2019-2020学年广东省联考联盟高二(上)期末数学试卷

合集下载

三校联考高二(上)理科数学期末试卷

三校联考高二(上)理科数学期末试卷

2010——2011学年“福鼎二中、福安十中、霞浦七中”三校联考高二(上)理科数学期末试卷班级___________姓名____________.座号____________.得分_______________. 一、选择题:(5×10)1. x >2是x>0 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.等比数列{}n a 中,45a =,则53a a 的值( )A 、10B 、75C 、50D 、253.抛物线x y 42=的焦点坐标是( )A .(0,-1)B .(0,-161) C .(1,0) D .(-1,0) 4.数列{}n a 是公差为2-的等差数列,如果71a a +=-10,那么1a 的值( )A .-1B .1C .2D .-25.在ABC ∆中,a 、b 、c 分别是C B A ∠∠∠,,所对的边,若a=2,b=3,060=∠c ,则ABC ∆ 的面积( )(A )33 (B )23 (C )33 (D )233 6.已知向量a =(x,-2,5)和b =(1,y ,-3)平行,则xy 为( )A 、1B 、-2C 、3D 、47.. 已知0,0x y >>,且1x y +=,则11x y+的最小值是( )(A) 2 (B) 22 (C) 4 (D)22+8.在正方体ABCD -1111D C B A 中M 为AC 和BD 的交点,若c A A ,b D A ,a B A 11111===,则下列向量中与M B 1相等的是( )A. c b 21a 21++- B. cb 21a 21++C. c b 21a 21+-D. cb 21a 21+-- 9.在R 上定义运算:2ab ab a b =++ ,则满足(2)x x - 0<的实数x 的取值范围为( )M ABCDA 1B 1C 1D 1A .(0,2)B .(2,1-)C .(,2)(1,)-∞-⋃+∞D .(1,2)-10.AB 是椭圆13422=+y x 的任意一条与x 轴不垂直的弦,O 是椭圆的中心,e为椭圆的离心率,M 为AB 的中点,则AB OM K K ⋅的值为( ) A . 21 B . 21- C . 43 D . 43-二、填空题:(5⨯4=20)11.命题P :03,2>+-∈∀x x R x 则┐P 12. 若焦点在x轴上的椭圆1522=+y m x 的焦距是2,则m 的值为 13. 已知变量x ,y 满足1,2,0.x y x y ≥⎧⎪≤⎨⎪-≤⎩则x y +的最小值为14.已知点P 到点(3,0)F -的距离比它到直线2x =的距离大1,则点P 轨迹的方程为15.建造一个容积为8立方米,深为2米的长方体无盖水池,如果池底的造价为每平方米120元,池壁的造价为每平方米80元,求这个池的最低造价 元。

2021-2022学年广东省茂名市五校联盟高二(创新班)上学期期末考试联考数学试卷带讲解

2021-2022学年广东省茂名市五校联盟高二(创新班)上学期期末考试联考数学试卷带讲解
2021-2022学年度第一学期五校联盟高二期末联考(创新班)数学试卷
注意事项:
1.答题前,先将自己的姓名、考号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.
A.把C上各点横坐标伸长到原来2倍(纵坐标不变)后,再向左平移 个单位长度得到曲线E
B.把C.上各点横坐标伸长到原来2倍(纵坐标不变)后,再向右平移 个单位长度得到曲线E
C.把C上各点横坐标缩短到原来 倍(纵坐标不变)后,再向右平移 个单位长度得到曲线E
D.把C上各点横坐标缩短到原来 倍(纵坐标不变)后,再向左平移 个单位长度得到曲线E
对B,容易判断点E在抛物线外,设点P在准线上的投影为点 ,由抛物线的定义可知, ,则当 三点共线时,其最小值为 .B正确;
对C,设 ,易知直线l的斜率为1,将 代入抛物线方程化简得: ,则 ,由抛物线焦点弦公式可得: .C错误;
对D,由 可知, ,所以 .D正确.
故选:ABD.
12.在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱BC,CD,CC1的中点,P是线段A1C1上的动点(含端点),则下列说法正确的有()
过EF作该正方体外接球的截面,截面的面积最小者是直径过EF的圆面,
OH垂直于此圆面,设其半径为r,AC∩BD=Q,
因为OH2=OQ2+HQ2,所以r=R2-OH2=R2-OQ2-HQ2= ,
截面面积为 ,所以D对.
故选:ACD
三、填空题
13.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:现有一个水平放置的椭圆形台球盘,满足方程 ,点A,B是它的两个焦点.当静止的小球从点A开始出发,沿60°角方向作直线运动,经椭圆内壁反射后再回到点A时,小球经过的路程为___________.

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解
C.若一个回归直线方程 ,则变量 每增加一个单位时, 平均增加3个单位
D.若一组数据2,4, ,8 平均数是5,则该组数据的方差也是5
2.甲、乙两名同学参加校园歌手比赛,7位评委老师给两名同学演唱比赛打分情况的茎叶图如图(单位:分),则甲同学得分的平均数与乙同学得分的中位数之差为
A.1B.2
C.3D.4
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()
A.先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为 ,然后抽取编号为 , , ,…的学生,这种抽样方法是分层抽样法
B.线性回归直线 不一定过样本中心
3.设椭圆C: 的左、右焦点分别为 、 ,P是C上的点, ⊥ ,
∠ = ,则C的离心率为
A. B. C. D.
4.下课后教室里最后还剩下甲、乙、丙三位同学,如果没有2位同学一起走的情况,则第二位走的是甲同学的概率是()
A. B. C. D.
5.设两圆 、 都和两坐标轴相切,且都过点(4,1),则两圆心的距离 =
13.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?”其意思为:“今有某地北面若干人,西面有7488人,南面有6912人,这三面要征调300人,而北面征调108人(用分层抽样的方法),则北面共有__________人.”
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()

2021-2022学年湖北省新高考联考高二上学期期末考试数学试题带讲解

2021-2022学年湖北省新高考联考高二上学期期末考试数学试题带讲解
【小问1详解】
解:以点 作坐标原点,建立如图所示的空间直角坐标系,
则 ,0, , ,2, , ,0, , ,0, ,
设平面 的一个法向量为 ,又 ,
则 ,则可取 ,
又 ,设直线 与平面 的夹角为 ,则 ,
直线 与平面 的正弦值为 ;
【小问2详解】
解:因为
所以点 到平面 的距离为 ,
点 到平面 的距离为 .
17.已知数列 是递增的等差数列, ,若 成等比数列.
(1)求数列 的通项公式;
(2)若 ,数列 的前 项和 ,求 .
(1) ;(2) .
【分析】
(1)设等差数列 的公差为 ,根据题意列出方程组,求得 的值,即可求解;
(2)由(1)求得 ,结合“裂项法”即可求解.
【详解】(1)设等差数列 的公差为 ,
【详解】抛物线 : ( )的焦点 ,
∵P为 上一点, 与 轴垂直,所以P的横坐标为 ,代入抛物线方程求得P的纵坐标为 ,不妨设 ,
因为Q为 轴上一点,且 ,所以Q在F的右侧,
又 , , ,
因为 ,所以 ,
,所以 3
故答案为:3.
16.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线,如下图(1)所示.如图(2)所示阴影部分也是一个美丽的螺旋线型的图案,它的画法是这样的:正方形ABCD的边长为4,取正方形ABCD各边的四等分点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的四等分点M,N,P,Q,作第3个正方形MNPQ,依此方法一直继续下去,就可以得到阴影部分的图案.如图(2)阴影部分,设直角三角形AEH面积为 ,直角三角形EMQ面积为 ,后续各直角三角形面积依次为 ,…, ,若数列 的前n项和 恒成立,则实数 的取值范围为______.

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷(含答案解析)

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷(含答案解析)

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知()()2,1,3,1,1,1a b =-=- ,若()a a b λ⊥-,则实数λ的值为()A .2-B .143-C .73D .22.P 是被长为1的正方体1111ABCD A B C D -的底面1111D C B A 上一点,则1PA PC ⋅的取值范围是()A .11,4⎡⎤--⎢⎥⎣⎦B .1,02⎡⎤-⎢⎥⎣⎦C .1,04⎡⎤-⎢⎥⎣⎦D .11,42⎡⎤--⎢⎥⎣⎦3.已知向量()4,3,2a =- ,()2,1,1b = ,则a 在向量b上的投影向量为()A .333,,22⎛⎫ ⎪⎝⎭B .333,,244⎛⎫ ⎪⎝⎭C .333,,422⎛⎫ ⎪⎝⎭D .()4,2,24.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为()AB C .3D 5.已知四棱锥P ABCD -,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为()A .1132a b c++B .1162a b c-++C .1132a b c -+D .1162a b c--+ 6.在四面体OABC 中,空间的一点M 满足1146OM OA OC λ=++ .若,,MA MB MC共面,则λ=()A .12B .13C .512D .7127.已知向量()()1,21,0,2,,a t t b t t =--=,则b a - 的最小值为()AB C D8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC -中,PA PB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为().A .π9B .π18C .π27D .π54二、多选题9.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是()A .13DB =B .向量AE 与1AC uuu r 所成角的余弦值为5C .平面AEF 的一个法向量是()4,1,2-D .点D 到平面AEF 10.在正三棱柱111ABC A B C -中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λμλμ=+∈∈,则下列说法正确的是()A .当1λ=时,点P 在棱1BB 上B .当1μ=时,点P 到平面ABC 的距离为定值C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上D .当11,2λμ==时,1A B ⊥平面1AB P 11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则()A .122CG AB AA =+ B .直线CQ 与平面1111D C B A 所成角的正弦值为23C .点1C 到直线CQ 的距离是3D .异面直线CQ 与BD 三、填空题12.正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为时,使1⊥MN AB .13.四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC V 的重心,则PG 与平面PAD 所成角θ的正弦值为.14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为5,则该五面体的所有棱长之和为.四、解答题15.如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.16.如图所示,直三棱柱11ABC A B C -中,11,92,0,,CA CB BCA AA M N ︒==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB的值.(3)求证:BN ⊥平面1C MN .17.如图,在四棱维P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.18.如图1,在边长为4的菱形ABCD 中,60DAB ∠=︒,点M ,N 分别是边BC ,CD 的中点,1AC BD O ⋂=,AC MN G ⋂=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P ABMND -.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成Q 的位置;若不存在,请说明理由.19.如图,四棱锥P ABCD -中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PFBD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE与线段BC交于M点,AH PM于点H,求线段CH长的最小值.参考答案:题号12345678910答案C BADDDCBBCDBCD题号11答案BC1.C【分析】利用两个向量垂直的性质,数量积公式即求得λ的值.【详解】 向量()()2,1,3,1,1,1a b =-=-若()a a b λ⊥-,则2()(419)(213)0a a b a a b λλλ⋅-=-⋅=++-++=,73λ∴=.故选:C .2.B【分析】建立空间直角坐标系,写出各点坐标,同时设点P 的坐标为(),,x y z ,用坐标运算计算出1PA PC ⋅,配方后可得其最大值和最小值,即得其取值范围.【详解】如图,以点D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,则1,0,0,()10,1,1C ,设(),,P x y z ,01x ≤≤,01y ≤≤,1z =,()1,,1PA x y ∴=--- ,()1,1,0PC x y =--,()()2222111111222PA PC x x y y x x y y x y ⎛⎫⎛⎫∴⋅=----=-+-=-+--⎪ ⎪⎝⎭⎝⎭,当12x y ==时,1PA PC ⋅ 取得最小值12-,当0x =或1,0y =或1时,1PA PC ⋅取得最大值0,所以1PA PC ⋅ 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.故选:B.3.A【分析】根据投影向量公式计算可得答案.【详解】向量a 在向量b上的投影向量为()()()2242312333cos ,2,1,12,1,13,,222b a b a a b b b b ⋅⨯+⨯-⎛⎫⋅⋅=⋅=⋅== ⎪⎝⎭r r rr r r r r r .故选:A.4.D【分析】建立空间直角坐标系,由点到平面的距离公式计算即可.【详解】以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,则()2,,2G λ,()10,0,2D ,()2,0,1E ,()2,2,1F ,所以()12,0,1ED =- ,()0,2,0= EF ,()0,,1EG λ=.设平面1D EF 的法向量为(),,n x y z = ,则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩,取1x =,得()1,0,2n =r,所以点G 到平面1D EF的距离为EG n d n ⋅== ,故选:D .5.D【分析】利用空间向量的线性运算结合图形计算即可.【详解】由条件易知()11113232MN MC CD DN BC BA DP AD BA AP AD =++=++=++-()11113262b ac b a b c =-+-=--+.故选:D 6.D【分析】根据给定条件,利用空间向量的共面向量定理的推论列式计算即得.【详解】在四面体OABC 中,,,OA OB OC不共面,而1146OM OA OB OC λ=++ ,则由,,MA MB MC ,得11146λ++=,所以712λ=.故选:D 7.C【分析】计算出b a -=≥ .【详解】因为()()1,21,0,2,,a t t b t t =--=,所以b a -=当0t =时,等号成立,故ba -.故选:C.8.B【分析】设1PFCF ==,易知PA PB AB AC BC =====,且23FG =,设肉馅球半径为r ,CG x =,根据中点可知P 到CF 的距离4d r =,sin 4dPFC r PF∠==,根据三角形面积公式及内切圆半径公式可得1x =,结合余弦定理可得1cos 3PFC ∠=,进而可得3PC =,sin 3PFC ∠=,可得内切球半径且可知三棱锥为正三棱锥,再根据球的体积公式及三棱锥公式分别求体积及比值.【详解】如图所示,取AB 中点为F ,PF DE G ⋂=,为方便计算,不妨设1PF CF ==,由PA PB AB AC BC ====,可知3PA PB AB AC BC =====,又D 、E 分别为所在棱靠近P 端的三等分点,则2233FG PF ==,且AB PF ⊥,AB CF ⊥、PF CF F = ,PF ,CF ⊂平面PCF ,即AB ⊥平面PCF ,又AB ⊂平面ABC ,则平面PCF ⊥平面ABC ,设肉馅球半径为r ,CG x =,由于H 、I 、J 分别为所在棱中点,且沿平面HIJ 切开后,截面中均恰好看不见肉馅,则P 到CF 的距离4d r =,sin 4d PFC r PF∠==,12414233GFC r S r =⋅⋅⋅=△,又2132GFC rS x ⎛⎫=++⋅ ⎪⎝⎭ ,解得:1x =,故22241119cos 223213CF FG CG PFC CF FG +-+-∠===⋅⋅⋅⋅,又2222111cos 21132P PF CF PC PC F F C P F C +-+⋅-∠=⋅=⋅⋅,解得PC =,sin 3PFC ∠=,所以:4sin 31rPFC ∠==,解得6r =,343V r =π=球,由以上计算可知:P ABC -为正三棱锥,故111sin 4332ABC V S d AB AC BAC r =⋅⋅=⋅⋅⋅∠⋅粽11432332627=⋅⋅⋅⋅⋅⋅=,=.故选:B.9.BCD【分析】先写出需要的点的坐标,然后利用空间向量分别计算每个选项即可.【详解】由题可知,2,0,0,()0,0,0D,()2,2,1E,()1,0,2F,()12,2,2B,()10,2,2C,所以1DB==A错误;()0,2,1AE=,()12,2,2AC=-,所以111·cos,AE ACAE ACAE AC=B正确;()0,2,1AE=,()1,0,2AF=-,记()4,1,2n=-,则0,0AE AFn n==,故,AE AFn n⊥⊥,因为AE AF A⋂=,,AE AF⊂平面AEF,所以()4,1,2n=-垂直于平面AEF,故选项C正确;B =2,0,0,所以点D到平面AEF的距离·21DA ndn===,故选项D正确;故选:BCD10.BCD【分析】对于A,由1CP BP BC BBμ==-即可判断;对于B,由[]11,0,1B P BP BB BCλλ=-=∈和11//B C平面ABC即可判断;对于C,分别取BC和11B C的中点D和E,由BP BD=+1BBμ即1DP BBμ=即可判断;对于D,先求证1A E⊥平面11BB C C,接着即可求证1B P⊥平面1A EB,进而即可求证1A B⊥平面1AB P.【详解】对于A,当1λ=时,[]1,0,1CP BP BC BBμμ=-=∈,又11CC BB=,所以1CP CCμ=即1//CP CC,又1CP CC C=,所以1C C P、、三点共线,故点P在1CC上,故A错误;对于B ,当1μ=时,[]11,0,1B P BP BB BC λλ=-=∈,又11B C BC =,所以111B P B C λ= 即111//B P B C ,又1111B B C P B = ,所以11B C P 、、三点共线,故点P 在棱11B C 上,由三棱柱性质可得11//B C 平面ABC ,所以点P 到平面ABC 的距离为定值,故B 正确;对于C ,当12λ=时,取BC 的中点11,D B C 的中点E ,所以1//DE BB 且1DE BB =,BP BD =+[]1,0,1BB μμ∈ ,即1DP BB μ= ,所以DP E D μ= 即//DP DE,又DP DE D ⋂=,所以D E P 、、三点共线,故P 在线段DE 上,故C 正确;对于D ,当11,2λμ==时,点P 为1CC 的中点,连接1,A E BE ,由题111A B C △为正三角形,所以111A E B C ⊥,又由正三棱柱性质可知11A E BB ⊥,因为1111BB B C B = ,111BB B C ⊂、平面11BB C C ,所以1A E ⊥平面11BB C C ,又1B P ⊂平面11BB C C ,所以11A E B P ⊥,因为1111B C BB CC ==,所以11B E C P =,又111π2BB E B C P ∠=∠=,所以111BB E B C P ≌,所以111B EB C PB ∠=∠,所以1111111π2PB C B EB PB C C PB ∠+∠=∠+∠=,设BE 与1B P 相交于点O ,则1π2B OE ∠=,即1BE B P ⊥,又1A E BE E = ,1A E BE ⊂、平面1A EB ,所以1B P ⊥平面1A EB ,因为1A B ⊂平面1A EB ,所以11B P A B ⊥,由正方形性质可知11A B AB ⊥,又111AB B P B = ,11B P AB ⊂、平面1AB P ,所以1A B ⊥平面1AB P ,故D 正确.故选:BCD.【点睛】思路点睛:对于求证1A B ⊥平面1AB P ,可先由111A E B C ⊥和11A E BB ⊥得1A E ⊥平面11BB C C ,从而得11A E B P ⊥,接着求证1BE B P ⊥得1B P ⊥平面1A EB ,进而11B P A B ⊥,再结合11A B AB ⊥即可得证1A B ⊥平面1AB P .11.BC【分析】A 选项,建立空间直角坐标系,写出点的坐标,得到122AB AA CG +≠ ;B 选项,求出平面的法向量,利用线面角的夹角公式求出答案;C 选项,利用空间向量点到直线距离公式进行求解;D 选项,利用异面直线夹角公式进行求解.【详解】A 选项,以A 为坐标原点,1,,DA AB AA所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()()10,0,0,0,1,0,0,0,1,1,1,2,0,1,2,1,1,0A B A G Q C ----,()()()110,1,1,1,1,1,1,0,0B C D --,()()()10,2,2,0,1,0,0,0,1CG AB AA =-==,则()()()1220,2,00,0,20,2,2AB AA CG +=+=≠,A 错误;B 选项,平面1111D C B A 的法向量为()0,0,1m =,()()()0,1,21,1,01,2,2CQ =---=-,设直线CQ 与平面1111D C B A 所成角的大小为θ,则2sin cos ,3CQ m CQ m CQ m θ⋅===⋅,B 正确;C 选项,()10,0,1CC =,点1C 到直线CQ 的距离为3d ==,C 正确;D 选项,()()()1,0,00,1,01,1,0BD =--=--,设异面直线CQ 与BD 所成角大小为α,则cos cos ,6CQ BD CQ BD CQ BDα⋅=====⋅,D 错误.故选:BC 12.18/0.125【分析】根据正三柱性质建立空间直角坐标系,利用向量垂直的坐标表示可得结果.【详解】取11B C 的中点为1M ,连接1,MM AM ,由正三棱柱性质可得11,,AM MM BM MM AM BM ⊥⊥⊥,因此以M 为坐标原点,以1,,AMBM MM 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如下图所示:易知()11,0,0,0,,2,0,0,022A B M ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,设CN 的长为a ,且0a >,可得10,,2N a ⎛⎫- ⎪⎝⎭;易知1110,,,,,2222MN a AB ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭若1⊥MN AB ,则1112022MN AB a ⋅=-⨯+= ,解得18a =,所以当CN 的长为18时,使1⊥MN AB .故答案为:1813.23【分析】建立空间直角坐标系,求出平面PAD 的一个法向量m 及PG,由PG 与平面PAD 所成角θ,根据sin cos ,m PG m PG m PGθ⋅==⋅即可求解.【详解】因为PD ⊥底面ABCD ,底面ABCD 是正方形,所以,,DA DC DP 两两垂直,以D 为坐标原点,,,DA DC DP的方向分别为,,x y z 轴的正方向,建立如图所示空间直角坐标系,则()0,0,0D ,()0,0,1P ,()3,0,0A ,()3,3,0B ,()0,3,0C ,则重心()2,2,0G ,因而()2,2,1PG =- ,()3,0,0DA = ,()0,0,1DP =,设平面PAD 的一个法向量为(),,m x y z =,则300m DA x m DP z ⎧⋅==⎪⎨⋅==⎪⎩ ,令1y =则()0,1,0m = ,则22sin cos ,133m PG m PG m PG θ⋅====⨯⋅,故答案为:23.14.117m【分析】先根据线面角的定义求得5tan tan EMO EGO ∠=∠,从而依次求EO ,EG ,EB ,EF ,再把所有棱长相加即可得解.【详解】如图,过E 做EO ⊥平面ABCD ,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接OG ,OM ,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠,所以5tan tan EMO EGO ∠=∠.因为EO ⊥平面ABCD ,⊂BC 平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,EO ,EG ⊂平面EOG ,EO EG E = ,所以⊥BC 平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,同理,OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO 5OG =,所以在直角三角形EOG 中,EG =在直角三角形EBG 中,5BG OM ==,8EB ==,又因为55255515EF AB =--=--=,所有棱长之和为2252101548117⨯+⨯++⨯=.故答案为:117m15.(2)当2AE =时,直线1A D 与平面1D EC 【分析】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立空间直角坐标系,求得平面1D EC 的一个法向量,平面1DCD 的一个法向量,利用向量法可求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)设AE m =,可求得平面1D EC 的一个法向量,直线的方向向量1DA,利用向量法可得sin θ=.【详解】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立如图所示的空间直角坐标系,当点E 在棱AB 的中点时,则1(0,0,1),(1,1,0),(0,2,0),(0,0,0),(1,0,0)E C D A D ,则1(1,1,1),(1,1,0),(1,0,0)ED EC DA =--=-=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·0n ED x y z n EC x y ⎧=--+=⎪⎨=-+=⎪⎩ ,令1x =,则1,2y z ==,所以平面1D EC 的一个法向量为(1,1,2)n =,又平面1DCD 的一个法向量为(1,0,0)DA =,所以·cos ,·DA n DA n DA n=== 所以平面1D EC 与平面1DCD(2)设AE m =,则11(0,0,1),(1,,0),(0,2,0),(0,0,0),(1,0,1)E m C D A D ,则11(1,,1),(1,2,0),(02),(1,0,1)ED m EC m m DA =--=--≤≤=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·(2)0n ED x my z n EC x m y ⎧=--+=⎪⎨=-+-=⎪⎩ ,令1y =,则2,2x m z =-=,所以平面1D EC 的一个法向量为(2,1,2)n m =-,设直线1A D 与平面1D EC 所成的角为θ,则11||sin ||||n DA n DA θ===令4[2,4]m t -=∈,则sin θ=当2t =时,sin θ取得最小值,最小值为5.16.(2)10(3)证明见解析【分析】(1)建立空间直角坐标系,求出相关点坐标,根据空间两点间距离公式,即得答案;(2)根据空间向量的夹角公式,即可求得答案;(3)求出1C M ,1C N,BN 的坐标,根据空间位置关系的向量证明方法,结合线面垂直的判定定理,即可证明结论.【详解】(1)如图,建立以点O 为坐标原点,CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z轴的空间直角坐标系.依题意得(0,1,0),(1,0,1)B N ,∴BN == (2)依题意得,()()()()111,0,2,0,1,0,0,0,0,0,1,2A B C B ,∴1(1,1,2)BA =- ,1(0,1,2)CB =,113BA CB =⋅,1BA1CB所以11111cos ,BA CB BA CB BA CB ⋅=⋅(3)证明:()()()10,0,2,0,1,0,1,0,1C B N ,11,,222M ⎛⎫⎪⎝⎭.∴111,,022C M ⎛⎫= ⎪⎝⎭ ,()11,0,1C N =- ,()1,1,1BN =-,∴1111(1)10022C M BN ⋅=⨯+⨯-+⨯= ,1110(1)(1)10C N BN ⋅=⨯+⨯-+-⨯=,∴1C M BN ⊥ ,1C N BN ⊥,即11,C M BN C N BN ⊥⊥,又1C M ⊂平面1C MN ,1C N ⊂平面1C MN ,111= C M C N C ,∴BN ⊥平面1C MN .17.(2)存在点M ,使得//BM 平面PCD ,14AM AP =.【分析】(1)取AD 的中点为O ,连接,PO CO ,由面面垂直的性质定理证明⊥PO 平面ABCD ,建立空间直角坐标系求解直线PB 与平面PCD 所成角的正切值即可;(2)假设在PA 上存在点M ,使得()01PM PA λλ=≤≤,由线面平行,转化为平面的法向量与直线的方向向量垂直,求解参数即可.【详解】(1)取AD 的中点为O ,连接,PO CO ,因为PA PD =,所以PO AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PO ⊂平面PAD ,所以⊥PO 平面ABCD ,又AC CD =,所以CO AD ⊥,PA PD ⊥,2AD =,所以1PO =,AC CD ==2CO =,所以以O 为坐标原点,分别以,,OC OA OP 所在的直线为,,x y z 轴建立空间直角坐标系,0,0,1,()2,0,0C ,()0,1,0A ,()1,1,0B ,()0,1,0D -,所以()2,0,1PC =- ,()0,1,1PD =--,()1,1,1PB =- ,设平面PCD 的一个法向量为 =s s ,则00PC m PD m ⎧⋅=⎪⎨⋅=⎪⎩,200x z y z -=⎧⎨--=⎩,令1,x =则2,2z y ==-,所以()1,2,2m =-,设直线PB 与平面PCD 所成角为θ,sin cos ,m PB m PB m PB θ⋅====,所以cos 3θ==,所以tan θ所以直线PB 与平面PCD所成角的正切值2.(2)在PA 上存在点M ,使得()01PM PA λλ=≤≤,所以()0,1,1PA =- ,所以()0,,PM PA λλλ==-,所以()0,,1M λλ-,所以()1,1,1BM λλ=---,因为//BM 平面PCD ,所以BM m ⊥ ,即()()121210λλ---+-=,解得34λ=,所以存在点M ,使得//BM 平面PCD ,此时14AM AP =.18.(1)总有平面PBD ⊥平面PAG ,证明详见解析(2)存在,Q 是PA 的靠近P 的三等分点,理由见解析.【分析】(1)通过证明BD ⊥平面PAG 来证得平面PBD ⊥平面PAG .(2)建立空间直角坐标系,利用平面QDN 与平面PMN 所成角的余弦值来列方程,从而求得Q 点的位置.【详解】(1)折叠前,因为四边形ABCD 是菱形,所以AC BD ⊥,由于,M N 分别是边BC ,CD 的中点,所以//MN BD ,所以MN AC ⊥,折叠过程中,,,,,MN GP MN GA GP GA G GP GA ⊥⊥⋂=⊂平面PAG ,所以MN ⊥平面PAG ,所以BD ⊥平面PAG ,由于BD ⊂平面PBD ,所以平面PBD ⊥平面PAG .(2)存在,理由如下:当平面PMN ⊥平面MNDB 时,由于平面PMN 平面MNDB MN =,GP ⊂平面PMN ,GP MN ⊥,所以GP ⊥平面MNDB ,由于AG ⊂平面MNDB ,所以GP AG ⊥,由此以G 为空间坐标原点建立如图所示空间直角坐标系,依题意可知())(),2,0,,0,1,0,P D B N PB --=- ()A,(PA = ,设()01PQ PA λλ=≤≤ ,则(()(),0,3,0,GQ GP PQ GP PA λ=+=+=+-= ,平面PMN 的法向量为()11,0,0n = ,()(),DQ DN ==,设平面QDN 的法向量为()2222,,n x y z = ,则()2222222200n DQ x y z n DN y ⎧⋅=-++=⎪⎨⎪⋅=+=⎩ ,故可设()21n λλ=--+ ,设平面QDN 与平面PMN 所成角为θ,由于平面QDN 与平面PMN所成角的余弦值为13,所以1212cos n n n n θ⋅==⋅解得13λ=,所以当Q 是PA 的靠近P 的三等分点时,平面QDN 与平面PMN 所成角的余弦值为13.19.(1)证明见解析(2)8(3)5【分析】(1)根据条件建立合适的空间直角坐标系,利用空间向量证明线面关系即可;(2)利用空间向量研究线面夹角,结合二次函数的性质计算最大值即可;(3)设BM tBC = ,利用空间向量基本定理及三点共线的充要条件得出AH ,利用向量模长公式及导数研究函数的单调性计算最值即可.【详解】(1)由于四边形ABCD 是菱形,且60ABC ∠= ,取CD 中点G ,则AG CD ⊥,又PA ⊥平面ABCD ,可以A 为中心建立如图所示的空间直角坐标系,则()()()()()2,0,0,,,0,0,1,B C D P G -,所以()()()1,,2,0,1PC BD BP =-=-=- ,由()01BE PF BD PCλλ==<≤,可知,,BE BD PF PC EF EB BP PF BD BP PC λλλλ==∴=++=-++ ()42,0,1λλ=--,易知()AG = 是平面PAB 的一个法向量,显然0EF AG ⋅= ,且EF ⊄平面PAB ,即//EF 平面PAB;(2)由上可知()()()1,,DP PF DF λλλλ+==+-=+- ,设平面PBC 的一个法向量为(),,n x y z =r,则200n BP x z n PC x z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1x =,则2,3z y ==,2n ⎛⎫= ⎪ ⎪⎝⎭,设直线DF 与平面PBC 所成角为α,则sin cos ,n DF n DF n DF α⋅==⋅ ,易知35λ=时,()2min 165655λλ-+=,即此时sin α取得最大值8;(3)设()(](),0,0,12,0BM t BC t t AM AB BM t ==-∈⇒=+=- ,由于,,H M P 共线,不妨设()1AH xAM x AP =+- ,易知AM AP ⊥,则有()()22010AH PM AH AM AP x AM x AP ⋅=⋅-=⇒--= ,所以22114451x t t AM ==-++ ,则()()2CH CA AH t x x =+=--- ,即()()2222454454655445t CH t t x t x t t --=-+-++=+-+ 记()(]()2450,1445t f t t t t --=∈-+,则()()()2228255445t t f t t t --+'=-+,易知22550t t -+>恒成立,所以()0f t '<,即()f t 单调递减,所以()()min 9155f t f CH ≥=-⇒==.。

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷Word版含解析

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷Word版含解析

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y 2=2,则其圆心和半径分别为( )A .(1,0),2B .(﹣1,0),2C .D .2.抛物线x 2=4y 的焦点到准线的距离为( )A .B .1C .2D .43.双曲线4x 2﹣y 2=1的一条渐近线的方程为( )A .2x+y=0B .2x+y=1C .x+2y=0D .x+2y=14.在空间中,“直线a ,b 没有公共点”是“直线a ,b 互为异面直线”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知A ,B 为圆x 2+y 2=2ax 上的两点,若A ,B 关于直线y=2x+1对称,则实数a=( )A .B .0C .D .16.已知直线l 的方程为x ﹣my+2=0,则直线l ( )A .恒过点(﹣2,0)且不垂直x 轴B .恒过点(﹣2,0)且不垂直y 轴C .恒过点(2,0)且不垂直x 轴D .恒过点(2,0)且不垂直y 轴7.已知直线x+ay ﹣1=0和直线ax+4y+2=0互相平行,则a 的取值是( )A .2B .±2C .﹣2D .08.已知两直线a ,b 和两平面α,β,下列命题中正确的为( )A .若a ⊥b 且b ∥α,则a ⊥αB .若a ⊥b 且b ⊥α,则a ∥αC .若a ⊥α且b ∥α,则a ⊥bD .若a ⊥α且α⊥β,则a ∥β9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : . 12.椭圆x 2+9y 2=9的长轴长为 .13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 .14.如图,在四棱锥P ﹣ABCD 中,底面四边形ABCD 的两组对边均不平行.①在平面PAB 内不存在直线与DC 平行;②在平面PAB 内存在无数多条直线与平面PDC 平行;③平面PAB 与平面PDC 的交线与底面ABCD 不平行;上述命题中正确命题的序号为 .15.已知向量,则与平面BCD 所成角的正弦值为 .16.若某三棱锥的三视图如图所示,则该棱锥的体积为 ,表面积为 .三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC 的三个顶点坐标为A (0,0),B (8,4),C (﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.19.已知椭圆G:的离心率为,经过左焦点F1(﹣1,0)的直线l与椭圆G相交于A,B两点,与y轴相交于C点,且点C在线段AB上.(Ⅰ)求椭圆G的方程;(Ⅱ)若|AF1|=|CB|,求直线l的方程.北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y2=2,则其圆心和半径分别为()A.(1,0),2 B.(﹣1,0),2 C.D.【考点】圆的标准方程.【分析】利用圆的标准方程的性质求解.【解答】解:圆(x+1)2+y2=2的圆心为(﹣1,0),半径为.故选:D.2.抛物线x2=4y的焦点到准线的距离为()A.B.1 C.2 D.4【考点】抛物线的简单性质.【分析】直接利用抛物线方程求解即可.【解答】解:抛物线x2=4y的焦点到准线的距离为:P=2.故选:C.3.双曲线4x2﹣y2=1的一条渐近线的方程为()A.2x+y=0 B.2x+y=1 C.x+2y=0 D.x+2y=1【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由双曲线的渐近线方程y=±x,即可得到所求结论.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得a=,b=1,由双曲线的渐近线方程y=±x,可得所求渐近线方程为y=±2x.故选:A.4.在空间中,“直线a,b没有公共点”是“直线a,b互为异面直线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】空间中直线与直线之间的位置关系.【分析】利用空间中两直线的位置关系直接求解.【解答】解:“直线a,b没有公共点”⇒“直线a,b互为异面直线或直线a,b为平行线”,“直线a,b互为异面直线”⇒“直线a,b没有公共点”,∴“直线a,b没有公共点”是“直线a,b互为异面直线”的必要不充分条件.故选:B.5.已知A,B为圆x2+y2=2ax上的两点,若A,B关于直线y=2x+1对称,则实数a=()A.B.0 C.D.1【考点】直线与圆的位置关系.【分析】根据题意,圆心C(a,0)在直线y=2x+1上,C的坐标并代入直线2x+y+a=0,再解关于a的方程,即可得到实数a的值.【解答】解:∵A,B为圆x2+y2=2ax上的两点,A,B关于直线y=2x+1对称,∴圆心C(a,0)在直线y=2x+1上,∴2a+1=0,解之得a=﹣故选:A.6.已知直线l的方程为x﹣my+2=0,则直线l()A.恒过点(﹣2,0)且不垂直x轴 B.恒过点(﹣2,0)且不垂直y轴C.恒过点(2,0)且不垂直x轴D.恒过点(2,0)且不垂直y轴【考点】直线的一般式方程.【分析】由直线l的方程为x﹣my+2=0,令y=0,解得x即可得出定点,再利用斜率即可判断出与y轴位置关系.【解答】解:由直线l的方程为x﹣my+2=0,令y=0,解得x=﹣2.于是化为:y=﹣x﹣1,∴恒过点(﹣2,0)且不垂直y轴,故选:B.7.已知直线x+ay﹣1=0和直线ax+4y+2=0互相平行,则a的取值是()A.2 B.±2 C.﹣2 D.0【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可得1×4﹣a•a=0,解得a值排除重合可得.【解答】解:∵直线x+ay﹣1=0和直线ax+4y+2=0互相平行,∴1×4﹣a•a=0,解得a=2或a=﹣2,经验证当a=﹣2时两直线重合,应舍去故选:A8.已知两直线a,b和两平面α,β,下列命题中正确的为()A.若a⊥b且b∥α,则a⊥α B.若a⊥b且b⊥α,则a∥αC.若a⊥α且b∥α,则a⊥b D.若a⊥α且α⊥β,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】利用空间线面平行、线面垂直以及面面垂直的性质定理和判定定理对选项分别分析选择.【解答】解:对于A,若a⊥b且b∥α,则a与α位置关系不确定;故A错误;对于B,若a⊥b且b⊥α,则a与α位置关系不确定;可能平行、可能在平面内,也可能相交;故B 错误;对于C,若a⊥α且b∥α,根据线面垂直和线面平行的性质定理,可以得到a⊥b;故C正确;对于D ,若a ⊥α且α⊥β,则a ∥β或者a 在平面β内,故D 错误;故选:C .9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .【考点】抛物线的简单性质.【分析】求出P 的坐标,设P 在x 轴上的射影为C ,则tan ∠APC==,可得∠APB=120°,即可求出cos ∠APB .【解答】解:由题意,|PB|=|PF|=PA|,∴P 的横坐标为3,不妨取点P (3,2),设P 在x 轴上的射影为C ,则tan ∠APC==, ∴∠APC=30°,∴∠APB=120°,∴cos ∠APB=﹣. 故选:C .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3【考点】点、线、面间的距离计算.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1P 的长度的最大值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设P (a ,b ,0),则D 1(0,0,2),E (1,2,0),B 1(2,2,2),=(a ﹣2,b ﹣2,﹣2),=(1,2,﹣2), ∵B 1P ⊥D 1E ,∴=a ﹣2+2(b ﹣2)+4=0,∴a+2b ﹣2=0,∴点P 的轨迹是一条线段,当a=0时,b=1;当b=0时,a=2,设CD 中点F ,则点P 在线段AF 上,当A 与P 重合时,线段B 1P 的长度为:|AB 1|==2; 当P 与F 重合时,P (0,1,0),=(﹣2,﹣1,﹣2),线段B 1P 的长度||==3, 当P 在线段AF 的中点时,P (1,,0),=(﹣1,﹣,﹣2),线段B 1P 的长度||==. ∴线段B 1P 的长度的最大值为3.故选:D .二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : ∃x ∈R ,x 2<0 . 【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题p :“∀x ∈R ,x 2≥0”,则¬p :∃x ∈R ,x 2<0. 故答案为:∃x ∈R ,x 2<0.12.椭圆x 2+9y 2=9的长轴长为 6 .【考点】椭圆的简单性质.【分析】将椭圆化为标准方程,求得a=3,即可得到长轴长2a .【解答】解:椭圆x 2+9y 2=9即为+y 2=1,即有a=3,b=1,则长轴长为2a=6.故答案为:6.13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 (2,+∞) .【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,由题意可得m >0且m ﹣2>0,解不等式即可得到所求范围.【解答】解:曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,可得﹣=1,即有m>0,且m﹣2>0,解得m>2.故答案为:(2,+∞).14.如图,在四棱锥P﹣ABCD中,底面四边形ABCD的两组对边均不平行.①在平面PAB内不存在直线与DC平行;②在平面PAB内存在无数多条直线与平面PDC平行;③平面PAB与平面PDC的交线与底面ABCD不平行;上述命题中正确命题的序号为①②③.【考点】棱锥的结构特征.【分析】①用反证法利用线面平行的性质即可证明.②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,即可判断;③用反证法利用线面平行的性质即可证明.【解答】解:①用反证法.设在平面PAB内存在直线与DC平行,则CD∥平面PAB,又平面ABCD∩平面PAB=AB,平面ABCD∩平面PCD=CD,故CD∥AB,与已知矛盾,故原命题正确;②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,故在平面PAB内存在无数多条直线与平面PDC平行,命题正确;③用反证法.设平面PAB与平面PDC的交线l与底面ABCD平行,则l∥AB,l∥CD,可得:AB∥CD,与已知矛盾,故原命题正确.故答案为:①②③.15.已知向量,则与平面BCD所成角的正弦值为.【考点】直线与平面所成的角.【分析】求出平面BCD的法向量,利用向量法能求出与平面BCD所成角的正弦值.【解答】解:∵向量,∴==(﹣1,2,0),==(﹣1,0,3),设平面BCD的法向量为=(x,y,z),则,取x=6,得=(6,3,2),设与平面BCD所成角为θ,则sinθ===.∴与平面BCD所成角的正弦值为.故答案为:.16.若某三棱锥的三视图如图所示,则该棱锥的体积为,表面积为3.【考点】由三视图求面积、体积.【分析】几何体为三棱锥,棱锥底面为等腰三角形,底边为2,底边的高为1,棱锥的高为.棱锥顶点在底面的射影为底面等腰三角形的顶点.【解答】解:由三视图可知几何体为三棱锥,棱锥顶点在底面的射影为底面等腰三角形的顶点,棱锥底面等腰三角形的底边为2,底边的高为1,∴底面三角形的腰为,棱锥的高为.∴V==,S=+××2+=3.故答案为,三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.【考点】直线与圆的位置关系;直线的斜率;圆的一般方程.【分析】(1)证明•=﹣16+16=0,可得⊥,即可证明△ABC 是直角三角形;(2)求出△ABC 的外接圆的方程,利用△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,可得圆心到直线的距离d=4,即可求m 的值.【解答】(1)证明:∵A (0,0),B (8,4),C (﹣2,4),∴=(8,4),=(﹣2,4),∴•=﹣16+16=0,∴⊥,∴ABC 是直角三角形;(2)解:△ABC 的外接圆是以BC 为直径的圆,方程为(x ﹣3)2+(y ﹣4)2=25,∵△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,∴圆心到直线的距离d=4=,∴m=﹣4或﹣44.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)推导出CC 1∥AA 1,AD ∥BC ,从而平面AA 1D ∥平面CC 1B ,由此能证明AE ∥平面CC 1B . (Ⅱ)法1:推导出AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,以AB ,AD ,AA 1分别x ,y ,z 轴建立空间直角坐标系,利用向量法能证明A 1D ⊥平面ABE .法2:推导出AA 1⊥AB ,AB ⊥AD ,从而AB ⊥A 1D ,再由AE ⊥A 1D ,能证明A 1D ⊥平面ABE .(Ⅲ)推导出平面EFD ⊥平面ABE ,从而二面角D ﹣EF ﹣B 为90°,设,且λ∈[0,1],则G (2,2,3λ),再由A 1D ⊥BG ,能求出CG 的长.【解答】证明:(Ⅰ)因为CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,所以CC 1∥AA 1,因为ABCD 是正方形,所以AD∥BC,因为AA1∩AD=A,CC1∩BC=C,所以平面AA1D∥平面CC1B.因为AE⊂平面AA1D,所以AE∥平面CC1B.(Ⅱ)法1:因为AA1⊥平面ABCD,所以AA1⊥AB,AA1⊥AD,因为ABCD是正方形,所以AB⊥AD,以AB,AD,AA1分别x,y,z轴建立空间直角坐标系,则由已知可得B(2,0,0),D(0,2,0),A1(0,0,2),E(0,1,1),,,因为,所以,所以A1D⊥平面ABE.法2:因为AA1⊥平面ABCD,所以AA1⊥AB.因为ABCD是正方形,所以AB⊥AD,所以AB⊥平面AA1D,所以AB⊥A1D.因为E为棱A1D中点,且,所以AE⊥A1D,所以A1D⊥平面ABE.(Ⅲ)因为A1D⊥平面ABE,且A1D⊂平面EFD,所以平面EFD⊥平面ABE.因为平面ABE即平面BEF,所以二面角D﹣EF﹣B为90°.设,且λ∈[0,1],则G(2,2,3λ),因为A1D⊥平面ABE,BG⊂平面ABE,所以A1D⊥BG,所以,即,所以.19.已知椭圆G :的离心率为,经过左焦点F 1(﹣1,0)的直线l 与椭圆G 相交于A ,B 两点,与y 轴相交于C 点,且点C 在线段AB 上.(Ⅰ)求椭圆G 的方程;(Ⅱ)若|AF 1|=|CB|,求直线l 的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆焦距为2c ,运用离心率公式和a ,b ,c 的关系,即可得到椭圆方程;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),代入椭圆方程,运用韦达定理和向量共线的坐标表示,解方程即可得到所求方程.【解答】解:(Ⅰ)设椭圆焦距为2c ,由已知可得,且c=1,所以a=2,即有b 2=a 2﹣c 2=3,则椭圆G 的方程为;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),由消y ,并化简整理得(4k 2+3)x 2+8k 2x+4k 2﹣12=0,由题意可知△>0,设A (x 1,y 1),B (x 2,y 2),则,因为点C ,F 1都在线段AB 上,且|AF 1|=|CB|,所以,即(﹣1﹣x 1,﹣y 1)=(x 2,y 2﹣y C ),所以﹣1﹣x 1=x 2,即x 1+x 2=﹣1,所以,解得,即.所以直线l的方程为或.。

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。

立体几何中的截面(解析版)

立体几何中的截面(解析版)

专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。

其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。

最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。

2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。

【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。

例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是()分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。

例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:①水的部分始终呈棱柱状;②水面EFGH的面积不改变;③棱A1D1始终与水面EFGH平行;A CBD④ 当容器倾斜到如图5(2)时,BE·BF 是定值; 其中正确的命题序号是______________分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH BC BF BE V ⋅⋅=21水例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( )A .21 B .87 C .1211 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为8712121211=⋅⋅⋅-=V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211112121311=⋅⋅⋅⋅-=V ,故选C 。

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。

2023-2024学年广东省四校联考(一)数学试题及参考答案

2023-2024学年广东省四校联考(一)数学试题及参考答案

2023~2024学年度第一学期四校联考(一)
数学试卷
在答题卡上。

用2B 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写铅笔将试卷类型(A )填涂在答题卡相应位置上。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

3. 非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
二、多选题:本题共 4 小题,每小题 5 分,共20 分.在每小题给出的选项中,有多项符合题目要求.全部选对得 5 分,部分选对的得 2 分,有选错的得0 分.
12. 已知函数())1(>=a a x f x ,()()()x f x f x g −−=,若21x x ≠,则( )
质,也了解到在我国古代,杨辉三角是解决很多数学问题的有力工具。

(本小题满分分)
2023~2024学年第一学期四校联考(一)参考答案
【详解】。

精品解析:福建省三明市2019-2020学年高二上学期期末数学试题(解析版)

精品解析:福建省三明市2019-2020学年高二上学期期末数学试题(解析版)
【详解】 ,则 ,
故函数在 上单调递减,在 上单调递增, 错误;
,根据单调性知 , 正确;
, ,故方程 有实数解, 正确;
,易知当 时成立,当 时, ,设 ,
则 ,故函数在 上单调递增,在 上单调递减,
在 上单调递增,且 .
画出函数图象,如图所示:当 时有ห้องสมุดไป่ตู้个交点.
综上所述:存在实数 ,使得方程 有 个实数解, 正确;
16.设过原点的直线与双曲线 : 交于 两个不同点, 为 的一个焦点,若 , ,则双曲线 的离心率为__________.
【答案】
【解析】
【分析】
如图所示:连接 ,根据对称性知 为平行四边形,计算得到
,利用余弦定理计算得到答案.
【详解】如图所示:连接 ,根据对称性知 为平行四边形.
,则 , ,
, ,故 .
【详解】 , ,取 得到 .
故函数在 上单调递减,在 上单调递减,在 上单调递增.
对比图象知: 满足条件.
故选: .
【点睛】本题考查了根据导数求单调区间,函数图像的识别,意在考查学生对于函数知识的综合应用.
7.若 ,且 ,则下列不等式一定成立的是
A. B. C. D.
【答案】D
【解析】
【分析】
设函数 ,函数为偶函数,求导得到函数的单调区间,变换得到 ,得到答案.
C.当 , 时,方程不成立,错误;
D.方程表示的曲线不含有一次项,故不可能为抛物线,正确;
故选: .
【点睛】本题考查了椭圆,双曲线,抛物线的定义,意在考查学生对于圆锥曲线的理解.
10.(多选题)如图,在长方体 中, , , ,以直线 , , 分别为 轴、 轴、 轴,建立空间直角坐标系,则()

三校联考高二(上)文科数学期末试卷

三校联考高二(上)文科数学期末试卷

2010——2011学年“福鼎二中、福安十中、霞浦七中”三校联考高二(上)文科数学期末试卷(时间1200分钟 满分150分) 命卷人:余智华 审卷人:韩品霞、洪时昌一、选择题(每小题5分,共60分) 1、2>x 是3>x 的( ) (A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件 2、已知命题1sin ,≤∈∀x R x p :,则( )。

(A )1sin ,≥∈∃⌝x R x p : (B )1sin ,≥∈∀⌝x R x p : (C )1sin ,>∈∃⌝x R x p :(D )1sin ,>∈∀x R x p :3、在⊿ABC 中,AB=3,AC=1,∠A=300,则⊿ABC 的面积为( )。

(A )23(B )43 (C )23或3 (D )43或23 4、已知xx f 1)(=,则)3(f '等于( )。

(A )0(B )91 (C )91-(D )95、等比数列{}n a 中,45a =,则53a a 的值( ) (A )75(B )50(C )25(D )106、等差数列{}n a 中,1510=S ,则=+101a a ( )。

(A )3(B )6(C )10(D )97、一元二次不等式022<--x x 的解集为( )。

(A ){}21|<<-x x (B ){}21|>-<x x x 或 (C ){}12|<<-x x(D ){}12|>-<x x x 或8、在⊿ABC 中,a=3,b=7,c =2,则∠B 等于( )。

(A )300(B )450(C )600(D )12009、椭圆1222=+y x 的离心率为( )。

(A )23 (B )22 (C )21 (D )222 10、已知x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥≥+-3002x y y x ,则y x z +=的最大值为( )。

2018-2019学年广东省深圳外国语学校高二(上)期末数学试卷(理科)

2018-2019学年广东省深圳外国语学校高二(上)期末数学试卷(理科)

2018-2019学年广东省深圳外国语学校高二(上)期末数学试卷(理科)1.(单选题,5分)命题“∃x∈R,2x+x2≤1”的否定是()A.∀x∈R,2x+x2>1B.∀x∈R,2x+x2≥1C.∃x∈R,2x+x2>1D.∃x∈R,2x+x2≥12.(单选题,5分)复数z=1+ 1−i1+i(是虚数单位)在复平面内对应的点落在()A.第一象限B.第二象限C.第三象限D.第四象限3.(单选题,5分)已知函数f(x)的导函数f′(x)的图象如图所示,则函数f(x)在区间[a,b]上的极值点的个数为()A.2B.3C.4D.54.(单选题,5分)函数f(x)=e-x sinx的单调递增区间()(k∈Z)A. [2kπ−5π4,2kπ−π4]B. [2kπ−3π4,2kπ+π4]C. [2kπ−π4,2kπ+3π4]D. [2kπ+π4,2kπ+5π4]5.(单选题,5分)将边长为1的正方形ABCD沿对角线BD折成直二面角,若点P满足BP⃗⃗⃗⃗⃗= 12CA⃗⃗⃗⃗⃗ + BD⃗⃗⃗⃗⃗⃗ ,则| BP⃗⃗⃗⃗⃗ |2的值为()A. 32B.2C. 10−√24 D. 946.(单选题,5分)若抛物线y2=ax的焦点与椭圆x26+y22=1的左焦点重合,则a的值为()A.-8B.-16C.-4D.47.(单选题,5分)命题“∀x∈(1,+∞),都有x2-lnx>ax成立”为真命题,则实数a的取值范围是()A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)8.(单选题,5分)已知F1、F2是椭圆C:x2a2+y2b2=1的左右焦点,P是C上一点,3| PF1⃗⃗⃗⃗⃗⃗⃗ |•|PF2⃗⃗⃗⃗⃗⃗⃗ |=4b2,则C的离心率的取值范围是()A. (0,12]B. (0,√32]C. [√32,1)D. [12,1)9.(单选题,5分)正四棱锥P-ABCD的底面积为3,体积为√22,E为侧棱PC的中点,则PA 与BE所成的角为()A. π6B. π3C. π4D. π210.(单选题,5分)已知正四面体A-BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥ADB.∃F∈BC,EF⊥ACC.∀F∈BC,EF≥ √3D.∃F∈BC,EF || AC11.(单选题,5分)已知函数f(x)=x3+ax2+x在区间(-1,1)内有且仅有一个极值并且为极小值,则实数a的取值范围是()A.(2,+∞)B.[2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)12.(单选题,5分)把正整数按一定的规则排成了如图所示的三角形数表,设a ij(i,j∈N*)是位于这个三角形数表中从上往下数第i行,从左往右数第j个数,若a ij=2015,则i与j的和为()A.104B.102C.80D.8113.(填空题,5分)计算定积分∫1(√1−x2−1)dx =___ .14.(填空题,5分)曲线y=e-2x+1在点(0,2)处的切线方程是___ .15.(填空题,5分)已知双曲线 C:x2a2 - y2b2=1(a>0,b>0)的离心率为√3,A B 为左、右顶点,点 P 为双曲线 C 在第一象限的任意一点,点 O 为坐标原点,若直线PA,PB,PO 的斜率分别为k1,k2,k3,记m=k1k2k3,则 m 的取值范围为___ .16.(填空题,5分)已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为274,则a的值为___ .17.(问答题,10分)设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x−3x−2≤0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.18.(问答题,12分)已知a是实数,函数f(x)=x2(x-a).(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间[0,2]上的最大值.19.(问答题,12分)如图1所示,直角梯形ABCD中,∠BCD=90°,AD || BC,AD=6,DC=BC=3.过B作BE⊥AD于E,P是线段DE上的一个动点.将△ABE沿BE向上折起,使平面AEB⊥平面BCDE.连结PA,PC,AC(如图2).(Ⅰ)取线段AC的中点Q,问:是否存在点P,使得PQ || 平面AEB?若存在,求出PD的长;不存在,说明理由;(Ⅱ)当EP= 23ED时,求平面AEB和平面APC所成的锐二面角的余弦值.20.(问答题,12分)已知函数f(x)=x-ln(x+a)(a是常数).(1)求函数f(x)的单调区间;(2)当y=f(x)在x=1处取得极值时,若关于x的方程f(x)+2x=x2+b在[ 12,2]上恰有两个不相等的实数根,求实数b的取值范围;(3)求证:当n≥2,n∈N*时,(1+ 122)(1+ 132)…(1+ 1n2)<e.21.(问答题,12分)已知A,B是椭圆C:x2a2 + y2b2=1(a>b>0)的左,右顶点,B(2,0),过椭圆C的右焦点F的直线交于其于点M,N,交直线x=4于点P,且直线PA,PF,PB的斜率成等差数列.(Ⅰ)求椭圆C的方程;(Ⅱ)若记△AMB,△ANB的面积分别为S1,S2求S1S2的取值范围.22.(问答题,12分)已知函数f(x)=x+a2x,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a 的取值范围.。

广东省中山市2019-2020学年高二上学期期末考试数学试卷含详解

广东省中山市2019-2020学年高二上学期期末考试数学试卷含详解
A.2B.3C. D.4
【答案】B
【解析】
【分析】由 ,两边平方后展开整理,即可求得 ,则 的长可求.
【详解】解: ,

, ,
, ,



故选: .
【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.
4.已知等比数列 的各项均为正数,前 项和为 ,若 ,则
1.“ ”是“ ”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【解析】
【分析】根据充分条件和必要条件的定义进行判断即可.
【详解】
∴“ ”是“ ”的充分必要条件.
故选C
【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.
2.在等差数列 中,若 的值是
11.已知点 和点 ,直线 , 的斜率乘积为常数 ,设点 的轨迹为 ,下列说法正确的是()
A.存在非零常数 ,使 上所有点到两点 , 距离之和为定值
B.存在非零常数 ,使 上所有点到两点 , 距离之和为定值
C.不存在非零常数 ,使 上所有点到两点 , 距离之差的绝对值为定值D.不存在非零常数 ,使 上所有点到两点 , 距离之差的绝对值为定值
【详解】根据题意,在△ADC中,∠ACD=45°,∠ADC=67.5°,DC=2 ,
则∠DAC=180°-45°-67.5°=67.5°,则AC=DC=2 ,
在△BCE中,∠BCE=75°,∠BEC=60°,CE= ,
则∠EBC=180°-75°-60°=45°,
则有 = ,变形可得BC= = = ,

广东省天天向上联盟2024-2025学年高二上学期期中联考数学试卷

广东省天天向上联盟2024-2025学年高二上学期期中联考数学试卷

OM 的长为 19 ,故选 B. 【点睛】本题考查空间中两点间的距离公式的应用,解题的关键在于建立合适的空间直角 坐标系,并求出相应点的坐标,考查空间想象能力,属于中等题. 7.D
【分析】根据 AB = 5, | PA | + | PB |= 5 上,得到点 p 在线段 AB 上,其方程为
y
=
2x
B.异面直线
EF、GN
所成角的余弦值为
1 4
C. E、F、、G、 M N 在同一个球面上
试卷第31 页,共33 页
D.
uuur A1P
=
t
uuur A1 A
+
uuuur A1M
-
2t
uuuur A1B1
,则
P
点轨迹长度为
5
2
三、填空题
12.若 |
ar
+
r b
|=|
ar
-
r b
|

ar
=
(1,
2)

广东省天天向上联盟 2024-2025 学年高二上学期期中联考数
学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.已知倾斜角为q 的直线 l 与直线 2x - y + 1 = 0 垂直,则 tanq = ( )
A.2
a2 + b2 = c2 ,所以 b =
3
,所以双曲线方程为 x2
-
y2 3
= 1,所以双曲线的渐近线方程为
y = ± 3x . 故选:A 【点睛】本题考查双曲线的简单几何性质,属于基础题. 5.A 【分析】利用三点共线,斜率相等判断①;分类讨论直线是否过原点,求出直线方程即可
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年广东省联考联盟高二(上)期末数学试卷一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“x R ∀∈,22x x ≠”的否定是( ) A .x R ∀∈,22x x =B .0x R ∃∉,202x x =C .0x R ∃∈,202x x ≠ D .0x R ∃∈,202x x =2.(5分)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒3.(5分)若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )A .(7,B .(14,C .(7,±D .(7,4.(5分)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A .//m α,//n α,则//m nB .m α⊂,//n α,则//m nC .m α⊥,n α⊥,则//m nD .//αβ,m α⊂,n β⊂,则//m n5.(5分)正方体的棱长为a ,且正方体各面的中心是一个几何体的顶点,这个几何体的棱长为( )A B .12aC D .13a6.(5分)已知直线1:(1)2l x m y m ++=-与2:24160l mx y ++=,若12//l l ,则实数m 的值为( ) A .2或1-B .1C .1或2-D .2-7.(5分)曲线221169x y +=与曲线221(916)169x y k k k+=<<--的( )A .长轴长相等B .短轴长相等C .焦距相等D .离心率相等8.(5分)在平行六面体1111ABCD A B C D -中,若1123AC xAB yBC zDD =-+u u u u r u u u r u u u r u u u u r,则(x y z ++=) A .23B .56C .1D .769.(5分)直线1y x =+被椭圆2224x y +=所截得的弦的中点坐标是( )A .12(,)33-B .1(3-,1)2C .1(2,1)3-D .2(3-,1)310.(5分)如图,已知一个圆柱的底面半径为3,高为2,若它的两个底面圆周均在球O 的球面上,则球O 的表面积为( )A .323πB .16πC .8πD .4π11.(5分)已知双曲线2222:1(0,0)x y E a b a b-=>>,过原点O 任作一条直线,分别交曲线两支于点P ,Q (点P 在第一象限),点F 为E 的左焦点,且满足||3||PF FQ =,||OP b =,则E 的离心率为( ) A 3B 2C 5D .212.(5分)一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)四边形;(3)五边形;(4)六边形,其中正确的结论是( ) A .(1)(3)B .(2)(4)C .(2)(3)(4)D .(1)(2)(3)(4)二、填空题(本大题共4小题,每题5分,共20分)13.(5分)已知椭圆2212516x y +=上的点P 到一个焦点的距离为3,则P 到另一个焦点的距离为 .14.(5分)命题“2240x ax --->不成立”是真命题,则实数a 的取值范围是 . 15.(5分)圆锥的侧面展开图为一个扇形,其圆心角为23π,半径为3,则此圆锥的体积为 . 16.(5分)已知圆22:1O x y +=,点(2,2)P ,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,记C 为圆O 上到点P 距离最远的点,则四边形PACB 的面积为 .三、解答题(本大题共6小题,共70分.解答应写出文字说眀、证眀过程或演算步骤.17.(10分)已知p :式子2log ()(k a a -为常数)有意义,q :方程221(13x y k k k+=+-为实数)表示双曲线.若q ⌝是p 的充分不必要条件,求实数a 的取值范围. 18.(12分)已知直线1:23l x y -=与直线2:4350l x y --=. (1)求直线1l 与2l 的交点坐标;(2)求经过直线1l 与2l 的交点,且与直线320x y -+=垂直的直线l 的方程. 19.(12分)已知关于x ,y 的方程22:420C x y x y m +--+=. (1)若方程C 表示圆,求实数m 的取值范围;(2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值. 20.(12分)如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,90ABC PCD ∠=∠=︒,60BAC CAD ∠=∠=︒,设E 、F 分别为PD 、AD 的中点. (Ⅰ)求证:CD AC ⊥; (Ⅱ)求证://PB 平面CEF ;21.(12分)如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90︒的角)的余弦值.22.(12分)已知抛物线2:2(0)C y px p =>的焦点F 与椭圆22:143x y Γ+=的右焦点重合,过焦点F 的直线l 交抛物线于A ,B 两点. (1)求抛物线C 的方程;(2)记抛物线C 的准线与x 轴的交点为H ,试问:是否存在λ,使得()AF FB R λλ=∈u u u r u u u r,且22||||40HA HB +…成立?若存在,求实数λ的取值范围;若不存在,请说明理由.2019-2020学年广东省联考联盟高二(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“x R ∀∈,22x x ≠”的否定是( ) A .x R ∀∈,22x x =B .0x R ∃∉,202x x =C .0x R ∃∈,202x x ≠ D .0x R ∃∈,202x x = 【解答】解:命题是全称命题,则否定的特称命题,即0x R ∃∈,202x x =, 故选:D .2.(5分)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒【解答】解:直线过点(2,4),(1,4+,则此直线的斜率为tan k θ===又[0θ∈︒,180)︒, 所以倾斜角120θ=︒. 故选:C .3.(5分)若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )A .(7,B .(14,C .(7,±D .(7,【解答】解:根据抛物线28y x =,知4p =根据抛物线的定义可知点P 到其焦点的距离等于点P 到其准线2x =-的距离, 得7p x =,把x 代入抛物线方程解得y =± 故选:C .4.(5分)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A .//m α,//n α,则//m nB .m α⊂,//n α,则//m nC .m α⊥,n α⊥,则//m nD .//αβ,m α⊂,n β⊂,则//m n【解答】解:A ,m ,n 也可能相交或异面;B ,m ,n 也可能异面;C ,同垂直与一个平面的两直线平行,正确;D ,m ,n 也可能异面.故选:C .5.(5分)正方体的棱长为a ,且正方体各面的中心是一个几何体的顶点,这个几何体的棱长为( )A B .12aC D .13a【解答】解:如图,建立空间直角坐标系, Q 正方体的棱长为a ,(2a E ∴,2a ,)a ,(2a F ,2a ,0),(2a M ,a ,)2a ,(0N ,2a ,)2a ,(2a P ,0,)2a ,(Q a ,2a ,)2a. 这个几何体是正八面体,棱长||PQ ==.∴. 故选:A .6.(5分)已知直线1:(1)2l x m y m ++=-与2:24160l mx y ++=,若12//l l ,则实数m 的值为( ) A .2或1-B .1C .1或2-D .2-【解答】解:由2(1)40m m +-=,解得1m =或2-. 经过验证可得:2m =-时重合,舍去. 故选:B .7.(5分)曲线221169x y +=与曲线221(916)169x y k k k+=<<--的( )A .长轴长相等B .短轴长相等C .焦距相等D .离心率相等【解答】解:曲线221169x y +=是解得在x 轴上的椭圆;它的焦距为:216927-=曲线221(916)169x y k k k+=<<--是焦点坐标在x 轴上的双曲线,它的焦距为:16(9)7k k -+-.所以曲线221169x y +=与曲线221(916)169x y k k k+=<<--的焦距相等.故选:C .8.(5分)在平行六面体1111ABCD A B C D -中,若1123AC xAB yBC zDD =-+u u u u r u u u r u u u r u u u u r,则(x y z ++=) A .23 B .56 C .1 D .76【解答】解:在平行六面体1111ABCD A B C D -中,若11123AC AB BC DD xAB yBC zDD =++=-+u u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r ,则1x =,21y -=,31z =,则1x =,12y =-,13z =.1151236x y z ∴++=-+=. 故选:B .9.(5分)直线1y x =+被椭圆2224x y +=所截得的弦的中点坐标是( )A .12(,)33-B .1(3-,1)2C .1(2,1)3-D .2(3-,1)3【解答】解:将直线1y x =+代入椭圆2224x y +=中,得222(1)4x x ++=23420x x ∴+-= ∴弦的中点横坐标是142()233x =⨯-=-, 代入直线方程中,得13y =∴弦的中点是2(3-,1)3故选:D .10.(5分)如图,已知一个圆柱的底面半径为3,高为2,若它的两个底面圆周均在球O 的球面上,则球O 的表面积为( )A .323πB .16πC .8πD .4π【解答】解:根据题意,画图如下:则OA R =,O A r '==12hOO '==,故在Rt △OO A '中,2OA ===,2R ∴=,2244216S R πππ∴==⋅=球.故选:B .11.(5分)已知双曲线2222:1(0,0)x y E a b a b-=>>,过原点O 任作一条直线,分别交曲线两支于点P ,Q (点P 在第一象限),点F 为E 的左焦点,且满足||3||PF FQ =,||OP b =,则E 的离心率为( )A BCD .2【解答】解:由题意可知:双曲线的右焦点1F ,由P 关于原点的对称点为Q , 则||||OP OQ =,∴四边形1PFQF 为平行四边形,则1||||PF FQ =,1||||PF QF =,由||3||PF FQ =,根据双曲线的定义1||||2PF PF a -=, 1||PF a ∴=,||OP b =,1||OF c =, 190OPF ∴∠=︒,在1QPF ∆中,||2PQ b =,1||3QF a =,1||PF a =, 222(2)(3)b a a ∴+=,整理得:222b a =,则双曲线的离心率c e a ==.故选:A .12.(5分)一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)四边形;(3)五边形;(4)六边形,其中正确的结论是()A.(1)(3)B.(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)【解答】解:正方体容器中盛有一半容积的水,无论怎样转动,其水面总是过正方体的中心.三角形截面不过正方体的中心,故(1)不正确;过正方体的一对棱和中心可作一截面,截面形状为长方形,故(2)正确;正方体容器中盛有一半容积的水,任意转动这个正方体,则水面在容器中的形状不可能是五边形,故(3)不正确;过正方体一面上相邻两边的中点以及正方体的中心得截面形状为正六边形,故(4)正确.故选:B.二、填空题(本大题共4小题,每题5分,共20分)13.(5分)已知椭圆2212516x y+=上的点P到一个焦点的距离为3,则P到另一个焦点的距离为7.【解答】解:椭圆2212516x y+=的长轴长为10根据椭圆的定义,Q椭圆2212516x y+=上的点P到一个焦点的距离为3P∴到另一个焦点的距离为1037-=故答案为:714.(5分)命题“2240x ax --->不成立”是真命题,则实数a 的取值范围是 22a -剟 . 【解答】解:命题“2240x ax --->不成立”是真命题, 即:命题“2240x ax ---„成立为真命题”. 故:△24160a =-„, 解得:22a -剟. 故答案为:22a -剟.15.(5分)圆锥的侧面展开图为一个扇形,其圆心角为23π,半径为3,则此圆锥的体积为. 【解答】解:依题意,圆锥的母线长为3,底面圆的周长为2323ππ⨯=, 设底面圆的半径为r ,则22r ππ=,即1r =,∴圆锥的高h ==∴2113V π=⨯⨯⨯..16.(5分)已知圆22:1O x y +=,点P ,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,记C 为圆O 上到点P 距离最远的点,则四边形PACB 的面积为.【解答】解:根据题意,连接PO ,如图,P ,则||2PO ==,C 为圆O 上到点P 距离最远的点,则||||13PC PO =+=, 过点A 作AE OP ⊥,垂足为E ,Rt AOP ∆中,||1OA =,||2OP =,则||PA =则||||||||OA AP AE OP ⨯==,故1222ACP PACB S S AE PC ∆⎛⎫==⨯⨯⨯= ⎪⎝⎭四边形,.三、解答题(本大题共6小题,共70分.解答应写出文字说眀、证眀过程或演算步骤.17.(10分)已知p :式子2log ()(k a a -为常数)有意义,q :方程221(13x y k k k+=+-为实数)表示双曲线.若q ⌝是p 的充分不必要条件,求实数a 的取值范围. 【解答】解:p :式子2log ()(k a a -为常数)有意义,k a >,q :方程221(13x y k k k+=+-为实数)表示双曲线, 则(1)(3)0k k +-<,即(k ∈-∞,1)(3-⋃,)+∞, 若q ⌝是p 的充分不必要条件,[1k ∈-,3]是{|}a k a >的真子集, 故1a -….18.(12分)已知直线1:23l x y -=与直线2:4350l x y --=. (1)求直线1l 与2l 的交点坐标;(2)求经过直线1l 与2l 的交点,且与直线320x y -+=垂直的直线l 的方程. 【解答】解:(1)联立23x y -=与直线2:4350l x y --=.解得2x =,1y =. ∴直线1l 与2l 的交点坐标(2,1).(2)设与直线320x y -+=垂直的直线l 的方程为30x y m ++=, 把(2,1)代入解得:7m =-.∴要求的直线方程为:370x y +-=.19.(12分)已知关于x ,y 的方程22:420C x y x y m +--+=. (1)若方程C 表示圆,求实数m 的取值范围;(2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值. 【解答】解:(1)由22:420C x y x y m +--+=,得22(2)(1)5x y m -+-=-, 若方程C 表示圆,则50m ->,即5m <;(2)圆C 的半径为5m -,圆心(2,1)到直线240x y +-=的距离55d ==, 又45||MN =, ∴222525()()(5)m +=-,解得4m =. 20.(12分)如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,90ABC PCD ∠=∠=︒,60BAC CAD ∠=∠=︒,设E 、F 分别为PD 、AD 的中点. (Ⅰ)求证:CD AC ⊥; (Ⅱ)求证://PB 平面CEF ;【解答】(本小题满分12分)证明:(Ⅰ)PA ⊥Q 平面ABCD ,PA CD ∴⊥.90PCD ∠=︒Q ,PC CD ∴⊥.⋯⋯⋯⋯⋯⋯⋯(2分) PA PC P =Q I ,CD ∴⊥平面PAC ,AC ⊂Q 平面PAC ,CD AC ∴⊥.⋯⋯⋯⋯⋯⋯⋯(4分) (Ⅱ)由(Ⅰ)得90ACD ∠=︒.在直角三角形ACD 中,60CAD ∠=︒,CF AF =,60ACF ∴∠=︒,//CF AB ∴.⋯⋯⋯⋯⋯⋯⋯(6分) CF ⊂/Q 平面PAB ,AB ⊂平面PAB ,//CF ∴平面PAB .⋯⋯⋯⋯⋯⋯⋯(8分) E Q 、F 分别是PD 、AD 中点,//EF PA ∴,又EF ⊂/Q 平面PAB ,PA ⊂平面PAB ,//EF ∴平面PAB . CF EF F =Q I ,∴平面//CEF 平面PAB .⋯⋯⋯⋯⋯⋯⋯(10分)PB ⊂Q 平面PAB ,//PB ∴平面CEF .⋯⋯⋯⋯⋯⋯⋯(12分)21.(12分)如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90︒的角)的余弦值.【解答】解:(1)以{AB u u u r ,AC u u u r,1}AA u u u r 为单位正交基底建立空间直角坐标系A xyz -, 则由题意知(0A ,0,0),(2B ,0,0),(0C ,2,0), 1(0A ,0,4),(1D ,1,0),1(0C ,2,4),∴1(2A B =u u u r ,0,4)-,1(1C D =u u u u r,1-,4)-,1cos A B ∴<u u u r ,11111310||||2018A B C D C D A B C D >==u u u r u u u u ru u u u r g u u u r u u u u r g ,∴异面直线1A B 与1C D 310. (2)(0,2,0)AC =u u u r是平面1ABA 的一个法向量,设平面1ADC 的法向量为(,,)m x y z =r, Q (1,1,0)AD =u u u r ,1(0,2,4)AC =u u u u r∴10240m AD x y m AC y z ⎧=+=⎪⎨=+=⎪⎩u u u r r g u u u u r r g ,取1z =,得2y =-,2x =, ∴平面1ADC 的法向量为(2m =r,2-,1), 设平面1ADC 与1ABA 所成二面角为θ, cos |cos AC θ∴=<u u u r ,2|||329n >==r,∴平面1ADC 与1ABA 所成二面角的余弦值为:23.22.(12分)已知抛物线2:2(0)C y px p =>的焦点F 与椭圆22:143x y Γ+=的右焦点重合,过焦点F 的直线l 交抛物线于A ,B 两点. (1)求抛物线C 的方程;(2)记抛物线C 的准线与x 轴的交点为H ,试问:是否存在λ,使得()AF FB R λλ=∈u u u r u u u r,且22||||40HA HB +…成立?若存在,求实数λ的取值范围;若不存在,请说明理由. 【解答】解:(1)依题意,椭圆22:143x y Γ+=中,24a =,23b =,得2221c a b =-=,则(1,0)F ,得14p=,即4p =,故抛物线C 的方程为24y x =.(2)设:1l x ty =+,1(A x ,1)y ,2(B x ,2)y ,联立方程241y x x ty ⎧=⎨=+⎩消去x ,得2440y y --=,∴121244y y ty y +=⎧⎨=-⎩①且112211x ty x ty =+⎧⎨=+⎩,又()AF FB R λλ=∈u u u r u u u r ,则1(1x -,12)(1y x λ-=-,2)y ,即12y y λ=-,代入①得222(1)44y t y λλ-=⎧⎨-=-⎩, 消去2y 得2142t λλ=+-,易得(1,0)H -,则2222221122||||(1)(1)HA HB x y x y +=+++++22221212122()2x x x x y y =++++++2222121212(1)(1)2(2)2ty ty ty ty y y =+++++++++2221212(1)()4()8t y y t y y =+++++22(1)(168)448t t t t =++++g42164016t t =++, 由4216401640t t ++=, 解得212t =或23t =-(舍),将212t =代入2142t λλ=+-,解得2λ=.故存在实数2λ=满足题意.。

相关文档
最新文档