直线与圆锥曲线相交与弦长问题中点弦问题焦点弦问题上

合集下载

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论圆锥曲线是几何学中的一类重要的曲线,包括圆、椭圆、双曲线和抛物线。

在圆锥曲线的研究中,焦点和弦是两个重要的概念,它们之间有着许多有趣的关系。

本文将介绍圆锥曲线焦点弦的八大结论。

一、椭圆的焦点弦椭圆有两个焦点,分别为F1和F2。

对于任意一条经过椭圆两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2上;2. 焦点到弦的距离之和等于弦长,即AF1 + BF2 = AB;3. 焦点到弦的距离之差等于弦段所在直线与椭圆长轴的距离之差,即AF1 - BF2 = PM - PN,其中P和N分别为弦AB的两个端点在椭圆上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与椭圆焦点连线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为椭圆长轴的中点;5. 弦中点M到椭圆两个焦点的距离之差等于弦段所在直线与椭圆长轴的距离之差,即MF1 - MF2 = PM - PN;6. 弦端点P和N到椭圆两个焦点的距离之差相等,即PF1 - PF2 = NF1 - NF2;7. 椭圆的两个焦点到弦的距离之积等于椭圆长轴的平方减去弦长的平方,即AF1·BF2 = AC - AB,其中AC为椭圆长轴的长度;8. 弦段所在直线与椭圆中心连线的斜率等于椭圆长轴和短轴的比值,即PG/PM = b/a,其中a和b分别为椭圆长轴和短轴的长度。

二、双曲线的焦点弦双曲线有两个焦点,分别为F1和F2。

对于任意一条经过双曲线两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2的延长线上;2. 焦点到弦的距离之差等于弦长,即AF1 - BF2 = AB;3. 焦点到弦的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即AF1 + BF2 = PM + PN,其中P和N分别为弦AB的两个端点在双曲线上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与双曲线渐近线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为双曲线渐近线的中点;5. 弦中点M到双曲线两个焦点的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即MF1 + MF2 = PM + PN;6. 弦端点P和N到双曲线两个焦点的距离之差相等,即PF1 - PF2 = NF2 - NF1;7. 双曲线的两个焦点到弦的距离之积等于双曲线的常数c的平方减去弦长的平方,即AF1·BF2 = c - AB,其中c为双曲线的常数;8. 弦段所在直线与双曲线中心连线的斜率等于双曲线焦点之间的距离和双曲线渐近线的斜率之和的倒数,即PG/PM = (F1F2/c) + (c/PN)。

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。

直线与圆锥曲线的位置关系详解

直线与圆锥曲线的位置关系详解

直线与圆锥曲线的位置关系●知识梳理本节主要内容是直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用.解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.对相交弦长问题及中点弦问题要正确运用“设而不求”.涉及焦点弦的问题还可以利用圆锥曲线的焦半径公式.●点击双基1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有A.1条B.2条C.3条D.4条解析:数形结合法,同时注意点在曲线上的情况.答案:B2.已知双曲线C :x 2-42y =1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有A.1条B.2条C.3条D.4条解析:数形结合法,与渐近线平行、相切.答案:D3.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是A.(-∞,0)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)解析:数形结合法,与渐近线斜率比较.答案:C4.过抛物线y 2=4x 焦点的直线交抛物线于A 、B 两点,已知|AB |=8,O 为坐标原点,则 △OAB 的重心的横坐标为____________.解析:由题意知抛物线焦点F (1,0).设过焦点F (1,0)的直线为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2).代入抛物线方程消去y 得k 2x 2-2(k 2+2)x +k 2=0.∵k 2≠0,∴x 1+x 2=22)2(2k k +,x 1x 2=1. ∵|AB |=2212))(1(x x k -+ =]4))[(1(212212x x x x k -++ =]4)2(4)[1(4222-++k k k =8,∴k 2=1.∴△OAB 的重心的横坐标为x =3021x x ++=2. 答案:2 5.已知(4,2)是直线l 被椭圆362x +92y =1所截得的线段的中点,则l 的方程是____________.解析:设直线l 与椭圆交于P 1(x 1,y 1)、P 2(x 2,y 2),将P 1、P 2两点坐标代入椭圆方程相减得直线l 斜率k =2121x x y y --=-)(42121y y x x ++=-2422121y y x x +⋅+ =-244⨯=-21. 由点斜式可得l 的方程为x +2y -8=0.答案:x +2y -8=0●典例剖析【例1】 已知直线l :y =tan α(x +22)交椭圆x 2+9y 2=9于A 、B 两点,若α为l 的倾斜角,且|AB |的长不小于短轴的长,求α的取值范围.剖析:确定某一变量的取值范围,应设法建立关于这一变量的不等式,题设中已经明确给定弦长≥2b ,最后可归结为计算弦长求解不等式的问题.解:将l 方程与椭圆方程联立,消去y ,得(1+9tan 2α)x 2+362tan 2α·x +72tan 2α-9=0,∴|AB |=α2tan 1+|x 2-x 1| =α2tan 1+·)tan 91(2α+Δ =αα22tan 916tan 6++. 由|AB |≥2,得tan 2α≤31, ∴-33≤tan α≤33. ∴α的取值范围是[0,6π)∪[6π5,π). 评述:对于弦长公式一定要能熟练掌握、灵活运用.本题由于l 的方程由tan α给出,所以可以认定α≠2π,否则涉及弦长计算时,还应讨论α=2π时的情况. 【例2】 已知抛物线y 2=-x 与直线y =k (x +1)相交于A 、B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.剖析:证明OA ⊥OB 可有两种思路(如下图):(1)证k OA ·k OB =-1;(2)取AB 中点M ,证|OM |=21|AB |. 求k 的值,关键是利用面积建立关于k 的方程,求△AOB 的面积也有两种思路:(1)利用S △OAB =21|AB |·h (h 为O 到AB 的距离); (2)设A (x 1,y 1)、B (x 2,y 2),直线和x 轴交点为N ,利用S △OAB =21|AB |·|y 1-y 2|. 请同学们各选一种思路给出解法.解方程组时,是消去x 还是消去y ,这要根据解题的思路去确定.当然,这里消去x 是最简捷的.(1)证明:如下图,由方程组y 2=-x , y =k (x +1)ky 2+y -k =0.设A (x 1,y 1)、B (x 2,y 2),由韦达定理y 1·y 2=-1.∵A 、B 在抛物线y 2=-x 上,∴y 12=-x 1,y 22=-x 2,y 12·y 22=x 1x 2.消去x 后,整理得∵k OA ·k OB =11x y ·22x y =2121x x y y =211y y =-1, ∴OA ⊥OB .(2)解:设直线与x 轴交于N ,又显然k ≠0,∴令y =0,则x =-1,即N (-1,0).∵S △OAB =S △OAN +S △OBN =21|ON ||y 1|+21|ON ||y 2| =21|ON |·|y 1-y 2|, ∴S △OAB =21·1·212214)(y y y y -+ =214)1(2+k. ∵S △OAB =10, ∴10=21412+k.解得k =±61. 评述:本题考查了两直线垂直的充要条件、三角形的面积公式、函数与方程的思想,以及分析问题、解决问题的能力.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.剖析:设B 、C 两点关于直线y =kx +3对称,易得直线BC :x =-ky +m ,由B 、C 两点关于直线y =kx +3对称可得m 与k 的关系式,而直线BC 与抛物线有两交点,∴Δ>0,即可求得k 的范围.解:设B 、C 关于直线y =kx +3对称,直线BC 方程为x =-ky +m ,代入y 2=4x ,得y 2+4ky -4m =0,设B (x 1,y 1)、C (x 2,y 2),BC 中点M (x 0,y 0),则y 0=221y y +=-2k ,x 0=2k 2+m . ∵点M (x 0,y 0)在直线l 上,∴-2k =k (2k 2+m )+3.∴m =-kk k 3223++. 又∵BC 与抛物线交于不同两点,∴Δ=16k 2+16m >0.把m 代入化简得kk k 323++<0, 即kk k k )3)(1(2+-+<0,解得-1<k <0. 评述:对称问题是高考的热点之一,由对称易得两个关系式.本题运用了“设而不求”,解决本题的关键是由B 、C 两点在抛物线上得“Δ>0”.【例4】已知抛物线C :y 2=4(x -1),椭圆C 1的左焦点及左准线与抛物线C 的焦点F 和准线l 分别重合.(1)设B 是椭圆C 1短轴的一个端点,线段BF 的中点为P ,求点P 的轨迹C 2的方程;(2)如果直线x +y =m 与曲线C 2相交于不同两点M 、N ,求m 的取值范围.(1)解法一:由y 2=4(x -1)知抛物线C 的焦点F 坐标为(2,0).准线l 的方程为x =0.设动椭圆C 1的短轴的一个端点B 的坐标为(x 1,y 1)(x 1>2,y 1≠0),点P (x ,y ),x =221+x , x 1=2x -2, y =21y , y 1=2y . ∴B (2x -2,2y )(x >2,y ≠0).设点B 在准线x =0上的射影为点B ′,椭圆的中心为点O ′,则椭圆离心率e =||||BF O F ',由||||B B BF '=||||BF O F ',得22)2()222(22-+--x y x =22)2()222(222y x x +----, 整理,化简得y 2=x -2(y ≠0),这就是点P 的轨迹方程.则 ∴解法二:抛物线y 2=4(x -1)焦点为F (2,0),准线l :x =0.设P (x ,y ),∵P 为BF 中点,∴B (2x -2,2y )(x >2,y ≠0).设椭圆C 1的长半轴、短半轴、半焦距分别为a 、b 、c ,则c =(2x -2)-2=2x -4,b 2=(2y )2=4y 2,∵(-c )-(-ca 2)=2, ∴cc a 22-=2, 即b 2=2c .∴4y 2=2(2x -4),即y 2=x -2(y ≠0),此即C 2的轨迹方程.x +y =m , y 2=x -2m >47. 而当m =2时,直线x +y =2过点(2,0),这时它与曲线C 2只有一个交点,∴所求m 的取值范围是(47,2)∪(2,+∞). ●闯关训练1.若双曲线x 2-y 2=1的右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值为A.-21B.21C.±21 D.±2 解析:P (a ,b )点在双曲线上,则有a 2-b 2=1,即(a +b )(a -b )=1.d =2||b a -=2,∴|a -b |=2.又P 点在右支上,则有a >b ,(2)解:由 (y ≠0),得y 2+y -m +2=0,令Δ=1-4(-m +2)>0,解得∴a -b =2.∴|a +b |×2=1,a +b =21. 答案:B2.已知对k ∈R ,直线y -kx -1=0与椭圆52x +my 2=1恒有公共点,则实数m 的取值范围是A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)解析:直线y -kx -1=0恒过点(0,1),仅当点(0,1)在椭圆上或椭圆内时,此直线才恒与椭圆有公共点.所以,m 1≤1且m >0,得m ≥1.故本题应选C. 答案:C3.已知双曲线x 2-32y =1,过P (2,1)点作一直线交双曲线于A 、B 两点,并使P 为AB 的中点,则直线AB 的斜率为____________.解析:设A (x 1,y 1)、B (x 2,y 2),代入双曲线方程3x 2-y 2=1相减得直线AB 的斜率k AB =2121x x y y --=2121)(3y y x x ++ =2232121y y x x ++⨯=123⨯=6. 答案:64.AB 为抛物线y 2=2px (p >0)的焦点弦,若|AB |=1,则AB 中点的横坐标为___________;若AB 的倾斜角为α,则|AB |=____________.解析:设过F (2p ,0)的直线为y =k (x -2p ),k ≠0,代入抛物线方程,由条件可得结果.答案:21p - α2sin 2p 5.求过点(0,2)的直线被椭圆x 2+2y 2=2所截弦的中点的轨迹方程.解:设直线方程为y =kx +2,把它代入x 2+2y 2=2,整理得(2k 2+1)x 2+8kx +6=0.要使直线和椭圆有两个不同交点,则Δ>0,即k <-26或k >26. 设直线与椭圆两个交点为A (x 1,y 1)、B (x 2,y 2),中点坐标为C (x ,y ),则x =221x x +=1242+-k k , y = 1242+-k k +2=1222+k . x =1242+-k k , y =1222+k 消去k 得x 2+2(y -1)2=2,且|x |<26=,0<y <21. 6.中心在坐标原点、焦点在x 轴上的椭圆,它的离心率为23,与直线x +y -1=0相交于M 、N 两点,若以MN 为直径的圆经过坐标原点,求椭圆方程.解:设椭圆方程22a x +22by =1(a >b >0), ∵e =23,∴a 2=4b 2,即a =2b . ∴椭圆方程为224b x +22by =1. 把直线方程代入化简得5x 2-8x +4-4b 2=0.设M (x 1,y 1)、N (x 2,y 2),则x 1+x 2=58,x 1x 2=51(4-4b 2). 从参数方程 (k <-26或k >26),∴y 1y 2=(1-x 1)(1-x 2)=1-(x 1+x 2)+x 1x 2=51(1-4b 2). 由于OM ⊥ON ,∴x 1x 2+y 1y 2=0.解得b 2=85,a 2=25. ∴椭圆方程为52x 2+58y 2=1. 7.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.y =(a +1)x -1, y 2=ax ,x =1,y =0.(2)当a ≠0时,方程组化为aa 1+y 2-y -1=0. x =-1, y =-1.若a a 1+≠0,即a ≠-1,令Δ=0,得1+4·aa 1+=0,解得a =-54,这时方程组恰有 x =-5,y =-2.综上所述,可知当a =0,-1,-54时,直线与曲线恰有一个公共点. ●思悟小结 1.解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项的系数和判别式Δ,有时借助图形的几何性质更为方便.2.涉及弦的中点问题,除利用韦达定理外,也可以运用平方差法,但必须以直线与圆锥使其恰有一组解.(1)当a =0时,此方程组恰有一组解 若aa 1+=0,即a =-1,方程组恰有一解 解析:联立方程组 一解曲线相交为前提,否则不宜用此法.3.求圆锥曲线的弦长时,可利用弦长公式d =2212))(1(x x k -+=2212))(11(y y k -+. 再结合韦达定理解决.焦点弦的长也可以直接利用焦半径公式处理,可以使运算简化.直线与圆锥曲线的位置关系●知识梳理本节主要内容是直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用.解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.对相交弦长问题及中点弦问题要正确运用“设而不求”.涉及焦点弦的问题还可以利用圆锥曲线的焦半径公式.●点击双基1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有( )A.1条B.2条C.3条D.4条2.已知双曲线C :x 2-42y =1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有( )A.1条B.2条C.3条D.4条3.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是( )A.(-∞,0)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)4.过抛物线y 2=4x 焦点的直线交抛物线于A 、B 两点,已知|AB |=8,O 为坐标原点,则 △OAB 的重心的横坐标为____________.5.已知(4,2)是直线l 被椭圆362x +92y =1所截得的线段的中点,则l 的方程是____________.●典例剖析【例1】 已知直线l :y =tan α(x +22)交椭圆x 2+9y 2=9于A 、B 两点,若α为l 的倾斜角,且|AB |的长不小于短轴的长,求α的取值范围.【例2】 已知抛物线y 2=-x 与直线y =k (x +1)相交于A 、B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】已知抛物线C :y 2=4(x -1),椭圆C 1的左焦点及左准线与抛物线C 的焦点F 和准线l 分别重合.(1)设B 是椭圆C 1短轴的一个端点,线段BF 的中点为P ,求点P 的轨迹C 2的方程;(2)如果直线x +y =m 与曲线C 2相交于不同两点M 、N ,求m 的取值范围.●闯关训练1.若双曲线x 2-y 2=1的右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值为A.-21B.21C.±21 D.±2 2.已知对k ∈R ,直线y -kx -1=0与椭圆52x +my 2=1恒有公共点,则实数m 的取值范围是( )A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)3.已知双曲线x 2-32y =1,过P (2,1)点作一直线交双曲线于A 、B 两点,并使P 为AB 的中点,则直线AB 的斜率为____________.4.AB 为抛物线y 2=2px (p >0)的焦点弦,若|AB |=1,则AB 中点的横坐标为___________;若AB 的倾斜角为α,则|AB |=____________.5.求过点(0,2)的直线被椭圆x2+2y2=2所截弦的中点的轨迹方程.3,与直线x+y-1=0相交6.中心在坐标原点、焦点在x轴上的椭圆,它的离心率为2于M、N两点,若以MN为直径的圆经过坐标原点,求椭圆方程.7.已知直线y=(a+1)x-1与曲线y2=ax恰有一个公共点,求实数a的值.。

圆锥曲线的综合问题

圆锥曲线的综合问题

[例 1] P(1,1)为椭圆x42+y22=1 内的一定点,过 P 点引一 弦,与椭圆相交于 A、B 两点,且 P 恰好为弦 AB 的中点,如 图所示,求弦 AB 所在的直线方程及弦 AB 的长度.
解析:设弦 AB 所在的直线方程为 y-1=k(x-1),A、B 两点坐标分别为 (x1,y1),(x2,y2),则 x12+2y21=4,① x22+2y22=4.② ①-②得: (x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0. ∵P(1,1)为弦 AB 的中点,∴x1+x2=2,y1+y2=2. ∴k=xy11--xy22=-12.
上述两种情形联立方程组消元后,二次项系数为 0,即只 能得到一个一次方程.
思想方法技巧
一、向量法 向量的坐标可以用其起点、终点的坐标表示,因此向量 与解析几何保持着天然的联系.通过向量的坐标可以把解析 几何的很多问题向量化,利用向量的共线、垂直、夹角、距 离等公式巧妙地解决解析几何问题.
二、点差法 涉及到直线被圆锥曲线截得弦的中点问题(即中点弦问题) 时,常用根与系数的关系及点差法求解.
(1)求点 M 的轨迹方程; (2)过点 F(0,1)作互相垂直的两条直线 l1、l2,l1 与点 M 的 轨迹交于点 A、B,l2 与点 M 的轨迹交于点 C、Q,求A→C·Q→B的 最小值.
解析:(1)设 M(x,y),E(a,0),由条件知 D(0,-8), N(a+2 x,2y+0),∵N 在 y 轴上,∴x=-a, ∵E→D⊥E→M,∴E→D·E→M=(-a,-8)·(x-a,y)=-a(x- a)-8y=2x2-8y=0,∴x2=4y(x≠0), ∴点 M 的轨迹方程为 x2=4y(x≠0).
(2)设 A(x1,y1),B(x2,y2),C(x3,y3),Q(x4,y4),直线 l1: y=kx+1(k≠0),则直线 l2:y=-1kx+1,

新教材高中数学精品第3讲 直线与圆锥曲线的位置关系

新教材高中数学精品第3讲 直线与圆锥曲线的位置关系

第3讲 直线与圆锥曲线的位置关系[考情分析] 直线与圆锥曲线的位置关系是高考的必考内容,涉及直线与圆锥曲线的相交、相切、弦长、面积以及弦中点等问题,难度中等. 考点一 弦长、面积问题 核心提炼已知A (x 1,y 1),B (x 2,y 2),直线AB 的斜率为k (k ≠0), 则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=1+1k2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2. 考向1 弦长问题例1 (2022·新高考全国Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63. (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |= 3.(1)解 由题意得,椭圆半焦距c =2且e =c a =63,所以a =3, 又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1. (2)证明 由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不符合题意; 当直线MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2), 必要性:若M ,N ,F 三点共线,可设直线MN :y =k (x -2), 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|2k |k 2+1=1,解得k =±1, 联立⎩⎪⎨⎪⎧y =±(x -2),x 23+y 2=1,可得4x 2-62x +3=0,所以x 1+x 2=322,x 1·x 2=34,所以|MN |=1+1·(x 1+x 2)2-4x 1·x 2=3, 所以必要性成立;充分性:设直线MN :y =kx +b (kb <0),即kx -y +b =0, 由直线MN 与曲线x 2+y 2=1(x >0)相切可得|b |k 2+1=1,所以b 2=k 2+1, 联立⎩⎪⎨⎪⎧y =kx +b ,x 23+y 2=1,可得(1+3k 2)x 2+6kbx +3b 2-3=0, 所以x 1+x 2=-6kb1+3k 2,x 1·x 2=3b 2-31+3k 2,所以|MN |=1+k 2·(x 1+x 2)2-4x 1·x 2=1+k 2⎝⎛⎭⎫-6kb 1+3k 22-4·3b 2-31+3k 2=1+k 2·24k 21+3k 2=3, 化简得3(k 2-1)2=0,所以k =±1,所以⎩⎨⎧ k =1,b =-2或⎩⎨⎧k =-1,b =2,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立, 所以M ,N ,F 三点共线的充要条件是|MN |= 3. 考向2 面积问题例2 (2022·大庆模拟)已知焦点在x 轴上的椭圆C :x 2a 2+y 2b 2=1(a >b >0),短轴长为23,椭圆左顶点A 到左焦点F 1的距离为1. (1)求椭圆C 的标准方程;(2)设椭圆的右顶点为B ,过F 1的直线l 与椭圆C 交于点M ,N ,且S △BMN =1827,求直线l 的方程.解 (1)由⎩⎪⎨⎪⎧2b =23,a -c =1,a 2-c 2=b 2,得⎩⎪⎨⎪⎧b =3,a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2)方法一 由题意知,直线的斜率不为0,F 1(-1,0), 设直线l 的方程为x =my -1,M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,x =my -1,得(3m 2+4)y 2-6my -9=0, 即y 1+y 2=6m3m 2+4,y 1·y 2=-93m 2+4.又S △BMN =12·|BF 1|·|y 1|+12·|BF 1|·|y 2|=12·|BF 1|·|y 1-y 2| =12·|BF 1|·(y 1+y 2)2-4y 1·y 2 =18m 2+13m 2+4=1827,解得m =±1,所以直线l 的方程为x -y +1=0或x +y +1=0. 方法二 由(1)知F 1(-1,0),B (2,0),当直线l 的斜率不存在时,|MN |=3,点B (2,0)到直线l :x =-1的距离为3,所以S △BMN =92≠1827,所以直线l 的斜率存在. 设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1)得(3+4k 2)x 2+8k 2x +4k 2-12=0, 所以x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.所以|MN |=(x 1-x 2)2+(y 1-y 2)2 =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-8k 23+4k 22-4(4k 2-12)3+4k 2 =1+k 2·144(k 2+1)(3+4k 2)2=12(k 2+1)3+4k 2.因为点B (2,0)到直线l 的距离为d =|3k |k 2+1,所以S △BMN =12·|MN |·d =12·12(k 2+1)3+4k 2·|3k |k 2+1=1827,即k 2=1,得k =±1, 所以直线l 的方程为x -y +1=0或x +y +1=0.易错提醒 (1)设直线方程时,需考虑特殊直线,如直线的斜率不存在、斜率为0等. (2)涉及直线与圆锥曲线相交时,Δ>0易漏掉.(3)|AB |=x 1+x 2+p 是抛物线过焦点的弦的弦长公式,其他情况该公式不成立.跟踪演练1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12. (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 解 (1)由题意可知直线AM 的方程为y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4, 所以a =4.由椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),可得416+9b 2=1,解得b 2=12.所以椭圆C 的方程为x 216+y 212=1.(2)设与直线AM 平行的直线方程为x -2y =m .如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立⎩⎪⎨⎪⎧x -2y =m ,x 216+y 212=1,可得3(m +2y )2+4y 2=48,化简可得16y 2+12my +3m 2-48=0, 所以Δ=144m 2-4×16(3m 2-48)=0, 即m 2=64,解得m =±8,与AM 距离比较远的直线方程为x -2y =8,点N 到直线AM 的距离即两平行线之间的距离, 即d =8+41+4=1255,由两点之间距离公式可得 |AM |=(2+4)2+32=3 5.所以△AMN 的面积的最大值为12×35×1255=18.考点二 中点弦问题 核心提炼已知A (x 1,y 1),B (x 2,y 2)为圆锥曲线E 上两点,AB 的中点C (x 0,y 0),直线AB 的斜率为k . 若E 的方程为x 2a 2+y 2b 2=1(a >b >0),则k =-b 2a 2·x 0y 0;若E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则k =b 2a 2·x 0y 0;若E 的方程为y 2=2px (p >0),则k =py 0.例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63.(1)证明:a =3b ;(2)若点M ⎝⎛⎭⎫910,-310在椭圆C 的内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段PQ 的中点,且OP ⊥OQ . ①求直线l 的方程; ②求椭圆C 的标准方程. (1)证明 ∵e =ca =c 2a 2=a 2-b 2a 2=1-⎝⎛⎭⎫b a 2=63,∴b a =33,∴a =3b . (2)解 ①由(1)知,椭圆C 的方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2, 当⎝⎛⎭⎫910,-310在椭圆C 的内部时,⎝⎛⎭⎫9102+3·⎝⎛⎭⎫-3102<3b 2,可得b >3010. 设点P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 1+x 22=910,y 1+y 22=-310,所以y 1+y 2x 1+x 2=-39,由已知可得⎩⎪⎨⎪⎧x 21+3y 21=3b 2,x 22+3y 22=3b 2,两式作差得(x 1+x 2)(x 1-x 2)+3(y 1+y 2)(y 1-y 2)=0, 所以y 1-y 2x 1-x 2=-x 1+x 23(y 1+y 2)=-13×⎝⎛⎭⎫-93=3,所以直线l 的方程为y -⎝⎛⎭⎫-310=3⎝⎛⎭⎫x -910, 即y =3x - 3.所以直线l 的方程为3x -y -3=0.②联立⎩⎨⎧x 2+3y 2=3b 2,y =3(x -1),消去y 可得10x 2-18x +9-3b 2=0. Δ=182-40(9-3b 2)=120b 2-36>0,由根与系数的关系可得x 1+x 2=95,x 1x 2=9-3b 210,又∵OP ⊥OQ ,而OP →=(x 1,y 1),OQ →=(x 2,y 2),∴OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+3(x 1-1)·3(x 2-1)=4x 1x 2-3(x 1+x 2)+3 =2(9-3b 2)-27+155=6-6b 25=0,解得b 2=1,合乎题意,故a 2=3b 2=3, 因此椭圆C 的方程为x 23+y 2=1.规律方法 (1)处理中点弦问题常用的求解方法(2)中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.跟踪演练2 (1)(2022·太原模拟)若过椭圆x 29+y 24=1内一点P (2,1)的弦被该点平分,则该弦所在的直线方程为( ) A .8x +9y -25=0 B .3x -4y -5=0 C .4x +3y -15=0 D .4x -3y -9=0答案 A解析 设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),P 为AB 的中点,因为A ,B 在椭圆上,所以x 219+y 214=1,x 229+y 224=1,两式相减得x 21-x 229+y 21-y 224=0,因为x 1+x 2=4,y 1+y 2=2, 可得y 1-y 2x 1-x 2=-89,则k =-89,且过点P (2,1),所以y -1=-89(x -2),整理得8x +9y -25=0.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,虚轴的上端点为B ,点P ,Q 在双曲线上,且点M (-2,1)为线段PQ 的中点,PQ ∥BF ,双曲线的离心率为e ,则e 2等于( ) A.2+12 B.3+12 C.2+22 D.5+12答案 A解析 方法一 由题意知F (c ,0),B (0,b ),则k PQ =k BF =-b c .设P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y22b 2=1,两式相减,得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2).因为线段PQ 的中点为M (-2,1), 所以x 1+x 2=-4,y 1+y 2=2,又k PQ =y 1-y 2x 1-x 2=-b c ,所以-b c =-4b 22a 2,整理得a 2=2bc ,所以a 4=4b 2c 2=4c 2(c 2-a 2),即4e 4-4e 2-1=0,得e 2=2+12. 方法二 由题意知F (c ,0),B (0,b ),则k BF =-bc .设直线PQ 的方程为y -1=k (x +2), 即y =kx +2k +1, 代入双曲线方程,得(b 2-a 2k 2)x 2-2a 2k (2k +1)x -a 2(2k +1)2-a 2b 2=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4,所以2a 2k (2k +1)b 2-a 2k 2=-4,又k =k BF =-b c ,所以2a 2·⎝⎛⎭⎫-b c ⎣⎡⎦⎤2·⎝⎛⎭⎫-b c +1=-4b 2+4a 2⎝⎛⎭⎫-b c 2, 整理得a 2=2bc ,所以c 2-b 2-2bc =0, 即⎝⎛⎭⎫c b 2-2c b -1=0,得cb=2+1, 则e 2=c 2a 2=c2c 2-b 2=⎝⎛⎭⎫c b 2⎝⎛⎭⎫c b 2-1=()2+12()2+12-1=2+12. 考点三 直线与圆锥曲线位置关系的应用 核心提炼直线与圆锥曲线位置关系的判定方法 (1)联立直线的方程与圆锥曲线的方程. (2)消元得到关于x 或y 的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.例4 (1)已知直线l 与椭圆x 2a 2+y 2b 2=1(a >b >0)相切,与直线x =-a ,x =a 分别交于点M ,N ,F 为椭圆的左焦点,若以MN 为直径的圆为E ,则F ( ) A .在圆E 上 B .在圆E 内C .在圆E 外D .以上三种情况都有可能答案 A解析 显然直线l 的斜率存在,设直线l 的方程为y =kx +m , 由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,可得(a 2k 2+b 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0, 因为直线l 与椭圆相切,所以Δ=(2a 2km )2-4(a 2k 2+b 2)(a 2m 2-a 2b 2)=0, 故m 2=a 2k 2+b 2.易知F (-c ,0),M (-a ,-ak +m ), N (a ,ak +m ),则FM →=(c -a ,m -ak ),FN →=(c +a ,m +ak ),则FM →·FN →=c 2-a 2+m 2-a 2k 2=-b 2+a 2k 2+b 2-a 2k 2=0,故∠MFN =90°, 即点F 在圆E 上.(2)(多选)(2022·漳州龙海二中模拟)已知直线y =x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)无公共点,则双曲线的离心率可能为( )A .1 B. 2 C.62D. 3 答案 BC解析 双曲线的一条渐近线为y =b a x ,因为直线y =x 与双曲线无公共点,故有ba ≤1.即b 2a 2=c 2-a 2a 2=e 2-1≤1,所以e 2≤2, 所以1<e ≤ 2.易错提醒 (1)直线与双曲线只有一个交点,包含直线与双曲线相切或直线与双曲线的渐近线平行.(2)直线与抛物线只有一个交点包含直线与抛物线相切、直线与抛物线的对称轴平行(或重合). 跟踪演练3 (2022·沈阳模拟)已知A ,B 分别是椭圆C :x 24+y 2=1的右顶点和上顶点,P 为椭圆C 上一点,若△P AB 的面积是2-1,则P 点的个数为( ) A .0 B .2 C .3 D .4 答案 C解析 由C :x 24+y 2=1可得a =2,b =1 ,所以A (2,0),B (0,1),|AB |= 5 ,所以直线AB 的方程为y -1=-12x ,即y =-12x +1,设过点P 与直线AB 平行的直线l :y =-12x +t ,则直线l 与直线AB 的距离d =|t -1|1+14=25|t -1|, 因为点P 为直线l 与椭圆的交点, 所以点P 到直线AB 的距离为d , 因为△P AB 的面积是2-1,可得S △P AB =12×|AB |×d =12×5×25|t -1|=2-1,解得t =2或t =2-2,当t =2时,由⎩⎨⎧x 24+y 2=1,y =-12x +2,可得(x -2)2=0,解得⎩⎪⎨⎪⎧x =2,y =22,此时P ⎝⎛⎭⎫2,22,当t =2-2时,⎩⎨⎧x 24+y 2=1,y =-12x +2-2,可得x 2+(22-4)x +10-82=0,因为Δ=(22-4)2-4(10-82)=16(2-1)>0,此时直线l 与椭圆有2个交点,此时有2个点P ,所以共有3个点P .专题强化练一、单项选择题1.直线l 经过P (4,2)且与双曲线x 22-y 2=1交于M ,N 两点,如果点P 是线段MN 的中点,那么直线l 的方程为( ) A .x -y -2=0 B .x +y -6=0 C .2x -3y -2=0 D .不存在答案 A解析 当斜率不存在时,显然不符合题意; 当斜率存在时,设M (x 1,y 1),N (x 2,y 2), 因为点P 是线段MN 的中点, 所以x 1+x 2=8,y 1+y 2=4,代入双曲线方程得⎩⎨⎧x 212-y 21=1,x222-y 22=1,两式相减得x 21-x 22=2(y 21-y 22),则k =y 1-y 2x 1-x 2=x 1+x 22(y 1+y 2)=1,又直线过点P ,所以直线方程为y =x -2,联立⎩⎪⎨⎪⎧x 22-y 2=1,y =x -2,得到x 2-8x +10=0,经检验Δ>0,方程有解,所以直线y =x -2满足题意.2.已知F 是抛物线y 2=2px (p >0)的焦点,斜率为-2且经过焦点F 的直线l 交该抛物线于M ,N 两点,若|MN |=52,则该抛物线的方程是( )A .y 2=xB .y 2=2xC .y 2=4xD .y 2=6x答案 B解析 设直线l :y =-2x +p ,联立方程⎩⎪⎨⎪⎧y =-2x +p ,y 2=2px , 得4x 2-6px +p 2=0,设M (x M ,y M ),N (x N ,y N ),则x M +x N =6p 4=3p 2. 又|MN |=52, 所以x M +p 2+x N +p 2=5p 2=52, 所以p =1,所以所求抛物线的方程是y 2=2x .3.(2022·成都模拟)设O 为坐标原点,直线l 过定点(1,0),与抛物线C :y 2=2px (p >0)交于A ,B 两点,若OA ⊥OB ,则抛物线C 的准线方程为( )A .x =-14B .x =-12C .x =-1D .x =-2 答案 A解析 由题意可知直线l 的斜率不为0.设直线l :x =my +1,与y 2=2px (p >0)联立得y 2-2pmy -2p =0,Δ>0恒成立.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-2p .由OA ⊥OB ,得x 1x 2+y 1y 2=0,即y 212p ·y 222p+y 1y 2=0, 即4p 24p 2-2p =0,得p =12, 所以其准线方程为x =-14. 4.过椭圆内定点M 且长度为整数的弦,称作该椭圆过点M 的“好弦”.在椭圆x 264+y 216=1中,过点M (43,0)的所有“好弦”的长度之和为( )A .120B .130C .240D .260答案 C解析 由已知可得a =8,b =4,所以c =43,故M 为椭圆的右焦点,由椭圆的性质可得当过焦点的弦垂直于x 轴时弦长最短,所以当x =43时,最短的弦长为2b 2a =2×168=4, 当弦与x 轴重合时,弦长最长为2a =16,则弦长的取值范围为[4,16],故弦长为整数的弦有4到16的所有整数,则“好弦”的长度之和为4+16+(5+6+7+…+15)×2=240.5.已知过椭圆x 25+y 2=1的右焦点的直线l ,斜率存在且与椭圆交于A ,B 两点,若AB 的垂直平分线与x 轴交于点M ,则点M 横坐标的取值范围为( )A.⎣⎡⎦⎤0,85 B.⎝⎛⎦⎤-85,0 C.⎣⎡⎭⎫0,85 D.⎣⎡⎭⎫-85,0 答案 C解析 当直线AB 的斜率k =0时,即AB 为x 轴,则垂直平分线为y 轴,所以x M =0; 当直线AB 的斜率k ≠0 时,又斜率存在,则设直线方程为y =k (x -2),联立⎩⎪⎨⎪⎧x 2+5y 2=5,y =k (x -2),得(5k 2+1)x 2-20k 2x +20k 2-5=0, 由根与系数的关系得x 1+x 2=20k 25k 2+1,x 1x 2=20k 2-55k 2+1, 设N 为线段AB 的中点,所以x N =10k 25k 2+1,代入直线方程可得y N =-2k 5k 2+1, 则AB 的垂直平分线MN 的方程为y +2k 5k 2+1=-1k ⎝⎛⎭⎫x -10k 25k 2+1, 当y =0时,x =8k 25k 2+1=85+1k 2, 因为k 2>0,所以x ∈⎝⎛⎭⎫0,85, 综上所述,x ∈⎣⎡⎭⎫0,85, 即点M 横坐标的取值范围为⎣⎡⎭⎫0,85. 6.(2022·大连模拟)第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)的国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图),且两切线斜率之积等于-916,则椭圆的离心率为( )A.34B.74C.916D.32答案 B解析 若内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由离心率相同,可设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(m >1),∴A (-ma ,0),B (0,mb ),设切线AC 为y =k 1(x +ma ),切线BD 为y =k 2x +mb ,∴⎩⎪⎨⎪⎧y =k 1(x +ma ),x 2a 2+y 2b 2=1,整理得(a 2k 21+b 2)x 2+2ma 3k 21x +m 2a 4k 21-a 2b 2=0,由Δ=0知, (2ma 3k 21)2-4(a 2k 21+b 2)(m 2a 4k 21-a 2b 2)=0, 整理得k 21=b 2a 2·1m 2-1, 同理,⎩⎪⎨⎪⎧y =k 2x +mb ,x 2a 2+y 2b 2=1,可得k 22=b 2a 2·(m 2-1), ∴(k 1k 2)2=b 4a 4=⎝⎛⎭⎫-9162,即b 2a 2=916,故e =c a =a 2-b 2a 2=74. 二、多项选择题7.(2022·兰州模拟)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线C 的准线的垂线,垂足分别为M ,N ,若线段MN 的中点为P ,且线段FP 的长为4,则直线l 的方程为( )A .x +3y -1=0B .x -3y -1=0 C.3x -y -3=0 D.3x +y -3=0 答案 AB解析 由y 2=4x 得p =2,所以F (1,0),准线为x =-1,设直线l 的方程为x =ty +1,联立⎩⎪⎨⎪⎧x =ty +1,y 2=4x ,消去x 并整理得y 2-4ty -4=0,Δ=16t 2+16>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,所以y 1+y 22=2t , 依题意得M (-1,y 1),N (-1,y 2),则线段MN 的中点P (-1,2t ),因为|PF |=4,所以22+4t 2=4,解得t =±3,所以直线l 的方程为x +3y -1=0或x -3y -1=0.8.已知双曲线E :x 2a 2-y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-3,0),F 2(3,0),两条渐近线的夹角正切值为22,直线l :kx -y -3k =0与双曲线E 的右支交于A ,B 两点,设△F 1AB 的内心为I ,则( )A .双曲线E 的标准方程为x 26-y 23=1 B .满足|AB |=6的直线l 有2条C .IF 2⊥ABD .△F 1AB 与△IAB 的面积的比值的取值范围是(2,6]答案 ACD解析 A 选项,设双曲线E 的一条渐近线的倾斜角为θ,0<θ<π2,因为a >b ,所以0<2θ<π2,从而tan 2θ=2tan θ1-tan 2θ=22,解得tan θ=22或tan θ=-2(舍去),所以b a =22,又a 2+b 2=9,所以a 2=6,b 2=3,所以双曲线E 的标准方程为x 26-y 23=1,故A 正确;B 选项,直线l 的方程kx -y -3k =0,即k (x -3)-y =0,则直线l 恒过右焦点F 2,又过焦点F 2的弦最短为2b 2a =66=6,所以满足|AB |=6的直线l 只有1条,B 错误; C 选项,由双曲线的定义可知,|AF 1|-|AF 2|=26=|BF 1|-|BF 2|,即|AF 1|-|BF 1|=|AF 2|-|BF 2|,因此F 2是△F 1AB 的内切圆在AB 边上的切点,因此IF 2⊥AB ,C 正确;D 选项,由题意知1F ABIAB S S △△=12|IF 2|·(|AF 1|+|BF 1|+|AB |)12|IF 2|·|AB | =26+|AF 2|+26+|BF 2|+|AB ||AB |=46|AB |+2, 因为|AB |≥6,所以1F AB IAB S S △△∈(2,6],D 正确.三、填空题9.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则实数m 的取值范围是________. 答案 [1,4)∪(4,+∞)解析 直线y =kx +1过定点(0,1),故点(0,1)在椭圆x 24+y 2m=1上或内部, ∴1m≤1,且m >0,m ≠4, ∴m ≥1,且m ≠4.10.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.答案 53解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝⎛⎭⎫53,43, 不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43, ∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪-2-43=53. 11.(2022·绵阳模拟)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)与抛物线C :y 2=2px (p >0)有共同的一焦点,过E 的左焦点且与曲线C 相切的直线恰与E 的一条渐近线平行,则E 的离心率为________.答案 2 解析 因为抛物线与双曲线共焦点,所以c =p 2,p =2c ,抛物线方程为y 2=4cx , 双曲线的左焦点为F 1(-c ,0),过F 1与一条渐近线y =b a x 平行的直线方程为y =b a(x +c ), 由⎩⎪⎨⎪⎧y 2=4cx ,y =b a (x +c ),得by 2-4acy +4bc 2=0, 所以Δ=16a 2c 2-16b 2c 2=0,所以a =b ,从而c =a 2+b 2=2a ,离心率为e =c a = 2.12.已知直线y =kx +2(k >0)与抛物线C :x 2=8y 相交于A ,B 两点,点F 为C 的焦点,|F A |=4|FB |,则k =________.答案 34解析 设A (x 1,y 1),B (x 2,y 2),由题意知抛物线的焦点坐标为F (0,2),直线y =kx +2(k >0)与抛物线C :x 2=8y 联立方程得x 2-8kx -16=0,所以x 1+x 2=8k ,x 1x 2=-16,所以y 1+y 2=k (x 1+x 2)+4=8k 2+4,y 1y 2=(kx 1+2)·(kx 2+2)=4,又因为|F A |=4|FB |,所以y 1+2=4(y 2+2),即y 1=4y 2+6,所以由y 1=4y 2+6和y 1y 2=4,解得y 1=8,y 2=12(负值舍去), 所以y 1+y 2=8k 2+4=8+12,解得k 2=916,所以k =34. 四、解答题13.已知点A (0,2),B 为抛物线x 2=2y -2上任意一点,且B 为AC 的中点,设动点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)A 关于直线y =x 的对称点为D ,斜率为12的直线l 交曲线E 于M ,N 两点,且△MDN 是以MN 为底边的等腰三角形,求△MDN 的面积.解 (1)设C (x ,y ),B (m ,n ),∵B 是AC 的中点,∴⎩⎨⎧m =x 2,n =y +22,∵B 在抛物线x 2=2y -2上,∴m 2=2n -2,∴x 24=2×2+y 2-2, ∴曲线E 的方程为x 2=4y .(2)由题意得D (2,0), 设l :y =12x +t ,M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧y =12x +t ,x 2=4y ,得x 2-2x -4t =0, ∴x 1+x 2=2,x 1x 2=-4t ,Δ=4+16t >0,∴y 1+y 2=12(x 1+x 2)+2t =1+2t . 设MN 的中点为P ,则P ⎝⎛⎭⎫1,12+t , ∵△MDN 是以MN 为底边的等腰三角形,则k DP ·k MN =-1,∴12+t 1-2·12=-1,解得t =32,符合Δ>0. ∴x 2-2x -6=0,∴|MN |=1+⎝⎛⎭⎫122·|x 1-x 2|=1+14·4-4×(-6)=35,|DP |=5, ∴S △MDN =12×35×5=572. 14.设中心在原点,焦点在x 轴上的椭圆E 过点⎝⎛⎭⎫1,32,且离心率为32,F 为E 的右焦点,P 为E 上一点,PF ⊥x 轴,圆F 的半径为PF .(1)求椭圆E 和圆F 的方程;(2)若直线l :y =k (x -3)(k >0)与圆F 交于A ,B 两点,与椭圆E 交于C ,D 两点,其中A ,C 在第一象限,是否存在k 使|AC |=|BD |?若存在,求l 的方程;若不存在,请说明理由.解 (1)由题意可设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0), 如图,由e =32,即c a =32, 再由a 2=b 2+c 2,可得a =2b ,①将点⎝⎛⎭⎫1,32代入椭圆方程,可得1a 2+34b 2=1,② 由①②可解得a =2,b =1,故椭圆E 的方程为x 24+y 2=1, ∴F (3,0),∵PF ⊥x 轴,∴P ⎝⎛⎭⎫3,±12,∴圆F 的方程为(x -3)2+y 2=14. (2)由A ,B 在圆上得|AF |=|BF |=|PF |=r =12, 设C (x 1,y 1),D (x 2,y 2),则|CF |=(x 1-3)2+y 21=2-32x 1, 同理|DF |=2-32x 2, 若|AC |=|BD |,则|AC |+|BC |=|BD |+|BC |, 即|AB |=|CD |=1,∴4-32(x 1+x 2)=1,∴x 1+x 2=2 3. 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =k (x -3),得(4k 2+1)x 2-83k 2x +12k 2-4=0,∴x 1+x 2=83k 24k 2+1, ∴83k 24k 2+1=23, 得4k 2=4k 2+1,无解,故不存在.。

九年级数学圆锥曲线期末复习3

九年级数学圆锥曲线期末复习3

高 二 数 学 期 末 复 习 三(圆锥曲线综合问题)一、知识回顾1.直线与圆锥曲线的位置关系:在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.注意:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“0∆>”,尤其是在应用韦达定理解决问题时,必须先有“0∆>”.②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.2.弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则22|||AB x x -,若12,y y 分别为A 、B 的纵坐标,则12|||AB y y =-=,若弦AB 所在直线方程设为x ky b =+,则AB 12y -。

注意:焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和,或统一(第二)定义求解。

3.圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。

在椭圆12222=+by a x 中,以00(,)P x y 为中点的弦所在直线的斜率0202y a x b k -=;在双曲线22221x y a b-=中,以00(,)P x y 为中点的弦所在直线的斜率0202y a x b k =;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率)0(00≠=y y pk 。

注意:如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.4.常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法等), 以及如何利用曲线的方程讨论曲线的几何性质,这是解析几何的两类基本问题,也是解析几何的基本出发点.注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.②在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.二、典型例题例1.(1)椭圆284722=+y x 上的点到直线01623=--y x 的最短距离为13138; (2)过抛物线x y 22=焦点的直线交抛物线于A 、B 两点,已知ΔABO 重心的横坐标为3(O 为坐标原点),则|AB|=___10____(3*)已知直线1+-=x y 与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,且线段AB 的中点在直线02:=-y x l 上,则此椭圆的离心率为22(4*)若椭圆11022=+m y x 与双曲线122=-b y x 有相同的焦点,且),310(y P 椭圆与双曲线的一个交点,则椭圆与双曲线的方程分别为,11022=+y x 1822=-y x 。

专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用

专题16  圆锥曲线焦点弦  微点3  圆锥曲线焦点弦长公式及其应用
15.过双曲线 的右焦点F作倾斜角为 的直线,交双曲线于P、Q两点,则 的值为__________.
16.过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为________.
17.过抛物线 的焦点 作倾角为 的直线,与抛物线分别交于 、 两点( 在 轴左侧),则 _______________________.
注意:夹角不是直线的倾斜角,而是直线与焦点所在轴的夹角,这样就不需要区的右焦点F作倾斜角为 的直线,交双曲线于 两点,求弦长 .
三、圆锥曲线坐标式焦点弦长公式
1.椭圆的坐标式焦点弦长公式
例9
9.已知椭圆 ,若过左焦点的直线交椭圆于 两点,求 .
【结论6】椭圆的坐标式焦点弦长公式:
我们有如下结论:
【结论6】双曲线的坐标式焦点弦长公式:
(1)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: ;
(2)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: .
3.抛物线的坐标式焦点弦长公式
由抛物线的定义易得
【结论7】抛物线的坐标式焦点弦长公式:
(1)抛物线 的焦点弦长公式: ;
(2)抛物线 的焦点弦长公式: ;
说明:特殊情形,当倾斜角为 时,即为椭圆的通径,通径长 .
2.双曲线的倾斜角式焦点弦长公式
例2
2.设双曲线 ,其中两焦点坐标为 ,过 的直线 的倾斜角为 ,交双曲线于 , 两点,求弦长 .
可得如下结论2:
【结论2】双曲线的倾斜角式焦点弦长公式:
(1) 为双曲线 的左、右焦点,过 倾斜角为 的直线 与双曲线 交于 两点,则 .
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
专题16圆锥曲线焦点弦

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

专题七 解析几何 第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2022届高考理科数学三轮

专题七 解析几何  第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2022届高考理科数学三轮

③|F1A|+|F1B|=
2 p
;④以弦
AB
为直径的圆与准线相切.
[典型例题]
1.已知椭圆 T : x2 y2 1(a b 0) 的长半轴为 2,且过点 M 0,1 .
a2 b2 若过点 M 引两条互相垂直的直线 l1 , l2 ,P 为椭圆上任意一点,
记点 P 到 l1 , l2 的距离分别为 d1 , d2 ,则 d12 d22 的最大值为( B )
C. x2 y
D. x2 1 y 2
[解析]
本题考查抛物线的定义、标准方程. 抛物线 C : x2 2 py( p 0) 的准线方程为 y p .因为 | AF | 4 ,
2 所以由抛物线的定义得 p 3 4 ,解得 p 2 ,
2 所以抛物线 C 的方程为 x2 4 y .故选 A.
因为 | BC | 2 | BF | ,所以 | BC | 2 | BN | ,所以 BC 2 ,所以 BN 2 ,
CF 3
p3
所以 BN BF 4 , BC 8 ,
3
3
[解析]
所以 CF 4 ,因为 p CF , AM CA
所以 2 CF 4 4 , AM CF AF 4 AF 4 AM 4
则 d12 d22 x2 (1 y)2 ,因为 P 在椭圆上,所以 x2 4 4 y2 ,
所以
d12
d
2 2
5
3y2
2y
5
3
y
1 2 3
1 3

y [1,1],
[解析]
所以当
y
1 3
时,
பைடு நூலகம்d12
d22
有最大值
16 3
,所以

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y +=代入曲线方程,化为关于x 的一元二次方程,设出交点坐标()(),,,,2211y x B y x A 利用韦达定理及弦长公式]4))[(1(212212x x x x k -++求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷. 一、椭圆的焦点弦长若椭圆方程为)0(12222>>=+b a by a x ,半焦距为c>0,焦点)0,(),0,(21c F c F -,设过1F 的直线l 的倾斜角为l ,α交椭圆于两点()(),,,,2211y x B y x A 求弦长AB .解:连结B F A F 22,,设y B F x A F ==11,,由椭圆定义得y a B F x a A F -=-=2,222,由余弦定理得222)2(cos 22)2(x a c x c x -=⋅⋅-+α,整理可得αcos 2⋅-=c a b x ,同理可求得αcos 2⋅+=c a b y ,则ααα222222cos 2cos cos c a ab c a b c a b y x AB -=⋅++⋅-=+=;同理可求得焦点在y 轴上的过焦点弦长为α2222sin 2c a ab AB -=(a 为长半轴,b 为短半轴,c 为半焦距).结论:椭圆过焦点弦长公式:⎪⎪⎩⎪⎪⎨⎧⋅-⋅-=).(sin2),(cos222222222轴上焦点在轴上焦点在ycaabxcaabABαα二、双曲线的焦点弦长设双曲线(),0,012222>>=-babyax其中两焦点坐标为)0,(),0,(21cFcF-,过F1的直线l的倾斜角为α,交双曲线于两点()(),,,,2211yxByxA求弦长|AB|.解:(1)当ababarctanarctan-<<πα时,(如图2)直线l与双曲线的两个交点A、B在同一支上,连BFAF22,,设,,11yBFxAF==,由双曲线定义可得ayBFaxAF2,222+=+=,由余弦定理可得222222)2()cos(22)2(,)2(cos22)2(aycycyaxcxcx+=-⋅⋅-++=⋅⋅-+απα整理可得αcos2⋅+=cabx,αcos2⋅-=caby,则可求得弦长;cos2coscos222222αααcaabcabcabyxAB-=⋅-+⋅+=+=(2)时或当παπα<<-<≤ababarctanarctan0,如图3,直线l 与双曲线交点()()2211,,,y x B y x A 在两支上,连F 2A,F 2B,设,,11y B F x A F ==则a y B F a x A F 2,222-=+=,由余弦定理可得222)2(cos 22)2(a x c x c x +=⋅⋅-+α,222)2(cos 22)2(a y c y c y -=⋅⋅-+α,整理可得,则,cos ,cos 22a c b y a c b x -⋅=+⋅=αα .cos 2cos cos 222222a c ab a c b a c b x y AB -⋅=+⋅--⋅=-=ααα因此焦点在x 轴的焦点弦长为⎪⎪⎩⎪⎪⎨⎧<<-<≤--<<-=).arctan arctan 0(cos 2),arctan (arctan cos 222222222παπααπααa b a b ac ab a ba b c a ab AB 或 同理可得焦点在y 轴上的焦点弦长公式⎪⎪⎩⎪⎪⎨⎧-<<-<<-<≤-=).arctan (arctan sin 2),arctan arctan 0(sin 222222222a b a b a c ab a ba b c a ab AB πααπαπαα或 其中a 为实半轴,b 为虚半轴,c 为半焦距,α为AB 的倾斜角. 三、 抛物线的焦点弦长若抛物线)0(22>=p px y 与过焦点)0,2(pF 的直线l 相交于两点()()2211,,,y x B y x A ,若l 的倾斜角为α,求弦长|AB|.(图4)。

圆锥曲线解题的七种题型和八种方法

圆锥曲线解题的七种题型和八种方法

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(完整word版)圆锥曲线专题

(完整word版)圆锥曲线专题

圆锥曲线的综合问题直线和圆锥曲线问题解法的一般规律“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”.【一】.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断. 1。

设直线l 的方程为Ax +By +C =0,圆锥曲线方程f (x ,y )=0.由Ax+0(,)0{By c f x y +==,消元。

如消去y 后得ax 2+bx +c =0. ①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行或重合. ②若a ≠0,设Δ=b 2-4ac 。

a .Δ > 0时,直线和圆锥曲线相交于不同两点;b .Δ = 0时,直线和圆锥曲线相切于一点;c .Δ < 0时,直线和圆锥曲线没有公共点.2。

“点差法”的常见题型求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ〉0是否成立.3.直线与圆锥曲线相交时的弦长问题(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2| = 或|P 1P 2|= .(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用轴上两点间距离公式).1+k 2|x 1-x 2|1+1k 2|y 1-y 2|4.圆锥曲线的中点弦问题遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆错误!+错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k=-错误!;在双曲线错误!-错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k =错误!;在抛物线y2=2px (p〉0)中,以P(x0,y0)为中点的弦所在直线的斜率k=错误!.题型一圆锥曲线中的范围、最值问题【例1】已知抛物线C:y2=4x,过点A(-1,0)的直线交抛物线C于P、Q两点,设错误!=λ错误!.(1)若点P关于x轴的对称点为M,求证:直线MQ经过抛物线C的焦点F;(2)若λ∈错误!,求|PQ|的最大值.[思维启迪](1)可利用向量共线证明直线MQ过F;(2)建立|PQ|和λ的关系,然后求最值.解析:(1)证明设P(x1,y1),Q(x2,y2),M(x1,-y1).∵错误!=λ错误!,∴x1+1=λ(x2+1),y1=λy2,∴y错误!=λ2y错误!,y错误!=4x1,y错误!=4x2,x1=λ2x2,∴λ2x2+1=λ(x2+1),λx2(λ-1)=λ-1,∵λ≠1,∴x2=错误!,x1=λ,又F(1,0),∴错误!=(1-x1,y1)=(1-λ,λy2)=λ错误!=λ错误!,∴直线MQ经过抛物线C的焦点F。

圆锥曲线中的弦长问题

圆锥曲线中的弦长问题

圆锥曲线中的弦长问题左超杰【教学目的】1、熟练掌握直线与圆锥曲线位置关系的判断方法;2、能解决有关直线与圆锥曲线相交时的有关弦长等问题。

【重点难点】直线与圆锥曲线相交时弦长问题的处理方法。

【教学模式】解决思路一一例题讲解一一方法总结一一反馈练习一一课堂小结教学过程:一、基本知识考查:1、当直线与圆锥曲线相交于两点时,就产生了弦。

当弦过焦点时,为___ _________ ;当焦点弦垂直于圆锥曲线的轴时,弦为直线的斜率为k,交点坐标为2、弦长公式X i,y i ,x2 , y 2 ,弦长为d ,为直线的倾斜角①当k存在时:d __________________当k存在且不为0时:d②抛物线的弦长公式AB x1 x2、例题1、磨磨刀2、能力提咼2例1、过双曲线 x 2 L 1的左焦点F !作倾斜角为一的弦AB ,3 1 6求:1 |AB2 ABC 的周长F 2为双曲线的右焦点2、 2直线y x 与椭圆—y 24 4、5 1相交于A 、E 两点,贝V AB 等于 A 、 2B 、C 、4 J0 58、105已知双曲线方程为的直线与双曲线交 A 、 5 过抛物线y 2两点,如果 A 、 84、抛物线y 2A 、 p3、 B 、 2L 1,过其右焦点作一条垂直 与X 轴 4 5与A 、B 两点,贝y AB 等于3C 、44x 的焦点作直线交抛物线 6,那么AB 等于D 、 9于A 、B X 2, y 2x 2 B 、10C 、6D 、 4 2px(p 0)的所有焦点弦中,弦长 的最小值为 B 、2pC 、4pD 、不确定D 、想:弦AB所在的直线斜率为3呢例2:已知直线l:y k(x 2,2)交椭圆x2 9 y2 9于A、B两点,若为I的倾斜角,且线段AB的长不小于短轴的长,求的取值范围拓展:若把第一句话改为:直线I过椭圆的左焦点且交椭圆于A、B两点呢?深度拓展:若把线段AB的长不小于短轴的长,改为求线段AB长的取值范围呢?3、智能升华正方形ABCD的两个顶点A、B在抛物线y x2上,另两个顶点C、D在直线y x 4上,求正方形的面积。

圆锥曲线中直线相交的弦长公式

圆锥曲线中直线相交的弦长公式

一、介绍圆锥曲线和直线相交的问题圆锥曲线是解析几何中重要的曲线之一,它包括圆、椭圆、双曲线和抛物线。

而直线与圆锥曲线的相交问题一直是几何学中的一个重要研究课题。

其中,直线与圆锥曲线的相交可以形成弦,而弦长公式是研究这一问题的核心内容之一。

二、椭圆的弦长公式对于椭圆而言,它有两个焦点F1和F2,以及两个不同的半轴a和b。

若给定椭圆上一点P(x, y)和过点P的直线l,与椭圆相交于点A和点B。

连接点A和点B的线段叫做椭圆的弦。

椭圆的弦长公式可以表示为:AB = 2 * sqrt((a^2 - (a^2 * m^2))/ (1 + m^2))其中,m为直线l的斜率。

这个公式可以通过直线与椭圆方程的联立得出。

三、双曲线的弦长公式对于双曲线而言,它同样有两个焦点F1和F2,以及两个不同的半轴a和b。

双曲线上的一点P(x, y)和过点P的直线l相交于点A和点B。

连接点A和点B的线段同样称为双曲线的弦。

双曲线的弦长公式可以表示为:AB = 2 * sqrt((a^2 * m^2 - a^2)/ (m^2 - 1))其中,m为直线l的斜率。

这个公式也可以通过直线与双曲线方程的联立得出。

四、抛物线的弦长公式对于抛物线而言,它有一个焦点F和一个定点D。

同样,抛物线上的一点P(x, y)和过点P的直线l相交于点A和点B。

连接点A和点B 的线段称为抛物线的弦。

抛物线的弦长公式可以表示为:AB = 2 * |x - p|/cos(θ)其中,p为抛物线的焦点到顶点的距离,θ为直线l与x轴的夹角。

这个公式同样可以通过直线与抛物线方程的联立得出。

五、结语圆锥曲线中直线相交的弦长公式是解析几何中的重要内容,在实际问题的运用中也有着广泛的应用。

通过深入研究和灵活运用这些弦长公式,可以更好地解决相关问题,拓展几何学的应用领域。

希望本文能够对读者对圆锥曲线和弦长公式有所启发,并在相关领域的研究和实践中起到一定的促进作用。

圆锥曲线和直线相交问题是解析几何中的一个重要课题,它涉及到圆、椭圆、双曲线和抛物线等重要曲线。

解圆锥曲线问题常用的八种方法及七种常规题型

解圆锥曲线问题常用的八种方法及七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

高考数学总复习直线和圆锥曲线的位置关系

高考数学总复习直线和圆锥曲线的位置关系

高考数学总复习:直线和圆锥曲线的位置关系知识网络目标认知考试大纲要求:使学生能灵活应用圆锥曲线的有关知识解决相关问题,培养数学理解能力及分析问题、解决问题的能力;重点:直线与圆锥曲线的三种位置关系的判断及直线与圆锥曲线相交有两个交点时弦长公式的应用。

难点:直线与圆锥曲线的位置关系的综合应用.知识要点梳理知识点一:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有三种:相交、相切、相离。

判断的方法均是把直线方程代入曲线方程中,判断方程解的个数,从而得到直线与曲线公共点的个数,最终得到直线与曲线的位置关系。

一般利用二次方程判别式来判断有无解,有几个解。

1.直线Ax+By+C=0和椭圆的位置关系:将直线的方程与椭圆的方程联立成方程组,消元转化为关于x或y一元二次方程,其判别式为Δ.(1)Δ>0直线和椭圆相交直线和椭圆有两个交点(或两个公共点);(2)Δ=0直线和椭圆相切直线和椭圆有一个切点(或一个公共点);(3)Δ<0直线和椭圆相离直线和椭圆无公共点.2.直线Ax+By+C=0和双曲线的位置关系:将直线的方程与双曲线的方程联立成方程组,消元转化为关于x或y的方程。

(一)若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若Δ>0,则直线和双曲线相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和双曲线相切,有一个切点;(3)若Δ<0,则直线和双曲线相离,无公共点.注意:(1)Δ>0直线与双曲线相交,但直线与双曲线相交不一定有Δ>0,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故Δ>0是直线与双曲线相交的充分条件,但不是必要条件;(2)当直线与双曲线的渐近线不平行时,Δ=0直线与抛物线相切;(3)如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;(4)过双曲线外一点的直线与双曲线只有一个公共点的情况如下:①P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P为原点时不存在这样的直线;3.直线Ax+By+C=0和抛物线y2=2px(p>0)的位置关系:将直线的方程与抛物线的方程联立成方程组,消元转化为关于x或y方程。

直线与圆锥曲线中的弦长问题

直线与圆锥曲线中的弦长问题

直线与圆锥曲线中的弦长问题(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第四讲 直线与圆锥曲线中的弦长问题【关卡1 一般弦的计算问题】笔 记1.直曲联立韦达定理法(优化的弦长公式)2.直线与圆锥曲线的位置关系的判断代数法 几何法例 题1.已知椭圆()2222:10x y C a b a b +=>>,直线1:1x y l a b -=被椭圆C 截得的弦长为,且e =,过椭圆C 2l 被椭圆C 截的弦长AB ,(1)求椭圆的方程;(2)弦AB 的长度.2.已知椭圆1422=+y x 以及直线m x y +=(1)当直线和椭圆有公共点时,求实数m 的取值范围(2)求被椭圆截得的最长弦所在的直线方程3.已知直线3+=kx y 与椭圆1222=+y x ,试判断k 的取值范围,使得直线与椭圆分别有两个交点,一个交点和没有交点?4.4.已知椭圆1222=+y x ,),(00y x P ,1202020≤+<y x ,问1200=+y y x x 与椭圆的公共点个数?5.已知双曲线422=-y x ,直线)1(:-=x k y l ,试讨论满足下列条件时实数k 的取值范围(1)直线l 与双曲线有两个公共点(2)直线l 与双曲线有且只有一个公共点(3)直线l 与双曲线没有公共点过关练习 1.)0(12222>>=+b a b y a x 的离心率为36,设过椭圆的右焦点且倾斜角为45°的直线l 和椭圆交于A,B 两点,当|AB |=3,求的b 值.2.已知椭圆G:1422=+y x ,过点(m ,0)作圆122=+y x 的切线l 交椭圆G 于A 、B 两点 (1)求椭圆的焦点坐标和离心率;(2)将|AB |表示成m 的函数,并求|AB |的最大值3.直线01=--kx y 与椭圆1522=+my x 恒有公共点,求m 的取值范围? 4.4.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,求k 的取值范围【关卡2 中点弦问题】 笔 记设椭圆)0(12222>>=+b a by a x 的弦AB 的中点为P ),(00y x (0,000≠≠y x ),则1222-=-=⋅e ab k k op AB 设双曲线12222=-by a x 的弦AB 的中点为P ),(00y x (0,000≠≠y x ),则1222-==⋅e a b k k op AB 设抛物线px y 22=的弦AB 的中点为P ),(00y x (00≠y ),则0y p k AB =例 题1.已知椭圆141622=+y x 求(1)以)1,2(-P 为中点的弦所在直线的方程(2)斜率为2的平行弦中点的轨迹方程(3)过)2,8(Q 的直线被椭圆截得的弦中点的轨迹方程2.(1)已知椭圆E :22143x y +=,试确定m 的取值范围,使得椭圆E 上存在两个不同的点关于直线4y x m =+对称(2)已知双曲线1322=-y x ,双曲线上存在关于直线L :4+=kx y 对称的点,求实数k 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档