减振器阻尼特性仿真及结构参数影响分析_黄安贻_图文(精)

减振器阻尼特性仿真及结构参数影响分析_黄安贻_图文(精)
减振器阻尼特性仿真及结构参数影响分析_黄安贻_图文(精)

第 37卷第 6期 2013年 12月

武汉理工大学学报 (交通科学与工程版

J o u r n a l o f W u h a n U n i v e r s i t y

o f T e c h n o l o g y (T r a n s p o r t a t i o n S c i e n c e &E n g i n e e r i n g

V o l . 37 N o . 6

D e c . 2013

减振器阻尼特性仿真及结构参数影响分析

黄安贻 1, 2 施宇锋

1

(武汉理工大学机电工程学院 1 武汉 430070 (武汉理工大学华夏学院 2 武汉 430223 摘要 :通过对一种双缸式减振器液力系统进行分析 , 应用液压流体力学理论建立了其数学模型 , 在 MA T L A B /S i m u l i n k 中搭建了减振器仿真模型并进行仿真 , 其仿真结果与实验结果符合较好 . 在此基础上利用该减振器仿真系统分析了减振器几个结构参数对减振器阻尼特性的影响 , 以指导减振器的设计从而较快地获得最合适的结构参数和最优的阻尼特性 . 关键词 :减振器 ; 阻尼特性 ; 仿

真 ; 结构参数影响中图法分类号 :U 463. 33

d o i :10. 3963/j

. i s s n . 2095-3844. 2013. 06. 016收稿日期 :2013-08-

10黄安贻 (1965-

:男 , 工学博士 , 教授 , 主要研究领域为机械工程控制与测试、智能仪器仪表、机电一体化系统、复杂曲面精密测量与重构等

0引言

减振器是车辆悬架系统的重要组成部分 , 其阻尼特性直接影响着整车的平顺性与操纵稳定性 .

为与开发的新车型相匹配 , 经常要根据减振器阻尼特性要求对其进行调整或重新设计 . 传统的减振器设计方法是以阻尼特性为参考指标 , 在大量的减振器试验过程中 , 不断试凑得到减振器结

构参数 [1-

2].

这种设计方法不仅开发周期长 , 效率低 ,

而且成本高 . 随着计算机技术的发展 , 应用仿真技术可以预测减振器的阻尼特性 ,

这方面的研究虽有不少 [

3-

4], 但对减振器结构参数的影响的研究较少 . 本文应用 MA T L A B /s i m u l i n k 对其进行

仿真 , 以分析减振器结构参数对阻尼特性的影响 , 指导减振器的设计 .

1减振器物理数学模型

1. 1减振器液力系统模型

依据减振器的结构及对关键阀系的研究 , 可将双缸式减振器抽象为如图 1所示的液力系统 .

图 1中 :p 1, p 2, p 3分别为 I , I I , I I I 腔压力 , 其中 I I I 腔中有部分空气 , 其体积为 V 3; X (t

为活塞图 1液力系统图

相对阻尼缸的位移 , 向上为正 , 中间位置 X (t =

0; X ′ (t 为活塞相对阻尼缸的速度 , 向上为正 ; A p 为活塞截面积 ; A r 为活塞杆截面积 ; Q 21, Q 23分别

为 I I 腔与 I , I I I 腔之间的流量 ; 由各腔容积变化可得以下流量关系

Q 21=(A p -A r

X ′ (t (1 Q 23=A p

X ′ (t (2

式中 :A 1为活塞上的常通阻尼孔面积 ; A 2为活塞

片上的常通阻尼孔面积 ; A 3为压缩阀座上的常通

阻尼缝隙面积 ; A f f 和 A

f y

分别为复原阀在复原行

程和压缩行程中形成的节流缝隙面积 ; A

y f

为压缩阀在复原行程中形成的节流缝隙面积 .

1. 2减振器数学模型

1. 2. 1压缩行程数学模型

由图 1, 在复原阀处 , 油液一部分经常通阻尼孔 A 1流入上腔 , 流量为 Q 211, 产生的节流压差

p 211=

2

211

2(C q A 1

(3

另一部分油液经形成的缝隙流入上腔 , 流量为 Q 212, 产生的节流压差

p 212=

(

1

/

1

πh f y 212

(4

式中 :R 1, r 1为径向流动的内外径 ; h

f y

为复原阀片在压缩行程中的开启高度 . 上下 2腔总压差 p 21=p 211+p 212(5 又根据流量守恒有

Q 21=Q 211+Q 212(6 在压缩阀处 , 不足部分由贮油腔经压缩阀上的常通节流缝隙 A 3补充 , 流量为 Q 23. 产生的压差

p 32= 12l 2

b 2h 3y y 23

(7

式中 :b 2为缝隙的宽度 ; l 2为通流长度 ; h

y y

为压缩阀片在压缩行程中的开启高度 .

1. 2. 2复原行程数学模型

由图 1, 在复原阀处 , 油液一部分通过常通孔 A 1流入下腔 , 流量为 Q 121. 产生的压差

p 121=

Q 121

2C q A 1

(8

另一部分可经阀片与活塞片之间的缝隙流入下腔 , 流量为 Q 122. 产生的压差

p 122= 12l 1

b 1h 3f f 122

(9

式中 :b 1为缝隙的宽度 ; l 1为通流长度 ; h

f f

为复原阀片在复原行程中的最大挠度 . 由环形阀片弯曲变形 [5]可得

h f f =G r 122

h 3

(10 式中 :G r 为阀片的弯曲变形系数 ; h 为阀片厚度 . 又根据流量守恒有

Q 12=Q 121+Q 122(11 式中 :Q 12与 Q 21大小相同但流向相反 .

上下 2腔压差

p 12=p 121+p 122(12 在压缩阀处 , 贮油腔中的油液经所产生的缝

隙补充至下腔 , 流量为 Q 32(与 Q 23大小相同但流向相反 . 其产生的节流压差为

p 32=

(

2

/

2

πh y f 32

(13

式中 :R 2, r 2为径向流动的内外径 ; h

y f

为压缩阀片在复原行程中的开启高度 .

1. 2. 3贮油腔压力分析

设在装配位置时 , 贮油腔中气体体积为 V 0, 压强为大气压力 p 0, 贮油箱油压与气体压强相当 , 由理想气体状态空间方程有

p 3V 3=p 0V 0(14 又由体积关系可知

V 3=V +[l +X (t ]A r (15 式中 :l 为从中间位置至阻尼弹簧未起作用前的最大复原行程 .

由此可计算出贮油腔中的油压

p 3=0

V 0

V +l +X t A r

(16 由复原行程及压缩行程模型中计算的压差即可计算出上下 2腔压强 p 1, p 2.

1. 2. 4阻尼力的数学描述

设复原阻尼力方向为正向 , 由图 1, 对活塞进行受力分析 , 可求得阻尼力为

F =(A p -A r p 1-A p p 2(17 2减振器阻尼特性仿真及实验验证

2. 1 M A T L A B 减振器阻尼特性仿真

根据减振器物理数学模型 , 按照减振器在测试时的工况 , 可在 MA T L A B /S i m u l i n k 环境下建立图 2所示的仿真模型 .

为方便修改仿真参数和查看仿真结果 , 可应用 MA T L A B /G U I 设计如图3所示的仿真图形用户界面 , 开发减振器设计系统 .

2. 2仿真结果与实验结果对比分析

对比图 4, 图 5在相同测试条件下的实验示功图和仿真示功图 , 实验示功图与仿真示功图的形状、走势及相应的数值基本相似 , 在行程上止点及下止点处实验示功图变化较缓 , 而仿真示功图的变化则较快 , 这是因为在真实的工况下 , 减

振器活塞有一个换向的过程 , 这会引起阻尼器内产生紊流 , 而在仿真模型中没有体现这一点 , 另外还有油液可压缩性和惯性力的影响 [6], 因此在上止点与下止点处实验示功图与仿真示功图存在的差异是可以理解的 .

·3 0 2 1

·

第 6期黄安贻 , 等 :减振器阻尼特性仿真及结构参数影响分析

图 2减振器 S i m u l i n k

模型

图 3减振器 G U

I

图 4实验结果

利用所建立的仿真模型和仿真系统 , 对 4种型号减振器进行了阻尼特性仿真和实验研究 ,

仿图 5仿真结果

真结果与实测数据见表 1. 其中 , F f 为最大复原阻尼力值 , Y f 为最大压缩阻尼力值 .

表 1不同型号减振器仿真与实验对比精度分析

型号 F f

/N 仿真

F f

/N 相对

误差 /%Y f /N

仿真

Y f /N 相对

误差 /%A 637 668. 8 5. 00 294 2

81. 8-4. 12

B 880 879. 7-0. 03 39. 8

C 880 876. 9-0. 35 294 2

80. 3-4. 64D

617 670. 7

8. 72

294 2

80. 3-4. 64

对比表 1中实验与仿真结果的最大复原阻尼

力值与压缩阻尼力值 , 误差不超过 10%, 符合工程实际要求 , 仿真系统是可靠的 .

3结构参数影响分析

利用已开发的减振器仿真模型和仿真软件系统分析活塞孔直径、活塞上常孔、阀片厚度及片数和压缩阀形式等结构参数对阻尼力的影响 . 3. 1活塞孔直径的影响

由图 6, 在相同测试条件下 , 复原阀活塞片上的阻尼孔直径有 1. 6, 1. 5和 1. 4m m 时 , 阻尼器所产生的最大复原阻尼力值为分别为 700, 880和

1

140N. 可见 , 阻尼孔径越小 , 节流效果越明显 , 阻尼力值越大 , 活塞片上阻尼孔直径改变 0. 1m m 也将会对阻尼力值产生很大的影响 .

·

4021·武汉理工大学学报 (交通科学与工程版

2013年第 37卷

图 6不同活塞孔径下的阻尼特性

3. 2活塞上常通孔的影响

由图 7, 在相同测试条件下 , 活塞上无常通孔时、有常通孔直径 0. 8m m 时和有常通孔直径 0. 9m m 时的最大复原阻尼力值分别为 880, 660和 610N ; 配置有常通孔的阻尼器比无常通孔所得到的示功图较饱满一些 . 可见 , 活塞上常通孔有很好的分流效果 ,

配置适当的常通孔可以调节所需的阻尼力值 ,

并改善减振效果

. 图 7不同常通孔下的阻尼特性

3. 3阀片厚度及叠加阀片的影响由图 8, 在相同测试条件下 , 采用 1片 0. 1m m 厚、 2片 0. 1m m 、 3片 0. 1m m 厚和 1片 0. 2m m 厚的阀片时产生的最大

复原阻尼力值分别为

750, 880, 980和 1 400N. 可见 , 相同阀片 , 叠加片数越多 , 等效厚度越大 , 阻尼力值越大 ; 总厚度相同 , 但等效厚度不同 , 如分别采用 1×0. 2m m 和 2×0. 1m m 的阀片 ,

所产生的阻尼力值是不同的 ,

而且差别很大 . 3. 4压缩阀形式的影响由图 9, 当使用常规压缩阀时 , 示功图较饱满圆滑 , 产生的阻尼效果将优于采用简单的冲压孔作为压缩阀 . 当然 , 在性能要求不是很高的情况下可以选择冲压孔作为压缩阀以节省成本 .

5结束语

考虑减振器内部油液的流动以及节流阀片的

图 8

不同阀片下的阻尼特性

图 9不同压缩阀下的阻尼特性

变形等真实工作状态 , 建立了减振器物理数学模型 , 根据该物理数学模型搭建的 S i m u l i n k 仿真模型的仿真结果与实验结果吻合较好 , 所建的仿真模型是可靠的 .

在此基础上开发了减振器设计分析软件系统 , 并用该系统分析了活塞孔直径、活塞上常通孔、

阀片厚度及片数和压缩阀形式对减振器阻尼特性的影响 , 该系统能成功地预测减振器阻尼特性并指导减振器结构设计 .

参考文献

[1

]《汽车工程手册摩托车篇》编辑委员会 . 汽车工程手册 [M ]. 北京 :人民交通出版社 , 2001.

[2

]吕振华 , 李世民 . 筒式液阻减振器动态特性模拟分析技术的发展 [J ]. 清华大学学报 , 2002, 42(1 :1532-1536.

[3]徐中明 , 李仕生 , 张志飞 , 等 . 基于 MA T L A B /S i m u -

l i n k 的汽车减振器外特性仿真与性能分析 [J ]. 汽车工程 , 2011,

33(4 :329-

334. [4

]任卫群 , 赵峰 , 张杰 . 汽车减振器阻尼特性的仿真分析 [J ]. 系统仿真学报 , 2006, 18(2 :957-960. [5

]周长城 , 张绍阁 , 顾亮 . 环形弹性阀片弯曲变形曲面方程及其解 [J ]. 山东理工大学学报 , 2006, 20(4 :8-

11. [6]唐大林 , 龚双林 , 茆小元 , 等 . 浅谈减振器外特性 [J ].

摩托车技术 , 2001(10 :3-

6. (下转第 1210页

·

5021·第 6期

黄安贻 , 等 :减振器阻尼特性仿真及结构参数影响分析

布局优化模型 [J ]. 武汉理工大学学报 , 2012, 36(1 :129-

133. [5

]单晓峰 . 城市自行车交通合理方式分担率及其路段资源配置研究[D ]. 南京 :东南大学 , 2007.

[6

]冯宝 . 轨道交通站点自行车换乘设施规划研究 [D ]. 南京 :东南大学 , 2012.

[7]莫宏伟 . 人工免疫系统原理与应用 [M ].

哈尔滨 :哈尔滨工业大学出版社 , 2002.

[8]刘冰 . 人工免疫算法及其应用研究 [D ].

重庆 :重庆大学 , 2004.

[9]肖人彬 , 曹鹏彬 , 刘勇 . 工程免疫计算 [M ].

北京 :科学出版社 , 2007.

[10]F O R R E S T S , P E R E L S O N A. S e l f -n o n s e l f d i s c r i m i -

n a t i o n i n a c o m p u t e r [C ]. P r o c e e d i n g o f 1994I E E E S y m p o s i u m o n R e s e a r c h i n S e c u r i t y a n d P r i v a c y . L o s A l a m o s , C A :I E E E C o m p u t e r S o c i e t y P r e s s , 1994:202-

212. R e s e a r c h o n t h e L a y

o u t o f B i k e R e n t a l S t a t i o n s A r o u n d a R a i l w a y

S t a t i o n C H E N J i n g

x u W A N G W e i C H E N X u e w u Z H U S e n l a i (S c h o o l o f T r a n s p o r t a t i o n , S o u t h e a s t U n i v e r s i t y , N a n j i n g 2

10096, C h i n a A b s t r a c t :T h i s p a p e r c o n s t r u c t s a h i e r a r c h i c a l s t r u c t u r e o f b i k e r e n t a l s t a t i o n s a r o u n d

a r a i l w a y

s t a t i o n . B a s e d o n l a n d u s e f u n c t i o n , p o p u l a t i o n

a n d

b i k e m o d e s p l i t r a t e o f e v e r y l a y e r , b i k e r e n t a l s t a t i o n s a r e d i v i d e d i n t o t h r e e p a r t s , n a m e l y

n u c l e a r n o d e , o n e -l e v e l n o d e s a n d t w o -l e v e l n o d e s , a n d l a t e r t h e q u a n t i t y

o f b i k e r e n t a l s t a t i o n s a n d b i k e s a r e e s t i m a t e d . T h e n a n i m p r o v e d i m m u n e a l g o r i t h m i s u t i -l i z e d t o s e l e c t s e v e r a l a p p r o p r i a t e t w o -l e v e l n o d e s a s b i k e m a n a g e m e n t n o d e s . F i n a l l y , a c a s e s t u d y o f N a n j i n g T i a n y i n R o a d S t a t i o n i s c o n d u c t e d , a n d

t h e p a p e r g i v e s t h e l a y o u t p r o p o s a l o f b i k e r e n t a l s t a -t i o n s w i t h i n t h e r a d i a t i o n s c o p e o f t h e r a i l w a y

s t a t i o n . K e y

w o r d s :t r a n s p o r t a t i o n p l a n n i n g ; b i k e s h a r i n g s y s t e m ; r e n t a l s t a t i o n ; i m m u n e a l g 欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁

o r i t h m (上接第 1205页

S h o c k A b s o r b e r D a m p i n g

车辆最佳匹配减振器阻尼_图文(精)

第8卷第3期 2008年6月 交通运输工程学JournalOfTrafficandTransportatio报 一 ● ● n Lngmeerlng V01.8 Jun.NO.3 2008 文章编号:1671—1637I2008)03—0015—05 0 车辆悬架最佳阻尼匹配减振器设计 周长城1’2,孟婕 (1.山东理工大学交通与车辆工程学院,山东淄博255049; 2.北京理工大学机械与车辆工程学院,北京 100081)

摘 要:为了使设计减振器对车辆具有最佳减振效果,利用悬架最佳阻尼比,对减振器最佳阻尼系 数进行了研究,建立了减振器最佳速度特性数学模型,提出了减振器阀系参数设计优化方法,对设计减振器进行了特性试验和整车振动试验,并与原车载减振器性能进行了对比。计算结果表明:减振器特性试验值与最佳阻尼匹配要求值的最大偏差为9%,而且,在低频范围内,设计减振器的整车振动传递函数幅值明显低于原车载减振器的幅值,有效遏制了簧下质量在13Hz附近的共振,因此,减振器速度特性模型和阀系参数优化设计方法是正确的。关键词:汽车工程;减振器;最佳阻尼;速度特性;设计模型;优化方法中图分类号:U463.335.1 文献标识码:A Designofshockabsorbermatchingtooptimal dampingofvehiclesuspension ZhouChang—chen91”.MengJiel (1.SchoolofTrafficandVehicleEngineering,ShandongUniversityofTechnology,Zibo255049,Shandong,China;2.Schoolof MachineandVehicleEngineering,BeijingInstituteofTechnology,Beijing100081,China) Abstract:Inorderto

减振器阻尼系数与悬架系统阻尼比的匹配(精)

第22卷第6期2000年12月 武汉汽车工业大学学报 JOURNA L OF W UH AN AUT OM OTI VE PO LY TECH NIC UNI VERSITY V ol.22N o.6 Dec.2000 文章编号:10072144X(20000620022204 汽车减振器阻尼系数与悬架系统阻尼比的匹配 韦勇1,阳杰2,容一鸣2 (1.柳州五菱汽车有限责任公司技术中心,广西柳州545007;2.武汉汽车工业大学机电工程学院,湖北武汉430070 摘要:阐述了双轴汽车减振器阻尼系数与悬架系统阻尼比匹配设计的原则,论述了悬架减振器 外特性的匹配设计要求和设计方法,并对某实际车型进行了减振器阻尼系数与悬架系统阻尼比匹 配分析及改进设计。通过道路试验验证了改进设计的结果是可行的。 关键词:减振器;汽车悬架;阻尼比匹配 中图法分类号:U463.33文献标识码:A 汽车悬架动力学表明,地面对悬架系统的激振力等于悬架质量的惯性力和非悬架质量的惯性力之和。车轮动载(激振力又决定了车轮的接地性能,它是汽车行驶安全性的重要尺度。显然,在悬架系统中配置恰当的减振器,才能有效地抑制车身振动,保证良好的平顺性及安全性。

1阻尼匹配的原则 根据振动理论和工程经验,悬架阻尼的匹配关系由式(1确定: ξ=C 2Km =0.2~0.45(1式中,ξ为悬架系统阻尼比;C为悬架减振器的等效阻尼系数 (NsΠm;K为悬架刚度(NΠm; m为悬架质量(kg。当减振器不是垂直安装时,要考虑安装角的影响。 悬架中的弹性元件在支承车身质量的同时,还可缓和路面产生的振动,而减振器起抑制振动的作用。缓冲和抑振是矛盾着的两个方面,它们是在保证车辆和乘员安全的正常运行条件下统一起来的,这就是悬架阻尼必须匹配设计的依据。ξ值较大时,能迅速减振,但不适当地增大ξ值会传递较大的路面冲击,甚至使车轮不能迅速向地面回弹而失去附着力和对激励的缓冲能力;ξ值较小时,振动持续时间变长,又不利于改善舒适性。 一般说来,压缩行程时的悬架阻尼比要小于复原行程,因为在压缩行程,应尽量减小减振器对地面冲击的传递能力,以便充分利用弹性元件的缓冲作用,如果不适当地选择了高系数值,就相当于过分增大了悬架刚度,使车辆的平顺性变坏。在确定了ξ值之后,可由式(1确定减振器的阻尼系数。因此,确定ξ值是减振器设计的原始技术条件。 收稿日期:2000209218. 作者简介:韦勇(19672,男,广西柳州人,柳州五菱汽车有限责任公司工程师. 2悬架减振器非线性外特性的规律化和量化问题 众所周知,被动悬架可行性设计区理论规定了悬架弹性元件和阻尼元件的线性制约关系或匹配关系[1]。在解决悬架阻尼系数的匹配问题时,必须解

常见大中功率管三极管参数(精)

常见大中功率管三极管参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1402 1500V 5A 120W * * NPN 2SD1399 1500V 6A 60W * * NPN 2SD1344 1500V 6A 50W * * NPN 2SD1343 1500V 6A 50W * * NPN 2SD1342 1500V 5A 50W * * NPN 2SD1941 1500V 6A 50W * * NPN 2SD1911 1500V 5A 50W * * NPN 2SD1341 1500V 5A 50W * * NPN 2SD1219 1500V 3A 65W * * NPN 2SD1290 1500V 3A 50W * * NPN 2SD1175 1500V 5A 100W * * NPN 2SD1174 1500V 5A 85W * * NPN 2SD1173 1500V 5A 70W * * NPN 2SD1172 1500V 5A 65W * * NPN 2SD1143 1500V 5A 65W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1142 1500V 3.5A 50W * * NPN 2SD1016 1500V 7A 50W * * NPN 2SD995 2500V 3A 50W * * NPN 2SD994 1500V 8A 50W * * NPN 2SD957A 1500V 6A 50W * * NPN 2SD954 1500V 5A 95W * * NPN 2SD952 1500V 3A 70W * * NPN 2SD904 1500V 7A 60W * * NPN 2SD903 1500V 7A 50W * * NPN 2SD871 1500V 6A 50W * * NPN 2SD870 1500V 5A 50W * * NPN 2SD869 1500V 3.5A 50W * * NPN 2SD838 2500V 3A 50W * * NPN 2SD822 1500V 7A 50W * * NPN 2SD821 1500V 6A 50W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD348 1500V 7A 50W * * NPN 2SC4303A 1500V 6A 80W * * NPN 2SC4292 1500V 6A 100W * * NPN 2SC4291 1500V 5A 100W * * NPN 2SC4199A 1500V 10A 100W * * NPN 2SC3883 1500V 5A 50W * * NPN 2SC3729 1500V 5A 50W * * NPN 2SC3688 1500V 10A 150W * * NPN

阻尼弹簧减振器

ZT型阻尼弹簧减振器(JG/T3024-1995) 产品主要特点与用途: ZT型阻尼弹簧减振器(又称预应力弹簧减振器)具 有钢弹簧减振器的低频率和阻尼大的双重优点,消除钢 弹簧固有的共振振幅现象。该系列产品共20种规格,其 单只荷载10kg-5100kg各类荷载所应对的固有频率 2.0Hz-4.6Hz,阻尼比0.065。该系列减振器荷载范围广, 便于用户选择,固有频率低,隔振效果好,并且结构紧凑,外形尺寸较小,安装更换方便,使用安全可靠,工作寿命长,对工作环境适应性强,并能在-40℃-110℃环境下正常工作。对积极隔振、消极隔振、冲击振动和固体传声的隔离均有明显的效果。是隔离振动降低噪声、治理振动公害、保护环境的理想减振器。 ZT型系列减振器共有三种安装形式,ZT型减振器上下座面有防滑橡胶垫,对于干扰力较小的动力设备,可直接将ZT型减振器置放于设备的机座下,勿需固定,可任意移动调节重心,ZT(I)型上部固定,ZT(Ⅱ)型上下均可固定。 注ZT、ZT(I)、ZT(Ⅱ)型减振器仅在安装固定方式上不同外,技术特性完全相同。

ZTG型阻尼弹簧减振器 产品主要特点与用途: ZTG型阻尼弹簧减振器由弹簧、上橡胶套、下橡胶垫、上下铁件等 组成的减振器,具有结构简单、体积小,减振效果好,安装方便等优 点。 JA型阻尼弹簧减振器 产品主要特点与用途: 1、弹簧采用低频率值设计,并经喷塑处理,耐候性 佳,防振效果高。 2、顶部、底部均采用防滑耐磨橡胶以及固定螺栓设 计,安全性能大大提高。 3、安装简单并可根据实际需要调整高度及水平。 4、能够有效隔离冷水机组、冷却塔、热泵机组、发电机组等大型机械设备振动,并保护及延长其使用寿命。

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

典型非线性环节的静态特性

物理与电子信息学院电子信息工程专业 课程设计报告 课程名称自动控制原理 设计题目典型非线性环节的静态特性专业名称电子信息工程 班级13电子(1)班、(2)班学号 学生姓名 指导教师 完成时间2016年6月11日

目录 摘要与关键词 (3) 1设计目的 (4) 2设计原理 (5) 2.1具有继电特性的非线性环节 (5) 2.2具有饱和特性的非线性环节 (5) 2.3具有死区特性的非线性环节 (5) 2.4具有间隙特性的非线性环节 (6) 3操作步骤 (7) 3.1试验箱电路测试 (7) 3.1.1继电型非线性环节的模拟电路 (7) 3.1.2饱和型非线性环节的模拟电路 (8) 3.1.3具有死区特性的非线性环节的模拟电路 (8) 3.1.4具有间隙特性的非线性环节的模拟电路 (8) 3.2MATLAB、multisim电路仿真 (8) 3.2.1利用Multisim绘制电路原理图 (8) 3.2.2电路仿真 (9) 4实验结果 (10) 4.1试验箱测试结果 (10) 4.1.1继电型非线性环节的模拟电路 (10) 4.1.2饱和型非线性环节的模拟电路 (10) 4.1.3具有死区特性和间隙特性的非线性环节的模拟电路 (11) 4.2Multisim仿真结果 (12) 5总结 (14) 参考文献 (14)

摘要与关键词 摘要:非线性环节指状态变量和输出变量相对于输入变量的运动特性不能用线性关系描述的控制系统。该实验主要研究典型非线性环节的静态特性,利用自控理论及计算机控制技术实验箱完成对继电型非线性环节静特性、饱和型非线性环节静特性、完成具有死区特性的非线性环节静特性、具有间隙特性的非线性环节静特性的电路模拟研究。同时通过Multisim对电路进行仿真,深入研究电路特性及原理。 关键词:非线性环节;电路仿真;正弦信号

避震器与阻尼

避震器与阻尼 由上图可清处看出避震器对于抑制弹簧谈跳的效果。

避震器的内部就是使用高黏滞系数的流体以及小尺寸的孔径,来进行阻尼的设定。 避震器的功用 从避震器这个名称看来,好像车辆的震动主要是由避震器来吸收,其实不然。车辆在行经不平路面之震动所产生的能量主要是由弹簧来吸收,弹簧在吸收震动后还会产生反弹的震荡,这时候就利用避震器来减缓弹簧引起的震荡。 当避震器失效时,车子在行经不平路面就会因为避震器无法吸收弹簧弹跳的能量,而使车身有余波荡漾的弹跳,影响行车稳定性及舒适性。简单的说,避震器最主要是要抑制弹簧的跳动,迅速弭平车身弹跳。 阻尼 「阻尼」这个词我们可能很常听到,但是究竟何谓阻尼呢?简单的说,阻尼是作用于运动物体的一种阻力,而且阻力通常与运动速度成正比。就拿一般人常见的门弓器来说,当你轻轻开门时,门弓器内的油压缸所产生的阻力很小,很轻松就能把门推开;但是当你用力推门时,反而会因阻力较大而不好推。同样原理应用于汽车避震器,当弹簧受到较大的伸张或压缩力时,避震器会因阻尼效应而给予较大的抑制力。 避震器之所以会产生阻尼效应,是因避震器受力而压缩或拉伸时,内部的活塞在移动时会对液压油或高压气体加压使之通过小孔径的阀门,当液压油或高压气体通过阀门时会产生阻力,此一阻力就产生阻尼;而阀门的孔径大小和液压油的黏度都会改变阻尼的大小。一般阻尼较大的避震器就是所谓较硬的避震器,阻尼越大则避震器越不容易被压缩或拉伸,所以车身的晃动也会越小,并增加行经不平路面时轮胎的循迹性,然而却会降低行驶时的舒适性。 可调式避震器 可调式避震器可分为阻尼大小可调式避震器和弹簧位置高低可调式避震器,以及阻尼大小和弹簧位置高低都可调整的避震器。 阻尼大小可调式: 在避震器的内部使用可以调整孔径大小的阀门,在将阀门的孔径变小之后,避震器的阻尼也会跟着变硬。调整避震器的阻尼大小的方式可分为有段与无段的方式。以电子控制方式改变阻尼大小的避震器,则是采取有段调整的方式。

晶体管静态特性曲线分析

晶体管静态特性曲线分析 一、仿真目的 以三极管2N2222为例,运用Multisim对三极管的输入输出特性进行分析。 1)参照图一构建用于分析晶体管特性特性曲线的仿真电路。 2)参照图二,以Uce为参变量,通过仿真分析画出输入特性曲线Ube—I b.。3)参照图三,以ib为参变量,通过仿真分析画出输出特性曲线Uce—Ic 二、仿真要求 1)设计出用于分析NPN型晶体管输入输出特性的电路; 2)按要求选择合适的软件工具画出输入输出特性曲线,并对仿真进行总结分析,即:运用Multisim完成性能仿真,再选用自己熟悉的画图工具完成曲线绘制。 探索用Multisim仿真软件中的参数扫描功能,直接获取晶体三极管的特性曲线的方法。若能成功,,这应该是最直接最准确的好方法。 三、仿真电路图 四、仿真过程 静态工作点的设定

由图可知,晶体管处于放大状态,基本符合实验要求。 输入特性曲线: 将c极滑动变阻器调为0时,Uce近似与导线并联,约等于0,此时改变基极滑动变阻器可得到不同的Ube与Ib的值。 如图,令Uce=0V,1V,10V(0V操作简单,忘保存图了) 得到的Ube与Ib的值以及关系曲线分别为:

分析: 输入特性曲线描述了在关押将Uce一定的情况下,基极电流Ib与发射结压降Ube之间的函数关系。Uce=0V时,发射极与集电极短路,发射结与集电结均正偏,实际上时两个二极管并联的正向特性曲线。Uce>1时,Ucb=Uce-Ube>0,集电结进入反偏状态,开始Uce>1V 收集载流子,且基区复合减少,特性曲线将向右稍微移动一点,Ic/Ib增大,但Uce再增加时,曲线右移很不明显。 输出特性曲线: 将基极限流电阻调至很大(例如1M欧)时,基极电流Ib很小,近似约等于0。 令Ib分别=0uA,20uA,40uA,10mA:

汽车减震器结构图

悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张阀; 5. 储油缸筒; 6. 压缩阀; 7. 补偿阀; 8. 流通阀; 9. 导向座;10. 防尘罩;11. 油封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架在伸张运动时起到阻尼作用。

阻尼减震器的特点及优点【建设施工经典推荐】

阻尼减震器的特点及优点 什么是阻尼减震器 阻尼减震器对阻尼弹簧,橡胶减振垫组合使用,克服其缺点,具有复合隔振降噪,固有频率低,隔振效果好,对隔离固体传声,尤其是对隔离高频冲击的因体传声更为优越。是积极,消极隔振的理想产品。 阻尼减震器的特点 阻尼减震器载荷范围广,工作寿命长,使用安全可靠。上下座外表有防滑橡胶垫,对于扰力小,重点低的设备可直接将减振器放置于设备减振台座下,勿需固定:上座配有螺栓与设备固定。下座分别设有螺栓与地基螺栓孔,可以下固定。用户可根据不同的需要和场合进行选择。 阻尼减震器的优点 1、顶部和底部采用防滑耐磨橡胶和固定螺栓制成,提高了安全性能,安装方便。 2、铸钢外壳由合金钢弹簧制成,并且是注射成型的。耐候性好,使用寿命长,防震效果好。 3、它能有效隔离各种卧式和立式水泵、风机、空调机组、发电机组、柴油机组、管道等动力设备的振动,保护和延长其使用寿命。 阻尼减震器的功能 1、阻尼减震器有助于机械系统在瞬间受到冲击后迅速恢复到稳定状态。 2、阻尼震振器可以减少机械振动引起的声辐射和机械噪声。 3、能提高各种机床和仪器的加工精度、测量精度和工作精度。各种机器,尤其是精密机床,在动态环境中工作时,需要高抗冲击性和动态稳定性。通过各种阻尼处理,其动态性能可以提高。 4、阻尼减震器可以减小机械结构的协同振动幅度,从而避免因动应力极值而造成的结构损伤。 阻尼减震器的技术参数 阻尼减振器适用工作温度为-40℃--110℃,正常工作载荷范围内固有频率2HZ—5HZ,阻尼比00.045—0.065。(减振弹簧经150次疲劳试验无裂缝,无断裂,达到和超过了国家有关标准)。

悬架用减振器设计指南

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如 果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连 续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧, 甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元 件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

(整理)常用晶体管参数表

常用晶体管参数表 索引晶体管型号反压Vbeo 电流Icm 功率Pcm 放大系数特征频率管子类型9011 50V 0.03A 0.4W * 150MHZ NPN 9012 50V 0.5A 0.6W * * PNP 9013 50V 0.5A 0.6W * * NPN 9014 50V 0.1A 0.4W * 150MHZ NPN 9015 50V 0.1A 0.4W * 150MHZ PNP 9018 30V 0.05A 0.4W * 1GHZ NPN 2N2222 60V 0.8A 0.5W 45 * NPN 2N2369 40V 0.5A 0.3W * 800MHZ NPN 2N2907 60V 0.6A 0.4W 200 * NPN 2N3055 100V 15A 115W * * NPN2N 2N3440 450V 1A 1W * * NPN 2N3773 160V 16A 150W * * NPN 2N5401 160V 0.6A 0.6W * 100MHZ PNP 2N5551 160V 0.6A 0.6W * 100MHZ NPN 2N5685 60V 50A 300W * * NPN 2N6277 180V 50A 300W * * NPN 2N6678 650V 15A 175W * * NPN 2SA 2SA1009 350V 2A 15W ** PNP 2SA1012Y 60V 5A 25W ** PNP 2SA1013R 160V 1A 0.9W * * PNP 2SA1015R 50V 0.15A 0.4W * * PNP 2SA1018 150V 0.07A 0.75W * * PNP 2SA1020 50V 2A 0.9W * * PNP 2SA1123 150V 0.05A 0.75W * * PNP 2SA1162 50V 0.15A 0.15W * * PNP 2SA1175H 50V 0.1A 0.3W * * PNP 2SA1216 180V 17A 200W * * PNP 2SA1265 140V 10A 30W ** PNP 2SA1266Y 50V 0.15A 0.4W * * PNP 2SA1295 230V 17A 200W * * PNP 2SA1299 50V 0.5A 0.3W * * PNP 2SA1300 20V 2A 0.7W * * PNP 2SA1301 200V 10A 100W * * PNP 2SA1302 200V 15A 150W * * PNP 2SA1304 150V 1.5A 25W ** PNP 2SA1309A 25V 0.1A 0.3W * * PNP 2SA1358 120V 1A 10W *120MHZ PNP 2SA1390 35V 0.5A 0.3W * * PNP 2SA1444 100V 1.5A 2W * 80MHZ PNP 2SA1494 200V 17A 200W * 20MHZ PNP 2SA1516 180V 12A 130W * 25MHZ PNP

先导式溢流阀泄漏量对其静态特性影响的仿真研究

先导式溢流阀泄漏量对其静态特性影响的仿真研究先导式溢流阀泄漏量对其静态特性影响的 仿真研究 第15卷第1期 2O02年3月 盐城工学院(自然科学版) JournalofYanchengInstituteofTechnology(NaturalScience) V01.15N0.1 Mar.2o02 先导式溢流阀泄漏量对其静态特性影响的仿真研究. 姜福祥 (1.淮安信息职业技术学院机电工程系,江苏淮安 ,郁凯元 223001;2.东南大学机械T程系,江苏南京211}096) 摘要:应用TKSolver软件仿真研究先导式溢流阀内泄漏量对其静态特性的影响,揭示了内 泄漏量对开启压力,调压偏差的影响.其结果对合理确定配合间隙,保证先导式 溢流阀质量 及降低制造成本具有重要的实际意义. 关键词:先导式溢流阀;静态特性;内泄漏;仿真 中图分类号:TH137.521文献标识码:A文章编号:1671—5322(2002)01—0015—03 先导式溢流阀内泄漏量是一项综合性性能指 标,其大小对其静态特性及制造成本有明显的影

响.本文应用TKSolver软件仿真研究内泄漏量 对其静态特性的影响.其结果对合理确定配合间 隙,保证先导式溢流阀质量及降低制造成本具有 重要的实际意义. 1TKSolver软件简介 TKSolver是美国UTS公司的软件产品,可广泛用于机械工程,电气工程,建筑结构设计,财务分析,基础科学等领域的计算分析n].其主要组成部分及功能如下: 算式表(RuleSheet)用于编程;变量表(VariablesSheet)用于各变量赋值,输出及各变量与其它部分联系状态选择;自定义函数表(FunctionSheet)用于内置函数以外用户自定义函数;变量值列表(ListSheet)用于保存单个变量的值;单位换算表(UnitSheet)用于变量输入,输出单位的换算;变量值表(TableSheet)可将各变量值存储在此表中;作图表(PlotSheet)用于作图设置及输出图形;格式表(FormatSheet)主要用于变量类型及页面设置等操作;注释表(CommentSheet) 用于注释.TKSolver的解题方法主要有直接求解法(DirectSolving),选代求解法(IterafiveSolving). Raphson算法. 选代求解法采用Newton— 2先导式溢流阀内泄漏的主要部位及当量间隙 图1为二节同心式先导式溢流阀的工作原理图,其内泄漏的主要部位在先导阀心与先导阀座配合处,主阀心与主阀座配合处和主阀心在主阀孔中滑动的导向处,前二项为主要内泄漏部位. 泄漏形式主要包括缝隙泄漏及多孔泄漏J.在仿真建模时采用当量间隙计算,上述不规则的泄漏形式形成的泄漏量等于用当量间隙算出的泄漏量.先导阀心与先导阀座孔配合处当量泄漏量 Q主阀心与主阀座配合处当量 泄漏量Q,主阀心在主阀孔中滑动的导向处泄漏量Q计算公式如下: Q州Cd7tDsina~/2p2/p Q唧l=Cd7tDdsin~/2p1/p QB=Bp3

常用场效应管和晶体管参数大全

常用场效应管和晶体管参数大全 常用场效应管和晶体管参数大全 IRFU020 50V 15A 42W * * NMOS场效应IRFPG42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应IRFD120 100V 1.3A 1W * * NMOS场效应IRFD113 60V 0.8A 1W * * NMOS场效应IRFBE30 800V 2.8A 75W * * NMOS场效应IRFBC40 600V 6.2A 125W * * NMOS场效应IRFBC30 600V 3.6A 74W * * NMOS场效应IRFBC20 600V 2.5A 50W * * NMOS场效应IRFS9630 200V 6.5A 75W * * PMOS场效应IRF9630 200V 6.5A 75W * * PMOS场效应IRF9610 200V 1A 20W * * PMOS场效应IRF9541 60V 19A 125W * * PMOS场效应IRF9531 60V 12A 75W * * PMOS场效应IRF9530 100V 12A 75W * * PMOS场效应IRF840 500V 8A 125W * * NMOS场效应IRF830 500V 4.5A 75W * * NMOS场效应IRF740 400V 10A 125W * * NMOS场效应IRF730 400V 5.5A 75W * * NMOS场效应IRF720 400V 3.3A 50W * * NMOS场效应IRF640 200V 18A 125W * * NMOS场效应IRF630 200V 9A 75W * * NMOS场效应IRF610 200V 3.3A 43W * * NMOS场效应IRF541 80V 28A 150W * * NMOS场效应

减振器基础知识

减振器基础知识 减振器的结构是带有活塞的活塞杆插入筒内,在筒中充满油。活塞上有节流孔,使得被活塞分隔出来的两部分空间中的油可以互相补充。阻尼就是在具有粘性的油通过节流孔时产生的,节流孔越小,阻尼力越大,油的黏度越大,阻尼力越大。如果节流孔大小不变,当减振器工作速度快时,阻尼过大会影响对冲击的吸收。因此,在节流孔的出口处设置一个圆盘状的板簧阀门,当压力变大时,阀门被顶开,节流孔开度变大,阻尼变小。由于活塞是双向运动的,所以在活塞的两侧都装有板簧阀门,分别叫做压缩阀和伸张阀。减振器按其结构可分为双筒式和单筒式。双筒式是指减振器有内外两个筒,活塞在内筒中运动,由于活塞杆的进入与抽出,内筒中油的体积随之增大与收缩,因此要通过与外筒进行交换来维持内筒中油的平衡。所以双筒减振器中要有四个阀,即除了上面提到的活塞上的两个节流阀外,还有装在内外筒之间的完成交换作用的流通阀和补偿阀。与双筒式相比,单筒式减振器结构简单,减少了一套阀门系统。它在缸筒的下部装有一个浮动活塞, (所谓浮动即指没有活塞杆控制其运动),在浮动活塞的下面形成一个密闭的气室,充有高压氮气。上面提到的由于活塞杆进出油液而造成的液面高度变化就通过浮动活塞的浮动来自动适应之。除了上面所述两种减振器外,还有阻力可调式减振器。它可通过外部操作来改变节流孔的大小。最近的汽车将电子控制式减振器作为标准装备,通过传感器检测行驶状态,由计算机计算出最佳阻尼力,使减振器上的阻尼力调整机构自动工作。减振器类型为加速车架与车身振动的衰减,以改善汽车的行驶平顺性(舒适性),在大多数汽车的悬架系统内部装有减震器。减震器从产生阻尼的材料这个角度划分主要有液压和充气两种,还有一种可变阻尼的减震器。液压汽车悬架系统中广泛采用液力减震器。其原理是,当车架与车桥做往复相对运动儿活塞在减震器的缸筒内往复移动时,减震器壳体内的油液便反复地从内腔通过一些窄小的孔隙流入另一内腔。此时,液体与内壁的摩擦及液体分子的内摩擦便形成对振动的阻尼力。充气式减震器充气式减震器是60年代以来发展起来的一种新型减震器。其结构特点是在缸筒的下部装有一个浮动活塞,在浮动活塞与缸筒一端形成的一个密闭气室种充有高压氮气。在浮动活塞上装有大断面的O 型密封圈,它把油和气完全分开。工作活塞上装有随其运动速度大小而改变通道截面积的压缩阀和伸张阀。当车轮上下跳动时,减震器的工作活塞在油液种做往复运动,使工作活塞的上腔和下腔之间产生油压差,压力油便推开压缩阀和伸张阀而来回流动。由于阀对压力油产生较大的阻尼力,使振动衰减。阻力可调式减震器装有阻力可调式减震器的汽车的悬架一般用刚度可变的空气弹簧作为弹性元件。其原理是,空气弹簧若气压升高,则减震器气室内的压力也升高,由于压力的改变而使油液的节流孔径发生改变,从而达到改变阻尼刚度的目

21随机载荷减震器阻尼力测试

随机载荷减振器阻尼力测试 李波涛,徐雄威,王成业,董新年 (长城汽车股份有限公司技术中心、河北省汽车工程技术研究中心,保定 071000) 摘要:简单介绍了应变片的组桥和工作原理,阐述了使用应变片对车辆减振器阻尼力进行测试的方法,并结合整车试验,在各种不同路面下进行减振器阻尼力动态响应测试。根据减振器标定公式,计算在各种路况下减振器的阻尼力。 关键词:减振器;阻尼力;应变测试;nCode 引言 随着生活水平的提高,人们对汽车的乘坐舒适性、操纵稳定性和行驶安全性提出了更高的要求。减振器作为车辆悬架的重要组成部分,是影响上述指标的关键所在。 减振器的作用是迅速衰减车身和车轮之间由弹性元件引起的连续相对运动,改善车辆行驶平顺性、操纵稳定性和安全性,为人们的驾乘提供更舒适的感受。 1 减振器简介 评价减振器优劣的最主要的指标是阻尼特性。阻尼特性可以用示功图和速度特性进行体现。 示功图是减振器在运动过程中阻尼力随活塞位移变化而围成的曲线图。速度特性图为减振器在运动过程中阻尼力随活塞杆速度变化而形成的曲线图,两者结合观测,可对减振器阻尼力进行全面的评价。 图1 阻尼力-位移特性和阻尼力-速度特性而目前面临的问题是,减振器阻尼力测试只在台架上进行,并且只选择几个特定的速度,并未涵盖用户的所有使用工况,而增加测试点又会大幅度提高测试成本,此方法存在一定的不足。 基于提高阻尼力测试全面性的角度,需对阻尼力的测试方法进行完善。在减振器活塞杆表面粘贴应变片,结合整车道路随机载荷采集,可弥补上述方法的不足。 2 应变片工作原理 应变的测量是将应变片因应变而引起的阻值变化转换为电压信号。根据输出电压和各桥臂阻值变化之间的关系: 得出电压信号的变化。 图2 惠斯通全桥 3 减振器处理 3.1 应变片粘贴 在减振器活塞杆上加工四个凹槽,凹槽深度要适中,并经过进一步处理。粘贴两枚应变片在其两个相对的凹槽位置,组成惠斯通全桥。 在活塞杆运动过程中,应变片随着活塞杆的拉

汽车减震器分析

汽车减震器分析 第一汽车减震器原理 ?由于悬架系统中的弹性元件受冲击产生震动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减震器。 ?为衰减震动,汽车悬架系统中采用减震器多是液力减震器,其工作原理是当车架和车桥间震动而出现相对运动时,减震器内的活塞上下移动,减震器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对震动形成阻尼力,使汽车震动能量转化为油液热能,再由减震器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥之间的相对运动速度增减,并与油液粘度有关。 第二汽车减震器示意图 1.活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张阀; 5. 储油缸筒; 6. 压缩阀; 7. 补偿阀;8. 流通阀;9. 导向座; 10. 防尘罩;11. 油封 第三减振器数学模型的基本原则

?(1)模型可以全面描述减振器的阻尼特性。 ?(2)数学表达式应该清晰、简洁、易用。 ?(3)选用的参数应该具有明显的物理意义。参数应该描述典型物理量的特性,如第一阻尼系数,泄载点和第二阻尼系数。 ?(4)可以方便的根据试验结果确定参数。 ?(5)能够准确描述阻尼特性曲线的形状和阀的配置之间的关系。 ?(6)能够精确计算分析减振器的阻尼性能与车辆系统能量消耗的关系,可以定量分析极端条件下减振器是否能够疏散足够的热量。 ?(7)应有助于深入的理解和分析减振器的内部运动过程和外部工作性能。 ?(8)可以满足减振器设计,减振器特性分析和车辆系统动力学研究的要求 第四减震器数学模型 第五对减震器数学模型的分析 建立如下公式描述减振器的行为 ?式中,Y(x):阻尼力或压降X:活塞速度或者液压油流量B:第一阻尼系数C:形状因

最新常用晶体管参数查询

常用晶体管参数查询

常用晶体管参数查询 Daten ohne Gewahr 2N109 GE-P 35V 0.15A 0.165W | 2N1304 GE-N 25V 0.3A 0.15W 10MHz 2N1305 GE-P 30V 0.3A 0.15W 5MHz | 2N1307 GE-P 30V 0.3A 0.15W B>60 2N1613 SI-N 75V 1A 0.8W 60MHz | 2N1711 SI-N 75V 1A 0.8W 70MHz 2N1893 SI-N 120V 0.5A 0.8W | 2N2102 SI-N 120V 1A 1W <120MHz 2N2148 GE-P 60V 5A 12.5W | 2N2165 SI-P 30V 50mA 0.15W 18MHz 2N2166 SI-P 15V 50mA 0.15W 10MHz | 2N2219A SI-N 40V 0.8A 0.8W 250MHz 2N2222A SI-N 40V 0.8A 0.5W 300MHz | 2N2223 2xSI-N 100V 0.5A 0.6W >50 2N2223A 2xSI-N 100V 0.5A 0.6W >50 | 2N2243A SI-N 120V 1A 0.8W 50MHz 2N2369A SI-N 40V 0.2A .36W 12/18ns | 2N2857 SI-N 30V 40mA 0.2W >1GHz 2N2894 SI-P 12V 0.2A 1.2W 60/90ns | 2N2905A SI-P 60V 0.6A 0.6W 45/100 2N2906A SI-P 60V 0.6A 0.4W 45/100 | 2N2907A SI-P 60V 0.6A 0.4W 45/100 2N2917 SI-N 45V 0.03A >60Mz | 2N2926 SI-N 25V 0.1A 0.2W 300MHz 2N2955 GE-P 40V 0.1A 0.15W 200MHz | 2N3019 SI-N 140V 1A 0.8W 100MHz 2N3053 SI-N 60V 0.7A 5W 100MHz | 2N3054 SI-N 90V 4A 25W 3MHz 2N3055 SI-N 100V 15A 115W 800kHz | 2N3055 SI-N 100V 15A 115W 800kHz 2N3055H SI-N 100V 15A 115W 800kHz | 2N3251 SI-P 50V 0.2A 0.36W 2N3375 SI-N 40V 0.5A 11.6W 500MHz | 2N3439 SI-N 450V 1A 10W 15MHz 2N3440 SI-N 300V 1A 10W 15MHz | 2N3441 SI-N 160V 3A 25W POWER

基于AMESim恒功率泵的动静态特性仿真分析

2010年7月 第38卷第13期 机床与液压 MACH I NE TOOL &HYDRAUL I CS Jul 2010 V ol 38No 13 DO I :10.3969/j issn 1001-3881 2010 13 037 收稿日期:2010-04-23 基金项目:国家 863 高技术产业化研究资助项目(2007AA041803);上海市数字化汽车车身工程重点实验室开放课题基 金资助(MS V 2009 02);十一五科技支撑计划资助项目(2006B AF01B03 01) 作者简介:文哲(1985 ),男,硕士研究生,主要研究方向为轴向柱塞泵变量控制。通讯作者:徐兵,E -m ai:l bxu @ zju edu cn 。 基于AMES im 恒功率泵的动静态特性仿真分析 文哲,徐兵 (浙江大学流体传动及控制国家重点实验室,浙江杭州310027) 摘要:以压力流量功率复合控制泵的功率控制部分为研究对象,利用AM ESi m 搭建压力流量功率复合控制泵的整体仿真模型,针对影响其功率控制部分动静态特性的几个关键因素 流量阀弹簧刚度、功率阀阀芯三角槽数进行变参分析。仿真结果表明:增大流量阀弹簧刚度,可以改善功率控制范围内斜盘摆角的动态特性;增加功率阀阀芯三角槽个数,可以减小最小功率值,从一定程度上增大功率控制范围。 关键词:恒功率;轴向柱塞泵;动态特性;静态工作曲线中图分类号:TH137 51!!文献标识码:A !!文章编号: 1001-3881(2010)13-122-6 Dyna m ic and Static Sim ulation Analysis of Constant Power Pu mp Based on Am esi m W E N Zhe ,XU B ing (State Key Lab of Flui d Po w er Trans m i s si o n and Contro l of Zhe jiang Un i v ersity ,H angzhou Zhe jiang 310027,Ch i n a) Abstrac t :T he po w er con tro l pa rt o f pressure /flow /powe r con tro l pump as the st udy object , t he m ode l of t he pump w as co m plete ly bu ilt i n AM ESi m for s i m u l a tion .A lter i ng para m eter ana l ys i s was perfor m ed for several key factors that i nfl uence t he dynam ic and sta ti c cha racte ristics o f the power control part of t he pu m p ,such as spr i ng stiff ness of flow ra te v alve and the nu m ber o f the tr iangu l a r g rooves o f the powe r va l ve spoo.l T he si m ulati on resu lts sho w tha t t he dynam ic and static character istics of the s w ash p l a te ang le i n rang e o f pow er contro l are i m proved by i ncreasi ng the spri ng stiffness o f flow ra te v alve ;the m i ni m u m pow er va l ue is reduced and the rang e o f pow er contro l i s broadened to a cer tai n ex tent by i ncreas i ng the number of t he triangular grooves of t he pow er valve spoo.l K eyword s :Constant pow er ;A x ial pist on pu m p ;Dyna m i c charac teristi c ;Static curve !!恒功率控制泵是提高液压系统节能效率的关键元件,可以在特定工况下减少原动机功率的浪费,具有良好的节能效果。因此研究恒功率控制泵的控制性能并改善其动静态特性,具有现实意义。 作者研究对象是一种压力流量功率复合控制泵的功率控制部分。这种压力流量功率复合控制泵,采用压力阀、流量阀、双弹簧功率阀的配合工作实现泵压力、流量、功率的复合控制,而且该泵是通过功率阀三角槽结构溢流的方式实现恒功率控制。因此,在该泵实现功率控制的过程中不仅受到自身功率阀结构参数的影响,而且也会受到其他功能控制阀结构参数的影响。 作者从上述的两个影响方面出发,针对流量阀弹簧刚度和功率阀三角槽个数进行分析。采用先进的液压仿真软件A M ESm i 搭建完整的压力流量功率复合控制泵仿真模型,并采用MATLAB 精确计算功率阀阀芯结构参数并将其导入AM ESm i 中,然后变参分析,最终获得合理的结构参数。 1!恒功率控制原理 图1!压力流量功率复 合控制泵原理图 ! 图2!压力流量功率复 合控制泵静态工 作曲线示意图 压力流量功率复合控制泵是通过预先设定,在不同工作压力下,使泵处于不同控制工况。根据压力流量功率复合控制原理图(图1),结合其静态工作曲线(图2)及功率阀结构示意图(图3),说明该泵

相关文档
最新文档