三年级奥数.计数综合.枚举法(C级).学生版
三年级奥数第11讲分类枚举
三年级奥数第11讲分类枚举第十一讲分类枚举知识点:分类枚举是数学上一种重要的思考方法,在很多问题中都要用到这种方法,这样思考的关键是做到有序思考,不重复,不遗漏。
例1:袋子中装有黑、红、白三中颜色的小球各1个,每次从中摸出2个球,可能出现哪几种情况?同步练习1、盘子里有水果梨子、香蕉、苹果各一个,小红每次只能取2个,她有几种不同的方法?2、袋子中装有红、黄、蓝、绿四种颜色的小球各一个,每次从中摸出2个球,可能有哪几种取法?3、甲乙丙三个小朋友,每两人之间握一次手,一共要握多少次手?例2:用3、5、6这三个数字可以组成多少个没有重复数字的三位数?同步练习1、用4、7、8这三个数字,可以组成多少个没有重复数字的三位数?2、用5、0、9这三个数字可以组成多少个没有重复数字的三位数,其中最大的是多少?最小的呢?3、小华、小明、小林3人站成一排照相,有多少种不同的排法?例3:从玲玲家到学校有2条路可以走,从学校到电影院有3条路可以走,从玲玲家到电影院有几种不同的走法?同步练习1、小明有3件衬衫和2条裤子,可以搭配出几种不同的穿着?2、从学校到公园有3条路可以走,从公园道展览馆有4条路可以走,从学校到展览馆有几种不同的走法?3、书架上有5本不同的画报,8本不同的报刊,如果每次从书架上任取一本画报和一本报刊,共有多少种不同的取法?例4:往返于南京和上海之间的沪宁高速列车沿途要停靠常州,无锡,苏州三站。
问:铁道部门要为这趟车准备多少种车票?同步练习1、3个小朋友过圣诞节互相寄节日贺卡,一共寄了多少张贺卡?2、汽车往返于甲乙丙丁4个车站之间,问:管理部门要为这趟汽车准备多少种车票?3、5个小朋友互相寄信表示问候,一共寄了多少封信?课后巩固一、填空题1、用3、4、9可组成()个数字不重复的三位数,其中最大是(),最小是()2、文具店有3种不同的书包,4种不同的文具,妈妈想给亮亮买一个书包和一个文具盒,共有()种不同买法。
三年级奥数题枚举法问题
三年级奥数题枚举法问题三年级奥数题枚举法问题精选三年级奥数题枚举法问题精选1在一个圆周上放了1个红球和1994个黄球。
一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。
你知道这时圆周上还剩下多少个黄球吗?答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。
在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。
他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。
因为在上一圈操作时,排在这498个黄球中最后一个位置上的`黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。
三年级奥数题枚举法问题精选2【试题】现在1元、2元和5元的硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?【答案解析】23=5×4+2×1+1×1,23=5×4+1×3,23=5×3+2×4,23=5×3+2×3+1×2,23=5×3+2×2+1×4。
所以共有5不同的取法。
【小结】对于简单的计数问题,可以用枚举法,列出满足条件的所有情况。
但是对于种数比较多的计数问题常用到排列组合来解决,排列组合的知识我们将在四年级学习。
三年级奥数简单枚举
4、简单枚举上图中,整个平面被分成了几个部分?枚举,词典里的意思是“一一列举”顾名思义,“枚举法”就是把所有可能的情况一一列举出来,然后数一下总共有几种情况,虽然枚举法看上去很简单,但当情况复杂时,想要不重漏地枚举出所有情况就有一定难度了,需要同学们有严谨的思维。
对于简单的题目,直接按题意一条条地枚就可以了,由于情况较少,枚举出所有情况还是比较容易的,先来看一道简单的题目。
例题1小明、小红、小亮三个人去看电影,他们买了3个相邻座位的票,他们三人的座位顺序一共有多少种不同的安排方法?分析:如果小明在最左边的话,有几种安排方法?练习1、(1)用0、1、2这三个数字各一次,一共能组成多少个不同的三位数?(2)用3、5、6、7这四个数字各一次,一共能组成多少个不同的三位数?当满足条件的方法数较多时,为了达到不重不漏的目的,往往会按照一定的顺序来枚举,可能是“从前往后”、“从大到小”等等。
例题2(1)老师给了小红14个相同的练习本,如果小红把这些本子全都分给了小李和小高,并且每人都要分到练习本,共有几种不同的分法?(2)老师给了小红14个相同的练习本,如果小红只需要把这些本子分成2堆,又有多少种分法?分析:仔细审题,两个小题之间有什么区别?在例题2中,同样是把练习本分成两部分,第(1)小题中给小李10本,小高4本是一种情况,而给小李4本,小高10本又是另一种情况,但到了第(2)小题里,一堆10本、一堆4本和一堆4本,一堆10本是同一种情况,我们可以说第(1)小题是“有顺序”的情况,而第(2)小题是“无顺序”,在枚举时尤其要注意这一点,究竟什么时候是“有顺序”,什么时候是“无顺序”。
练习2、老师把9颗糖分给阿呆阿瓜两个人,每人都有糖,那么一共有多少种不同的分法?(1)小明买回了一袋糖豆,他数了一下,一共有10个,现在他要把这些糖豆分成3堆,一共有多少种不同的分法?(2)如果小明有两袋糖豆,每袋10个,要把这两袋糖豆分成3堆,每堆最少要有5个,那么一共有多少种不同的分法?分析:(1)本题属于“有顺序”还是“无顺序”的情况?(2)每堆至少有5个,那么先在每堆中放上5个,还剩几个糖豆?练习3、阳阳有12颗巧克力,要把这些巧克力分成3堆,并且一堆里的巧克力不能超过8块,有几种不同的分法?要把一个数分成3份,可以先确定其中一份,于是问题就变为把剩下的部分分成2份的问题了这种简化问题的思想在数学中经常运用,最后来看两个较为复杂的问题。
三年级-枚举法
枚举法要点:
1.找到可能性有哪些
2.按照可能性列举
3.总结一下总共有多少种可能
仔细+仔细+仔细!!!
凑钱数
一把硬币全是2角和5角的,这把硬币一共有1元,问这里可能有多少种情况?
1.定分类的标准:有几个5角很关键
2.分类:
(1)有0个5角
(2)有1个5角X
(3)有2个5角
(4)有3个5角X
答:有两种可能性。
运动会
4个男同学和3个女同学进行乒乓球比赛,如果每个男同学和每个女同学都打1盘,一共要打几盘?
男女
A D
B E
C F
D
路线问题
如果,从甲地到乙地有2条路可以走,从乙地到有3条路可以走,从甲地到丙地有4条不同的路可以走,问从甲地到丙地共有多少种的走法?
1.分类
(1)甲经乙Biblioteka 丙(2)甲到丙上台阶问题
邮局门前共有5级台阶,规定一步智能登上一级或两级,那么这个台阶一共有多少种不同的走法?
分类:
1.第一步走两个台阶
2.第一步走一个台阶
数字凑数
用数字5、6、4可以组成多少个不同的两位数?数字可以重复使用。
数字凑数
用0、1、2三张卡片,分别组成多少个不同的三位数?其中最小的数和最大的数分别是多少?
小学三年级奥数-分类枚举
分类枚举(★★★)集市上的大马商马小阳购买了三匹绝世宝马——汗血马,奔雷马,惊帆马,为了达到震撼效果,马小阳决定分三天展出,每天展出一匹,不同的展出顺序有多少种?(★★★★)集市上的水果大王李果批发了一大堆橘子,苹果和香蕉。
李果给他的三个儿子——李大果,李二果,李小果分水果吃,每人一个水果,他有多少种不同的分法?(★★★)不凡一共买了7份水果,奔雷马每天最少吃2份水果,那么奔雷马吃完这7份水果,有多少种不同的吃法?(★★★★)不凡计划游览A,B,C三个风景区,计划旅游5天,最后一天回到A地,同时要求不能连续两天在同一风景区,符合条件的游览路线可以有几条?(★★★★)不凡在长方形格纸上的青青小村,他的目的地在花花城,要求必须沿着格线走,不凡从青青小村到花花城的最短路线有多少条?在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.(★★★)用下面的三张数字卡片可以组成几个不同的三位数?A.8B.6C.5D.72.(★★★★)现有足够多如下图的三张数字卡片,用这些卡片可以组成几个不同的三位数?A.30B.27C.28D.263.(★★★)兔妈妈摘了15个相同的蘑菇,分装在2个相同的筐子里,如果不允许有空筐,共有多少种不同的装法?A.14B.15C.10D.84.(★★★★)一个学生假期往A、B、C三个城市游览,他今天在这个城市,明天就到另一个城市。
假如他第一天在A市,第五天又回到A市。
问他的游览路线共有几种不同的方案?A.16B.6C.8D.55.(★★★★)下图中有6个点,9条线段,一只甲虫从A点出发,要沿着某几条线段爬到F点。
行进中甲虫只能向右、向下或向右下方运动。
问这只甲虫有多少种不同的走法?A.4B.5C.6D.7。
三年级奥数专题 枚举法(学生版)
学科培优数学“枚举法”学生姓名授课日期教师姓名授课时长知识定位在数学问题中,有一些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难找到“正统”的方式解答,让人感到无从下手。
对此,我们可以先初步估计其数目的大小。
若数目不是太大,就按照一定的顺序,一一列举问题的可能情况;若数目过大,并且问题繁杂,我们就抓住对象的特征,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。
这就是枚举法,也叫做列举法或穷举法。
知识梳理枚举法的特点是有条理,不易重复或遗漏,使人一目了然。
适用于所求的对象为有限个。
重点难点解析1.做到不重补漏,把复杂的问题简单化。
2.按照一定的规律,特点去枚举。
3.从思想上认识到枚举的重要性。
例题精讲【试题来源】【题目】25本书,分成6份。
如果每份至少一本,且每份的本数都不相同,有多少种分法?【试题来源】【题目】从1到100的自然数中,每次取出两个数,要使它们的和大于100,共有多少种取法?【试题来源】【题目】商店有围巾4种,每种价钱依次是12元、10元、8元和6元。
帽子有3种,每种价钱依次是9元、7元和5元。
如果一顶帽子和一条围巾配成一套,每套可以有多少种不同价钱?【试题来源】【题目】一个学生假期往A、B、C三个城市游览.他今天在这个城市,明天就到另一个城市.假如他第一天在A市,第五天又回到A市.问他的游览路线共有几种不同的方案?【试题来源】【题目】如图9-1,有8张卡片,上面分别写着自然数1至8。
从中取出3张,要使这3张卡片上的数字之和为9。
问有多少种不同的取法?【试题来源】【题目】从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?【试题来源】【题目】现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?【试题来源】【题目】3件运动衣上的号码分别是1,2,3,甲、乙、丙3人各穿一件。
三年级奥数.计数综合.枚举法(C级).学生版
胖子的枚举法(下)胖子看我们都没反应,道:“好,咱们先来验证第一点和第二点,这两点正好就可以一起处理。
” “你用什么办法验证?”我奇怪道。
事实上我们能做地试验大部分都做了,但是因为墓道过长的关系,很多试验其实都没有用处。
胖子突然笑了笑:“其实我刚才想到了一个好办法,要证明到底是一还是二影响我们,估计是不可能的,但是要证明不是还有是办法的,你看好吧。
”我看着胖子得意满满,大有胸有成竹的感觉,顿时觉得不妙,这家伙是不是有什么打算了。
只见他拾起地上的步枪,对我们道:“这条墓道大概1000米到2000米,56式满杀伤射程是400米,但是子弹能打到3000米外,我在这里放一枪,看看会有什么结果。
”我一听顿时就醍醐灌顶了,心里哎呀了一声:这天才啊!如果是因为我们自己感觉上问题,那子弹是没有感觉的,墓道能够影响我们,但是影响不了子弹,如果这里的情况用常理还可以解释,那么,子弹必然会消失在墓道的尽头,不会回来。
这个实验之完美的地方,就是子弹的速度,这么短地墓道,2.3秒之内,子弹就能完全走完,没有任何地机关陷阶,可以在这么短的时间内发挥作用。
但是如果这里的情况真的超出了常理可以解释的范围,进入玄学的范围了,那么子弹就会像我们一样,在笔直的墓道中超越空间而180度转向。
简单而漂亮,非常符合科学精神,我实在有点惭愧为什么我这个大学生想不出这种办法来。
不过一想,这一招也只有他这样地人才能想的出来,这是最简单的逻辑思维。
要判断是不是有错觉的影响,就要找不会受错觉的影响的东西,要找东西就要就近找,三段式一考虑,马上就出来了这个办法,也并不复杂。
我突然就感觉到了,汪藏海可能遇到对手了,像他这么处心积虑的人,可能就怕胖子这种单板的思考方法,任何诡计都会给最简单化。
胖子说做就做,我们跟了过去,他走到墓道里,拉上枪栓,就想对着墓道开枪。
我忙大叫:“等等!” “怎么了?”他问道。
“不要这样。
”我道,“如果,我是说如果,这里真的邪门到那种地步,那你开枪出去,几乎是一瞬间,自己就会中弹。
小学三年级奥数题枚举法、填算式
小学三年级奥数题枚举法、填算式1.小学三年级奥数题枚举法1、一本书共100页,在排页码时要用多少个数字是6的铅字?解:把个位是6和十位是6的数一个一个地列举出来,数一数。
个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。
十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。
10+10=20(个)答:在排页码时要用20个数字是6的铅字。
2、印刷工人在排印一本书的页码时共用1890个数码,这本书有多少页?解:(1)数码一共有10个:0、1、2……8、9。
0不能用于表示页码,所以页码是一位数的页有9页,用数码9个。
(2)页码是两位数的从第10页到第99页。
因为99-9=90,所以,页码是两位数的页有90页,用数码:2×90=180(个)(3)还剩下的数码:1890-9-180=1701(个)(4)因为页码是三位数的页,每页用3个数码,100页到999页,999-99=900,而剩下的1701个数码除以3时,商不足600,即商小于900。
所以页码最高是3位数,不必考虑是4位数了。
往下要看1701个数码可以排多少页。
1701÷3=567(页)(5)这本书的页数:9+90+567=666(页)2.小学三年级奥数题枚举法1、15个球分成数量不同的四堆,数量最多的一堆至少有多少个球?2、经理有4封信先后交给打字员,要求打字员总是先打最近接到的信,比如打完第3封信时第4封信还未到,此时如果第2封信还未打完,那么就应先打第2封信而不能打第1封信。
打字员打完这4封信的先后顺序有多少种可能?3、甲、乙比赛乒乓球,五局三胜。
已知甲胜了第一盘,并最终获胜。
问:各盘的胜负情况有多少种可能?4、现在1元、2元和5元的硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?5、小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。
三年级奥数.计算综合.数字谜(C级).学生版
一、基本概念数字谜定义:一般是指那些含有未知数字或未知运算符的算式.填算符:指在一些数之间的适当地方填上适当的运算符(包括括),从而使这些数和运算符构成的算式成为一个等式。
算符:指 +、-、×、÷、()、[]、{}。
二、数字谜分类1、 竖式谜2、 横式谜3、 填空谜4、 幻方5、 数阵三、解题技巧与方法 竖式数字谜1、 技巧(1) 从首位或者末尾找突破口(突破口:指在做数字谜问题开始时的入口,一般在算式的首位或者末尾,可以确定其数字或者范围然后通过推理很快可以确定其值为后面的推理做好铺垫);(2) 要根据算式性质逐步缩小范围,并进行适当的估算逐步排除不符合的数字;(3) 题目中涉及多个字母或汉字时,要注意用不同符表示不同数字这一条件来排除若干可能性; (4) 注意结合进位及退位来考虑;(5) 数字谜中的文字,字母或其它符,只取0~9中的某个数字。
(6) 数字谜解出之后,最好验算一遍. 2、 数字迷加减法 (1) 个位数字分析法; (2) 加减法中的进位与退位; (3) 乘除法中的进位与退位; (4) 奇偶性分析法。
知识框架数字谜横式数字谜解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
最值问题(1)横式转化为竖式数字谜,乘法转化为除法;(2)找突破口:末位和首位、进位和借位、个位数字、位数的差别等.(3)采用特殊分析方法:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.(4)除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.(5)数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。
三年级奥数.计算综合.整数速算与巧算(C级).学生版
三年级奥数.计算综合.整数速算与巧算(C级).学生版整数的快速计算巧妙计算知识框架1,整数四定律(1)加法交换定律:A?b?b?一的几何级数和(2)加法组合定律:(一?b)?c?a。
(b )?(c) (3)乘法兑换法:a?b?b?乘法结合律:(a?b)?c?a。
(b )?C)(5)乘法分布规律:a?(b )?c)?a。
b?a。
c;(b )?c)?a。
b?a。
c?减法的本质是什么?b?c?a。
(b )?C) (7)除法的性质:a?(b )?c)?a。
b?c;(8)除法的“左”分布律:(一?b)?c?a。
c?b?c;(a?b)?c?a。
c?b?这里特别要注意的是,除法没有“右”分布规律,即c?(a?b)?c?a。
c?b是站不住脚的!注:上述计算法则可从左至右使用,反之亦然。
2。
快速计算和巧妙加减计算的核心思想和精髓快速计算:四舍五入常用的思维方法归纳如下:(1)组舍入。
将相互“互补”的几个子减数相加,然后从被减数中减去它们,或者减去那些尾数与被减数相同的子减数。
补码是两个数的和。
如果总和正好是10,100,1000...,其中一个数字被称为另一个的“补码”。
(2) 正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加正加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+加号+基准当几个数字接近整数的加法时,选择整数作为“基准数”(注表示减去加法数。
在分制讲义系统中添加较少的数字。
三年级奥林匹克数字。
计算合成。
快速和熟练的整数计算(C级)。
学生版第1页,共12页3。
乘法舍入该思想的核心是将几个可以先舍入成十、数百和数千的乘数组合起来,然后与前面的数字相乘,使运算简单方便。
【小学精品奥数】整除与分类计数综合.学生版
1. 熟练掌握整除的性质;2. 运用整除的性质解计数问题;3. 整除性质的综合运用求计数.一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,知识点拨知识框架5-2-3.整除与分类计数综合c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、利用整除的性质分类枚举【例 1】在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数. ⑴请随便填出一种,并检查自己填的是否正确;⑵一共有多少种满足条件的填法?【例 2】用1,9,8,8这四个数字能排成几个被11除余8的四位数?【例 3】在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有多少个?【例 4】有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和;还能表示成5个连续自然数的和.请你找出700至1000之间,所有满足上述要求的数,并简述理由.模块二、利用整式拆分进行分类枚举【例 5】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个.【例 6】在1、2、3、4……2007这2007个数中有多少个自然数a能使2008+a能被2007-a整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胖子的枚举法(下)
胖子看我们都没反应,道:“好,咱们先来验证第一点和第二点,这两点正好就可以一起处理。
” “你用什么办法验证?”我奇怪道。
事实上我们能做地试验大部分都做了,但是因为墓道过长的关系,很多试验其实都没有用处。
胖子突然笑了笑:“其实我刚才想到了一个好办法,要证明到底是一还是二影响我们,估计是不可能的,但是要证明不是还有是办法的,你看好吧。
”
我看着胖子得意满满,大有胸有成竹的感觉,顿时觉得不妙,这家伙是不是有什么打算了。
只见他拾起地上的步枪,对我们道:“这条墓道大概1000米到2000米,56式满杀伤射程是400米,但是子弹能打到3000米外,我在这里放一枪,看看会有什么结果。
”
我一听顿时就醍醐灌顶了,心里哎呀了一声:这天才啊!
如果是因为我们自己感觉上问题,那子弹是没有感觉的,墓道能够影响我们,但是影响不了子弹,如果这里的情况用常理还可以解释,那么,子弹必然会消失在墓道的尽头,不会回来。
这个实验之完美的地方,就是子弹的速度,这么短地墓道,2.3秒之内,子弹就能完全走完,没有任何地机关陷阶,可以在这么短的时间内发挥作用。
但是如果这里的情况真的超出了常理可以解释的范围,进入玄学的范围了,那么子弹就会像我们一样,在笔直的墓道中超越空间而180度转向。
简单而漂亮,非常符合科学精神,我实在有点惭愧为什么我这个大学生想不出这种办法来。
不过一想,这一招也只有他这样地人才能想的出来,这是最简单的逻辑思维。
要判断是不是有错觉的影响,就要找不会受错觉的影响的东西,要找东西就要就近找,三段式一考虑,马上就出来了这个办法,也并不复杂。
我突然就感觉到了,汪藏海可能遇到对手了,像他这么处心积虑的人,可能就怕胖子这种单板的思考方法,任何诡计都会给最简单化。
胖子说做就做,我们跟了过去,他走到墓道里,拉上枪栓,就想对着墓道开枪。
我忙大叫:“等等!” “怎么了?”他问道。
“不要这样。
”我道,“如果,我是说如果,这里真的邪门到那种地步,那你开枪出去,几乎是一瞬间,自己就会中弹。
”
课前预习
枚举法
胖子的脸色变了变,显然他刚才认为其实第一点和第二点的可能性很大,根本没有考虑到第三第四会不会是真的,不过给我一说他就点了点头,把枪往边上挪了挪,子弹是抛物线,子弹如果射回来,应该落在枪口偏下的地方。
我们全部都躲到门口,还没做好心理准备,胖子突然就开枪了,“呯”一声巨响在墓道里炸起,接着是一连串回音,但是几乎就是同时,我们看到墓门剧烈一抖,炸起了一连串灰尘。
我脑子就嗡的一声,心说不妙,忙探出头去一看,胖子僵直的还是维持的开枪的姿势,但是他的枪下边上五六公分的地方的门上,出现一个弹孔,炸起的烟雾还没有散尽。
节选自:云顶天宫(下) 第三十二章
在解决一些问题时,经常采用这样的思路:将所有可能的情况列举出来,用已知条件或实际经验试验、并进行验证与分析,找出规律性的东西,最后得到所求的结果。
这是探索未知的有效方法。
在采用列举法时,为求得问题的解,先考虑找出可能地解。
在采用列举法时,应注意给出的条件(约束),使列举的情况尽可能的少,即要先排除掉不可能的情况,找出可能的情况,并进行分析、试验和讨论,最终筛选出所要求的结果。
1. 做到不重补漏,把复杂的问题简单化。
2. 按照一定的规律,特点去枚举。
3. 从思想上认识到枚举的重要性。
【例 1】 思思想将3个相同的小球放入A 、B 、C 三个盒中,那么一共有________种不同的放法.
【巩固】 四
个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:
例题精讲
重难点
知识框架
一共有多少种不同的方法?
【例 2】给定三种重量的砝码(每种数量都有足够多个)3kg,11kg,17kg,将它们组合凑成100kg有______种不同的方法。
【巩固】用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?
【例 3】自然数12,456,1256这些数有一个共同的特点,相邻两个数字,左边的数字小于右边的数字.我们取名为“上升数”.用3,6,7,9这四个数,可以组成个“上升数”.
【巩固】自然数21,654,7521这些数有一个共同的特点,相邻两个数字,左边的数字大于右边的数字.我们取名为“下降数”.用4,6,7,9这四个数,可以组成个“下降数”.
【例 4】把数1,2,3,4,5,6分为三组(不考虑组内数的顺序也不考虑组间的顺序),每组两个数,每组的数之和互不相等且都不等于6,共有____________________种分法.
【巩固】如果三位数m同时满足如下条件:⑴m的各位数字之和是7;⑵2m还是三位数,且各位数字之和为5.那么这样的三位数m共有个.
【例 5】用1元、5元、10元、50元、100元人民币各一张,2元、20元人民币各两张,在不找钱的情况下,最多可以支付种不同的款额。
【例 6】如果一个大于9的整数,其每个数位上的数字都比他右边数位上的数字小,那么我们称它为迎春数.那么,小于2008的迎春数一共有多少个?
【巩固】有些五位数的各位数字均取自1,2,3,4,5,并且任意相邻两位数字(大减小)的差都是1.问这样的五位数共有多少个?
【例 7】将1~999这999个自然数排成一行(不一定按从大到小或从小到大的顺序排列),得到一个2889位数,那么数字串“123”最多能出现次.
【巩固】从1~999中选出连续6个自然数,使得它们的乘积的末尾恰有4个0,一共有种选法.【例 8】从101到900这800个自然数中,数字和被8整除的数共有______个。
【例 9】如图,8个单位正方体拼成大正方体,沿着面上的格线,从A到B的最短路线共有条。
【巩固】如图,27个单位正方体拼成大正方体,沿着面上的格线,从A到B的最短路线共有条。
B
A
【例 10】蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走
过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),
且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六
边形且所得数字依次为2010,共有 种方法.
【巩固】 如图所示,一个花坛的道路由3个圆和5条线段组成,小兔要从A 处做到B 处,如果它在圆上只
能顺时针方向走,在线段上只能从小圆走向大圆,且每条道路最多走一次,那么小兔可以选择的不同路线有 条.
【随练1】 用若干个1分、2分、5分的硬币组成一角钱(不要求每种硬币都有),共有( )种不同的方法.
【随练2】 一个文具店橡皮每块5角、圆珠笔每支1元、钢笔每支2元5角.小明要在该店花5元5角购
买两种文具,他有多少种不同的选择.
【随练3】 老师带着佳佳、芳芳和明明做计算练习.老师先分别给他们一个数,然后让他们每人取3张写有
数的卡片.佳佳取的是3、6、7,芳芳取的是4、5、6,明明取的是4、5、8.这时老师让他们分别取自己卡片上的两个数相乘,再加上开始老师给他们的数.如果老师开始时给他们的数依次是234、235、236,而且他们计算都正确,那么可能算出_________个不同的数.
课堂检测
【作业1】 有面值为1分,2分,5分的硬币各4枚,用它们去支付2角3分.问:有多少种不同的支付方
法?
【作业2】 将10、16以及另外4个不同的自然数填入下面六个□,使这6个自然数从左到右构成等差数列,
一共有 种不同的填法。
□□□□□□
【作业3】 有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为
止,如257,1459等等,这类数共有 个.
【作业4】 如图1为一幅街道图,从A 出发经过十字路口B ,但不经过C 走到D 的不同的最短路线有 条.
家庭作业
【作业5】 从北京出发有到达东京、莫斯科、巴黎和悉尼的航线,其他城市间的航线如图所示(虚线表示在
地球背面的航线),则从北京出发沿航线到达其他所有城市各一次的所有不同路线有多少?
【作业6】 两个篮子中分别装有很多同样的牵牛花和月季花,从中选出6朵串成花环(图是其中的一种情
况),可以得到不同的花环 种。
(通过旋转和翻转能重合的算同一种花环)。
【作业7】 图中有10个编好码的房间,你可以从小码房间走到相邻的大码房间,但不能从大码走到小码,
从1房间走到10房间共有多少种不同的走法?
教学反馈。