PCB表面镀层的种类
关于PCB板表面处理,镀金和沉金工艺的区别
关于PCB板表面处理,镀金和沉金工艺的区别
一、PCB板表面处理
PCB板的表面处理工艺包括:抗氧化,喷锡,无铅喷锡,沉金,沉锡,沉银,镀硬金,全板镀金,金手指,镍钯金OSP等。
要求主要有:成本较低,可焊性好,存储条件苛刻,时间短,环保工艺,焊接好,平整。
喷锡:喷锡板一般为多层(4-46层)高精密度PCB样板,已被国内多家大型通讯、计算机、医疗设备及航空航天企业和研究单位采用。
金手指(connecting finger)是内存条上与内存插槽之间的连接部件,所有的信号都是通过金手指进行传送的。
金手指由众多金黄色的导电触片组成,因其表面镀金而且导电触片排列如手指状,所以称为“金手指”,金手指板都需要镀金或沉金。
金手指实际上是在覆铜板上通过特殊工艺再覆上一层金,因为金的抗氧化性极强,而且传导性也很强。
不过因为金昂贵的价格,目前较多的内存都采用镀锡来代替,从上个世纪90年代开始锡材料就开始普及。
目前主板、内存和显卡等设备的“金手指”几乎都是采用的锡材料,只有部分高性能服务器/工作站的配件接触点才会继续采用镀金的做法,价格自然不菲的。
二、镀金和沉金工艺的区别
沉金采用的是化学沉积的方法,通过化学氧化还原反应的方法生成一层镀层,一般厚度较厚,是化学镍金金层沉积方法的一种,可以达到较厚的金层。
镀金采用的是电解的原理,也叫电镀方式。
其他金属表面处理也多数采用的是电镀方式。
在实际产品应用中,90%的金板是沉金板,因为镀金板焊接性差是他的致命缺点,也是导致很多公司放弃镀金工艺的直接原因!
沉金工艺在印制线路表面上沉积颜色稳定,光亮度好,镀层平整,可焊性良好的镍金镀层。
PCB电镀工艺介绍
PCB电镀工艺介绍PCB(Printed Circuit Board,印刷电路板)是电子产品中十分重要的组成部分,通过在基板上印刷导电图形来连接电子元件,实现电路功能。
而PCB电镀是PCB制造过程中的一个重要工艺,它能够为PCB提供导电性能和保护层,提高其性能和可靠性。
PCB电镀的主要目的是在PCB表面涂上一层金属或合金,以增加其导电性和耐腐蚀性,并提供接触电阻低的连接点。
常见的PCB电镀工艺有化学镀金(ENIG)、热浸锡(HASL)、不锈钢板镀金(ENEPIG)等。
下面将对其中的几种常见电镀工艺进行详细介绍。
首先是化学镀金(ENIG)工艺,它是目前PCB制造中较为常用的电镀工艺之一、化学镀金是使PCB表面均匀涂上一层金属镀层的工艺,能够保护PCB表面不受氧化、腐蚀等影响,并具有良好的焊接性能。
化学镀金的过程主要包括清洗、活化、化学镀金、后处理等步骤。
其中,活化过程能够使PCB表面形成一层切实的活性金属膜,提高金属沉积的质量和附着力。
而后处理则是为了去除残留的活化剂和其他杂质,保证镀层的质量和均匀性。
其次是热浸锡(HASL)工艺,它是较为传统的PCB电镀工艺之一、热浸锡是通过将PCB浸泡在融化的锡液中,使其表面形成一层锡镀层的工艺。
热浸锡工艺具有生产成本低、工艺简单等优点,广泛应用于PCB制造中。
但是,热浸锡工艺存在着涂布厚度不均匀、焊接性能较差等缺点。
另外,还有一种常见的电镀工艺是不锈钢板镀金(ENEPIG)工艺。
ENEPIG是为了应对高频和低反射电路设计而发展的一种新型电镀工艺。
它通过在PCB表面先后镀上镍、金、钯等金属来形成一层保护层,提高PCB的可靠性和耐腐蚀性。
ENEPIG工艺具有良好的焊接性能、热稳定性和阻焊层附着力,非常适合于高频电路和复杂设计的PCB。
除了上述介绍的几种电镀工艺外,还有很多其他的电镀工艺,例如有机覆盖层镀金(OSIG)、沉金(ENIG)等。
每种电镀工艺都有各自的特点和适用范围,根据PCB设计的要求和产品的特性选择合适的电镀工艺非常关键。
pcb镀金常用工艺
pcb镀金常用工艺PCB镀金是一种常用的工艺,用于提高电路板的导电性和耐腐蚀性。
本文将介绍PCB镀金的常用工艺以及其优点和应用。
一、PCB镀金的常用工艺PCB镀金工艺主要包括电镀前处理、电镀层选择、电镀工艺参数的确定和电镀后处理等环节。
1. 电镀前处理电镀前处理是保证电镀层质量的关键步骤。
首先要进行表面清洁,去除油污、灰尘和氧化物等杂质。
常用的清洗方法有机械清洗、超声波清洗和化学清洗等。
其次是进行表面粗糙度处理,常用的方法有化学抛光、机械抛光和电化学抛光等。
最后是进行活化处理,常用的活化方法有酸性活化和碱性活化等。
2. 电镀层选择PCB镀金常用的电镀层有硬金、软金和镍金等。
硬金镀层主要由金和镍组成,具有良好的导电性和耐腐蚀性,适用于高频和高温环境。
软金镀层主要由金和镍的合金组成,具有良好的可焊性和可用性,适用于普通环境。
镍金镀层主要由镍和金组成,具有良好的耐腐蚀性和可焊性,适用于多种环境。
3. 电镀工艺参数的确定电镀工艺参数的确定是保证电镀层质量的关键因素。
主要包括电镀液的成分和浓度、电流密度、电镀时间和温度等。
电镀液的成分和浓度应根据不同的电镀层选择确定。
电流密度和电镀时间应根据电镀层的厚度和均匀性要求确定。
温度的控制对电镀层的质量也有重要影响,通常要求在一定的范围内保持恒定。
4. 电镀后处理电镀后处理是保证电镀层质量的重要环节。
主要包括清洗、干燥和包装等。
清洗的目的是去除电镀液残留物和杂质,常用的方法有水洗、酸洗和碱洗等。
干燥的目的是除去水分,常用的方法有自然干燥、热风干燥和吸湿剂干燥等。
包装的目的是保护电镀层,常用的方法有真空包装、泡沫包装和气密包装等。
二、PCB镀金的优点PCB镀金具有以下优点:1. 提高导电性:金属电镀层能够提高电路板的导电性,降低导电阻抗,提高信号传输效率。
2. 增强耐腐蚀性:金属电镀层能够有效防止电路板受到氧化、腐蚀和污染等环境因素的侵蚀,延长电路板的使用寿命。
3. 增加可焊性:金属电镀层能够提高电路板与焊接材料之间的附着力,增加焊接的牢固度和可靠性。
62 PCB表面处理分类及特点
包裝
無鹵
1、以入庫起算達六個月(含)以上,以 1、需加一層氣泡布包裝
素/ HiCTI 鋁箔 / OSP
6個 120℃烘烤160分鐘。
2、需退OSP烘烤
( 透明 化金 月 2、烘烤後的保存期限以烘烤日起算一年 3、烘烤後先測試再重走
Level 真空
,超過一年(含)以上報廢處理。 OSP製程
2以 上)
包裝
重新Recoating 性能否維持目前被打問號〝?〞, 但喜的是目前
保焊劑 一次
耐高溫的O.S.P已經出爐, 有待進一步澄清.
O.S.P. (c) 平整度佳, 適 (d) 因OSP有絕緣.在有因此testing pad一定有加印
合SMT裝配作 錫膏作業以特性,利測試順利孔的testing pad更
業
(c) 可作無鉛製程
處理
化鎳浸金 加保焊劑 ENIG +
O.S.P
優點
缺點
(a) 此為改良型的化鎳浸金作法, 其目的 是保存在要導電接觸區或按鍵區保留 化鎳浸金. 但將要焊接的地方或重要 焊接地方如BGA處改為O.S.P.作業. 如 此一來即可保留化鎳浸金的最佳導電 又可保持O.S.P.的最佳焊錫強度, 目前 手機板大部份用此方式作業
處理
優點
缺點
(a) 焊錫性特佳是 (a) 打開包裝袋後須在24小時內焊接完畢, 以免焊
各種表面處理 錫性不良
焊錫強度的指 (b) 在作業時必須戴防靜電手套以防止板子被污染
標(benchmark) (c) IR Reflow的peak temp為220℃對於無鉛錫膏
(b) 對過期板子可 peak temp要達到240℃時第二面作業時之焊錫
無鹵
鋁箔 / 化銀 透明 化錫 真空 SIT 包裝
PCB板表面处理标准
PCB板表面处理标准本文档旨在为PCB(Printed Circuit Board)板的表面处理提供标准和准则。
通过合适的表面处理,可以确保PCB板的质量和性能,从而提高整体电路的可靠性。
1. 表面处理的重要性表面处理是PCB板制造过程中的关键步骤。
它不仅可以提供保护性涂层,防止PCB板受到腐蚀和氧化,还可以改善焊接和连接性能,提高PCB板的可靠性和性能。
2. 表面处理的标准根据PCB板的用途和需要,选择合适的表面处理方法和标准非常重要。
以下是常用的表面处理标准:2.1 焊料电镀(Solder Plating)焊料电镀是最常见的表面处理方法之一。
它可以提供较好的焊接性能和连接性能,使得电子器件能够稳固地连接在PCB板上。
常见的焊料电镀材料包括无铅锡镀、热浸锡(HASL)和金手指电镀等。
2.2 金属化(Metalization)金属化是一种在PCB板表面涂覆金属层的表面处理方法。
它可以提高导电性能和抗氧化能力,适用于特定的高频电路和高功率电路。
常用的金属化材料包括金、银和铜等。
2.3 有机保护层(Organic Coating)有机保护层是一种通过涂覆有机材料在PCB板表面形成保护层的表面处理方法。
它可以提供良好的防腐蚀和绝缘性能,延长PCB板的使用寿命。
常见的有机保护层材料包括防焊阻焊(Solder Mask)和丝印(Silkscreen)等。
2.4 表面粗糙度(Surface Roughness)表面处理还需要注意表面粗糙度的要求。
合适的表面粗糙度可以提供良好的焊接性能和连接性能,避免焊接缺陷和信号干扰。
常见的表面粗糙度要求包括RA值和RZ值等。
3. 技术要求和检验方法为确保表面处理的质量和符合标准,需要采用适当的技术要求和检验方法。
具体的技术要求和检验方法可以根据相关行业标准和客户要求进行制定和选择。
常见的技术要求和检验方法包括可视检查、显微镜检查和剥离实验等。
4. 总结通过合适的表面处理,可以提高PCB板的质量和性能,确保电路的可靠性。
PCB表面最终涂层种类介
PCB表面最终涂层种类介PCB制造的最终涂层工艺在近年来差不多经历重要变化。
这些变化是对克服HASL(hot air solder leveling)局限的持续需求和HASL替代方法越来越多的结果。
最终涂层是用来爱护电路铜箔的表面。
铜(Cu)是焊接元件的专门好的表面,但容易氧化;氧化铜阻碍焊锡的熔湿(wetting)。
尽管现在使用金(Au)来覆盖铜,因为金可不能氧化;金与铜会迅速相互扩散渗透。
任何暴露的铜都将专门快形成不可焊接的氧化铜。
一个方法是使用镍(Ni)的“障碍层”,它防止金与铜转移和为元件的装配提供一个耐久的、导电性表面。
PCB对非电解镍涂层的要求非电解镍涂层应该完成几个功能:金沉淀的表面电路的最终目的是在PCB与元件之间形成物理强度高、电气特性好的连接。
如果在PCB表面存在任何氧化物或污染,那个焊接的连接用当今的弱助焊剂是可不能发生的。
金自然地沉淀在镍上面,并在长期的储存中可不能氧化。
但是,金可不能沉淀在氧化的镍上面,因此镍必须在镍浴(nickelbath)与金溶解之间保持纯洁。
如此,镍的第一个要求是保持无氧化足够长的时刻,以承诺金的沉淀。
元件开发出化学浸浴,以承诺在镍的沉淀中6~10%的磷含量。
非电解镍涂层中的那个磷含量是作为浸浴操纵、氧化物、和电气与物理特性的认真平稳考虑的。
硬度非电解镍涂层表面用在许多要求物理强度的应用中,如汽车传动的轴承。
PCB的需要远没有这些应用严格,然而关于引线接合(wire-bonding)、触感垫的接触点、插件连接器(edge-connetor)和处理可连续性,一定的硬度依旧重要的。
引线接合要求一个镍的硬度。
如果引线使沉淀物变形,摩擦力的缺失可能发生,它关心引线“熔”到基板上。
SEM照片显示没有渗透到平面镍/金或镍/钯(Pd)/金的表面。
电气特性由于容易制作,铜是选作电路形成的金属。
铜的导电性优越于几乎每一种金属(表一)1,2。
金也具有良好的导电性,是最外层金属的完美选择,因为电子倾向于在一个导电路线的表面流淌(“表层”效益)。
PCB表面最终涂层种类介(doc 9)
PCB表面最终涂层种类介(doc 9)PCB表面最终涂层种类介PCB制造的最终涂层工艺在近年来已经经历重要变化。
这些变化是对克服HASL(hot air solder leveling)局限的不断需求和HASL替代方法越来越多的结果。
最终涂层是用来保护电路铜箔的表面。
铜(Cu)是焊接元件的很好的表面,但容易氧化;氧化铜阻碍焊锡的熔湿(wetting)。
虽然现在使用金(Au)来覆盖铜,因为金不会氧化;金与铜会迅速相互扩散渗透。
任何暴露的铜都将很快形成不可焊接的氧化铜。
一个方法是使用镍(Ni)的“障碍层”,它防止金与铜转移和为元件的装配提供一个耐久的、导电性表面。
PCB对非电解镍涂层的要求非电解镍涂层应该完成几个功能:金沉淀的表面电路的最终目的是在PCB与元件之间形成物理强度高、电气特性好的连接。
如果在PCB表面存在任何氧化物或污染,这个焊接的连接用当今的弱助焊剂是不会发生的。
金自然地沉淀在镍上面,并在长期的储存中不会氧化。
可是,金不会沉淀在氧化的镍上面,因此镍必须在镍浴(nickel bath)与金溶解之间保持纯净。
这样,镍的第一个要求是保持无氧化足镍 7.4 µΩcm非电解镍镀层55~90 µΩcm虽然多数生产板的电气特性不受镍层影响,镍可影响高频信号的电气特性。
微波PCB的信号损失可超过设计者的规格。
这个现象与镍的厚度成比例 - 电路需要穿过镍到达焊锡点。
在许多应用中,电气信号可通过规定镍沉淀小于2.5µm恢复到设计规格之内。
接触电阻接触电阻与可焊接性不同,因为镍/金表面在整个终端产品的寿命内保持不焊接。
镍/金在长期环境暴露之后必须保持对外部接触的导电性。
Antler的1970年著作以数量表示镍/金表面的接触要求。
研究了各种最终使用环境:3“65°C,在室温下工作的电子系统的一个正常最高温度,如计算机;125°C,通用连接器必须工作的温度,经常为军事应用所规定;200°C,这个温度对飞行设备变得越来越重要。
PCB表面处理分类及特点
PCB表面處理優缺點比較
處理
優點
缺點
(a) 平整度佳適合SMT裝 (a) 焊錫強度最差
配作業
(b) 容易造成BGA處焊接後之裂
(b) 由因金導電性特性對 痕,
化鎳浸金 ENIG
於板周圍須要良好的 接觸或對於按鍵用的 產品如手機類仍是最 佳的選擇
其原因為先天焊錫強度很差, 裝 配線操作空間小, 也可能是 PCB板本身上鎳容易氧化, 操 作空間同樣很小, 因此PCBA
反應溫度 240℃ 85℃
45℃ 70℃ 50℃
作業時間 5 分鐘 60~80 分鐘 6~10 分鐘 15~25 分鐘 6~10 分鐘
重工程度 容易 困難
容易 容易 困難
綠漆相容性 好
差
佳
差
佳
焊錫性 佳
差
佳
佳
好Leabharlann 廢水處理 簡單 複雜簡單 複雜 簡單
操作成本 1.2
5
1
5
3
PCB表面處理優缺點比較
無鉛噴錫、 OSP、 化金、 化銀、 化錫的保存期限及保存條件:
(b) 平整度佳適合作SMT裝 配作業
(e) 適合無鉛製程
(a) 其缺點與保焊劑O.S.P相同
(b) 由於是兩種表面處理PCB作業及 流程繁多. 製程也複雜, 成本增 加, 價錢較貴在所難免
PCB表面處理優缺點比較
化金、 化錫、 化銀、 OSP 吃錫性及四項製程優缺點:
特性項目 噴錫 化學鎳金 有機保焊劑 化學浸錫 化學銀
反應溫度 240℃ 85℃
45℃
70℃ 50℃
儲齡 1 年 1 年
3/ 6 個月 3/ 6 個月 6 個月
皮膜厚度 40P~10C00μBin 表NAiu122~面04~μ25i0n處μin理8~20優μin缺4點0~60比μin 較6~25μin
PCB 表面镀层技术
PCB表面涂(镀)覆技术Surface finished technology of PCB摘要本文综述了PCB表面涂(镀)覆层的现状与发展关键词表面涂覆热风整平有机可焊性保护剂化学镀镍/金化学镀银化学镀锡Abstract This paper summarizes the development and present of surface finished technology in PCBKeyword surface finish HASL OSP electroless Ni/Au electroless Ag electroless Sn本文所述的表面涂(镀)覆技术是指除阻焊剂(阻悍膜、阻焊层)以外的可供电气连接的可焊性或可接触性的涂(镀)覆层。
如HASL(或HAL 热风焊料整平或简称热风整平)、OSP(有机可焊性保护剂或耐热预焊剂)、电镀Ni/Au、化学镀Pd(钯)、化学镀Ni/Au、化学镀Sn、化学镀Ag等。
这些表面涂覆层对新鲜的铜表面起保护作用或隔离作用,在PCB产品的可焊性和可靠性等方面起着十分重要作用。
因此,它是PCB生产过程中的一个重要加工步骤。
1热风整平(HAL)热风整平(HAL)或热风焊料整平(HASL)是20世纪80年代发展起来的一种先进工艺,到了90年代中、后期,它占据着整个PCB 表面涂(镀)覆层的90%以上。
只是到了90年代的末期,由于表面安装技术(SMT)的深入发展,才使HAL在PCB中的占有率逐步降低下来,但是,目前HAL在PCB表面涂(镀)覆中的占有率仍在50%左右。
尽管SMT 的高密度发展会使HAL在PCB中的应用机率不断下降,但是HAL技术在PCB生产中的应用仍有很长的生命力,即使禁用铅的焊料(无铅的绿色焊料),无铅的HAL技术和工艺也会开发和应用起来。
1.1 热风整平工艺和应用热风整平技术是指把PCB(一般为在制板 panel)浸入熔融的低共熔点(183℃,如图1所示)S n/P b(比例应等于或接近于63/37,操作温度为230∽250℃之间)合金中,然后拉图1 锡/铅合金的组成出经热风(控制热风温度、风速和风刀角度,其中风刀结构与PCB板距离等已优化而固定下来)吹去多余的Sn/Pb合金,得到所要求组成和厚度的S n/P b合金层。
pcb镀金层厚度国际标准
pcb镀金层厚度国际标准PCB镀金是一种将金属沉积在印刷电路板(PCB)表面的过程,以提供良好的导电性、耐腐蚀性和可靠性。
PCB镀金的厚度一般是以微米(μm)为单位来表示。
常见的PCB镀金厚度范围在0.05 μm(50纳米)到1.27 μm(1270纳米)之间,具体取决于应用和需求。
常见的PCB镀金方法包括以下几种:1. 电镀金(Electroplated Gold):它涉及将金属离子从电解质溶液中沉积到PCB表面。
电镀金可以提供良好的导电性和耐磨损性,并且适用于各种应用。
2. 硬金(Hard Gold):硬金是一种具有较厚镀层的电镀金,通常在镀金之前先进行镍的底镀。
硬金具有更高的硬度和耐磨损性,适合频繁插拔连接点的应用,如插座和连接器。
3. 轻薄金(Soft Gold):轻薄金是一种较薄的电镀金层,适用于一般性的金属化处理需求。
4. 钯金(Palladium Gold):钯金是一种含有钯元素的电镀金层。
在大多数情况下,PCB上的金属化处理主要是通过电镀方法实现的。
最常见的金属化选项是电镀金,该过程涉及将金属沉积在PCB表面。
以下是捷多邦小编整理的一些常见的PCB镀金厚度:1. 轻薄金(Soft Gold):典型的轻薄金厚度为0.05 μm(50纳米)至0.2 μm(200纳米),适用于一般性连接和金手指等应用。
2. 硬金(Hard Gold):硬金通常具有更高的耐磨损性和导电性能,适用于频繁插拔连接和高可靠性要求的应用。
常见的硬金厚度范围在0.2 μm(200纳米)至1.27 μm(1270纳米)之间。
PCB镀金的选择取决于应用需求、接触可靠性要求以及成本等因素。
在设计和制造PCB时,应仔细考虑所需的镀金类型和厚度,不同行业和应用可能对PCB镀金的厚度要求不同。
因此,在设计和制造阶段,应根据特定需求和规范与PCB制造商或供应商如深圳捷多邦进行沟通,以确定最适合的镀金厚度。
pcb电镀标准
pcb电镀标准随着电子技术的不断发展,印制电路板(Printed Circuit Board,简称PCB)已经成为电子产品中不可或缺的组成部分。
PCB电镀是PCB制造过程中的关键环节,它直接影响到PCB的性能、可靠性和使用寿命。
因此,制定一套完善的PCB电镀标准至关重要。
本文将对PCB电镀的标准进行详细介绍。
一、PCB电镀的目的PCB电镀的主要目的是在导电图形上形成一层均匀、致密、附着力强的金属镀层,以提高PCB的导电性、抗腐蚀性和可焊接性。
此外,电镀还可以保护导电图形免受环境侵蚀,延长PCB的使用寿命。
二、PCB电镀的类型根据电镀层的性质和用途,PCB电镀主要分为以下几种类型:1. 镍/金电镀:这是一种常见的电镀类型,主要用于提高导电图形的抗腐蚀性和可焊接性。
镍层通常厚度为5-10微米,金层厚度通常为0.03-0.1微米。
2. 锡/铅电镀:这种电镀类型主要用于焊接表面,以提高焊点的可靠性。
锡层厚度通常为1-5微米,铅层厚度通常为0.5-3微米。
3. 银电镀:这种电镀类型主要用于提高导电图形的导电性和可焊接性。
银层厚度通常为0.3-1微米。
4. 铜电镀:这种电镀类型主要用于提高导电图形的导电性。
铜层厚度通常为1-35微米。
三、PCB电镀的标准为了保证PCB电镀的质量,国际上已经制定了一系列关于PCB电镀的标准。
以下是一些主要的PCB电镀标准:1. IPC-SM-840:这是一个关于镍/金电镀的标准,规定了镍/金电镀的工艺流程、质量控制要求和测试方法。
该标准适用于所有类型的PCB电镀。
2. IPC-S-804:这是一个关于锡/铅电镀的标准,规定了锡/铅电镀的工艺流程、质量控制要求和测试方法。
该标准适用于所有类型的PCB电镀。
3. IPC-6012:这是一个关于银电镀的标准,规定了银电镀的工艺流程、质量控制要求和测试方法。
该标准适用于所有类型的PCB电镀。
4. IPC-6011:这是一个关于铜电镀的标准,规定了铜电镀的工艺流程、质量控制要求和测试方法。
PCB电镀镍金工艺介绍一、PCB电镀金工艺1、作用与特性PCB上用...
PCB电镀镍金工艺介绍一、PCB电镀金工艺1、作用与特性P C B上用镀镍来作为贵金属和贱金属的衬底镀层,对某些单面印制板,也常用作面层。
对于重负荷磨损的一些表面,如开关触点、触片或插头金,用镍来作为金的衬底镀层,可大大提高耐磨性。
当用来作为阻挡层时,镍能有效地防止铜和其它金属之间的扩散。
哑镍/金组合镀层常常用来作为抗蚀刻的金属镀层,而且能适应热压焊与钎焊的要求,唯读只有镍能够作为含氨类蚀刻剂的抗蚀镀层,而不需热压焊又要求镀层光亮的PCB,通常采用光镍/金镀层。
镍镀层厚度一般不低于2.5微米,通常采用4-5微米。
PCB低应力镍的淀积层,通常是用改性型的瓦特镍镀液和具有降低应力作用的添加剂的一些氨基磺酸镍镀液来镀制。
我们常说的PCB镀镍有光镍和哑镍(也称低应力镍或半光亮镍),通常要求镀层均匀细致,孔隙率低,应力低,延展性好的特点。
2、氨基磺酸镍(氨镍)氨基磺酸镍广泛用来作为金属化孔电镀和印制插头接触片上的衬底镀层。
所获得的淀积层的内应力低、硬度高,且具有极为优越的延展性。
将一种去应力剂加入镀液中,所得到的镀层将稍有一点应力。
有多种不同配方的氨基磺酸盐镀液,典型的氨基磺酸镍镀液配方如下表。
由于镀层的应力低,所以获得广泛的应用,但氨基磺酸镍稳定性差,其成本相对高。
3、改性的瓦特镍(硫镍)改性瓦特镍配方,采用硫酸镍,连同加入溴化镍或氯化镍。
由于内应力的原因,所以大都选用溴化镍。
它可以生产出一个半光亮的、稍有一点内应力、延展性好的镀层;并且这种镀层为随后的电镀很容易活化,成本相对底。
4、镀液各组分的作用:主盐──氨基磺酸镍与硫酸镍为镍液中的主盐,镍盐主要是提供镀镍所需的镍金属离子并兼起着导电盐的作用。
镀镍液的浓度随供应厂商不同而稍有不同,镍盐允许含量的变化较大。
镍盐含量高,可以使用较高的阴极电流密度,沉积速度快,常用作高速镀厚镍。
但是浓度过高将降低阴极极化,分散能力差,而且镀液的带出损失大。
镍盐含量低沉积速度低,但是分散能力很好,能获得结晶细致光亮镀层。
PCB表面处理分类及特点
PCB表面处理分类及特点1. 引言PCB(Printed Circuit Board,印刷电路板)作为电子产品中重要的组成部分,需要经过多道工序才能完成。
其中,PCB表面处理是一个关键步骤,它对于保证电路板的可靠性、耐久性以及后续元器件的焊接质量起着重要作用。
本文将介绍PCB表面处理的常见分类及各自的特点。
2. PCB表面处理分类2.1. 防氧化处理防氧化处理是为了防止PCB表面暴露在空气中导致氧化反应。
常见的防氧化处理方法有:2.1.1. 镀金处理特点: - 具有良好的导电性和焊接性。
- 防止PCB表面氧化。
- 抗腐蚀性强。
2.1.2. 镀锡处理特点: - 容易和焊脚形成良好的金属间化合物,提高焊接质量。
- 具有良好的抗氧化性。
- 防止PCB表面氧化。
2.2. 表面涂覆处理表面涂覆处理是为了提高PCB表面的耐久性和抗污染性能。
常见的表面涂覆处理方法有:2.2.1. 涂覆有机保护层特点: - 防止PCB表面被化学物质侵蚀。
- 抗潮湿性好,有利于提高电子设备的可靠性。
2.2.2. 涂覆防焊膜特点: - 防止焊接过程中焊接锡膏与PCB直接接触,减少气泡和焊点质量不良的情况。
- 提高焊接质量。
2.3. 洁净处理洁净处理是为了去除PCB表面的污染物,使其满足后续工艺要求。
常见的洁净处理方法有:2.3.1. 超声洗涤特点: - 能够清除PCB表面附着的细小杂物。
- 清洗效果好,不会对PCB表面造成损害。
2.3.2. 真空吸尘特点: - 移除表面的颗粒污染物。
- 不使用喷洒化学清洁剂。
3. 各类处理方法的适用场景3.1. 防氧化处理的适用场景•部分环境下容易造成氧化反应的PCB。
•对焊接质量和可靠性要求较高的PCB。
3.2. 表面涂覆处理的适用场景•需要提高PCB表面的耐久性和抗污染性的环境。
•需要保护PCB表面不被化学物质侵蚀的环境。
3.3. 洁净处理的适用场景•需要确保PCB表面没有细小杂物的环境。
pcb电镀工艺
pcb电镀工艺PCB电镀工艺在PCB(Printed Circuit Board,印刷电路板)的制作过程中,电镀工艺是非常重要的一环。
电镀分为多种类型,包括沉积电镀、浸镀电镀、真空电镀等等。
在制作电路板时,通过电镀可以将金属材料镀在电路图案上,以增加PCB的导电性和耐腐蚀性。
在电镀过程中,需要严格控制电解液的成分和电镀时间,以确保PCB质量稳定。
下面将分别介绍不同类型的电镀工艺。
一、沉积电镀沉积电镀是将金属离子直接还原在电路板上的过程,是最基本的电镀工艺。
在PCB生产中,主要采用铜沉积电镀。
此工艺的优点是成本低,操作简单,能够在PCB表面镀上较为均匀的铜层。
但它也有缺点,例如铜层较厚时可能会出现气孔和结晶缺陷,影响电路板的可靠性。
二、浸镀电镀浸镀电镀是将电解质中的金属离子通过氢化作用还原在电路板表面的过程。
在PCB工业中,主要采用镍、金、锡等金属进行浸镀电镀。
浸镀电镀具有成本相对较高、电镀速度较快和金属沉积厚度均匀等优点,因此在高端PCB制作中使用广泛。
但是,浸镀电镀过程中的金属析出也会导致金属晶格的缺陷和杂质物质的存在,因此需要进行复杂的后期处理。
三、真空电镀真空电镀是通过高温真空环境下将金属薄膜沉积在电路板上的过程。
在高端PCB制作中,常采用铜、铝、镀铬钼等金属进行真空电镀。
真空电镀不仅能够保证金属薄膜的厚度和均匀性,还能够在膜上形成多种化学复合物,使得膜层更具有特殊的物理和化学性质。
但真空电镀需要高昂的成本,操作也相对较为复杂。
总之,电镀工艺在PCB制作中有着至关重要的作用。
各种电镀工艺有着各自的优缺点,在实际生产中需要考虑到PCB的质量和生产成本,选择适合的工艺进行生产。
PCB几种常见表面涂覆简介
PCB几种常见表面涂覆简介1. 概述表面涂覆是电子产品制造中的一项关键工艺,主要目的是保护PCB (Printed Circuit Board,印制电路板)上的电子元器件,并提高其可靠性和耐用性。
本文将介绍几种常见的表面涂覆技术及其特点。
2. 焊膏覆盖(Solder Mask)焊膏覆盖是一种常见的表面涂覆技术,主要用于保护PCB上的焊点,并避免短路和氧化。
焊膏通常由热固性树脂制成,能够耐高温和化学腐蚀。
它具有良好的绝缘性能,并可以提高电路板的可靠性。
焊膏覆盖通常需要通过光刻和蚀刻等工艺来实现。
在光刻过程中,将焊膏覆盖在PCB表面,并使用UV曝光将焊膏暴露在需要焊接的区域。
然后,通过蚀刻去除未曝光的焊膏,只留下焊点区域。
3. 碳墨覆盖(Carbon Ink)碳墨覆盖是一种常见的表面涂覆技术,主要用于屏蔽PCB上的电磁干扰。
碳墨具有良好的导电性能和抗腐蚀性能,能够有效地吸收电磁波,减少电磁辐射对PCB的干扰。
碳墨覆盖通常采用印刷方式进行,将碳墨涂于PCB表面的特定区域。
这些区域通常是电磁敏感的部分,如射频天线,以提高PCB的抗干扰能力。
4. 封装覆盖(Coating)封装覆盖是一种常见的表面涂覆技术,主要用于保护PCB上的电子元器件免受环境的影响,如湿气、污染和机械压力。
常见的封装材料包括环氧树脂和聚脂。
封装覆盖通常使用喷涂或浸涂的方式进行。
喷涂是通过喷枪将封装材料均匀地喷在PCB表面,浸涂则是将PCB浸在封装材料中,使其充分覆盖整个PCB表面。
封装材料应当具有良好的粘附性能和耐候性,以确保其在各种环境条件下的性能稳定性。
5. 金属覆盖(Metal Plating)金属覆盖是一种常见的表面涂覆技术,主要用于提高PCB的导电性能和耐腐蚀性。
常见的金属覆盖材料包括金、银和锡等。
金属覆盖通常通过电镀工艺实现。
在电镀过程中,PCB被浸入金属溶液中,并通过电流和化学反应将金属沉积在PCB表面。
这种金属覆盖能够提供良好的导电性能,并增强PCB对环境的耐腐蚀能力。
pcb表面处理工艺
pcb表面处理工艺
PCB表面处理工艺有很多,一般有热镀锌、热浸锌、热浸锡、有机阻焊、无溶剂阻焊、湿润变黑、电镀镍、电镀金、电镀银、电镀铜、以及表面镀膜等。
1.热镀锌,是将锌粉放在PCB上,经过热处理温度达到220度时,就能在PCB表面形成一层锌层,能够有很好的抗腐蚀和电镀性能,是PCB表面处理的一种常用工艺。
2.热浸锌是将PCB置入锌液中加热锌液,使PCB表面形成一层锌层,具有一定的抗潮性和防腐蚀性能。
3.热浸锡,是将PCB放入温度达到230度的锡液中,形成一层锡层,具有良好的导电性能和耐热性,也有一定的抗潮性和耐腐蚀性能,可以用于焊接及其他电子工程。
4.有机阻焊PCB表面处理,是将有机物放在PCB上,通过加热使其中的树脂发生化学反应来形成一层保护层,具有良好的防腐蚀性能,适合一些要求高的PCB表面处理工程。
5.无溶剂阻焊,也叫固态阻焊,是将无溶剂树脂加工到PCB表面上,经过加热,使其形成一层绝缘层,具有防热变形和电磁屏蔽的功能,是一种非常受欢迎的PCB表面处理工艺。
pcb表面最终涂层种类介绍共5页文档
PCB表面最终涂层种类介绍PCB制造的最终涂层工艺在近年来已经经历重要变化。
这些变化是对克服HASL(hot air solder leveling)局限的不断需求和HASL替代方法越来越多的结果。
最终涂层是用来保护电路铜箔的表面。
铜(Cu)是焊接元件的很好的表面,但容易氧化;氧化铜阻碍焊锡的熔湿(wetting)。
虽然现在使用金(Au)来覆盖铜,因为金不会氧化;金与铜会迅速相互扩散渗透。
任何暴露的铜都将很快形成不可焊接的氧化铜。
一个方法是使用镍(Ni)的“障碍层”,它防止金与铜转移和为元件的装配提供一个耐久的、导电性表面。
PCB对非电解镍涂层的要求非电解镍涂层应该完成几个功能:金沉淀的表面电路的最终目的是在PCB与元件之间形成物理强度高、电气特性好的连接。
如果在PCB表面存在任何氧化物或污染,这个焊接的连接用当今的弱助焊剂是不会发生的。
金自然地沉淀在镍上面,并在长期的储存中不会氧化。
可是,金不会沉淀在氧化的镍上面,因此镍必须在镍浴(nickel bath)与金溶解之间保持纯净。
这样,镍的第一个要求是保持无氧化足够长的时间,以允许金的沉淀。
元件开发出化学浸浴,以允许在镍的沉淀中6~10%的磷含量。
非电解镍涂层中的这个磷含量是作为浸浴控制、氧化物、和电气与物理特性的仔细平衡考虑的。
硬度非电解镍涂层表面用在许多要求物理强度的应用中,如汽车传动的轴承。
PCB的需要远没有这些应用严格,但是对于引线接合(wire-bonding)、触感垫的接触点、插件连接器(edge-connetor)和处理可持续性,一定的硬度还是重要的。
引线接合要求一个镍的硬度。
如果引线使沉淀物变形,摩擦力的损失可能发生,它帮助引线“熔”到基板上。
SEM照片显示没有渗透到平面镍/金或镍/钯(Pd)/金的表面。
电气特性由于容易制作,铜是选作电路形成的金属。
铜的导电性优越于几乎每一种金属(表一)1,2。
金也具有良好的导电性,是最外层金属的完美选择,因为电子倾向于在一个导电路线的表面流动(“表层”效益)。
PCB表面镀层的种类
图1 线路板表面处理的种类图2 ENIG表面焊盘的结构示意图tu3大量研究和实际情况表明,镀层中P的含量是整个镀层质量的关键。
当P含量在7%-10%之间时,Ni层的质量比较好。
4. 浸银浸银工艺(Immersion Silver) 如图1中d)所示,介于有机涂覆和化学镀镍/浸金之间,工艺比较简单、快速;不像化学镀镍/浸金那样复杂,也不是给PCB穿上一层厚厚的盔甲,但是它仍然能够提供好的电性能。
银仅次于金,即使暴露在热、湿和污染的环境中,银仍然能够保持良好的可焊性,但会失去光泽。
浸银不具备化学镀镍/浸金所具有的好的物理强度因为银层下面没有镍。
另外浸银有好的储存性,浸银后放几年组装也不会有大的问题。
浸银是置换反应,它几乎是亚微米级的纯银涂覆。
有时浸银过程中还包含一些有机物,主要是防止银腐蚀和消除银迁移问题;一般很难测量出来这一薄层有机物,分析表明有机体的重量少于1%。
5. 浸锡浸锡(Immersion Tin),如图1中e)所示。
由于目前所有的焊料都是以锡为基础的,所以锡层能与任何类型的焊料相匹配。
从这一点来看,浸锡工艺极具有发展前景。
但是以前的PCB经浸锡工艺后出现锡须,在焊接过程中锡须和锡迁徙会带来可靠性问题,因此浸锡工艺的采用受到限制。
后来在浸锡溶液中加入了有机添加剂,可使得锡层结构呈颗粒状结构,克服了以前的问题,而且还具有好的热稳定性和可焊性。
浸锡工艺可以形成平坦的铜锡金属间化合物,这个特性使得浸锡具有和热风整平一样的好的可焊性而没有热风整平令人头痛的平坦性问题;浸锡也没有化学镀镍/浸金金属间的扩散问题——铜锡金属间化合物能够稳固的结合在一起。
浸锡板不可存储太久,组装时必须根据浸锡的先后顺序进行。
6. 电镀镍金电镀镍金(Electrolytic Nickel/ Gold)是PCB表面处理工艺的鼻祖,自从PCB 出现它就出现,以后慢慢演化为其他方式。
如图7-17中f)所示.它是在PCB表面导体先镀上一层镍后再镀上一层金,镀镍主要是防止金和铜间的扩散。
pcb表面最终涂层种类介
PCB表面最终涂层种类介PCB制造的最终涂层工艺在近年来已经经历重要变化。
这些变化是对克服HASL(hot air solder leveling)局限的不断需求和HASL替代方法越来越多的结果。
最终涂层是用来保护电路铜箔的表面。
铜(Cu)是焊接元件的很好的表面,但容易氧化;氧化铜阻碍焊锡的熔湿(wetting)。
虽然现在使用金(Au)来覆盖铜,因为金不会氧化;金与铜会迅速相互扩散渗透。
任何暴露的铜都将很快形成不可焊接的氧化铜。
一个方法是使用镍(Ni)的“障碍层”,它防止金与铜转移和为元件的装配提供一个耐久的、导电性表面。
PCB对非电解镍涂层的要求非电解镍涂层应该完成几个功能:金沉淀的表面电路的最终目的是在PCB与元件之间形成物理强度高、电气特性好的连接。
如果在PCB 表面存在任何氧化物或污染,这个焊接的连接用当今的弱助焊剂是不会发生的。
金自然地沉淀在镍上面,并在长期的储存中不会氧化。
可是,金不会沉淀在氧化的镍上面,因此镍必须在镍浴(nickel bath)与金溶解之间保持纯净。
这样,镍的第一个要求是保持无氧化足够长的时间,以允许金的沉淀。
元件开发出化学浸浴,以允许在镍的沉淀中6~10%的磷含量。
非电解镍涂层中的这个磷含量是作为浸浴控制、氧化物、和电气与物理特性的仔细平衡考虑的。
硬度非电解镍涂层表面用在许多要求物理强度的应用中,如汽车传动的轴承。
PCB的需要远没有这些应用严格,但是对于引线接合(wire-bonding)、触感垫的接触点、插件连接器(edge-connetor)和处理可持续性,一定的硬度还是重要的。
引线接合要求一个镍的硬度。
如果引线使沉淀物变形,摩擦力的损失可能发生,它帮助引线“熔”到基板上。
SEM照片显示没有渗透到平面镍/金或镍/钯(Pd)/金的表面。
电气特性由于容易制作,铜是选作电路形成的金属。
铜的导电性优越于几乎每一种金属(表一)1,2。
金也具有良好的导电性,是最外层金属的完美选择,因为电子倾向于在一个导电路线的表面流动(“表层”效益)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1 线路板表面处理的种类
图2 ENIG表面焊盘的结构示意图
tu3
大量研究和实际情况表明,镀层中P的含量是整个镀层质量的关键。
当P含量在7%-10%之间时,Ni层的质量比较好。
4. 浸银
浸银工艺(Immersion Silver) 如图1中d)所示,介于有机涂覆和化学镀镍/浸金之间,工艺比较简单、快速;不像化学镀镍/浸金那样复杂,也不是给PCB穿上一层厚厚的盔甲,但是它仍然能够提供好的电性能。
银仅次于金,即使暴露在热、湿和污染的环境中,银仍然能够保持良好的可焊性,但会失去光泽。
浸银不具备化学镀镍/浸金所具有的好的物理强度因为银层下面没有镍。
另外浸银有好的储存性,浸银后放几年组装也不会有大的问题。
浸银是置换反应,它几乎是亚微米级的纯银涂覆。
有时浸银过程中还包含一些有机物,主要是防止银腐蚀和消除银迁移问题;一般很难测量出来这一薄层有机物,分析表明有机体的重量少于1%。
5. 浸锡
浸锡(Immersion Tin),如图1中e)所示。
由于目前所有的焊料都是以锡为基础的,所以锡层能与任何类型的焊料相匹配。
从这一点来看,浸锡工艺极具有发展前景。
但是以前的PCB经浸锡工艺后出现锡须,在焊接过程中锡须和锡迁徙会带来可靠性问题,因此浸锡工艺的采用受到限制。
后来在浸锡溶液中加入了有机添加剂,可使得锡层结构呈颗粒状结构,克服了以前的问题,而且还具有好的热稳定性和可焊性。
浸锡工艺可以形成平坦的铜锡金属间化合物,这个特性使得浸锡具有和热风整平一样的好的可焊性而没有热风整平令人头痛的平坦性问题;浸锡也没有化学镀镍/浸金金属间的扩散问题——铜锡金属间化合物能够稳固的结合在一起。
浸锡板不可存储太久,组装时必须根据浸锡的先后顺序进行。
6. 电镀镍金
电镀镍金(Electrolytic Nickel/ Gold)是PCB表面处理工艺的鼻祖,自从PCB 出现它就出现,以后慢慢演化为其他方式。
如图7-17中f)所示.它是在PCB表面导体先镀上一层镍后再镀上一层金,镀镍主要是防止金和铜间的扩散。
现在的电镀镍金有两类:镀软金(纯金,金表面看起来不亮)和镀硬金(表面平滑和硬,耐磨,含有钴等其他元素,金表面看起来较光亮)。
软金主要用于芯片封装时打金线;硬金主要用在非焊接处的电性互连。
考虑到成本,业界常常通过图像转移的方法进行选择性电镀以减少金的使用。
目前选择性电镀金在业界的使用持续增加,这主要是由于化学镀镍/浸金过程控制比较困难。
正常情况下,焊接会导致电镀金变脆,这将缩短使用寿命,因而要避免在电镀金上进行焊接;但化学镀镍/浸金由于金很薄,且很一致,变脆现象很少发生。
7. 其他表面处理工艺
其他表面处理工艺的应用较少,下面来看应用相对较多的化学镀钯工艺。
化学镀钯的过程与化学镀镍过程相近似。
主要过程是通过还原剂(如次磷酸二氢钠)使钯离子在催化的表面还原成钯,新生的钯可成为推动反应的催化剂,因而可得到任意厚度的钯镀层。
化学镀钯的优点为良好的焊接可靠性、热稳定性、表面平整性。