数学竞赛平面几何重要知识点绝对精华

合集下载

初中数学竞赛重要定理公式(平面几何篇)

初中数学竞赛重要定理公式(平面几何篇)

初中数学竞赛重要定理公式(平面几何篇)初中数学竞赛中,平面几何是一个重要的考点。

以下是一些重要的定理、公式和结论。

三角形面积公式(包括海伦公式):三角形的面积S可以用以下公式计算:$S=\sqrt{p(p-a)(p-b)(p-c)}$,其中$p=\frac{1}{2}(a+b+c)$,$a$,$b$,$c$分别为三角形的三条边长。

另外,三角形的面积也可以用以下公式计算:$S=\frac{1}{2}ab\sin C$,其中$a$,$b$为两边,$C$为两边之间的夹角。

还有一个海伦公式:$S=\frac{1}{2}ah_a$,其中$h_a$为三角形顶点$A$到边$BC$的垂线长度,$a$为边$BC$的长度。

XXX定理:对于三角形$\triangle ABC$及其底边上的一点$D$,有$AB^2\cdot DC+AC^2\cdot BD-AD^2\cdotBC=BC\cdot DC\cdot BD$。

XXX定理:对于一个内接四边形,其对角线之积等于两组对边乘积之和,即$AC\cdot BD=AB\cdot CD+AD\cdot BC$。

逆命题也成立。

同时还有广义托勒密定理:$AB\cdotCD+AD\cdot BC\geq AC\cdot BD$。

蝴蝶定理:如果$AB$是圆$O$的弦,$M$是$AB$的中点,弦$CD$,$EF$经过点$M$,$CF$,$DE$交$AB$于$P$,$Q$,则$MP=QM$。

勾股定理(毕达哥拉斯定理):对于一个直角三角形,锐角对边的平方等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍;钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍。

同时还有广义勾股定理。

中线定理(巴布斯定理):对于一个三角形$\triangleABC$,如果$BC$的中点为$P$,则有$AB^2+AC^2=2(AP^2+BP^2)$。

同时,中线的长度可以用以下公式计算:$m_a=\frac{1}{2}\sqrt{2b^2+2c^2-a^2}$。

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点梅涅劳斯定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=⋅⋅EACE FC BF DB AD 。

斯德瓦特定理:设P 是ABC ∆的边BC 边上的任一点,则BC PC BP AP BC AB PC AC BP ⋅⋅+⋅=⋅+⋅222西摩松定理:设P 是ABC ∆外接圆上任一点,过P 向ABC ∆的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ∆和C B A '''∆中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ''⋅''⋅='''∆∆与圆有关的重要定理4.四点共圆的主要判定定理(1)若∠1=∠2,则A 、B 、C 、D 四点共圆;(2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆;(3)若PA •PC=PB •PD ,则A 、B 、C 、D 四点共圆;三角形的五心三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。

三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。

三角形的外心和内心的距离)2(r R R d -=。

此公式称为欧拉式,由此还得到r R 2≥。

当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。

与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题例1.设M 是任意ABC ∆的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AFAC AE AB AN AM +=(1978年辽宁省中学数学竞赛)例 2. 已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为_________________.例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.⑵在△ABC 中,∠A <∠B <∠C .①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.例4. 三角形ABC 为锐角三角形,AD 为该三角形的一条高.设P 为线段AD 上一点,直线BP 、CP 分别交AC 、AB 于点E 、F ,证明:DA 平分∠EDF 。

八年级几何竞赛知识点总结

八年级几何竞赛知识点总结

八年级几何竞赛知识点总结几何学是数学的一部分,但它与其他数学学科的联系并不是特别紧密,因为几何学有自己的特点和特殊性。

几何竞赛是一种全面考查学生几何知识和解题能力的数学竞赛。

在八年级几何竞赛中,学生需要掌握一定的几何知识点和解题技巧。

下面对八年级几何竞赛知识点进行总结。

一、平面几何基础知识1. 点、线、面的基本概念点:几何学的基本概念之一,它是没有长度、宽度和高度的物体,通常用大写字母表示。

线:由无数个点连成的,没有宽度和高度的东西。

面:有长度和宽度,但没有高度的物体。

2. 点、线、面的关系和性质点与点之间是不同的,但有联系的,两点间只有一条线相连;两点确定一条直线;三点确定一个平面。

在同一平面内,两条直线有且只有一个公共点,或者平行无交点。

同一个平面内的两条直线交于一个点。

3. 角的概念及性质角是由两条射线的公共端点分割而成的图形。

两条射线称为角的两边,公共端点称为角的顶点。

角的性质:顶角相等,对顶角相等,余角相等,相对顶角相等。

4. 直线、线段、射线直线:无限延伸并且无限多个点连成的线。

线段:直线上有限的长度部分叫线段。

射线:一端起点,另一端无限延伸的射线。

5. 多边形多边形是平面内由有限个顶点和边组成的封闭图形。

多边形的顶点和边的条数分别称为多边形的顶点数和边数。

最小的三角形,最大的四边形、五边形等。

6. 几何作图利用尺规作图,判断各种角、面积大小,利用尺规作图,解答一些几何问题。

包括平移、旋转、镜像等作图方法。

二、图形的面积和周长1. 图形的周长图形的周长是指图形的边的长度之和。

2. 矩形和正方形的面积和周长正方形的周长=4a (a为正方形的边长) 正方形的面积=a^2矩形的周长=2(a+b) (a、b分别为矩形的长和宽) 矩形的面积=ab3. 三角形的面积三角形的面积S=1/2bh (b为底,h为高)4. 圆的周长和面积圆的周长C=2πr (r为圆的半径) 圆的面积S=πr^25. 复合图形的周长和面积复合图形的周长和面积需要根据具体的题目分析计算。

平面几何知识点总结(已整理)

平面几何知识点总结(已整理)

平面几何知识点总结(已整理)本文档旨在总结和概述平面几何的主要知识点,为读者提供一个简明扼要的参考。

以下为平面几何的重要知识点:1. 点和线- 点:平面几何中最基本的元素,不占据空间,没有大小和形状,用大写字母表示,如A、B、C等。

- 直线:由无限个相连的点构成,没有宽度和长度,用小写字母表示,如ab、cd等。

- 线段:由两个点确定的部分,有特定的长度,用AB、CD表示。

2. 角- 角度:由两条射线构成的图形,以一个为顶点,另两条为腿,用大写字母表示顶点,如∠ABC。

- 直角:角度为90度的角。

- 锐角:角度小于90度的角。

- 钝角:角度大于90度但小于180度的角。

3. 三角形- 三角形是由三条线段组成的图形。

- 根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。

- 根据角度,三角形可以分为直角三角形、锐角三角形和钝角三角形。

- 根据边与角的关系,三角形可以分为正弦三角形、余弦三角形和正切三角形。

4. 四边形- 四边形是由四条线段组成的图形。

- 根据边的属性,四边形可以分为平行四边形、矩形、菱形和正方形。

- 根据角度,四边形可以分为梯形、直角梯形和平行梯形。

5. 圆- 圆是由一条曲线构成的图形,所有点到圆心的距离相等。

- 圆的重要元素有半径、直径和周长。

6. 同位角和内错角- 同位角:两条直线被一条直线切割时,在同一边的两个对应角。

- 内错角:两条平行线被一条直线切割时,在两条直线之间的内部所成的对应角。

以上为平面几何的主要知识点总结。

希望本文档能对读者理解平面几何有所帮助。

个人精心整理!高中数学联赛竞赛平面几何四大定理-及考纲

个人精心整理!高中数学联赛竞赛平面几何四大定理-及考纲

个人精心整理!高中数学联赛竞赛平面几何四大定理-及考纲多面角,多面角的性质。

三面角、直三面角的基本性质。

正多面体,欧拉定理。

体积证法。

截面,会作截面、表面展开图。

4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。

二元一次不等式表示的区域。

三角形的面积公式。

圆锥曲线的切线和法线。

圆的幂和根轴。

5、其它抽屉原理。

容斥原理。

极端原理。

集1.梅涅劳斯定理出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。

或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,(AZ/ZB)*(BX/XC)*(CY/YA)=1 。

证明:当直线交△ABC的AB、BC、CA的反向延长线于点D、E、F时,(AD/DB)*(BE/EC )*(CF/FA)=1逆定理证明:证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1证明一过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC ,CE/EA=DC/AG三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/D C)×(DC/AG)=1证明二过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1证明四过三顶点作直线DEF的垂线,AA‘,BB',CC'有AD:DB=AA’:BB' 另外两个类似,三式相乘得1得证。

如百科名片中图。

※推论在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。

个人精心整理高中数学联赛竞赛平面几何四大定理~及考纲

个人精心整理高中数学联赛竞赛平面几何四大定理~及考纲

1、数学竞赛考纲二试1、平面几何根本要求:驾驭高中数学竞赛大纲所确定的全部内容。

补充要求:面积与面积方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

几个重要的极值:到三角形三顶点间隔之与最小的点--费马点。

到三角形三顶点间隔的平方与最小的点--重心。

三角形内到三边间隔之积最大的点--重心。

几何不等式。

简洁的等周问题。

理解下述定理:在周长肯定的n边形的集合中,正n边形的面积最大。

在周长肯定的简洁闭曲线的集合中,圆的面积最大。

在面积肯定的n边形的集合中,正n边形的周长最小。

在面积肯定的简洁闭曲线的集合中,圆的周长最小。

几何中的运动:反射、平移、旋转。

复数方法、向量方法。

平面凸集、凸包及应用。

2、代数在一试大纲的根底上另外要求的内容:周期函数与周期,带肯定值的函数的图像。

三倍角公式,三角形的一些简洁的恒等式,三角不等式。

第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简洁的函数方程。

n个变元的平均不等式,柯西不等式,排序不等式及应用。

复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。

圆排列,有重复的排列与组合,简洁的组合恒等式。

一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

简洁的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

3、立体几何多面角,多面角的性质。

三面角、直三面角的根本性质。

正多面体,欧拉定理。

体积证法。

截面,会作截面、外表绽开图。

4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。

二元一次不等式表示的区域。

三角形的面积公式。

圆锥曲线的切线与法线。

圆的幂与根轴。

5、其它抽屉原理。

容斥原理。

极端原理。

集合的划分。

覆盖。

梅涅劳斯定理托勒密定理西姆松线的存在性及性质(西姆松定理)。

赛瓦定理及其逆定理。

高中数学联赛平面几何基础知识

高中数学联赛平面几何基础知识

CF FA
1.
因为 AD BE CF 1,所以有 AD AD/ .由于点 D、D/都在线段 AB 上,所以点 D 与
DB EC FA
DB D/ B
D/重合.即得 D、E、F 三点共线.
注:证明方法与上面的塞瓦定理的逆定理如出一辙,注意分析其相似后面的规律.
四、托勒密定理
5.托勒密定理及其证明
4.梅涅劳斯定理的逆定理及其证明
定理:在 ABC 的边 AB、BC 上各有一点 D、E,在边
AC 的延长线上有一点 F,若 AD BE CF 1, DB EC FA
那么,D、E、F 三点共线.
证明:设直线 EF 交 AB 于点 D/,则据梅涅劳斯定理有
AD/ D/ B

BE EC

AD DE ,即 AD BC AC DE ————(1) AC BC
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
AB BE ,即 AB CD AC BE ————(2) AC CD
因此,
A/ B/

A/ D

B/C/

C/D .
AB BD BC BD
可得 A/ B/ B/C / AB A/ D BC C / D . BD
另一方面,
A/C /

A/ D ,即
A/C /

AC A/ D

AC CD
CD
AB A/ D BC C/ D AC A/ D
即证 CD C / D AD A/ D ,这是显然的.所以, A/ B/ B/C / A/C / ,即 A/、B/、C/

高中数学竞赛中平面几何涉及的定理

高中数学竞赛中平面几何涉及的定理

1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

高中数学竞赛平面几何讲座非常详细

高中数学竞赛平面几何讲座非常详细

第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP AB +AQAC=11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BCAM BD ·. (2) 由DCAQ=EC AE =BC AN ,有AQ =BC AN DC ·. (3)对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ). 于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NCME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB图6AN CDEB M AGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB . (提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F .)7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG.O图10(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.A BGCD FE图1ABCDPO 图2又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有A图3BPQDHC A EDCB图4图53=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ', ∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=aa '=DB b '. 故DC =''a ac ,DB =''a ab .E A NCD B FM 12345图6(1)(2)图8ABCA'C'cb a'c'b'A BCDabb c图9又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)F DAB EC图10图11第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

平面几何知识点总结大全

平面几何知识点总结大全

平面几何知识点总结大全一、基本图形。

1. 点。

- 点是平面几何中最基本的元素,没有大小、长度、宽度或厚度。

它通常用一个大写字母表示,如点A。

2. 线。

- 直线。

- 直线没有端点,可以向两端无限延伸。

直线可以用直线上的两个点表示,如直线AB;也可以用一个小写字母表示,如直线l。

- 经过两点有且只有一条直线(两点确定一条直线)。

- 射线。

- 射线有一个端点,它可以向一端无限延伸。

射线用表示端点的字母和射线上另一点的字母表示,端点字母写在前面,如射线OA。

- 线段。

- 线段有两个端点,有确定的长度。

线段用表示两个端点的字母表示,如线段AB;也可以用一个小写字母表示,如线段a。

- 两点之间,线段最短。

3. 角。

- 由公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。

角通常用三个大写字母表示(顶点字母写在中间),如∠AOB;也可以用一个大写字母表示(这个大写字母表示顶点,且以这个顶点为顶点的角只有一个时),如∠ O;还可以用一个数字或希腊字母表示,如∠1、∠α。

- 角的度量单位是度、分、秒,1^∘=60',1' = 60''。

- 角的分类:- 锐角:大于0^∘而小于90^∘的角。

- 直角:等于90^∘的角。

- 钝角:大于90^∘而小于180^∘的角。

- 平角:等于180^∘的角。

- 周角:等于360^∘的角。

二、相交线与平行线。

1. 相交线。

- 对顶角。

- 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角。

对顶角相等。

- 邻补角。

- 两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角互补,即和为180^∘。

- 垂直。

- 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

数学竞赛中的几何知识点总结

数学竞赛中的几何知识点总结

数学竞赛中的几何知识点总结几何是数学中的重要分支,它研究图形、形体的性质和变换,涉及到直线、角、三角形、圆、多边形等概念。

在数学竞赛中,几何常常是难点和重点,涉及面广,难度较大,需要掌握一定的基本知识和解题技巧。

本文将结合数学竞赛中的实例,总结几何知识点和解题技巧,帮助读者提高几何水平,顺利应对数学竞赛中的几何问题。

一、平面几何基础1. 平面上的点、线段、直线、角平面几何研究的对象主要是平面上的图形。

图形由点和线段组成,平面上的点可以用字母来表示,如A、B、C等;线段用两个点A、B的位置表示为线段AB;直线用一个字母来表示,通常用小写字母表示,如l、m等。

角是两条射线公共端点所围的图形,可以用字母来表示,如角A。

角可以分类为锐角、直角、钝角,角度可以度量大小。

2. 三角形三角形是平面上的一个三边和三个角所确定的多边形,是几何中比较基础的概念,涉及到的知识点很多。

有关三角形的一些基本概念和性质如下:(1)三角形的任意两边之和大于第三边。

(2)三角形的三个内角之和为180度。

(3)定理:等腰三角形的底角相等,等边三角形的三个角均相等。

(4)定理:直角三角形的两条直角边所成的锐角三角形一定相似。

(5)定理:外角等于不相邻的两个内角之和。

(6)根据勾股定理,斜边平方等于两直角边平方和的三角形是直角三角形。

三角形的性质和定理是数学竞赛中几何问题考查的重点,需要大量的训练和复习,特别是辅助线和相似三角形的应用。

二、平面几何进阶1. 多边形多边形是平面上由若干条线段围成的封闭图形,涉及到的知识点有:正多边形、对称性、反演、面积等。

正多边形指有与中心对称的n个顶点和n条边的多边形,其中正三角形、正四边形、正五边形、正六边形和正八边形是最常见的。

对于正多边形,我们可以利用对称性、面积等知识点进行推导,直接得到它的一些性质和规律。

2. 圆的性质和应用圆是平面上处处相等的一些点的集合。

与圆相关的概念和性质如下:(1)圆心和半径:圆心是圆上所有点的中心,半径是圆心到圆上任意一点的距离。

数学竞赛平面几何定理

数学竞赛平面几何定理

EDCB A平面几何一、知识点金1.梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅=注:梅涅劳斯定理的逆定理也成立(用同一法证明)2.塞瓦定理:设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅=注:塞瓦定理的逆定理也成立3.托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD ()ABCD E BAE CAD ABE ACDAB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC ADAB CD AD BC AC BE ED AB CD AD BC AC BDE BD A B C D ∠=∠∠=∠∆∆∴=⇒⋅=⋅=∠=∠∴∆∆∴=⇒⋅=⋅∴⋅+⋅=⋅+∴⋅+⋅≥⋅ 证:在四边形内取点,使,则:和相似又且和相似且等号当且仅当在上时成立,即当且仅当、、、四点共圆时成立;注:托勒密定理的逆定理也成立4.西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。

西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。

若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。

5.蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。

证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,连接OX ,OY ,OM ,SM ,MT 。

高中数学竞赛平面几何基本定理(非常全面)

高中数学竞赛平面几何基本定理(非常全面)

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论); (4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT 交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。

竞赛辅导-平面几何——平面几何的几个重要定理

竞赛辅导-平面几何——平面几何的几个重要定理
13
平面几何的几个重要的定理 梅涅劳斯定理及其逆定理 若一条直线截△ABC 的三条边 AB、BC、CA (或他们的延长线) ,所得交点分别为 X、Y、Z , AX BY CZ 1. 则有 XB YC XX 结论反过来 也成立.
3
应用1(可证西姆松定理)
应用2
(西姆松定理及其逆定理) 练习 1.点 P 位于 ABC 的处接圆上, A1、B1、C1 是从 点 P 向 BC、CA、AB 引的垂线的垂足, 求证:点 A1、B1、C1 共线. 证:易得
西姆松定理应用
P
C交于一点. 练习 2.证明:三角形的三条角平分线交于一点. 练习 3.证明:锐角三角形的三条高交于一点.
10
平面几何的几个重要的定理
西姆松定理及其逆定理: 若从 △ABC 外接圆上一点作 BC、AB、AC 的垂线, 垂足分别为 D、E、F ,则 D、E、F 三点共线. 反过来也成立.
且等号当且仅当 E 在 BD 上时成立,即当且仅当四 边形 ABCD 内接于圆时,等号成立. 7
练习 1.如图 2, 是正△ABC 外接圆的劣弧 BC 上 P
任一点(不与 B、C 重合),求证:PA=PB+PC. 练习 2.(第 21 届全苏数学竞赛) 已知正七边形 A1A2A3A4A5A6 A7 ,
定理证明 2答案
广义的托勒密定理:在四边形 ABCD 中,有: AB CD AD BC ≥ AC BD , 并且当 且仅当 四边形 ABCD 内接于圆时,等号成立. 证明:四边形 ABCD 内取点 E,
使BAE CAD,ABE ACD, ABE 和ACD 相似 AB BE AB AE AB CD AC BE 又 AC CD AC AD 且BAC EAD ABC 和AED相似 BC ED AD BC AC ED AC AD AB CD AD BC AC ( BE ED ) AB CD AD BC ≥ AC BD

数学竞赛几何知识点总结

数学竞赛几何知识点总结

数学竞赛几何知识点总结导言数学竞赛几何是数学竞赛中占有很大比重的一个部分,它不仅考察学生对基本几何知识的掌握程度,更注重学生的逻辑思维和解决问题的能力。

因此,熟练掌握数学竞赛几何知识对于参加数学竞赛的学生而言是至关重要的。

本文旨在对数学竞赛几何知识进行系统总结,帮助学生更好地准备数学竞赛。

一、基本概念1.1 点、线、面在几何学中,最基本的概念就是点、线和面。

点是最基本的几何元素,它没有长度、面积和体积;线由无数个点连成,它有长度没有宽度;面由无数条线连成,它有长度和宽度,没有厚度。

1.2 角在平面几何中,当一条直线旋转绕着某一点旋转而形成的一个锐角或钝角被称为角,两条被称作角的直线成为角的边,旋转的轴线称为角的顶点。

1.3 图形的分类平面图形可以分为封闭曲线图形(圆、椭圆、正多边形等)和非封闭曲线图形(折线、曲线等)两种。

1.4 共线线段在平面几何中,如果有一条线同时经过两个或两个以上的点,则这些点称为共线点,而通过这些共线点的线段就称为共线线段。

1.5 垂直、平行、相交在平面几何中,垂直是指两个线或面在某一点相交,相交的角度为90度;平行是指两个线或面在任意点都不相交;相交是指两个线或面在某一点相交,但不一定是垂直相交。

二、图形的性质2.1 三角形的性质三角形是一个非常基本的图形,它的性质有很多。

比如三角形的内角和等于180度、三角形的外角和等于360度、任意两边之和大于第三边等。

2.2 四边形的性质四边形是指有四条边的封闭曲线图形,它的性质也有很多。

比如对角线互相平分等、相邻的内角互补等。

2.3 圆的性质圆是一个非常特殊的图形,它的性质也非常独特。

比如圆的直径长对的角等于90度等。

2.4 多边形的性质多边形是指有多条边的封闭曲线图形,它的性质也有很多。

比如内角的和等于180*(n-2)度等。

2.5 多面体的性质多面体是指由多个平面多边形构成的立体图形,它的性质也有很多。

比如多面体的表面积、体积等。

个人整理!高中数学联赛竞赛平面几何四大定理~及考纲

个人整理!高中数学联赛竞赛平面几何四大定理~及考纲

一、平面几何1.梅涅劳斯定理梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。

它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。

或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。

证明:当直线交△ABC的AB、BC、CA的反向延长线于点D、E、F时,(AD/DB)*(BE/EC )*(CF/FA)=1逆定理证明:证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1证明一过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1证明二过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1证明四过三顶点作直线DEF的垂线,AA‘,BB',CC'有AD:DB=AA’:BB' 另外两个类似,三式相乘得1得证。

如百科名片中图。

※推论在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。

于是AL、BM、CN三线交于一点的充要条件是λμν=-1。

(注意与塞瓦定理相区分,那里是λμν=1)第一角元形式的梅涅劳斯定理如图:若E,F,D三点共线,则(sin∠ACF/sin∠FCB)(sin∠BAD/sin∠DAC)(sin∠CBE/sin∠ABE)=1即上图中的蓝角正弦值之积等于红角正弦值之积该形式的梅涅劳斯定理也很实用证明:可用面积法推出:第一角元形式的梅氏定理与顶分顶形式的梅氏定理等价。

高中数学平面几何拓展数学竞赛知识

高中数学平面几何拓展数学竞赛知识

高中数学平面几何拓展数学竞赛知识高中数学平面几何拓展第一大定理:共角定理(鸟头定理)即在两个三角形中,它们有一个角相等(互补),则它们就是共角三角形。

它们的面积之比,就是对应角(相等角、互补角)两夹边的乘积之比。

内容:若两三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。

即:若△ABC和△ADE中,∠BAC=∠DAE ,则S△ABC÷S△ADE=第二大定理:等积变换定理。

1、等底等高的两个三角形面积相等;2、两个三角形(底)高相等,面积之比等于高(底)之比。

3、在一组平行线之间的等积变形。

如图所示,S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。

第三大定理:梯形蝴蝶定理。

任意四边形中,同样也有蝴蝶定理。

上述的梯形蝴蝶定理,就是因为AD‖EC得来的第四大定理:相似三角形定理。

1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

3、相似三角形性质:1.相似三角形的一切对应线段(对应高、对应边)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。

相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有BC平行DE这样的一对平行线!图形:第五大定理:燕尾定理。

性质:1.S△ABG:S△ACG=S△BGE:S△C GE=BE:CE2.S△BGA:S△BGC=S△GAF:S△GCF=AF:CF3.S△AGC:S△BGC=S△AGD:S△BGD=AD:BD 这就是燕尾模型。

其他几何定理:塞瓦定理塞瓦定理是指在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则 (BD/DC)_(CE/EA)_(AF/FB)=1。

梅涅劳斯定理当直线交三边所在直线于点时,使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。

奥林匹克数学题型平面几何基础

奥林匹克数学题型平面几何基础

奥林匹克数学题型平面几何基础在奥林匹克数学竞赛中,平面几何是一个重要的题型,同时也是考察学生数学思维和推理能力的重要途径。

学好平面几何的基础知识,对于解答奥林匹克数学中的几何题目起着至关重要的作用。

本文将以奥林匹克数学题型平面几何基础为主题,简要介绍几何学中的一些重要概念和常见题型。

一、点、线、面的概念在几何学中,点、线、面是最基本的几何概念。

点是没有延伸和厚度的,线是由一些不同点之间的连结所组成的,而面是由一些不同线之间的连结所组成的。

熟练掌握点、线、面概念对于理解几何学的其他内容至关重要。

二、平行和垂直平行线是在同一个平面中永不相交的直线,而垂直线则是与另一条直线相交成直角的直线。

平行和垂直的关系也是平面几何中的重要内容,常出现在同位角、对应角等题型中。

三、典型的几何题型在奥林匹克数学竞赛中,常见的几何题型包括等腰三角形、直角三角形、相似三角形、平行四边形等。

对于这些题型,掌握相应的性质和定理是解题的关键。

学生需要熟悉三角形的内外角和,充分利用各种三角形的性质,运用等腰、直角和相似三角形的特性来解题。

四、利用倍长或倍面积解题在奥林匹克数学竞赛中,有时候需要利用倍长或倍面积的方法来解题。

倍长即为将线段的长度进行倍乘,倍面积即为将面积进行倍乘,这种方法在计算中可以简化运算过程,提高解题效率。

五、重心、垂心和内心重心是一个三角形三条中线的交点,垂心是一个三角形三条高线的交点,而内心则是一个三角形三条角平分线的交点。

重心、垂心和内心对于解答与三角形相关的几何题目非常重要,掌握三者的性质和相关定理能够帮助学生更好地解题。

六、解析几何与平面几何的联系解析几何是数学中的一个重要分支,而平面几何则是解析几何中的一部分。

解析几何利用坐标系的思想来研究几何问题,通过建立坐标系,将几何问题转化为代数方程的求解过程。

在奥林匹克数学竞赛中,解析几何与平面几何常常结合起来,用解析的方法来解决复杂的几何问题。

通过本文对奥林匹克数学题型平面几何基础的介绍,相信读者对于平面几何的基本概念有了更加清晰的认识。

高中数学竞赛平面几何基本定理

高中数学竞赛平面几何基本定理

平面几何基础知识(基本定理、基天性质)1 . 勾股定理(毕达哥拉斯定理) (广义勾股定理) (1)锐角对边的平方,等于其余两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其余两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2 . 射影定理(欧几里得定理)3 . 中线定理(巴布斯定理)设△ABC 的边 BC 的中点为 P ,则有 AB 2AC 22( AP 2BP 2);222中线长: m a2b2c a.24 . 垂线定理: ABCDAC 2 AD 2 BC 2BD 2.2 p( p a )( p b)( p bc sin A c sin B b sin C .高线长: h ac)aa5 . 角均分线定理:三角形一个角的均分线分对边所成的两条线段与这个角的两边对应成比率.如△ ABC 中, AD 均分∠ BAC ,则 BDAB ;(外角均分线定理) .DC AC角均分线长: t a2 cbcp( p a)2bccos A(此中 p 为周长一半).bb c26 abc2 R ,(此中 R 为三角形外接圆半径) .. 正弦定理:sin Bsin Asin C7 . 余弦定理: c 2a 2b 2 2ab cosC .8 . 张角定理:sinBACsinBADsinDAC .ADACAB9 . 斯特瓦尔特 (Stewart)定理:设已知△ ABC 及其底边上 B 、C 两点间的一点D ,则有 AB2·DC+AC 2·BD - AD 2·BC =BC · DC ·BD .10 . 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半. (圆外角怎样转变?)11 . 弦切角定理:弦切角等于夹弧所对的圆周角.12 . 圆幂定理:(订交弦定理:垂径定理:切割线定理(割线定理) :切线长定理: )13 . 布拉美古塔( Brahmagupta )定理: 在圆内接四边形 ABCD 中, AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必均分对边.14 . 点到圆的幂:设 P 为⊙ O 所在平面上随意一点, PO=d ,⊙ O 的半径为 r ,则 d 2-r 2 就是点 P 对于⊙ O 的幂.过 P任作向来线与⊙ O 交于点 A 、B ,则 PA ·PB= |d 2- r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线, 假如此二圆订交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴” .三个圆两两的根 轴假如不相互平行,则它们交于一点,这一点称为三圆的“根心” .三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦 ( 就是两两的根轴 ) 所在直线交于一点.15 . 托勒密( Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD=AB ·CD +AD ·BC ,(抗命题成立 ) .(广义托勒密定理) AB ·CD+AD ·BC ≥ AC ·BD .16 . 蝴蝶定理: AB 是⊙ O 的弦, M 是此中点,弦 CD 、 EF 经过点 M ,CF 、DE 交 AB 于 P 、Q ,求证: MP=QM .17 . 费马点: 定理 1 等边三角形外接圆上一点, 到该三角形较近两极点距离之和等于到另一极点的距离;不在等边三角 形外接圆上的点,到该三角形两极点距离之和大于到另一点的距离. 定理 2 三角形每一内角都小于120 °时,在三 角形内必存在一点,它对三条边所张的角都是 120°,该点到三极点距离和达到最小,称为“费马点”,当三角形有一内角不小于 120 °时,此角的极点即为费马点.18 . 拿破仑三角形:在随意△ ABC 的外侧,分别作等边△ABD 、△ BCE 、△ CAF ,则 AE 、AB 、 CD 三线共点,而且 AE= BF = CD ,这个命题称为拿破仑定理.以△ ABC 的三条边分别向外作等边△ABD 、△ BCE 、△ CAF ,它们的外接圆⊙ C 1 、⊙ A 1 、⊙ B 1 的圆心构成的△——外拿破仑的三角形,⊙C1 、⊙ A 1 、⊙ B 1三圆共点,外拿破仑三角形是一个等边三角形;△ ABC 的三条边分别向△ ABC 的内侧作等边△ ABD 、△ BCE 、△ CAF ,它们的外接圆⊙ C 2 、⊙A 2 、⊙B 2 的圆心构成的△——内拿破仑三角形,⊙C2 、⊙ A 2 、⊙ B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还拥有相同的中心.19 . 九点圆( Nine point round 或欧拉圆或费尔巴赫圆) :三角形中,三边中心、从各极点向其对边所引垂线的垂足,以及垂心与各极点连线的中点,这九个点在同一个圆上,九点圆拥有很多风趣的性质 ,比如 :( 1)三角形的九点圆的半径是三角形的外接圆半径之半;( 2)九点圆的圆心在欧拉线上 ,且恰为垂心与外心连线的中点 ;( 3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 .20 . 欧拉( Euler )线:三角形的外心、重心、九点圆圆心、垂心挨次位于同向来线(欧拉线)上.21 . 欧拉( Euler )公式:设三角形的外接圆半径为 R ,内切圆半径为 r ,外心与心里的距离为 d ,则 d 2=R2-2Rr .22 . 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23 . 重心:三角形的三条中线交于一点,而且各中线被这个点分红2: 1 的两部分; G( x A x B x C , yA yB yC )33重心性质:(1)设 G 为△ ABC 的重心,连接AG 并延伸交 BC 于 D ,则 D 为 BC 的中点,则 AG : GD2:1;( 2)设 G 为△ ABC 的重心,则 S ABGS BCGSACG1S ABC;3( 3)设 G 为 △ABC 的重心,过 G 作 DE ∥ BC 交 AB 于 D ,交 AC 于 E ,过 G 作 PF ∥AC 交 AB 于 P ,交 BC于 F ,过 G 作 HK ∥AB 交 AC 于 K ,交 BC 于 H ,则DEFPKH 2; DE FP KH 2 ;BCCAAB3 BCCAAB(4)设 G 为△ ABC 的重心,则①BC 2 3GA 2 CA 2 3GB 2 AB 2 3GC 2 ;②GA2GB2GC21(AB 2BC 2CA 2) ;3③ PA 2PB 2 PC 2GA 2GB 2 GC 2 3PG 2 (P 为△ ABC 内随意一点); ④到三角形三极点距离的平方和最小的点是重心,即 GA 2GB 2GC 2 最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即知足上述条件之一, 则 G 为 △ABC 的重心).ax Abx Bcx Cay Aby Bcy CH ( cos A, cos A24 . 垂心:三角形的三条高线的交点;acos B cos Ca cos B cos C)bcb ccos Acos B cos Ccos Acos B cos C垂心性质:(1)三角形任一极点到垂心的距离,等于外心到对边的距离的 2 倍;( 2)垂心 H 对于 △ ABC 的三边的对称点,均在 △ABC 的外接圆上;( 3) △ABC 的垂心为 H ,则 △ ABC , △ABH ,△ BCH ,△ ACH 的外接圆是等圆;( 4)设 O ,H 分别为 △ ABC 的外心和垂心,则BAO HAC , CBOABH , BCOHCA .25 . 心里:三角形的三条角分线的交点—内接圆圆心,即心里到三角形各边距离相等;I (axAbx B cx C , ay Aby BcyC)a b ca b c心里性质:( 1)设 I 为△ ABC 的心里,则 I 到△ ABC 三边的距离相等,反之亦然;(2)设 I 为 △ABC 的心里,则BIC901 A,AIC901B, AIB 90 1 C ;2 22(3)三角形一内角均分线与其外接圆的交点到另两极点的距离与到心里的距离相等;反之,若 A 均分线交 △ ABC外接圆于点 K , I 为线段 AK 上的点且知足 KI=KB ,则 I 为△ ABC 的心里;(4)设 I 为△ ABC 的心里, BC a, ACb, AB c,A 均分线交 BC 于 D ,交 △ ABC 外接圆于点K ,则AI AKIK b c;IDKIKDaBCa, AC b, AB c,BC, AC,ABD,E,Fr(5)设 I 为△ ABC 的心里,I 在,内切圆半径为 ,上的射影分别为令p1(a b c) ,则① S ABCpr;②AEAF p a; BDBFp b;CE CDpc ;③2abcr pAI BI CI .26 . 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各极点距离相等;O(sin 2 AxAsin 2Bx B sin 2Cx C , sin 2 Ay A sin 2By Bsin 2CyC )sin 2 A sin 2B sin 2Csin 2A sin 2B sin 2C外心性质:(1)外心到三角形各极点距离相等;(2)设 O 为 △ABC 的外心,则 BOC 2 A 或BOC 360 2 A ;(3) R abc ;( 4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.4 S27 . 旁心:一内角均分线与两外角均分线交点——旁切圆圆心;设△ ABC 的三边BC a, AC b, AB c, 令p1 bc) ,分别与 BC , AC , AB 外侧相切的旁切圆圆心记为 I A , I B , I C ,其半径分别记为r A , r B , r C .(a2旁心性质:(1)BI A C 901 A, BI B CBI C C1 A, (对于顶角 B , C 也有近似的式子) ;22(2)I A I B I C1 ( AC) ;2(3)设AI A 的连线交 △ABC 的外接圆于 D ,则 DI ADB DC (对于 BI B , CI C 有相同的结论);( 4) △ABC 是 △I A I B I C 的垂足三角形,且 △ I A I B I C 的外接圆半径 R' 等于 △ABC 的直径为 2R .28 . 三角形面积公式: S ABC 1ah a 1 ab sin C abc2R 2sin Asin B sin Ca 2b 2c22 2 4R4(cot A cot Bcot C )prp( p a)( p b)( p c),此中h a 表示 BC 边上的高, R 为外接圆半径, r 为内切圆半径, p1(abc).229 . 三角形中内切圆,旁切圆和外接圆半径的相互关系:r 4Rsin A sin B sin C ; r a 4Rsin A cos B cos C , r b 4R cos A sin B cos C , r c 4R cos A cos B sin C;2 2 2 2 2 2 2 2 2 2 2 2 r aB r, r brC , r crB ;11 11 .tan tan C tan A tantan A tan r a r br cr2 22 22 230 . 梅涅劳斯( Menelaus )定理:设 △ ABC 的三边 BC 、 CA 、AB 或其延伸线和一条不经过它们任一极点的直线的交点分别为 P 、 Q 、 R 则有BP CQ AR 1.(逆定理也建立)PC QA RB31.梅涅劳斯定理的应用定理1:设△ ABC 的∠ A 的外角均分线交边CA 于 Q,∠ C 的均分线交边AB 于 R,∠ B 的均分线交边 CA 于 Q,则 P、Q、 R三点共线.32.梅涅劳斯定理的应用定理2:过随意△ABC 的三个极点 A 、B、 C 作它的外接圆的切线,分别和BC、CA、AB 的延长线交于点 P、 Q、 R,则 P、Q、 R 三点共线.33.塞瓦 (Ceva)定理:设 X、Y、Z 分别为△ ABC 的边 BC、 CA、 AB 上的一点,则 AX、 BY、CZ 所在直线交于一点的充AZ BX CY要条件是··=1.ZB XC YA34.塞瓦定理的应用定理:设平行于△ ABC 的边 BC 的直线与两边 AB、AC 的交点分别是 D 、E,又设 BE 和 CD 交于 S,则 AS 必定过边 BC 的中点 M .35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ ABC 的内切圆和边 BC、CA、 AB 分别相切于点R、S、 T,则 AR、BS、 CT 交于一点.38.西摩松( Simson)定理:从△ ABC 的外接圆上随意一点P 向三边 BC、CA、AB 或其延伸线作垂线,设其垂足分别是 D、E、 R,则 D、 E、 R 共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.对于西摩松线的定理1:△ ABC 的外接圆的两个端点P、Q 对于该三角形的西摩松线相互垂直,其交点在九点圆上.41.对于西摩松线的定理2(平和定理):在一个圆周上有 4 点,以此中任三点作三角形,再作其余一点的对于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ ABC 的垂心为 H,其外接圆的随意点P,这时对于△ ABC 的点 P 的西摩松线经过线段 PH 的中心.43.史坦纳定理的应用定理:△ ABC 的外接圆上的一点P 的对于边 BC、CA、AB 的对称点和△ABC 的垂心 H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 对于△ ABC 的镜象线.44.牛顿定理 1:四边形两条对边的延伸线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理 2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF ,设它们的对应极点( A 和 D、B 和 E、C 和 F)的连线交于一点,这时假如对应边或其延伸线订交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF ,设它们的对应极点( A 和 D、B 和 E、C 和 F)的连线交于一点,这时假如对应边或其延伸线订交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC 的外接圆上的三点为P、 Q、R,则 P、Q、R 对于△ ABC 交于一点的充要条件是:弧AP +弧 BQ+弧 CR=0(mod2) .49.波朗杰、腾下定理推论1:设 P、Q、R 为△ ABC 的外接圆上的三点,若 P 、Q、R 对于△ABC 的西摩松线交于一点,则 A、 B、 C 三点对于△PQR 的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论 1 中,三条西摩松线的交点是A、B、C、P、Q、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考察△ ABC 的外接圆上的一点 P 的对于△ ABC 的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P 、Q、R 的对于△ABC 的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC 的极点向边 BC、 CA、 AB 引垂线,设垂足分别是D、E、 F,且设边 BC、CA、AB 的中点分别是 L 、M 、N,则 D、 E、 F、L 、M、N 六点在同一个圆上,这时 L 、 M、N 点对于对于△ ABC 的西摩松线交于一点.53.卡诺定理:经过△ ABC 的外接圆的一点 P ,引与△ ABC 的三边 BC、CA、 AB 分别成同向的等角的直线PD、PE 、PF ,与三边的交点分别是D、E、F,则 D、 E、 F 三点共线.54.奥倍尔定理:经过△ABC 的三个极点引相互平行的三条直线,设它们与△ ABC 的外接圆的交点分别是L、M、 N,在△ABC 的外接圆上取一点P,则 PL、PM 、PN 与△ ABC 的三边 BC、CA、AB 或其延伸线的交点分别是D、E、F ,则 D、E、 F 三点共线.55.清宫定理:设 P、Q 为△ ABC 的外接圆的异于 A 、B、C 的两点, P 点的对于三边 BC、CA、AB 的对称点分别是U 、V、 W,这时, QU、 QV、QW 和边 BC 、CA、 AB 或其延伸线的交点分别是D、 E、 F,则 D、 E、F 三点共线.56.他拿定理:设 P、Q 为对于△ ABC 的外接圆的一对反点,点P 的对于三边 BC、CA、AB 的对称点分别是 U 、V、W,这时,假如 QU、 QV、QW 和边 BC 、CA、 AB 或其延伸线的交点分别是D、 E、 F,则 D、 E、F 三点共线.(反点:P、 Q 分别为圆 O 的半径 OC 和其延伸线的两点,假如OC2 =OQ ×OP 则称 P 、Q 两点对于圆 O 互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D 1四点,以此中任三点作三角形,在圆周取一点P ,作 P 点的对于这 4个三角形的西摩松线,再从P 向这 4 条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的极点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有 n 个点,从此中随意 n- 1 个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n 个点,从此中随意 n-2 个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D 四点及 M、N 两点,则 M 和 N 点对于四个三角形△ BCD 、△ CDA 、△ DAB、△ ABC 中的每一个的两条西摩松线的交点在同向来线上.这条直线叫做M、N 两点对于四边形ABCD 的康托尔线.62.康托尔定理3:一个圆周上有A、B、C、D 四点及 M、N、L 三点,则M、N 两点的对于四边形 ABCD 的康托尔线、L 、N 两点的对于四边形ABCD 的康托尔线、 M、L 两点的对于四边形ABCD 的康托尔线交于一点.这个点叫做M、N、 L 三点对于四边形 ABCD 的康托尔点.63.康托尔定理4:一个圆周上有A、B、C、D 、E 五点及 M、N、L 三点,则 M、N、L 三点对于四边形 BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M、N、 L 三点对于五边形A、 B、 C、D、E 的康托尔线.64.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形的三个内角三均分,凑近某边的两条三分角线相获取一个交点,则这样的三个交点能够构成一个正三角形.这个三角形常被称作莫利正三角形.66.布利安松定理:连接外切于圆的六边形ABCDEF 相对的极点 A 和 D 、B 和 E、 C 和 F,则这三线共点.67.帕斯卡( Paskal)定理:圆内接六边形ABCDEF 相对的边 AB 和 DE 、 BC 和 EF 、 CD 和 FA 的(或延伸线的)交点共线.68.阿波罗尼斯( Apollonius )定理:到两定点 A 、B 的距离之比为定比 m:n(值不为 1)的点 P,位于将线段 AB 分红m:n 的内分点 C 和外分点 D 为直径两头点的定圆周上.这个圆称为阿波罗尼斯圆.69.库立奇 * 大上定理:(圆内接四边形的九点圆)圆周上有四点,过此中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70.密格尔( Miquel )点:若 AE、AF、ED 、FB 四条直线订交于A、B、C、D、E 、F 六点,构成四个三角形,它们是△ ABF、△ AED 、△ BCE、△ DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71.葛尔刚( Gergonne)点:△ ABC 的内切圆分别切边AB、BC、CA 于点 D、E、F,则 AE、BF、CD 三线共点,这个点称为葛尔刚点.72 .欧拉对于垂足三角形的面积公式:形成的三角形的面积,其公式:O 是三角形的外心,M 是三角形中的随意一点,过M 向三边作垂线,三个垂足SD EF| R 2 d 2 | .SABC4 R 22009 年全国高中数学结合比赛湖北省初赛试题参照答案及评分标准说明: 评阅试卷时,请依照本评分标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学竞赛平面几何重要知识点
梅涅劳斯定理:
设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=⋅⋅EA
CE FC BF DB AD 。

斯德瓦特定理:设P 是ABC ∆的边BC 边上的任一点,则
BC PC BP AP BC AB PC AC BP ⋅⋅+⋅=⋅+⋅222
西摩松定理:
设P 是ABC ∆外接圆上任一点,过P 向ABC ∆的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ∆和C B A '''∆中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC '
'⋅''⋅='''∆∆
与圆有关的重要定理
4.四点共圆的主要判定定理
(1)若∠1=∠2,则A 、B 、C 、D 四点共圆;
(2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆;
(3)若PA •PC=PB •PD ,则A 、B 、C 、D 四点共圆;
三角形的五心
三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。

三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。

三角形的外心和内心的距离)2(r R R d -=。

此公式称为欧拉式,由此还得到r R 2≥。

当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。

与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题
例1.设M 是任意ABC ∆的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF
AC AE AB AN AM +=(1978年辽宁省中学数学竞赛)
例 2. 已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为_________________.
例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.
⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.
⑵在△ABC 中,∠A <∠B <∠C .
①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.
例4. 三角形ABC 为锐角三角形,AD 为该三角形的一条高.设P 为线段AD 上一点,直线BP 、CP 分别交AC 、AB 于点E 、F ,证明:DA 平分∠EDF 。

例5.正方形ABCD 中,E 为其内部的一点,且∠EAB =
∠EBA=15°,连DE 、CE ,求证:三角形DCE 为正三角形。

例6.设六边形ABCDEF 是凸六边形,且AB=BC,CD=DE,EF=FA.证明:23≥++
FC
FA DA DE EB BC ,并指出等号成立条件.(第38届IMO 预选题)
B
B B
C C C A
A A D P
E ① ② ③
(第27题)
例7.已知等腰三角形2,=∆AB ABC ,设i P 是底边BC 上任一点,)1003,2,1(K =i 记C P BP AP m i i i i ⋅+=2,则=+++10021m m m K ( )。

相关文档
最新文档