函数与极限测试题及标准答案(二)
函数与极限习题与答案计算题(供参考)
高等数学二、计算题(共 200 小题,)1、设xxx f +=12)(,求)(x f 的定义域及值域。
2、设x xx f -+=11)(,确定)(x f 的定义域及值域。
3、设)ln(2)(22x x xx x f -+-=,求)(x f 的定义域。
4、的定义域,求设)(sin 512arcsin )(x f x x x f π+-=。
5、的定义域,求设⎪⎭⎫⎝⎛++-=x f x f x x x f 1)(22ln )(。
6、的定义域求函数22112arccos)(x x xxx f --++=。
7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(<m ,求)(x F 的定义域。
8、的定义域,求设 )(16sin )(2x f x x x f -+=。
9、的定义域,求设)(12)(2x f xx x f --=。
10、设,求的定义域f x x xf x ()lg ()=+256。
11、设,求的定义域f x x xf x ()arctan ()=-+2512。
12、13、,55lg )(-+=x x x f 设的定义域;确定)()1(x f []的值,求若)2(lg )()2(g x x g f =。
14、),00()(≠≠++=abc x c bx xa x f , 设成立,对一切,使求数0)()(≠=x x f x m f m 。
15、1)()1(3)2(3)3()(2+-+++-+++=x f x f x f x f c bx ax x f ,计算设的值,其中c b a ,,是给定的常数。
16、)1()11(1)(2-≠+-+=x x xf xx x f ,求设。
17、)()0(13)1(243x f x x x x x x x f ,求 设≠+++=+。
18、)()0( )11()1(2x f x x x xf ,求 设>++=。
高数函数与极限复习题
高数函数与极限复习题一、选择题1. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 0 \) 处的极限存在吗?A. 存在,为 0B. 存在,为无穷大C. 不存在D. 不确定2. 已知 \( \lim_{x \to 1} (x^2 - 1) = 0 \),那么 \( \lim_{x \to 1} \frac{1}{x-1} \) 的值是:A. 0B. 1C. 无穷大D. 不存在3. 函数 \( g(x) = x^3 - 3x \) 在 \( x = 1 \) 处的导数是:A. 0B. 1C. -1D. 3二、填空题4. 函数 \( f(x) = \sin(x) \) 在 \( x = \frac{\pi}{2} \) 处的极限是 \_\_\_\_\_。
5. 函数 \( h(x) = \frac{x^2 - 1}{x - 1} \) 在 \( x = 1 \) 处的极限是 \_\_\_\_\_。
6. 函数 \( \phi(x) = \frac{\sin(x)}{x} \) 在 \( x = 0 \) 处的极限是 \_\_\_\_\_。
三、简答题7. 解释函数连续性的定义,并给出一个函数连续的例子。
8. 描述极限存在的必要条件,并给出一个反例。
四、计算题9. 计算极限 \( \lim_{x \to 2} (3x^2 - 5x + 2) \)。
10. 求函数 \( f(x) = \sqrt{x} \) 在 \( x = 4 \) 处的导数,并解释其几何意义。
五、证明题11. 证明函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处连续。
12. 证明 \( \lim_{x \to \infty} \frac{1}{x} = 0 \)。
六、综合题13. 给定函数 \( y = x^3 - 2x^2 + x - 3 \),求其在 \( x = 1 \) 处的极限,并讨论其连续性。
函数极限习题及解析
函数极限习题及解析1. 极限的定义函数极限是研究函数变化趋势的重要概念,通过求取函数在某一点附近的极限值,可以推断函数在该点的行为。
函数极限的定义如下:对于函数 f(x),当 x 趋近于 a 时,如果存在一个常数 L,使得对于任意给定的正数ε,都存在一个正数δ,满足当 0 < |x-a| < δ 时,有 |f(x)-L| < ε 成立,那么称函数 f(x) 在 x=a 处具有极限 L,记作lim(x→a) f(x) = L。
2. 基本极限公式在计算极限的过程中,常常会用到一些基本的极限公式,它们的证明可以依靠函数极限的定义以及一些基础的数学概念。
以下是一些常见的基本极限公式:公式1:lim(x→a) c = c,其中 c 为常数。
lim(x→a) c = c,其中 c 为常数。
公式2:lim(x→a) x = a。
lim(x→a) x = a。
公式3:lim(x→∞) kx = ∞,其中 k 为正常数。
lim(x→∞) kx = ∞,其中 k 为正常数。
公式4:lim(x→∞) x^n = ∞,其中 n 为正整数。
lim(x→∞) x^n = ∞,其中 n 为正整数。
公式5:lim(x→a) (f(x) ± g(x)) = lim(x→a) f(x) ± lim(x→a) g(x),其中 f(x) 和 g(x) 在 x=a 处有极限。
lim(x→a) (f(x) ± g(x)) =lim(x→a) f(x) ± lim(x→a) g(x),其中 f(x) 和 g(x) 在 x=a 处有极限。
3. 极限的题和解析题1:求函数 f(x) = (x^2 - 1) / (x - 1) 在 x = 1 处的极限。
解析:直接代入 x = 1,得到 f(x) = 0/0,这种形式的函数是无法通过直接代入求得极限的。
我们可以对该函数进行化简,得到 f(x) = x + 1。
函数、极限与连续测试卷带答案
函数、极限与连续测试卷带答案第一篇:函数、极限与连续测试卷带答案上海民航学院函数、极限与连续测试卷总分100分命题人:叶茂莹一、填空题(每空2分,共20分)1、函数y=3-2x|-4的定义域是;解:|3-2x|-4≥0,3-2x≥4,或3-2x≤-4 ∴-2x≥1,或-2x≤-717∴x≤-,或x≥ 2217∴x∈(-∞,-]⋃[,+∞)222、把复合函数y=earctan(1+x)分解成简单的函数________________________;解:y=eu,u=arctanv,v=1+x23、函数y=arcsin2x的反函数是_____________________;1⎡ππ⎤解:y=sinx,x∈⎢-,⎥ 2⎣22⎦⎛1+x⎫4、lim ⎪; x→∞⎝x⎭2x2⎛1+x⎫解:lim ⎪x→∞⎝x⎭2x⎡⎛1⎫x⎤=lim⎢1+⎪⎥=e2 x→∞⎝x⎭⎦⎢⎥⎣2(2x-1)15(3x+1)30=;5、limx→∞(3x-2)45(2x-1)15(3x+1)30215⨯330⎛2⎫==⎪解:lim4545x→∞(3x-2)3⎝3⎭x2-3x+26、lim2;x→2x+4x-12(x-1)(x-2)=lim(x-1)=1x2-3x+2lim解:lim2 x→2x+6x→2x+4x-12x→2x+6x-28157、x→1=;2解:lim=x→1x→x-12x→12=x→1 =x→13x-1==34x+2的连续区间为(x+1)(x-4)解:x+2≥0,且(x+1)(x-4)≠08、函数f(x)=∴x≥-2,x≠-1,x≠4,∴x∈[-2,-1)⋃(-1,4)⋃(4,+∞)ax2+bx-19、已知a,b为常数,lim=2,则a=,b=.x→∞2x+1ax2+bx-1解:因为x的最高次为2,lim=2 x→∞2x+1所以a=0,b=2,即b=42x≠0在点x=0处连续,则a=x=0x1-⎤⎡=lim⎢(1-x)x⎥x→0⎣⎦-22⎧x⎪10、已知f(x)=⎨(1-x)⎪a⎩解:limf(x)=lim(1-x)x→0x→0=e-2因为f(x)在点x=0处连续,f(0)=a=limf(x)=e-2,所以a=e-2。
(完整word版)《微积分》各章习题及详细答案
第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim 22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→x x k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
极限与连续练习题及解析
极限与连续练习题及解析在数学课上,我们经常会遇到一些有关于极限与连续的练习题。
这些题目不仅能够帮助我们巩固对极限与连续的理解,还能提高我们解决问题的能力。
在本文中,我将为大家分享一些关于极限与连续的练习题及解析。
题目一:计算极限求解以下极限:1. $$\lim_{x\to 2}\frac{x^2-4}{x-2}$$解析:将被除数进行因式分解得:$$\lim_{x\to 2}\frac{(x+2) \cdot (x-2)}{x-2}$$最后得到:$$\lim_{x\to 2}(x+2)$$代入极限的定义,得到结果为:$$4$$题目二:证明函数连续证明下列函数在指定区间上连续:1. 函数$f(x)=\sqrt{x}$在区间$[0, +\infty)$上连续。
首先,我们需要证明$f(x)=\sqrt{x}$在$[0, +\infty)$上存在。
由于$x \geq 0$,所以$\sqrt{x}$是有定义的。
接下来,我们需要证明对于任意给定的$\varepsilon > 0$,存在一个$\delta > 0$,使得当$0 < |x-a| <\delta$时,$|\sqrt{x}-\sqrt{a}|<\varepsilon$。
根据不等式$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}+\sqrt{a}|$,可以得到$$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}-\sqrt{a}|\cdot\frac{|\sqrt{x}+\sqrt{a}|}{|\sqrt{x}-\sqrt{a}|}$$进一步化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|\sqrt{x}^2-\sqrt{a}^2|}{|\sqrt{x}-\sqrt{a}|}$$继续化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|x-a|}{|\sqrt{x}+\sqrt{a}|}$$由于$\sqrt{x}+\sqrt{a}$在$x$趋于$a$时不等于0,所以存在一个正数$M$,使得$|\sqrt{x}-\sqrt{a}|<M|x-a|$。
函数极限与连续习题(含答案)
基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。
函数的极限与连续训练题1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限(2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续(3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续(4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。
其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若a x f x x =→)(lim 0,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0C 、)(x f 在0x x =处可以无意义D 、x 可以只从一侧无限趋近于0x3、下列命题错误的是( D )A 、函数在点0x 处连续的充要条件是在点0x 左、右连续B 、函数)(x f 在点0x 处连续,则)lim ()(lim 00x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00x f x f x x =→ 4、已知x x f 1)(=,则xx f x x f x ∆-∆+→∆)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B )A 、1lim 0=→x xx B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→xb ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和7、已知,2)3(,2)3(-='=f f 则3)(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在 8、=--→33lim a x ax a x ( D )A 、0B 、1C 、32aD 、323a9、当定义=-)1(f 2 时,xx x f +-=11)(2在1-=x 处是连续的。
函数与极限测试题及答案(二)
函数与极限测试题及答案(二)1.选择题1.设F(x)是连续函数f(x)的一个原函数,"M N"表示“M的充分必要条件是N”,则必有(。
)。
A)F(x)是偶函数f(x)是奇函数。
(B)F(x)是奇函数f(x)是偶函数。
(C)F(x)是周期函数f(x)是周期函数。
(D)F(x)是单调函数f(x)是单调函数。
答案:D2.设函数f(x) = 1/(ex(x-1)),则(。
)。
A)x = -1,x = 1都是f(x)的第一类间断点。
(B)x = -1,x = 1都是f(x)的第二类间断点。
(C)x = 1是f(x)的第一类间断点,x = 1是f(x)的第二类间断点。
(D)x = 1是f(x)的第二类间断点,x = 1是f(x)的第一类间断点。
答案:C3.设f(x) = [1/(x-1)]。
x ≠ 1,则f[1.x] = (。
),x ≠ 1,则f[1.x] = (。
)。
A)1-x;(B)1-x2;(C)1-x;(D)1-x2.答案:A4.下列各式正确的是(。
)。
A)limx→+∞x/(x+1) = 1;(B)limx→0xsin(1/x) = 0;(C)limx→1(x-1)/(x2-1) = 1/2;(D)limx→∞(1-1/x)e-x = 0.答案:A5.已知limx→∞[(x3+2)/(x3+1)] = a,则a = (。
)。
A)1;(B)∞;(C)e;(D)2ln3.答案:C6.极限:lim(x→+∞)[(x+1)/(x2+2)] = ()。
A)1;(B)∞;(C)e;(D)2.答案:A7.极限:lim(x→0)(x+1-1)/x2 = ()。
A)0;(B)∞;(C)1;(D)2.答案:C8.极限:lim(x→∞)(x+1-1)/x2 = ()。
A)0;(B)∞;(C)1;(D)2.答案:A9.极限:lim(x→+∞)(x2+x-x)/x = ()。
A)0;(B)∞;(C)2;(D)1.答案:C10.极限:lim(x→π/4)(tanx-sinx)/(sin3x/2) = ()。
极限计算测试题及答案高中
极限计算测试题及答案高中一、选择题(每题3分,共15分)1. 函数\( f(x) = \frac{1}{x} \)在点x=0处的极限是()A. 1B. 0C. 无穷大D. 不存在2. 如果\( \lim_{x \to 1} (x^2 - 1) = 2 \),那么\( \lim_{x \to 1} \frac{1}{x - 1} \)等于()A. 1B. 2C. 无穷大D. 不存在3. 函数\( f(x) = x^2 \)在x=2处的极限是()A. 4B. 2C. 0D. 无穷大4. 函数\( f(x) = \sin(x) \)在x=0处的极限是()A. 1B. 0C. -1D. 不存在5. 函数\( f(x) = x^3 - 6x^2 + 11x - 6 \)在x=2处的极限是()A. 2B. 4C. 8D. 12二、填空题(每题4分,共20分)6. 函数\( f(x) = \frac{x^2 - 4}{x - 2} \)在x=2处的极限是______。
7. 如果\( \lim_{x \to 3} (x - 3) = 0 \),那么\( \lim_{x \to 3} \frac{1}{x - 3} \)等于______。
8. 函数\( f(x) = \frac{\sin(x)}{x} \)在x=0处的极限是______。
9. 函数\( f(x) = \frac{\tan(x)}{x} \)在x=0处的极限是______。
10. 函数\( f(x) = \frac{\sin(x)}{x} \)在x=π处的极限是______。
三、解答题(每题10分,共30分)11. 计算函数\( f(x) = \frac{\sin(x)}{x} \)在x=0处的左极限和右极限,并判断其极限是否存在。
12. 证明函数\( f(x) = x^2 \)在任何实数x处的极限都存在,并求出这个极限。
13. 给定函数\( f(x) = \frac{1}{x} \),计算其在x=1处的极限,并说明其性质。
函数与极限练习题
函数与极限练习题第一章函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。
[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)( [ ]3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。
[ ]4、定义在(∞+∞-,)上的常函数是周期函数。
[ ]5、任一周期函数必有最小正周期。
[ ]6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。
[ ]7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。
[ ] 8、f(x)=1+x+2x 是初等函数。
[ ]二.单项选择题1、下面四个函数中,与y=|x|不同的是(A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中既是奇函数,又是单调增加的。
(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x 4、若)(x f 为奇函数,则也为奇函数。
(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D))].([x f f -三.下列函数是由那些简单初等函数复合而成。
1、 y=)1arctan(+x e2、 y=x x x ++3、 y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。
(1) f()2x(2) f(sinx)(3) f(x+a) (a>0)(3) f(x+a)+f(x-a) (a>0)五.设??=,,2)(x x x f 00≥<="">-=,3,5)(x x x g 00≥<="" 及)]([x="" ,求)]([x="">六.利用x x f sin )(=的图形作出下列函数的图形:1.|)(|x f y = 2。
经济数学(极限与连续习题及答案)——习题集资料文档
第二章 函数的极限与连续习题 2-11.写出下面数列的前5项,并观察当n —>∞时,哪些数列有极限,极限为多少? 哪些数列没有极限.{}{}{}{}{}{}{}211(1) 1 (2) 21(3) (4) (1)11(1)(5) sin (6) 2n n n nn n n n n n x x n n x x nn x x n π⎧⎫-⎪⎪⎧⎫=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭-⎧⎫==-⎨⎬+⎩⎭⎧⎫+-⎪⎪⎧⎫==⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭解 (1)3231,1615 ,87 ,43 ,21 有极限 , 极限为 1.(2)524,415 ,38 ,23 ,0 没有极限. (3)64,53 ,42 ,31 0, 有极限 , 极限为 1. (4) -1, 2, -3, 4, -5 没有极限.(5)5sin,4sin ,3sin ,2sin ,sin πππππ, 有极限 , 极限为 0 . (6) 0, 1, 0 , 1, 0 没有极限 . 2. 用极限的定义证明:(1) 若k >0,则 1lim0kn n →∞=n 212(2) lim313n n →∞+=+解 (1) 因为对任给的ε> 0,要使不等式110(0)k kk n n ε-=<>11().k n ε>即便可所以对任给的ε> 0, 取正整数 N =11[()]1kε+ , 则当n >N 时, 就恒有 10k n ε-<故由数列极限的定义知, 1lim0kn n →∞=.(2) 因为对任给的ε > 0, 不妨设10ε<3<,要使不等式2121ε31393n n n +-=<++11(3) 9εn >-即便可.所以对任给的ε> 0, 取正整数N = 11[(3)]19ε-+, 则当n > N 时, 就 恒有 212313n n ε+-<+故由数列极限的定义知,3213n 12n lim=++∞>-n .3. 设 120.9,0.99,,0.999,lim .nn n n x x x x →∞===求如果要使x n 与其极限之差的绝对值小于 0.0001 , 问n 应满足什么条件?解 因为0.999,lim 1, 0.0001,nn n n x x ε→∞===由则取要使110.000110000n x -<=110.999910000n x >-=只要便可.所以n > 4 .4. 设数列{x n }有界,且lim 0, lim 0.n n n n n y x y →∞→∞==证明证 因为数列{x n }有界, 所以存在正整数M > 0, 使得nx < M,又因为0lim =∞→n n y , 则对任给的M ε> 0, 存在正整数N , 使得当n > N 时, 就恒有0n y M ε-<所以对任给的ε> 0, 存在正整数N , 使得当n >N 时, 就恒有n n n n x y x y M Mεε=<⋅=故由数列极限的定义知, .0lim =∞→n n n y x5. 设数列{x n }收敛, 求证数列{x n }必定有界.解 由数列{x n }收敛, 设Ax n n =∞→lim .因为对于任意ε > 0, 存在正整数N , 使得当n > N 时的一切x n , 就恒有 n x A ε-<即n A x A εε-<<+所以对任给的ε > 0,取正数{}12max ,,,,,,N M x x x A A εε=+-使得当n > N 时 ,就恒有 n x M <故数列{x n }必定有界.习题 2-21. 用极限的定义证明 :2324(1) lim(31)8 (2) lim 4223(3) lim 2 (4) lim 20x x x x x x x x x x →→-→∞→-∞--==-++==解 (1)因为对任给的ε> 0, 要使不等式|(3 x – 1) – 8| =|3(x – 3)| < ε只要取正数δ= ε3就可以了.所以对任给的ε> 0, 取正数δ= ε3,使得当0 < | x – 3|<δ时, 就恒有|(3x – 1) – 8| < ε故由极限定义知 3lim(31)8x x ->-=.(2)因为对任给的ε > 0, 要使不等式244242ε2x x x x -+=-+=+<+只要取正数δ= ε就可以了.所以对任给的ε> 0, 取正数δ= ε, 使得当0<|x + 2|<δ时, 就恒有244ε2x x -+<+ 故由极限定义知 224lim 42x x x →--=-+.(3)因为对任给的ε> 0, 要使不等式2332εx x x +-=<,则 |x |> 3ε, 只要取正数M = 3ε就可以了.所以对任给的ε> 0, 取正数M =3ε, 使得当| x | > M 时, 就恒有232εx x +-<故由极限定义知 23lim2x x x ->∞+=.(4)因为对任给的ε> 0 (不妨设0<ε<1), 要使不等式ln 202, ln 2x x x εε-=<<即ln ln 2M ε=只要取正数就可以了.所以对任给的ε>0,取正数2ln ln ε=M , 使得当x <-M 时, 就恒有20x ε-<故由极限定义知 lim 20xx ->-∞=.2*. 当x →-2时,x 2 →4. 问δ等于多少,在0<|x + 2|<δ时, 有| x 2 - 4|< 0.003 ?解 因为当x →-2时,x -2 →-4, 取 ε= 0.003, 要使不等式| x 2 - 4|=| x + 2| | x – 2 |< ε设21x +<, 即有 -3< x <-1, -5< x -2 <-3所以当2x -< 5时,取0.0035δ==0.0006, 有240.003x ε-<=.3*. 当x —>∞ 时,102x →-. 问M 等于多少时,在|x |> M 时, 有100.012x -<-?解 因为当x —>∞ 时,要使不等式100.012x -<-2100, 102.x x ->>只要便可 即M = 102.4. 设函数1, 0() 0, 01, 0x x f x x x x -<⎧⎪==⎨⎪+>⎩, 讨论当x —> 0时,f (x )的极限是否存在.解 00lim ()lim (1)1x x f x x --→->=-=-因为00lim ()lim (1)1lim ()lim ()lim ()x x x x x f x x f x f x f x ++-+→->→→->=+=≠即故 不存在.5. 证明函数f (x ) = x | x |, 当x →0时极限为零.22, 0(), 0x x f x x x ⎧≥⎪=⎨-<⎪⎩解 因为--2020lim ()lim ()0lim ()lim 0lim ()0.x x x x x f x x f x x f x ++→→→→→=-====即故6* . 利用定义证明:0, 11lim , 01x x a a a →+∞>⎧=⎨+∞<<⎩. 证 因为当a >1时,对任意ε> 0,不妨设0<ε<1, 要使110x x a a ε-=<1ln ln x a ε->只要取正数便可.所以对于0<ε<1,1ln 0,,ln M x M a ε->>取=当时就恒有10xa ε-<即 1limx x a →+∞=.又因为当0< a < 1时,令11b a =>时,由上述可得1 lim 0x x b →+∞=于是 1lim limx xx x b a →+∞→+∞==+∞故由极限定义知0, 11lim, 01xx a a a →+∞>⎧=⎨+∞<<⎩. 7.设函数21, 2()2, 2x x f x x k x ⎧+≥=⎨+<⎩, 问当k 取何值时,函数f (x )在x —> 2时的极限存在. 解 2lim (), ,x f x ->因为要使存在必须左右极限存在且相等222lim (1)5lim (2)4 1.x x x x k k k ->->+==+=+=+-即解得故 2lim () 5.x f x ->=8. 求(),()x xf x x x x ϕ==当x —> 0时的左、右极限,并说明它们在 x —> 0时的极限是否存在.解 1 , 0(), 0x f x x ≠⎧=⎨=⎩因为不存在lim () lim101 , 0()1, 0x x f x x x x ϕ→→==>⎧=⎨-<⎩即而习题 2-31. 1. 求下列极限:3222010203031222042412(1)(1) lim (2)lim 2(2)(23)31(3) lim (4) lim()1(13)112((5) lim[ ] (6 ) limx n x x n h x x x n x x nx x x x x n x n n n→→∞→∞→→∞→-++++-+------++++222) (7) x x h x h →→-解 322200424424(1)lim lim 2.22x x x x x x x x x x →→-+-+==++22102010202030303012(1)(1)1(2) lim=lim=.2223(1)(2)(2)(23)2(3) lim lim .1(13)3(3)n n x x n n n n n x x x x x x →∞→∞→∞→∞+++------==-- 233112122222313(1)(4) lim()lim111(2)(1)lim1.(1)(1)1212 (5) lim[]lim1(1)1lim .22 (6) lim x x x n n n h x x x x x x x x x x n nn n n n n n n →→→→∞→∞→∞-++-=---+-==-++++++++=+=⋅=22200022200()2lim lim(2)2.(1 (7) lim1(1) lim(1 2.(8) h h x x x x x x h x xh h x h x h h x x →→→→→→→→+-+==+==-+=-+=-=4x x →→===2. 求下列数极限:n n n n n n 1(1)(1) lim111(3) lim[]1223(1)(1) 0.1(1)(2) lim 0.nnnn n n →∞→∞→∞→∞→∞+-+++⨯⨯⨯+==+-=解111(3) (1)1n n n n =-⨯++因为111lim[]1223(1)11111lim[(1)()()]22311lim(1) 1.1n n n n n n n n →∞→∞→∞+++⨯⨯⨯+=-+-++-+=-=+故2. 2. 设 22lim()51x x ax b x →∞--+=--, 求常数a, b 的值.解 222(1)()2lim ()lim 511x x x a x b a x bax b x x →∞→∞--++---+==---由1051, 6.a a b a b -=⎧⎨+=-⎩==-得故3. 3. 若常数k 使233lim 222-++++-→x x k kx x x 存在, 试求出常数k 与极限值. 解 2222233lim lim (2)02x x x kx k x x x x →-→-++++-=+-由己知存在,且 22lim (33)150 15.x x kx k k k →-+++=-==所以得22222315183(2)(3)limlim2(2)(1)3(3)lim 1.1x x x x x x x x x x x x x →-→-→-++++=+-+-+==--则5. 求下列函数的极限:12100(1)1ln(1) (1) lim(2) limln(1)nx x x x x xx x →→∞+--+++解1(1) (1) , 1,n nx t x t +==-令当0x →时, 1t →, 则11201122210109102910(1)1111limlimlim .1(1)(1)11ln (1)ln(1)(2) lim lim 11ln(1)ln (1)112ln ln(1)2 lim lim 1110ln ln(1)nn n n x t t x x x x x t t x nt t t t x x x x x x x x x xx x x x x x --→→→→∞→∞→∞→∞+---===--+++-+-+=+++++-++==+++291011ln(1)/ln 1110ln(1)/ln 15xx x xx x-++++=6 .求下列曲线的渐近线:3222122(1) (2) 232(3) 2 (4) 21xx x y y x x x x x y y x --==+---==-解 332(1) (3)(1)23x x y x x x x ==+-+-3321133233lim lim (3)(1)231;lim lim(3)(1)233;x x x x x x x x x x x x x x x x x x →→→-→-==∞+-+-===∞+-+-=- 因为 所以是铅垂渐近线 因为 所以是铅垂渐近线 323222lim lim 1(23)23 lim[]lim 223232.x x x x y x x x x x x x xx x x x x y x →∞→∞→∞→∞==+--+-==-+-+-=- 又因为 且所以是斜渐近线2222222222121102 (2) lim 121;2(lim lim (2)(1)222lim lim 221,2. (3) lim 21 lim 2x x x x x xxx x x x x y x x x x x x x x x x x x x x x -→∞→→→-→--→∞→-=--=-+==∞-+----==∞----=-===∞因为 所以是水平渐近线 又因为 且所以是铅垂渐近线因为 且所1,0.y x ==以是水平渐近线是铅垂渐近线212(4) lim211.2x xx x →=∞-=因为 所以是铅垂渐近线2221lim lim (21)22(21)11lim[]lim lim 2122(21)4241124x x x x x y x x x x x x x x x x x x y x →∞→∞→∞→∞→∞==----===---=+又因为且 所以是斜近渐近线.7. 已知 2200012000lim 0,,.x x x x b a b x a →+++-=≠-求的值解 2200012000limx x x x b x a →+++-=-由己知存在习题 2-41. 1. 利用极限存在准则,计算下列各题:22221111(1)lim[] (1)(2)()(2)limn n n n n n n →∞→∞+++++++解2222111111(1)4(1)(2)()n nn n n n n ≤++++≤+++因为 222211lim lim 041111lim[]0.(1)(2)() (2)1sin1,n n n nn n n n n n n →∞→∞→∞==++++=+++-≤≤≤≤且 所以因为则有lim lim lim 0.n n n →∞→∞→∞===所以 2.求下列极限:0022021sin (1) lim (2) lim cot 2sin 22(3) lim (4) lim sin tan 3sin(1)(5) lim (6) li 1x x x x x kxx xxx x x x x x →→→→∞→--01cos msin sin (7) lim (8) lim 2sin 2x n nx n xx x x xx ππ→→→∞-- 解 00sin sin (1) lim lim .x x kx kxk k x kx →→==0021(2) lim cot 2lim.2tan 22x x x x x x →→==0022222221112000sin 2sin 2322(3) lim lim .tan 32tan 333222(4) lim sin lim 2sin / 2.sin(1)sin(1)(5) lim lim lim(1) 2.112sin s 1cos 2(6) lim lim2lim sin sin x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x →→→∞→∞→→→→→→=⋅⋅===--=⋅+=---==20in 22sin cos22sin 112 lim cos .2222x x x x x x x x →=⋅=00sin()sin sin (7) limt lim lim = 1.(8) lim 2sin lim sin /.222x t t n n n n n n t x tx x t tx x xx x ππππ→→→→∞→∞+-=-=--== 3.求下列极限:2123sec 03(1) lim (1) (2) 121 (3) lim () (4) lim ()23 (5) lim (1cos ) (6) lim x x x x xx x xx x xx x x x x π+→∞→→∞→∞→→++-++2112cot0(12sin) (7) lim(14) (8) lim(13tan )xxxxx x x x x -→→+-+解 3133333(1) lim (1) lim (1)(1).xx x x e x x x ⋅+→∞→∞+=++=11(3)330222(2) lim(13)lim(13)].11(3) lim () lim (1) .x x x x x x x x x x x e x e x x ---→→→→∞→∞=-=-=+=+=2223113()2()232222133sec cos 1121132(4) lim ()lim ()lim (1)lim (1)323221213 lim (1)lim (1).22(5) lim(1cos ) lim(1cos )x x x xx x x x x x x x x x xx x x x x x x xe e e x xx x ππ-→∞→∞→∞→∞⋅⋅--⋅----→∞→∞→→--==-⋅+++=-⋅+=⋅=+=+223112sin 22sin 011(44)440132cot 233tan 022000.(6) lim(12sin)lim(12sin).(7) lim(14) lim(14).(8) lim(13tan )lim(13tan).1001 4.lim ()5xx xx xx x xx xx x x xx x x x c x e x x e x x e x x e x e x →→-⋅---→→⋅→→+→∞=+=+=-=-=+=+=+=-已知,.c 求解 220001001lim()5x x x x +→∞+-由510062200010065201210061001 lim (1)lim ()552012.x x x x x c x x x e e c -⋅-→∞→∞+=+⋅--===故习题 2-51.下列函数在什么情况下是无穷小量,什么情况下是无穷大量?3211(1) (2) 1(2) (4) ln(1)x x y y x x y e y x --==-==+解 (1)因为 301lim x x →=∞,所以当0x →时,31y x =是无穷大量. 又因为 31lim 0x x →∞=,所以当x →∞时,31y x =是无穷小量. (2)因为21111lim lim 11x x x x x →-→--==∞+-,所以当1x →-时,21 1x y x -=-是无穷大量. 又因为 211lim lim 011x x x x x →∞→∞-==+-,所以当x →∞时,21 1x y x -=-是无穷小量. (3)因为lim x x e -→-∞=∞,所以当x →-∞时,xy e -=是无穷大量. 又因为lim 0x x e -→+∞=,所以当x →+∞时,x y e -=是无穷小量. (4)因为1lim ln(1)lim ln(1)x x x x +→+∞→-+=∞+=∞或,所以当x →+∞,1, ln(1)x y x +→-=+时或时是无穷大量.又因为0limln(1)0x x →+=,所以当0 , ln(1)x y x →=+时是无穷小量.2.当0x →时,指出关于x 的同阶无穷小量、高阶的无穷小量、等价的无穷小量.22211,sin ,cos 1,(1),sin .2xx x e x ---解 因为01lim2x x →→==所以当0x +→时,与x1-;又因为 2200sin sin lim lim 0x x x x x x →→==200cos 1lim lim 02x x x x x x →→-=-= 所以当0x +→时,比x 高阶的无穷小量有2sin x ,2sin x ,cos 1x -;又因为 2001(1)122lim lim 12xx x e xx x →→-=⋅=所以当0x →时,与x 等价的无穷小量有21(1)2xe -.3.把下列函数表示为常数(极限值)与一个当x —>∞时的无穷小量之和的形式.3333(1)() (2) ()121x x f x f x x x ==-+解 (1)因为33lim 11x x x →∞=-,所以3331() 111x f x x x ==+--. (2)因为 33311lim lim 0 22142x x x x x →∞→∞-==++且 所以311()242f x x =-+. 4.证明: 当x —>0 时,(1) e x -1 ∽ x ; (2) arcsin x ∽ x .解 (1)100011lim 1lim lim 1ln(1)ln(1)x x x x x te t t e x t t →→→-=-==++令.(2)00arcsin limarcsin lim 1sin x t x tt x x t →→==令.5.利用等价替换原理, 计算下列极限:sin 2002000sin 31(1) lim (2) limsin tan 52ln(123)(3) lim (4) limsin()arcsin 2(5)lim(6) lims (sin )xx x x x n mx x x x e x xx x x x x x x →→→→→→-+-233in 235(7) lim(8) lim42tan x n xx x x x x→+-+解 (1)因为当0x →时,sin 33,sin ,tan 5522x xx x x x所以 00sin 336limlim 5sin tan 5522x x x x x x x x x x →→⋅==⋅⋅.(2)因为当sin 2sin 0,12xxx e →-时 所以sin 201sin 1limlim22xx x ex xx →→-==.(3)因为当220,ln(123)23x x x x x →+--时所以 22000ln(123)23lim lim lim(23)2x x x x x x x x x x →→→+--==-=. (4)因为当0,sin 22x x x →时所以x x →→=20021)1)lim lim 41x x x x x x →→===++.(5)因为当0,sin ,sin n nx x x x x →时 所以 000, sin lim lim 1, (sin ), nnm mx x n m x x n m x x n m →→>⎧⎪===⎨⎪∞<⎩.(6)因为当0,arcsin 22,sin x x x x x →时所以 00arcsin 22limlim 2sin x x x xx x →→==.(7)因为当230,,x x x x →时都是比更高的无穷小所以 233002352lim lim 12tan 2tan x x x x x x x x x →→+-==+.(8)因为当3433,2n n n n n →∞--limlim0.n n ==所以6. 设x —>0 时, 函数122(1)1cos 1kx x +--与为等价无穷小量,求常数k 的值.解 因为 12220021(1)12lim lim 11cos 12x x kxkx k x x →→+-==-=--所以 k = -1.*7. 求下列函数的极限:)tan 1ln(cos sin 1lim )1(20x xx x x +-+→ 11(2)lim ()x x x x a b →+∞-)]11ln(sin )31ln([sin lim )3(x x xx +-+∞→解 0x →(1)x→=因为222210,1cos ,ln(1tan )tan 2x xx x x x →-+当时所以2201sin cos limlim ln(1tan )2x x x x xx x →→+-=+2001cos sin 113limlim 24242x x x x x x →→-=+=+=.(2)111111(1)(1)lim ()limlim11x x x xx xx x x a b a b x a b x x →+∞→+∞→+∞-----==11(1)(1)limlim11xxx x a bx x →+∞→+∞--=-因为当1,0x x →+∞→时,11111ln ,1ln xx a a b bx x --11lim()ln ln lnxxx ax a b a b b →+∞-=-=所以31(3)lim [sin ln(1)sin ln(1)]x x x x →∞+-+31sin ln(1)sin ln(1)limlim 11x x x x x x →∞→∞++=-因为当x →∞时,333sinln(1)ln(1)x xx ++111sin ln(1)ln(1)x xx ++31lim [sin ln(1)sin ln(1)]31lim lim 31 2.11x x x x x xx x x x →∞→∞→∞+-+=-=-=所以习题 2-61.求函数 xy +=1 在x = 3, ⊿x = -0.2时的增量⊿y . 解 因为()()y f x x fx ∆=+∆-=3,0.2,2x x y =∆=-∆== 由所以2.利用连读函数的定义,证明下列函数在 x = 0 点的连续性.21(1)()1()21arctan , 10, 0(3)() (4) () 1, 01 0, 0x f x f x x x xx x f x f x xx x x x +=+=-⎧⎧-<<≠⎪⎪==⎨⎨⎪⎪-≤<=⎩⎩解 (1)因为(0)(0)1y f x f ∆=+∆-=lim lim 1)0()10.x x y f x x ∆→∆→∆=-==+=且所以 在处连续(2)因为21(0)(0)121x y f x f x ∆+∆=+∆-=+∆-2020001lim lim (1)110211()0.210, (0)0,lim ()lim (1)1,lim ()lim 11lim ()()0x x x x x x x x y x x f x x x x f f x f x f x f x x --++∆→∆→→→→→→∆+∆=+=-+=∆-+==-===-=-===且所以在处连续 (3)因为在 时且所以 不存在,故在不连续.0000,(0)1,arctan lim ()lim arctan lim 1tan x x t x f x tf x t x x t ---→→→===== (4)因为在时且00lim ()lim (1)1lim ()1(0)arctan , 10() 0.1, 01x x x f x x f x f xx f x x x x x ++→→→=-===⎧-<<⎪==⎨⎪-≤<⎩所以 在处连续3. 求下列函数的间断点, 并指出间断点的类型. 若是可去间断点,则补充定义,使其在该点连续.221(1)() (2) ()ln(21)(1)x x f x f x x x x -==--1, 11arctan , 0(3)()2, 10 (4) () 0, 01 sin , 02x x x f x x x f x xx x x x -⎧≤-⎪⎧⎪≠⎪=+-<≤=⎨⎨⎪⎪=⎩⎪<≤⎩ 解(1)0,1,1() ,x x x f x ==-=因为在处没有定义() 0,1,1. f x x x x ==-=所以在处间断而0000(1)lim ()lim 1(1)(1)(1)lim ()lim 1(1)(1)x x x x x x f x x x x x x f x x x x --++→→→→-==---+-==-+ 故 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.又因为 11(1)1lim ()lim (1)(1)2x x x x f x x x x →→-==-+所以 x = 1是()f x 的可去间断点,补充定义1(1)2f =.又因为111(1)lim ()limlim (1)(1)(1)x x x x x xf x x x x x x →-→-→--===∞-++所以x = -1是()f x 的无穷间断点.(2) 因为1x =在处()f x 没有定义, 且111lim ()limln(21)x x f x x →→==∞-所以x = 1是()f x 的无穷间断点.(3)因为(1)1,f -=且11111 lim ()lim 1,lim ()lim (2)1x x x x f x xf x x --++→-→-→-→--===+=则1lim ()(1) 1.x f x f →-=-=所以x = 1是()f x 的连续点.(0)2, lim ()lim (2)21 lim ()lim sin0x x x x f f x x f x x x --++→→→→==+===又因为且所以 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.0000(4)(0)0,1lim ()lim arctan21lim ()lim arctan 2x x x x f f x x f x x ππ--++→→→→===-==因为且 所以0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点. 4.讨论下列函数的连续性,并作出函数图形.2211(1)()lim(0) (2) () lim11nnnn n x f x x f x xx x →∞→∞-=≥=++解 (1) 因为1, 011()lim0, 11n n x f x x x →∞≤≤⎧==⎨>+⎩(函数图形见图2-1)且11(1)1,lim ()1,lim ()0x x f f x f x -+→→===所以x = 1是()f x 的间断点.图2-122 , 11 (2)()lim0 , 11 , 1nnn x x xf x x x x x x →∞⎧<⎪-=⋅==⎨+⎪->⎩因为(函数图形见图2-2) 1111(1)0lim ()lim ()1 lim ()lim 1x x x x f f x x f x x --++→-→-→-→-±==-===-且1111lim ()lim 1 lim ()lim ()1x x x x f x x f x x --++→→→→===-=- 图2-211lim (),lim ()x x f x f x →-→所以都不存在.因此x = 1,x = -1是()f x 的跳跃间断点.5.已知2, 01() 2, 1ln(1), 13ax b x f x x bx x ⎧+<<⎪==⎨⎪+<≤⎩,问当 a , b 为何值时,()f x 在 x =1 处连续.解 因为(1)2,f =且21111lim ()lim () lim ()lim ln(1)ln(1)x x x x f x ax b a bf x bx b --++→→→→=+=+=+=+若函数()f x 在x = 1处连续,则必须 1lim ()2x f x →=.即 2ln(1)2a b b +=⎧⎨+=⎩解之,得223,1a e b e =-=-. 6.求函数32233()6x x x f x x x +--=+-的连续区间,并求 )(lim ),(lim ),(lim 32x f x f x f x x x -→→→.解 因为323223333()(3)(2)6x x x x x x f x x x x x +--+--==+-+-所以()(,3)(3,2)(2,),f x -∞-⋃-⋃+∞的连续区间是且3200331lim ()lim (3)(2)2x x x x x f x x x →→+--==+-322223233333lim ()lim (3)(2)(3)(1)338lim ()lim lim (3)(2)(3)(2)5x x x x x x x x f x x x x x x x x f x x x x x →→→-→-→-+--==∞+-+-+--===-+-+-7.设函数()f x 在[a , b ]上连续,且(),()f a a f b b <>,证明在(a , b )内至少存在一点ξ,使得f (ξ) = ξ.证 [][] ()(),(),,(),F x f x x f x a b F x a b =-设由已知在上连续则在上(),(),()()0,()()0f a a f b b F a f a a F b f b b <>=-<=->连续.又因为所以故由零值定理知,在(,)a b 内至少存在一点ξ,使得F (ξ)= 0, 即 ()f ξξ=.8.设函数()f x 在[a , b ]上连续,12n a x x x b <+++<, 求证在(a , b )内至少有点ξ,使n x f x f x f f n )()()()(21+++=ξ证 因为()f x 在[a , b ]上连续,则1()[,]n f x x x 在上也连续.由最大最小值定理知,1()[,]n f x x x 在上存在最小值m ,最大值M ,取12()()()((),1,2,,),n i f x f x f x C m f x M i n nm C M +++=≤≤=≤≤则由介值定理知, 在(a , b )内至少有点ξ,使12()()()()n f x f x f x f C nξ+++==.9. 证明方程331x x -=至少有一个根介于1和2之间.证 设3()31F x x x =--,由于F (x )在[1,2]内连续,且(1)30,(2)10F F =-<=>由零值定理知,在(1,2)内至少存在一点ξ,使得F (ξ)= 0. 即 331ξξ-=.故方程331x x -=在[1,2]内至少有一个根.综合习题二1.选择填空:(1) 数列{y n }有界是数列收敛的 ( ) .① 必要条件 ② 充分条件 ③ 充要条件 ④ 无关条件(2) 当x —>0 时,( )是与sin x 等价的无穷小量. ① tan2 x②x③ 1ln(12)2x + ④ x (x +2)(3) 设0, 0(), lim (), 0x x e x f x f x ax b x →⎧≤=⎨+>⎩若存在, 则必有( ) .① a = 0 , b = 0 ② a = 2 , b = -1③ a = -1 , b = 2 ④ a 为任意常数, b = 1(4)若31169x x→=--,则f (x) = ( ) .①x+1 ②x+5③(5) 方程x4–x– 1 = 0至少有一个实根的区间是( ) .①(0,1/2) ②(1/2, 1)③(2, 3) ④(1, 2)(6)函数10()lnxf xx-=+的连续区间是( ) .①(0, 5) ②(0, 1)③(1, 5) ④(0, 1)∪(1,5)解(1)①;(2)③;(3)④;(4)③; (5)②;(6)④.2.计算题:3sin()3(1) lim (2)lim12cos sin(3) 12(1)](4) lim0)x xxxnxaxe ex xn naαβππ+→→→∞→---++-+++->2300cot222tan sin(5)lim (6)limsin11(7)lim(cos) (8) lim(1)4(9)lim1x xx n x nxxx xxxn nxx→→→→∞→∞-++⎛⎫-⎪⎪-⎝⎭(10)lim[ln ln(2)]nn n n→∞-+解333sin()sin()sin()333(1) lim= lim lim112cos2(cos)2(cos cos)23x x xx x xx x xπππππππ→→→---=---33001112sin()cos()cos()1232323lim lim11124sin()sin()sin()232323(1)(1)(2) lim limsin sin0,1,1,sinx xx x x xx xx xx x xx x xe e e ex xx e x e x x xππαβαβαβππππππαβ→→→→-⋅--===+⋅-+----=→--因为当时所00lim lim.sinx xx xe e x xx xαβαβαβ→→--==-以(3) 12(1)]1lim2limnn nnn n→∞→∞++-+++-====3200(4) lim lim limlimlimtan sin tan1cos(5) lim limsinx a x a x axax ax xx x x xxx x+++++→→→→→→→-=-=-=--=⋅22001lim.22(6) limlimtan sin1tan1cos1lim lim.2(1cos)21cos2xxxx xx xx xx x x xx x x x→→→→→=⋅==--==⋅⋅=--221cot(cos1)cot cos100(7)lim(cos) =lim(1cos1)x xx xx xx x⋅⋅--→→+-因为222001cos112lim lim2tanx xxxx x→→--==-21cot2lim(cos).xxx e-→=所以22111()11221111(8) lim(1)lim(1)nn nn n nn nn nn n⋅⋅++→∞→∞++=++因为211lim()1nnn n→∞⋅+=211lim(1).nnen n→∞++=所以2222414(9)lim=lim111xxx xx xxx→∞→∞⎛⎫-⎪⎛⎫-⎪⎪⎪- ⎪⎝⎭-⎪⎝⎭2212222(1)(1)lim (1)lim (1) =lim =1111(1)(1)lim (1)lim (1) 1.(10)lim [ln ln(2)]lim ln()21 lim ln 2(1)x x x xx x x x x x xx x n n n n nx x x x x x x xe e e en n n n n n →∞→∞→∞→∞→∞--→∞→∞→∞-+-+-+-+⋅==⋅-+=+==+22lim ln(1)ln 2.n n e n →∞-+=-=-2. 1. 设 10sin , 02() , , lim ()(1), 0x x x x x f x a f x ax x →⎧<⎪⎪=⎨⎪+>⎪⎩试求使得存在.解00sin 1lim ()lim 22x x x f x x --→→==因为 10000 lim ()lim (1) lim ()lim ()1,ln 2.2a x x x x x a f x ax e f x f x e a +-+-→→→→=+====-则所以 即 3. 2. 作出函数()lim 1txtx t x e f x e →+∞+=+的图形,并指出间断点.解 由已知可得1, 0()lim , 01tx tx t x x e f x x x e →∞≥⎧+==⎨<+⎩ 则函数图形见图2-3.00 lim ()0lim ()1x x f x f x -+→→=≠=因为 0().x f x =所以是的跳跃间断点5. 求函数tan 32(3)x y x x =-的可去间断点. 图2-3 解 因为tan 32(3)x y x x =-在x = 0,x = 3处无意义,所以x = 0,x = 3都是函数f (x )的间断点.但00tan 331lim lim 2(3)2(3)2x x x x x x x x →→==--- 故 x = 0是f (x )的可去间断点.而 3tan 3lim 2(3)x x x x →=∞- 故 x = 3是f (x )的无穷间断点.6.设f (x )在点 x = x 0 处连续且 f (x 0)> 0, 试证在x 0 的某个邻域内有f (x )> 0.证 由已知f (x )在点 x = x 0 处连续,则00lim ()()x x f x f x →=.取00()0,0,02f x x x εδδ=>∃><-<使得时,恒有00()(),()()f x f x f x f x εεε-<→-<-< 故 0000()()()()()022f x f x f x f x f x ε>-=-=>. 7. 设本金为p 元,年利率为r, 若一年分为n 期, 存期为t 年, 则本金与利息之和是多少 ? 现某人将本金p = 1000元存入果银行, 规定年利率为 r = 0.06, t = 2, 请按季度、月、日以及连续复利计算本利和,并作出你的评价.解 依题意,第一期到期后的利息为本金×利率=r p n ⨯ 第一期到期的本利和是本金+利息=(1)r r p p p n n +⨯=+若按总利计算,第二期到期的本利和为 2(1)(1)(1)r r r r p p p n n n n+++⨯=+第n 期到期后的本利和为 (1)n r p n +存期若为t 年(事实上有t n 期),到期后的本利和为 (1)tnr p n + (*)由题设p = 1000 ,r = 0.06, t = 2,(1) (1) 一年分为四季,取n = 4带入得(*)式,得2480.061000(1)1000 1.0151126.494⨯⨯+=⨯≈(2) (2) 一年分为12个月,取n =12带入得(*)式,得 212240.061000(1)1000 1.0051127.1612⨯⨯+=⨯≈(3) (3) 一年分为365天,取n = 365带入得(*)式,得 23657300.061000(1)1000 1.0001643841127.49365⨯⨯+=⨯≈(4) 连续取息就是在(*)式中令n →+∞,得 20.120.060.120.060.06lim 1000(1)1000lim [(1)] 10001127.50nn n n n ne ⨯→+∞→+∞⨯+=⨯+=⨯≈ 结论是:用复利计算时,按季、月、日以及连续复利计算所得结果相差不大.8.证明方程sin x a x b =+(其中0,0a b >>)至少有一个正根,并且它不超过a b +. 证 设()sin F x x a x b =--,显然F (x )在[0,a b +]上连续,(0)0(0)()sin()[1sin()]0F b b F a b a b a a b b a a b =-<>+=+-+-=-+≥又则若()F a b +=0,则a b +为方程F (x )= 0的正根;若()F a b +>0,则由零值定理,至少有一点(0,)a b ξ∈+使得F (x )= 0,即sin a b ξξ=+.。
专升本高等数学一(函数、极限与连续)模拟试卷2(题后含答案及解析)
专升本高等数学一(函数、极限与连续)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.函数y=的定义域是( )A.x≥3B.x≤一2C.[一3,4]D.{x|一3≤x≤一2}∪{x|3≤x≤4}正确答案:D解析:由题意知x2一x一6≥0,解得x≤一2或x≥3,一1≤≤1,解得一3≤x≤4,取两者交集得{x|一3≤x≤一2}∪{x|3≤x≤4},故选D.知识模块:函数、极限与连续2.函数y=f(x)的图像关于原点对称,则下列关系式成立的是( ) A.f(x)+f(一x)=0B.f(x)一f(一x)=0C.f(x)+f-1(x)=0D.f(x)一f-1(x)=0正确答案:A解析:因为y=f(x)的图像关于原点对称,所以f(一x)=一f(x),即f(x)+f(一x)=0,故选A.知识模块:函数、极限与连续3.设函数f(x)=1+3x的反函数为g(x),则g(10)= ( )A.一2B.一1C.2D.3正确答案:C解析:f(x)=1+3x 的反函数为g(x),从而g(x)的定义域即为f(x)的值域,所以由1+3x=10=x=2,g(10)=2.知识模块:函数、极限与连续4.设函数f(x)在(一1,0)∪(0,1)内有定义,如果极限存在,则下列结论中正确的是( )A.存在正数δ,f(x)在(一δ,δ)内有界B.存在正数δ,f(x)在(一δ,0)∪(0,δ)内有界C.f(x)在(一1,1)内有界D.f(x)在(一1,0)∪(0,1)内有界正确答案:B解析:由函数的定义域为(一1,0)∪(0,1),从而函数的有界性只能在定义域(-1,0)∪(0,1)内考虑,由于极限存在,由函数极限局部有界性可知存在正数δ,使f(x)在(一δ,0)∪(0,δ)内有界.知识模块:函数、极限与连续5.下列极限中正确的是( )A.B.C.D.正确答案:C解析:因为第一重要极限的结构形式为=1,式中“□”可以是自变量x,也可以是x的函数,而□→0,表示当x→x0(x→∞)时,必有□→0,即□是当x→x0(x→∞)时的无穷小量,所以A、B、D不正确,故选C.知识模块:函数、极限与连续6.= ( )A.eB.1C.e-1D.一e正确答案:C解析:=e-1.知识模块:函数、极限与连续7.当x→0时,与x等价的无穷小量是( )A.B.ln(1+x)C.D.x2(x+1)正确答案:B解析:对于选项A,是比x低阶的无穷小;对于选项B,=1,故x→0时ln(1+x)是与x等价的无穷小;对于选项C,=是与x同阶但非等价的无穷小;对于选项D,=0,故x→0时x2(x+1)是比x高阶的无穷小.知识模块:函数、极限与连续8.下列极限存在的是( )A.B.C.D.正确答案:B解析:对于选项A,当x→0-时,震荡无极限,当x→0+时,也震荡无极限;对于选项C,当x→1时2x一2→0,→∞极限不存在;对于选项D,当n→∞时n(n+1)→∞极限不存在;而=1,故选B.知识模块:函数、极限与连续9.设f(x)=为连续函数,则a= ( )A.0B.1C.2D.任意值正确答案:B解析:f(x)为连续函数,则f(x)在x=2处连续,故有=1=a.知识模块:函数、极限与连续10.函数f(x)=xcos在点x=0处为( )A.跳跃间断点B.第二类间断点C.可去间断点D.无穷间断点正确答案:C解析:=0,所以f(x)在x=0处为可去间断点,故选C.知识模块:函数、极限与连续填空题11.函数y=的反函数是_________.正确答案:y=解析:x≤0时,y=x2+1,值域为[1,+∞),其反函数为y=一,x∈[1,+∞),x>0时,y=,值域为(一2,1),其反函数为y=,x∈(一2,1),所以原函数的反函数为y=知识模块:函数、极限与连续12.设f(x)=则f[f(x)= _________.正确答案:x解析:f(x)=[*],将x=f(x)代入得:f[f(x)]=[*]=x.知识模块:函数、极限与连续13.=________.正确答案:0解析:x→∞时,sin→0,|1-cosx|≤2,所以=0.知识模块:函数、极限与连续14.=________.正确答案:x解析:=x.知识模块:函数、极限与连续15.当x→0+时,是x_________阶的无穷小.正确答案:低解析:是x的低阶无穷小.知识模块:函数、极限与连续16.设f(x)=,则f(x)的间断点为x=_________.正确答案:0解析:f(x)=,可知f(x)在x=0处无意义,故其间断点为x=0.知识模块:函数、极限与连续17.函数y=的间断点是x=________,其为第________类间断点.正确答案:0,二解析:=+∞,故x=0为函数的第二类间断点.知识模块:函数、极限与连续解答题18.求极限.正确答案:.涉及知识点:函数、极限与连续19.计算.正确答案:型,使用洛必达法则..涉及知识点:函数、极限与连续20.求极限x[ln(x+1)一lnx].正确答案:=lne=1.涉及知识点:函数、极限与连续21.求极限.正确答案:=e.涉及知识点:函数、极限与连续22.求极限.正确答案:由于x→0时,xcotx=→1,故原极限为型,所以涉及知识点:函数、极限与连续23.求极限.正确答案:=1+0=1.涉及知识点:函数、极限与连续24.设f(x)=在x=0连续,试确定A,B.正确答案:欲使f(x)在x=0处连续,应有2A=4=B+1,所以A=2,B=3.涉及知识点:函数、极限与连续25.证明方程x5+3x3一3=0在(0,1)内至少有一个根.正确答案:令f(x)=x5+3x3一3,f(0)=一3<0,f(1)=1>0,由连续函数的零点定理可知至少存在一点c∈(0,1)使得f(c)=0,即方程x5+3x3一3=0在(0,1)内至少有一个根.涉及知识点:函数、极限与连续。
高等数学函数的极限及连续习题精选及答案
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x xx f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在 4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫ ⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim1lim 00-=--→x x x ,=+→xx x 00lim 1lim 00=+→x xx ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是(,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭); (3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2-).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x nx n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x a x x x x f ,如果()x f 在0=x 处连续,则=a (21). ∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 207、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x xx ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim limlim 1x x x bab ab x b ab a →+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ).()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ),()=-→xx x 101lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim =⋅=∞→∞→x x x x x x 111sinlim 1sin lim ==∞→∞→xx x x x x ()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kx x e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、lim sin(arctan )x x →∞=( 不存在 ),lim sin(arc cot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数∵()()11log1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
函数与极限单元测试题及答案
函数与极限单元测试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2+1在x=-1处的极限是:A. 0B. 1C. 2D. 32. 如果f(x)在点x=a处连续,那么f(x)在x=a处的极限等于:A. f(a)B. f(a+1)C. f(a-1)D. 03. 函数f(x)=sin(x)的周期是:A. πB. 2πC. π/2D. 14. 函数f(x)=x^3-3x^2+2x在x=1处的导数是:A. -1B. 0C. 1D. 25. 如果lim(x→∞)f(x)/g(x)=0,那么f(x)和g(x)是:A. 同阶无穷小B. 同阶无穷大C. 同阶无穷大且g(x)>f(x)D. 异阶无穷小...(此处省略其他选择题)二、填空题(每题2分,共10分)6. 函数f(x)=1/x在x=0处的极限是_________。
7. 函数f(x)=x^2在x=-2处的极限是_________。
8. 函数f(x)=x+1/x在x=0处的极限是_________。
9. 函数f(x)=sin(x)/x在x=0处的极限是_________。
10. 若lim(x→0)[(sinx)/x]=a,则a的值为_________。
三、解答题(每题10分,共30分)11. 求函数f(x)=x^2-4x+3在x=2处的极限,并说明理由。
12. 证明函数f(x)=x^3在x=0处的连续性。
13. 讨论函数f(x)=x^2-6x+8在x=3处的可导性,并求导数。
四、综合题(每题15分,共30分)14. 已知函数f(x)=x^2-2x,求其在区间[0, 5]上的最大值和最小值。
15. 讨论函数f(x)=1/x在x=1处的连续性,并求其在该点的导数。
答案:一、选择题1. C2. A3. B4. D5. C二、填空题6. 不存在7. 48. 无穷大9. 110. 1三、解答题11. 函数f(x)在x=2处的极限为f(2)=2^2-4*2+3=4-8+3=-1。
(完整版)函数极限习题与解析
函数与极限习题与解析(同济大学第六版高等数学)一、填空题1、设x x x f lg lg 2)(+-= ,其定义域为 。
2、设)1ln()(+=x x f ,其定义域为 。
3、设)3arcsin()(-=x x f ,其定义域为 。
4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。
5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。
6、432lim 23=-+-→x k x x x ,则k= 。
7、函数xx y sin =有间断点 ,其中 为其可去间断点。
8、若当0≠x 时 ,x x x f 2sin )(=,且0)(=x x f 在处连续 ,则=)0(f 。
9、=++++++∞→)21(lim 222nn n n n n n n 。
10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。
11、=++++∞→352352)23)(1(lim x x x x x x 。
12、3)21(lim -∞→=+e n kn n ,则k= 。
13、函数23122+--=x x x y 的间断点是 。
14、当+∞→x 时,x1是比3-+x15、当0→x 时,无穷小x --11与x 相比较是 无穷小。
16、函数x e y 1=在x=0处是第 类间断点。
17、设113--=x x y ,则x=1为y 的 间断点。
18、已知33=⎪⎭⎫ ⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
19、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x x xx f x 若)(lim 0x f x →存在 ,则a=。
20、曲线2sin 2-+=x xx y 水平渐近线方程是 。
21、114)(22-+-=x x x f 的连续区间为 。
22、设⎩⎨⎧>≤+=0,cos 0,)(x x x a x x f 在0=x 连续 ,则常数a= 。
高等数学函数与函数极限测试题
函数与极限单元测试题一、选择题(每题3分,共30分)1.下列函数中,( )不是基本初等函数.A . xe y -= B . 2ln x y = C . xx y sin cos = D . 34x y =2.若函数f(x)的定义域为(0,1)则函数f(lnx)的定义域是( ) A.(0,1) B.(-1,0) C.(e-1,1) D. (1,e)3.函数f(x)=|x+1|是( )4.若函数f(ex)=x+1,则f(x)=( )A. ex +1B. x+1C. ln(x+1)D. lnx+1 5.当0→x 时,下列变量中是无穷小量的有( )。
A.x 1sinB.x xsin C.12--x D.x ln6.()=--→11sin lim21x x x ( )。
A.1 B.2 C.0 D.217.下列等式中成立的是( )。
A.e n nn =⎪⎭⎫ ⎝⎛+∞→21lim B.en n n =⎪⎭⎫ ⎝⎛++∞→211lim C.e n n n =⎪⎭⎫ ⎝⎛+∞→211lim D.en nn =⎪⎭⎫ ⎝⎛+∞→211lim8.当0→x 时,x cos 1-与x x sin 相比较( )。
A.是低阶无穷小量 B.是同阶无穷小量 C.是等阶无穷小量 D.是高阶无穷小量9.函数()x f 在点0x 处有极限,是()x f 在该点处连续的( )。
A.充要条件 B.充分条件 C.必要条件 D.无关的条件10.21lim(1)x x x →∞-=( ).A.2e - B.∞ C.0 D.12二、填空题(每空2分,共22分) 1、函数x x x f --+=21)5ln()(的定义域是 ________.2、若2211()3f x x x x +=++,则()f x =________.3、若1()1f x x =-,则(())f f x =_______.4、函数2)(xx a a x f -+=是_____________函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与极限测试题(二)一. 选择题1.设F()x 是连续函数()f x 的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有( ).(A )F()x 是偶函数⇔()f x )是奇函数. (B )F()x 是奇函数⇔()f x 是偶函数. (C )F()x 是周期函数⇔()f x 是周期函数. (D )F()x 是单调函数⇔()f x 是单调函数 2.设函数,11)(1-=-x xex f 则( ) (A ) 0x =,1x =都是()f x 的第一类间断点. (B ) 0x =,1x =都是()f x 的第二类间断点(C ) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点. (D ) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 3.设()1x f x x -=,01x ≠、,,则1[]()f f x = ( ) A ) 1x - B ) x-11C )X1D ) x4.下列各式正确的是 ( )A ) 0lim 11(1+ )xx x +→= B )0lim 1(1+ )xx e x +→= C ) lim 1(1)xx e x →∞=-- D )lim 1(1)xx e x-→∞=+5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1;B.∞;C.3ln ;D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( ) A.1; B.∞; C.2-e ; D.2e 。
7.极限:∞→x lim332x x +=( ) A.1; B.∞; C.0; D.2.8.极限:xx x 11lim 0-+→=( )A.0;B.∞; C 21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( ) A.0; B.∞; C.2; D. 21.10.极限: xxx x 2sin sin tan lim 30-→=( )A.0;B.∞;C. 161; D.16. 二. 填空题 11.极限12sinlim 2+∞→x xx x = ; 12. 0arctan lim x x x→= ; 13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x = ;14. 0sin 5limx x x →= ; 15. =-∞→n n n)21(lim ;16. 若函数23122+--=x x x y ,则它的间断点是17. 绝对值函数 ,0;()0,0;,0.x x f x x x x x >⎧⎪===⎨⎪-<⎩其定义域是 ,值域是 。
18.符号函数 1,0;0,0;()sgn 1,0.x x f x x x >⎧⎪===⎨⎪-<⎩其定义域是 ,值域是三个点的集合 。
19无穷小量是 。
20. 函数()y f x =在点0x 连续,要求函数()y f x =满足的三个条件是 。
三. 计算题 21.求).111(lim 0x ex xx --+-→ ; 22.设1()32,x f e x -=-求()f x (其中0x >); 23.求522(3)lim x x x x --→-; 24.求1()1lim xx x x →∞+-; 25.求220sin lim tan 2(3)x x x x x →+; 26. 已知9)(lim =-+∞→x x a x a x ,求a 的值;27. 计算极限nnnn 1)321(lim ++∞→ ;28.求()()lg 521f x x x =+--它的定义域。
29. 判断下列函数是否为同一函数:⑴22()sin cos f x x x =+与() g 1x = ;⑵11)(2--=x x x f 与1)(+=x x g ; ⑶()21)(+=x x f 与1)(+=x x g ; ⑷()()21+=x x f 与1)(+=x x g ;⑸2y ax =与2s at =。
30. 已知函数2()1f x x =-, 求()()()1(())32f x f f x ff ++、、;31. 求 746153lim 22--+-+∞→n n n n n ; 32. 求 221lim nnn ++++∞→ ; 33. 求 )1(lim n n n -++∞→; 34. 求 n nn n n 3232lim +-+∞→。
35. 判断下列函数在指定点的是否存在极限⑴ ⎩⎨⎧<>+=2,2,1x x x x y ,2→x ; ⑵ ⎪⎩⎪⎨⎧><=0,310,sin x x x x y ,0→x 。
36.求31lim3+→x x ; 37. 求93lim 23--→x x x ;38.求x x x 11lim 0--→; 39.求当x →∞时,下列函数的极限112323+-+-=x x x x y 。
40. 求当x →∞时,函数11232+-+-=x x x x y 的极限。
41.求x x x 3sin lim0→; 42.求20cos 1lim xxx -→; 43.求311lim -∞→⎪⎭⎫⎝⎛+n n n ; 44.求nn n 211lim ⎪⎭⎫⎝⎛+∞→;45.求x x kx )11(lim +∞→; 46.求xx x ⎪⎭⎫⎝⎛-∞→11lim ;47.求()xx kx 11lim +→ 。
48. 研究函数⎪⎩⎪⎨⎧=≠=0,10,sin )(x x x xx f 在点00x =处的连续性。
49. 指出函数11)(-=x x f 在点x =1处是否间断,如果间断,指出是哪类间断点。
50. 指出函数⎪⎩⎪⎨⎧=≠=0,00,1)(x x x x f 在点0x =处是否间断,如果间断,指出是哪类间断点。
51. 指出函数⎩⎨⎧=≠=0,10,)(2x x x x f 在点0x =处是否间断,如果间断,指出是哪类间断点。
52.求xx x )1ln(lim+→; 53.求⎪⎪⎭⎫ ⎝⎛⋅--→x x x x ln 11lim 21; 54. 试证方程3223230x x x -+-=在区间[1,2]至少有一根。
55. 求xxx x 2sin sin tan lim 30-→。
56. 试证正弦函数sin y x =在区间 (-∞, +∞) 内连续。
57. 函数()0x x f x x x x ≥⎧==⎨-<⎩,,l l ;在点0x =处是否连续? 58. 函数1sin 0()00x x xf x x ⎧≠⎪=⎨⎪=⎩, ,;是否在点0=x 连续? 59. 求极限 xa x x 1lim 0-→. 函数与极限测试题答案(二)一.选择题1.A 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见为奇函数;反过来,若为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.【评注】 函数与其原函数的奇偶性、周期性和单调性已多次考查过. 请读者思考与其原函数的有界性之间有何关系? 2. D 【分析】 显然0x =,1x =为间断点,其分类主要考虑左右极限.【详解】 由于函数在0x =, 1x =点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以0x =为第二类间断点;0)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以1x =为第一类间断点,故应选(D). 【评注】 应特别注意:+∞=-+→1lim 1x x x ,.1lim 1-∞=--→x xx 从而+∞=-→+11lim x xx e ,.0lim 11=-→-x xx e3 - 8 CACCAC8.∵x →∞时,分母极限为令,不能直接用商的极限法则。
先恒等变形,将函数“有理化”: 原式 = 21111lim )11()11)(11(lim 00=++=++++-+→→x x x x x x x . (有理化法) 9 -10 DC10.解:原式161821lim )2()cos 1(tan lim 32030=⋅=-=→→x x x x x x x x . 注 等价无穷小替换仅适用于求乘积或商的极限,不能在代数和的情形中使用。
如上例中若对分子的每项作等价替换,则原式0)2(lim 30=-=→x x x x .二.填空题11. 2; 12. 1; 13.0; 14.5; 15.2-e ; 16.12x =、;17.),(+∞-∞ ),0[+∞; 18. ),(+∞-∞ }1,0,1{-;19.在某一极限过程中,以0为极限的变量,称为该极限过程中的无穷小量20.①函数()=y f x 在点0x 处有定义;②0 x x →时极限0lim ()x xf x →存在;③极限值与函数值相等,即00lim ()()x xf x f x →=。
三. 计算题21.【分析】 ""∞-∞型未定式,一般先通分,再用洛比达法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+=2201lim x e x x x x -→+-+=x e x x x 221lim 0-→-+=.2322lim0=+-→x x e 22. ()3ln 1,0f x x x =+> ; 23.3e ; 24.2e ; 25.61; 26.3ln ;27. 3 28. 解:由20x ≥+解得2x ≥-;由x ≠-10解得1x ≠;由520x ->解得 2.5x <;所以函数的定义域为 2.5>21x x x ≥-≠{|且}或表示为[)()2,11,2.5-⋃。
29. ⑴、⑸是同一函数,因为定义域和对应法则都相同,表示变量的字母可以不同。
⑵⑶不是同一函数,因为它们的定义域不相同。
⑷不是同一函数,因为它们对应的函数值不相同,即对应法则不同。
30.解:()()221112f x x x x +=+-=+;()()()()222421112ff x f x x x x ----===;()()()()2323121099f f f f +-+=== 。
31.解:222222n 22746153lim 746153lim 746153lim n n n n nn n n n n n n n n n n--+-=--+-=--+-+∞→+∞→+∞→210060031lim 71lim 46lim 1lim 1lim53lim 22=--+-=--+-=+∞→+∞→+∞→+∞→+∞→+∞→n n nn n n n n n n ;32. 解:212lim 2)1(lim 21lim 2222=+=+=++++∞→+∞→+∞→n n n n n n n n n n n ; 33 .解:nn n n n n n n n n ++++-+=-++∞→+∞→1)1)(1(lim)1(lim ;01lim 1lim 1lim111lim11lim=++=++=++=+∞→+∞→+∞→+∞→+∞→n n n n n n n nnn n n n34.解:110101lim )32(lim 1lim )32(lim 1)32(1)32(lim 3232lim -=+-=+-=+-=+-+∞→+∞→+∞→+∞→+∞→+∞→n n n n n n n n n n n nnn 35.解:⑴因为3lim ,2lim 22==+-→→y y x x ,y y x x +-→→≠22lim lim ;所以函数在指定点的极限不存在。