列{a n}为等差数列,且公差不为0,则有a1+a9=10,变形有a5=5,则a1+a2+…+a9=9a5=45;故选:A.二.填空题(共5小题)31.【解答】解:对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,即f(x)=kx+9x﹣x2﹣a ﹣6lnx≥0恒成立,令g(k)=xk+9x﹣x2﹣a﹣6lnx,∵x∈(0,4],∴g(k)在k∈[﹣1,1]上单调递增,∴g(k)min=g(﹣1)≥0即可,g(k)≥g(k)min=g(﹣1)≥0,又∵g(﹣1)=﹣x+9x﹣x2﹣a﹣6lnx=﹣x2+8x﹣6lnx﹣a(x∈(0,4]),令ρ(x)=﹣x2+8x﹣6lnx﹣a,则ρ′(x)=﹣2x+8﹣==(﹣x2+4x﹣3)=﹣(x﹣3)(x﹣1),令ρ′(x)=0,得x=3或x=1,∴x∈(0,1)时,ρ′(x)<0,ρ(x)单调递减;x∈(1,3)时,ρ′(x)>0,ρ(x)单调递增;x∈((3,4)时,ρ′(x)<0,ρ(x)单调递减;ρ(1)=﹣1+8﹣a=7﹣a,ρ(4)=﹣16+32﹣6ln4﹣a=16﹣6ln4﹣a,∴解得a≤7,故答案为:7.32.【解答】解:=令分子等于0,△=0,即(10t2﹣1)y2+2(t﹣1)y+14t2+2t﹣1=0,再令△=0,t2(2t+1)(14t﹣5)=0解得t=0或t=﹣或t=,①﹣==≤0,当且仅当即时等号成立;②+==≥0,当且仅当即时等号成立;综上,最大值为,故答案为:33.【解答】解:由题意,f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,所以当0≤x≤1时,f(x)=log2(x+1),当x∈[﹣1,0]时,﹣x∈[0,1],此时f(x)=﹣f(﹣x)=﹣log2(﹣x+1),又知道f(x+2)=﹣f(x)=f(﹣x),所以f(x)以x=1为对称轴.且当x∈[﹣1,1]时f(x)单调递增,当x∈[1,3]时f(x)单调递减.当x∈[﹣1,3]时,令f(x)=1﹣log23,得x=﹣,或x=,所以在[﹣1,3]内当f(x)>1﹣log23时,x∈[﹣,].设g(x)=﹣,若对于x属于[0,1]都有,因为g(0)=∈[﹣,].,故g(x)∈[﹣,].①当<0时,g(x)在[0,1]上单调递减,故g(x)∈[t﹣,]⊆[﹣,].得t≥0,无解.②0≤t≤1时,,此时g(t)最大,g(1)最小,即g(x)∈[t﹣1,]⊆[﹣,].得t∈[0,1].③当1<t≤2时,即,此时g(0)最小,g(t)最大,即g(x)∈[,]⊆[﹣,].得t∈(1,2],④当t>2时,g(x)在[0,1]上单调递增,故g(x)∈[,t﹣]⊆[﹣,].解得,t∈(2,3],综上t∈[0,3].故填:[0,3].34.【解答】解:若不等式f(x)>0恒成立,则,又由4c>9a,∴设x=,y=,则,则==1+,令z=,则z表示区域内的点(x,y)与P(1,﹣2)连线的斜率,因为A(﹣3,),所以k P A==﹣,设直线PB:y=k(x﹣1)﹣2,联立得x2﹣4kx+4k+8=0,△=16k2﹣16k﹣32=0⇒k=﹣1,k=2,由图可知,z∈(﹣∞,﹣)∪(2,+∞),故答案为(﹣∞,﹣)∪(3,+∞).35.【解答】解:令f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|,将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数的问题转化为两个函数图象交点个数的问题不妨令a1<a2<a3,b1<b2<b3,由于f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|=,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|=,考查两个函数,可以看到每个函数都是由两条射线与两段拆线所组成的,且两条射线的斜率对应相等,两条线段的斜率对应相等.当a1,a2,a3的和与b1,b2,b3的和相等时,此时两个函数射线部分完全重合,这与题设中方程的解集是有限集矛盾不妨令a1,a2,a3的和小于b1,b2,b3的和即a1+a2+a3<b1+b2+b3,﹣a1﹣a2﹣a3>﹣b1﹣b2﹣b3,两个函数图象射线部分端点左右位置不同,即若左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,反之亦然.不妨认为左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,且射线互相平行,中间线段也对应平行,如图A点在左,F点在右,此时若B,C点在线段AD的上方,则只有一个交点;若BC线段位置在如图位置,则有三个交点,探究知,当a1,a2,a3的值依次是1、4、5,b1,b2,b3的值分别是2、3、6,可得到如图的图象,所以此两函数在本题条件下,最多有三个元素:故两函数图象最多有三个交点,即方程的解集是有限集时,最多有三个元素,故答案为:3.三.解答题(共5小题)36.【解答】解:(1)令x=0,y=1,则代入条件①,得:f(1)=f(0)•f(1)又f(1)≠0,则f(0)=1,设x1<x2,则f(x1)﹣f(x2)=f(x1)﹣f(x2﹣x1+x1)=f(x1)﹣f(x2﹣x1)•f(x1)=f(x1)[1﹣f(x2﹣x1)],因为任意x>0,都有f(x)>1,则1﹣f(x2﹣x1)<0,令y=﹣x,则f(0)=f(x)•f(﹣x)=1且x>0,都有f(x)>1>0,故f(﹣x)=>0,则对任意x∈R都有f(x)>0,则f(x1)>0,所以f(x1)﹣f(x2)<0,所以:f(x)是R上的单调增函数;(2)由条件|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)恒成立;可化为f(|x﹣a|+1)≥f(|x﹣2a+1|),即:|x﹣2a+1|≤|x﹣a|+1,即:|x﹣2a+1|﹣|x﹣a|≤1,对x∈R恒成立.因:|x﹣2a+1|﹣|x﹣a|≤|a﹣1|,故只需|a﹣1|≤1.解得0≤a≤2.(3)设G(x)=2,显然﹣1≤x≤1,∴max{g(x),G(x)}={g(x)+G(x)+|g(x)﹣G(x)|},方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)|等价于2max{g(x),G(x)}=2mx+4,即:max{g(x),G(x)}=mx+2,∵g(x)=,且G(x)可改写为:G(x)=,由﹣2x>2⇒﹣1≤x<﹣,又当x∈[0,1]时,x2﹣1≤2,∴max{g(x),G(x)}=,于是﹣2x=mx+2⇒x=﹣(﹣1≤x<﹣),∴0≤m<2﹣2,由2=mx+2⇒x=0或x=﹣,∵x1<x2<x3,∴x1=﹣,x2=﹣,x3=0,由已知条件x3﹣x2=2(x2﹣x1),∴2x1=3x2,即m2+3m﹣2=0⇒m=,又0≤m<2﹣2,∴m=.37.【解答】解:(1)若集合B含有2个元素,即B={a1,a2},则A=∅,{a1},{a2},则(A,B)的个数为3;若集合B含有1个元素,则B有种,不妨设B={a1},则A=∅,此时(A,B)的个数为×1=2.综上,(A,B)的个数为5.(3分)(2)集合M有2n个子集,又集合A,B是非空集合M的两个不同子集,则不同的有序集合对(A,B)的个数为2n(2n﹣1).(5分)若A的元素个数与B的元素个数一样多,则不同的有序集合对(A,B)的个数为:+=+…+()2﹣(),(7分)又(x+1)n(x+1)n的展开式中x n的系数为+…+()2,且(x+1)n(x+1)n=(x+1)2n的展开式中x n的系数为,所以=+…+()2=,因为=2n,所以当A的元素个数与B的元素个数一样多时,有序集合对(A,B)的个数为﹣2n.(9分)所以当A的元素个数比B的元素个数少时,有序集合对(A,B)的个数为:=.(10分)38.【解答】解:集合A={x|2x2﹣5x﹣12≥0}={x|x≤﹣或x≥4},B={y|y=3x+1(x>0)}={y|y>2}.(1)集合A∩B={x|x≥4},∁R A={x|﹣<x<4},∴(∁R A)∪B={x|x>﹣};(2)若集合C={x|m﹣2≤x≤2m},且(∁R A)∩C=C,∴C⊆∁R A,∴,解得<m<2;当C=∅时,m﹣2>2m,解得∴m<﹣2;综上,m的取值范围是m<﹣2或<m<2.39.【解答】解:(1)a=2时,f(x)=(﹣x2+2x)•e x的导数为f′(x)=e x(2﹣x2),由f′(x)>0,解得﹣<x<,由f′(x)<0,解得x<﹣或x>.即有函数f(x)的单调减区间为(﹣∞,﹣),(,+∞),单调增区间为(﹣,).(2)函数f(x)=(﹣x2+ax)•e x的导数为f′(x)=e x[a﹣x2+(a﹣2)x],由函数f(x)在(﹣1,1)上单调递增,则有f′(x)≥0在(﹣1,1)上恒成立,即为a﹣x2+(a﹣2)x≥0,即有x2﹣(a﹣2)x﹣a≤0,则有1+(a﹣2)﹣a≤0且1﹣(a﹣2)﹣a≤0,解得a≥.则有a的取值范围为[,+∞).40.【解答】解:(Ⅰ)函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.令t=log2x,∵x∈[,4],∴t∈[﹣3,2]则由已知,若f(x)存在大于1的零点,即g(t)在t∈(0,2]时有零点g(t)表示的二次函数开口向上,对称轴为t0=﹣2,所以若g(t)在t∈(0,2]时有零点,即⇒﹣12≤m<0即m的取值范围为[﹣12,0,(Ⅱ)若f(x)有两个相异的零点,即g(t)在t∈[﹣3,2]时有两个相异零点∴g(t)表示的二次函数开口向上,对称轴为t0=﹣2∴即m的取值范围为[3,4),此时,方程g(t)=t2+4t+m=0的两根t1+t2=﹣4即,第31页(共31页)。
高中数学必修一第一章集合与函数的概念经典例题
高中数学必修一第一章《集合与函数概念》综合测试题:周俞江试题整理请把正在每小题给出的四个选项中,只有一项是符合题目要求的,一、选择题:,12个小题确答案的代号填在题后的括号内(本大题共.60分)每小题5分,共{?5}A3,},B?{2,3,4,1,2?BA ( )????1.已知全集,则????????72,336,3,1,2,5,4,,1,23 A. D. B. C2x??x|1?xA?|0?x?2,B B=( )????2??0x2x|0?x? CD..若A2.,则????2x|?0x?xx| A. B.xgfx)()表示同一函数的是()与(3 .在下列四组函数中,x2?yy?1,1?x?1,y?x?yx?1? A. B.x255)(x|x|,y?y?x?y?x,yDC..x?xy?的图象是()4. 函数xyyyy 111xxxx OO O O 1-1-1-1-1DB AC????2?0?yB?Ax0?x?6?yf BA .从到5.)设集合,的对应法则不是映射的是(11??:xf?x:???y?xy?fx. A. B2311??x????yxf:xf:xy??..CD 64xyfx.( )的公共点数目是1=的图象与直线)(=函数6.21或..0或1 D A.1 B.0 C1x?y?(k?2))函数在实数集上是增函数,则k的范围是(7.2??2k??2k?k??2k? C. B. A.. D2)3f(x)?4f(2x?1)=(,则8.已知函数716124 C. B. D. A. 有下面四个命题:9.y①偶函数的图象一定与轴相交;②奇函数的图象一定通过原点;y③偶函数的图象关于轴对称;xxf 0(.∈④既是奇函数,又是偶函数的函数一定是R())=.其中正确命题的个数是( )43D. A.1B.2C.)10.图中阴影部分所表示的集合是(C) ∪B) ∪(B A.B∩[C(A∪C)] B.(A∪UB ]∪∩C)[ C.(A∪C)∩(CB)D.C(AUU x?a?f(x)( )为奇函数,则11.若函数)ax?(2x?1)(321 D.1C. A. B.4322x?1x1?,则函数12.已知函数的解析式可以是()(f)?)xf(2x1?x?1xx2x2xD.C.A. B.??2222xx xx??11?1?12xyxbxc=13.二次函数=2+,则有+( )的图象的对称轴是.ffffff(4) B.<(2)<(1) A.(1)< (2)< (4)ffffff(1)(4)<<D(1) . (2) C.(2)<<(4)2???,x?2?1x?3?,?f(x)1?(x)f)已知函数14.的解???52,,x?3x??2222?4是(则方程?2 B.4 D.或或3 C.或 A.或xx,0?(fx)]?)()[x?(xfx)(fx),ab)(fx(在15.,且对其内任意实数的定义域为,则均有:函数212121.)b(a,上是.减函数 A.增函数 B .偶函数 C.奇函数D不需要写出解答过程,请把答案直接填在答题卡相70分.二、填空题:本大题共14小题,每小题5分,共.应位置上?ACB}4{3,,}A?{12,3},B?{U?1,2,3,4,5 ,则, 16.已知全集;U0x??x,??3))f(f(??(x)f ________________,则; 17. 已知函数?20?x,x?0x?)?x?x)x(1f(x)(y?f,18.已知时为奇函数,当y?)(xf?)-1f(0?x .;则当则时,3????2200,?2,xf ()已知是定义在上的∪ 19.0x?xf 时,)(的图象如右图所示,奇函数,当Ox2xf . 那么,)(的值域是请在指定区域内作答,60分.分,本大题共5小题,每小题12共计三、解答题:解答时应写出文字说明、证明或演算步骤.2)xf(x)f(xx上的单调性,并用10)6-在区间+10在区间(2画出函数20.,10)上的大致图像,判断(4=,.定义法写出证明过程1?x3x)??(f}a|x?B?{x 21.已知函数的定义域为集合A,2?xBA?a ,求1)若(AC)CA(B}x|?4x?U{1? 及,)若全集2(a=,求UU分)1422.(本小题满分)fxf()(x1f?1f2()3()??0f)1?f2?)23(?(,求)已知1(是一次函数,且,的解析式;1xffxxxf 2(≠,3=(+)()已知:2))(,求0的解析式.x2?ax?2,x?[?5,5]xf(x)?, 23.已知函数a??1f(x)的单调大致图像,并求出最大值与最小值)当. 时,画出函数(1a]55,(x)[?f的取值范围。
高中数学必修一集合与函数概念专项习题附答案学生版
B. 3
C. 4
D. 5
第 1 页 共 16 页
18.在同一直角坐标系中,函数 y= ,y=loga(x+ ),(a>0 且 a≠1)的图像可能是( )
A.
B.
C.
D.
19.函数 t
,在[-6,6]的图像大致为( )
A.
B.
C.
D.
20.下列函数中,值域为 h䇆 ∞t 的是( )
A. t
B. t
C. t tan
D. -
+1
26.函数 y= sin2x 的图象可能是( )
A.
B.
C.
D.
27.下列函数中,在区间(0,+∞)上单调递增的是( )
A. t
B. y=2-x
C. t log
28.已知 t 是定义域为 ∞䇆 ∞t 的奇函数,满足
tt
t
t
ht t ( )
A. -50
B. 0
C. 2
D. t t 。若 t t ,则 t
B. (1,2)
C. (-1,+∞)
D. (1,+∞)
13.若集合 M={a,b,c}中的元素是△ABC 的三边长,则△ABC 一定不是( )
A. 锐角三角形
B. 直角三角形
C. 钝角三角形
D. 等腰三角形
14.设全集为 R,集合 t h h
, th
,则
tt ( )
A. h h
B. h h
C. h
15.若集合 P={x|x<4},Q={x|x2<4},则{x|x<4}=( )
A.
B.
C.
二、填空题(共 9 题;共 10 分)
高中数学必修一集合与函数概念专项必做好题附答案学生版
D. 集 t 巸
第 2 页 共 18 页来自 A. {2}B. {1,2,4}
C. {1,2,4,6}
D. {1,2,3,4,6}
29.若函数 y=x2﹣3x﹣4 的定义域为[0,m],值域为 [t h , -4],则 m 的取值范围是( )
A. (0,4]
B. [t h , -4]
C. [ ,3]
B. 3
C. 4
D. 6
11.已知 窼 集 t合 t
合t
巸,㌮窼集
t
t h
巸 ,若 ㌮ 是 的真子集,则 的取值范围为
()
A. t h
B. t h 或 h
C. h
12.已知集合 P={x|0≤x<1},Q={x|2≤x≤3} 记 M=P∪Q ,则( )
D. t h
A. 集 h巸
B. 集 巸
C. 集 h 巸
23.若
则 就称 A 是伙伴关系集合,集合 窼 t
h 的所有非空子集中,具有伙伴关
h
系的集合的个数为( )
A. 15
B. 16
C. 64
D. 128
24.已知集合 U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则 合 ㌮ 窼 ( )
A. {−2,3}
B. {−2,2,3}
C. 0.7
6.集合 A={x∈N|-1<x<4}的真子集个数为( )
A. 8
B. 15
C. 16
7.设集合 窼 集 h 巸 , ㌮ 窼 集 t h 巸 , 窼 集 t t
D. 0.8
D. 17 t h巸 ,则 合 ㌮
窼( )
A. 集 t 巸
B. 集 巸
C. 集 t 巸
高中数学必修1_第一章_集合与函数概念_练习题
1.1集合练习题1、用列举法表示下列集合:(1){大于10而小于20的合数} ;(2)方程组2219x y x y +=⎧⎨-=⎩的解集 。
2.用描述法表示下列集合:(1)直角坐标平面内X 轴上的点的集合 ; (2)抛物线222y x x =-+的点组成的集合 ;(3)使216y x x =+-有意义的实数x 的集合 。
3.含两个元素的数集{}a a a -2,中,实数a 满足的条件是 。
4. 若{}2|60B x x x =+-=,则3 B ;若}{|23D x Z x =∈-<<,则1.5 D 。
5.下列关系中表述正确的是( )A.{}002=∈x B.(){}00,0∈C.0φ∈D.0N ∈6.对于关系:①∉{x x ∣≤Q ;③0∈N ; ④0∈∅,其中正确的个数是A 、4B 、3C 、2D 、 1 7.下列表示同一集合的是( ) A .{}M =(2,1),(3,2){}N =(1,2),(2,3)B .{}{}M N ==1,22,1C .{}2|1M y y x x R ==+∈,{}2|1N y y x x N ==+∈, D .{}2|1M x y y x x R ==-∈(,),{}2|1N y y x x N ==-∈,8.已知集合}{,,S a b c=中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.设a 、b 、c 为非0实数,则=M a b c a b ca b c a b c+++的所有值组成的集合为( )A 、{4}B 、{-4}C 、{0}D 、 {0,4,-4}10. 已知(){}{}2,1,,0|2--=∈=++R n m n mx x x ,求m ,n 的值.11.已知集合{}2|A x ax x x R =∈-3-4=0,(1)若A 中有两个元素,求实数a 的取值范围, (2)若A 中至多只有一个元素,求实数a 的取值范围。
高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)
第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。
高中数学必修一集合与函数参考例题
1、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ⊆A ,求m 的范围.(是否能取得“等于” )2、已知{}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范围。
3、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A ,求实数a 的取值范围。
4、设全集{}{}22323212S a a A a =+-=-,,,,,{}5S C A =,求a 的值5、已知M ={(x ,y)| y = x +a},N ={(x ,y)| x 2+y 2= 2},求使得M N =φ成立的实数a 的取值范围。
6、设集合A = {x | x 2+4x = 0,x ∈R},B = {x | x 2+2(a +1)x +a 2-1= 0,a ∈R ,x ∈R },若B B A = ,求实数a 的取值范围。
7、设{}042=+=x x x A ,函数{}01)1(222=-+++=a x a x x B ,求使(1)B B A = 的实数a 的取值范围。
(2)使B B A = 的实数a 的值.8、若下列三个方程:x 2+4ax-4a+3=0,x 2+(a-1)x+a 2=0, x 2+2ax-2a=0中至少有一个方程有实根,试求实数a 的取值范围。
9、高一某班学生期终考试成绩表明:(1)36人数学成绩不低于80分;(2)20人物理成绩不低于80分;(3)15人的人数学、物理成绩不低于80分.问:有多少人这两科成绩至少有一科不低于80分?10、 求下列函数的定义域:⑴33y x =+-;⑵y = ;⑶01(21)111y x x =+-++-11、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一第一章《集合与函数概念》综合测
试题试题整理:周俞江
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正
确答案的代号填在题后的括号内(本大题共12个小题,
每小题5分,共60分).
1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A ( )
A.
}{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2.
若{{}|0,|12A x x B x x =<<=≤<,则A B=( ) A .
{}|0x x ≤ B .{}|2x x ≥ C
.{0x ≤≤ D .{}|02x x <<
3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x
x y y ==,1 B .1,112-=+⨯-=x y x x y C.55
,x y x y == D .2)(|,|x y x y == 4.函数x x
x y +=的图象是( )
5.0≤f 不是映射的是A .1:3f x y x −−
→= B .1
:2
f x y x −−→= C .1:4f x y x −−→= D .1:6f x y x −−→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ).
A .1
B .0
C .0或1
D .1或2
7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( )
A .2-≥k
B .2-≤k
C .2->k
D .2-<k
8.已知函数24)12(x x f =-,则)3(f =( )
A.4
B.16
C.7
D.12
9.有下面四个命题:
①偶函数的图象一定与y 轴相交;
②奇函数的图象一定通过原点;
③偶函数的图象关于y 轴对称;
④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ).
其中正确命题的个数是( ).
A .1
B .2
C .3
D .4
10.图中阴影部分所表示的集合是( )
A.B ∩[C U (A ∪C)]
B.(A ∪B) ∪(B ∪C)
C.(A ∪C)∩(C U B)
D.[C U (A ∩C)]∪B
11.若函数))(12()(a x x x x f -+=
为奇函数,则=a ( ) A.21 B.32 C.43 D.1
12.已知函数x x x x f 22
11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x
21+ B.x x 212+- C.x x 212+ D.x x 21+-
13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ).
A .f (1)<f (2)<f (4)
B .f (2)<f (1)<f (4)
C .f (2)<f (4)<f (1)
D .f (4)<f (2)<f (1)
14.已知函数[](]⎪⎩⎪⎨⎧∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4
15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是
A .增函数
B .减函数
C .奇函数
D .偶函数
二、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.
16.已知全集}5,4,3,2,1{=U ,}4,3{},3,2,1{==B A ,则=B C A U ;
17. 已知函数⎩⎨⎧<≥-=0
,0,)(2x x x x x f ,则=-))3((f f ________________; 18.已知)(x f y =为奇函数,当0≥x 时)1()(x x x f -=,
则=)1-(f ;则当0≤x 时,
=)(x f . 19.已知f (x ) 是定义在[)2,0-∪(]0,2上的
奇函数,当0>x 时,f (x ) 的图象如右图所示,
那么,f (x ) 的值域是 . 三、解答题:本大题共5小题,每小题12分,共计60分.请在指定区域内作答,
解答时应写出文字说明、证明或演算步骤.20.画出函数)(x f =x 2-6x +10在区间(2,10)上的大致图像,判断)(x f 在区间(4,
10)上的单调性,并用定义法写出证明过程. 21.已知函数的定义域为集合A ,2x 13)(++-=x x f }|{a x x B <= (1)若B A ⊆,求a
(2)若全集}4|{≤=x x U ,a=1-,求A C U 及)(B C A U
22.(本小题满分14分)
(1)已知)(x f 是一次函数,且3)2(3)1(2=+f f ,1)0()1(2-=--f f ,求)(x f 的解析式;
(2)已知:2f (x )+f (1x
)=3x ,x ≠0,求f (x )的解析式. 23.已知函数]5,5[,2)(2-∈++=x ax x x f ,
(1)当1-=a 时,画出函数)(x f 的单调大致图像,并求出最大值与最小值.
(2)若函数)(x f 在]5,5[-上增函数,求a 的取值范围。
24.已知集合{}3,1,2-+=a a A ,{}1,12,32+--=a a a B ,若{}3-=B A
求实数a 的值。
人贵有志,学贵有恒。