数学高一-示范教案6指数函数、幂函数、对数函数增长的比较

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

示范教案{§6指数函数、幂函数、对数函数增长的比

较}

整体设计

教学分析

函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的,通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.

三维目标

1.借助信息技术,利用函数图像及数据表格,比较指数函数、对数函数以及幂函数的增长差异.

2.恰当运用函数的三种表示方法(解析式、表格、图像),并借助信息技术解决一些实际问题.

3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.

重点难点

教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.

教学难点:应用函数模型解决简单问题.

课时安排

1课时

教学过程

导入新课

思路1.(情境导入)

国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、幂函数的增长差异.思路2.(直接导入)

我们知道,对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、幂函数的增长差异.

推进新课

新知探究

提出问题

①在区间0,+∞上判断y=log2x,y=2x,y=x2的单调性.

②列表并在同一坐标系中画出三个函数的图像.

③结合函数的图像找出其交点坐标.

④请在图像上分别标出使不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围.

⑤由以上问题你能得出怎样结论?

讨论结果:

①在区间(0,+∞)上函数y=log2x,y=2x,y=x2均为单调增函数.

x 0.20.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4…

y=2x 1.149 1.5162 2.639 3.482 4.959 6.063810.55

6

y=x20.040.361 1.96 3.24 4.84 6.67911.56…

y=log2x

2.322

-0.73700.4850.848 1.138 1.379 1.585 1.766…

图1

③从图像看出y=log2x的图像与另外两函数的图像没有交点,且总在另外两函数的图像的下方,y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16).

④不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围分别是(2,4)和(0,2)∪(4,+∞).

x 012345678…

y=2x1248163264128256…

y=x201491625364964

图2

容易看出:y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x<x2,有时x2<2x.

但是,当自变量x越来越大时,可以看到,y=2x的图像就像与x轴垂直一样,2x的值快速增长,x2比起2x来,几乎有些微不足道,如图3和下表所示.

x 01020304050607080…

y=2x1 1 0241.05E

+06

1.07E

+09

1.10E

+12

1.13E

+15

1.15E

+18

1.18E

+21

1.21E

+24

y=x20100400900 1 600 2 500 3 600 4 900 6 400…

图3

一般地,对于指数函数y=a x(a>1)和幂函数y=x n(n>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,a x会小于x n,但由于a x 的增长快于x n的增长,因此总存在一个x0,当x>x0时,就会有a x>x n.

同样地,对于对数函数y=log a x(a>1)和幂函数y=x n(n>0),在区间(0,+∞)上,随着x的增大,log a x增长得越来越慢,图像就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,log a x可能会大于x n,但由于log a x的增长慢于x n的增长,因此总存在一个x0,当x>x0时,就会有log a x<x n.

综上所述,尽管对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就会有log a x<x n<a x.虽然幂函数y=x n(n>0)增长快于对数函数y=log a x(a>1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.

应用示例

思路1

例1 试利用计算器来计算2500的近似值.

活动:学生思考,教师提示,计算这样一个大的数,用计算器无法直接计算.如何计算呢?我们可以充分利用幂的运算性质,再结合计算器的利用来求其近似值.解:第一步,利用科学计算器算出

210=1 024=1.024×103;

第二步,再计算2100,因为

2100=(210)10=(1.024×103)10=1.02410×1030,

所以,我们只需要用科学计算器算出

1.02410≈1.267 7,

则2100≈1.267 7×1030;

第三步,再计算2500,因为

(2100)5≈(1.267 7×1030)5,

我们只需要用科学计算器算出

1.267 75≈3.274 0,

从而算出2500≈3.27×10150.

点评:在设计计算方法时,要考虑到科学计算器能计算的位数.如果函数值非常大,我们常常用科学记数法表示,并且根据需要保留一定数目的有效数字.

相关文档
最新文档