一般总体均值的假设检验.

合集下载

假设检验的概述及单总体均值的假设检验

假设检验的概述及单总体均值的假设检验
概率论与数理统计
一、问题的提出
[例1] 某厂有一批产品,共 200 件,须经检验合格 才能出厂,按国家标准,次品率不得超过 1%,今 在其中任意抽取 5 件,发现这 5 件中含有次品,问 这批产品是否能出厂?
[例2] 至 1984 年底,南京市开办了有奖储蓄以 来,13 期对奖号码中诸数码的频数汇总如下:
t /2 (n 1)
右边检验问题 H 0 : 0 , H1 : 0
拒绝域
x 0
s/ n
t
(n 1)
左边检验问题 H 0 : 0 , H1 : 0
拒绝域
x 0
s/ n
t (n 1)
[例5] 某部门对当前市场的价格情况进行调查。以鸡 蛋为例,所抽查的全省20个集市上,售价分别为(单 位:元/500克) 3.05 3.31 3.34 3.82 3.30 3.16 3.84 3.10 3.90 3.18 3.88 3.22 3.28 3.34 3.62 3.28 3.30 3.22 3.54 3.30 已知往年的平均售价一直稳定在3.25元/500克左右, 全省鸡蛋价格服从正态分布 N(, 2 ) ,在显著性水 平 0.05下,能否认为全省当前的鸡蛋售价明显高 于往年?
本方差,下面讨论未知参数 的假设检验问题。
1、已知方差 ,检验假设
(Z检验)
一个正态总体 N , 2 , 2 已知, 未知。
检验目标是 H0 : 0 。 我们可以提出如下三个假设检验问题:
H0 : 0, H1 : 0 H0 : 0, H1 : 0 H0 : 0, H1 : 0
是否成立?
表 8-2
x 8 9 10 11 12 13 14 15 16 17 18 19 20
频数 4 1 7 8 6 12 9 10 17 7 19 14 22

总体均数的假设检验

总体均数的假设检验
总体均数的假设检验
$number {01}
目 录
• 引言 • 假设检验的基本原理 • 总体均数的假设检验方法 • 实例分析 • 总结与展望
01 引言
目的和背景
确定样本数据是否与假设的总体均数 存在显著差异,从而对总体均数进行 假设检验。
在科学实验、统计学、医学研究等领 域广泛应用,用于评估样本数据是否 支持或拒绝关于总体均数的假设。
配对样本均数假设检验实例
总结词
配对样本均数假设检验用于比较同一组研究对象在不同条件下的均数是否存在统计学显 著性差异。
详细描述
例如,为了比较同一组患者在接受两种不同治疗措施前后的改善程度,研究者收集了患 者的基线数据和接受不同治疗措施后的数据,并计算出各自治疗组的平均改善程度。然 后,研究者使用配对样本均数假设检验来比较同一组患者在不同治疗措施下的平均改善
概念简介
假设检验是一种统计推断方法,通过 检验样本数据是否符合某个假设,从 而对总体参数进行推断。
它基于概率论原理,通过计算样本数 据与假设的总体参数之间的差异,评 估这种差异是否具有统计学上的显著 性。
02
假设检验的基本原理
假设检验的步骤
建立假设
根据研究目的,提出一个关于总 体参数的假设,通常包括零假设 和备择假设。
收集样本数据
从总体中随机抽取一定数量的样 本,并记录样本数据。
确定检验水准
选择合适的检验水准,如α和β, 以平衡第一类和第二类错误的概 率。
计算统计量
根据样本数据计算适当的统计量, 如t值、Z值或χ^2值。
假设检验的类型
1 2
3
单样本均数检验
比较一个样本均数与已知总体均数或正常值范围。
两样本均数比较

第七章假设检验

第七章假设检验
第七章 假设检验
第一节 第二节 检验 假设检验的一般问题 总体均值, 总体均值,比例和方差的假设
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 能对实际问题作假设检验
第一节 假设检验的一般问题
一,假设检验的概念 二,假设检验的步骤 三,假设检验中的小概率原理 四,假设检验中的两类错误 五,双侧检验和单侧检验
拒绝域 置信水平
α
1-α 接受域 H0值 样本统计量
临界值
6,右侧检验(显著性水平与拒绝域 ) 右侧检验( 抽样分布
置信水平 拒绝域 1-α 接受域 H0值 观察到的样本统计量 样本统计量
α
临界值
抽样分布
1-α 接受域 H0值
置信水平 拒绝域
α
临界值
样本统计量
第二节 总体均值,比例和方差的假设检验
1,原假设为真时拒绝原假设 , 2,会产生一系列后果 , 3,第一类错误的概率为α ,第一类错误的概率为α
被称为显著性水平 第二类错误(取伪错误) (二)第二类错误(取伪错误)
1,原假设为假时接受原假设 , 2,第二类错误的概率为β ,第二类错误的概率为β
(三)列表
H0: 无罪
假设检验就好 像一场审判过程
2,确定假设的步骤 例如问题为: 检验该企业生产的零件平均长度为4厘米 步骤: (1)从统计角度陈述问题 ( = 4) 1 (2)从统计角度提出相反的问题 ( ≠ 4) 必需互斥和穷尽 (3)提出原假设 ( = 4) (4)提出备择假设 ( ≠ 4) 有 ≠ 符号
3,双侧检验(例子) 双侧检验(例子)
1,原假设与备择假设是一个完整事件组. 2,通常先确定备择假设,再定原假设. 3,等号总放在原假设. 4,两者的选择本质上带有主观色彩. 5,假设检验的目的主要是收集证据拒绝原 假设.

总体均数估计与假设检验

总体均数估计与假设检验
无论做出哪一种推断结论,都面临着发生判断错 误的风险。这就是假设检验的两类错误。
t 检验
t-test
三、t检验和Z检验(参数检验)
以t分布为基础的检验称为t检验。 t分布的发现使得小样本统计推断成为 可能。因而,它被认为是统计学发展历 史中的里程碑之一。
在医学统计学中,t检验是重要的 假设检验方法之一。常用于两个均数之 间差别的比较,并根据资料的分布情况 及设计类型,选择不同的t检验方法。
配对样本t检验
Paired design t-test
关系:随着样本含量增加,都减小。
联系:都是表示变异度的指标,当样本量一定时,两者成正比。
标准误用途
衡量样本均数的可靠性:标准误越小,表明 样本均数越可靠;
参数估计:估计总体均数的置信区间(区 域);
假设检验:用于总体均数的假设检验(比 较)。
二、t分布:
标准正态分布
开创了小样本统计的新纪元,t分布主要用于总体均数的 区间估计和t检验!
假设检验(Hypothesis test)
假设检验的推断原理 假设检验的基本步骤 t检验和Z检验 两样本总体方差齐性检验 正态性检验 假设检验的两类错误 注意事项
一、假设检验的推断原理
上面介绍过的区间估计方法是统计 推断的内容之一,假设检验是统计推 断的另一重要内容。正是应用统计推 断的理论和方法,人们才能顺利地通 过有限的样本信息去把握总体特征, 实现抽样研究的目的。
s / n 25.74 36
在H0成立的前提下,当前t值出现的概率有多 大???
如何给出这个量的界限?
小概率事件在一次试验 中基本上不会发生 !
从附表2中查出在显著性水平 =0.05(双侧),自由度为35所 对应的t界值=2.318,即为拒绝 域与接受域的界限。如果计算

总体均值的假设检验

总体均值的假设检验

总体均值的假设检验一、正态总体均值的检验设n X X X ,,, 21为总体),(2σμN 的一个容量为n 的样本. 1.方差2σ已知,μ的检验——u 检验法. 当202σσ=已知时,假设检验问题:0100μμμμ≠=:;:H H . 选择检验统计量nX U /00σμ-=,当0H 成立时,)1,0(~N U .给定显著性水平α,由标准正态分布分位点的定义, 有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= ,这种利用服从正态分布的检验统计量的检验方法称为u 检验法.有时我们只关心总体的均值是否增大(或减小).比如,经过工艺改革后,产品的质量(如材料的强度)比以前是否提高,此时我们要研究的是新工艺下总体的均值μ是小于等于原来的均值0μ,还是大于0μ,即检验假设 0100μμμμ>≤:;:H H . 可以证明,在显著性水平α下,上述假设检验问题和检验假设0100μμμμ>=:;:H H 有相同的拒绝域,因此,遇到形如00μμ≤:H 的检验问题,可归结为后一个假设检验问题讨论. 类似地,形如0100μμμμ<≥:;:H H 的检验问题, 可归结为检验假设 0100μμμμ<=:;:H H .这都是单边检验问题.给定显著性水平α,求得的临界值点是上α分位点或上α-1分位点.例1 某厂生产的某种钢索的断裂强度X 服从),(2σμN ,其中40=σ(kg/cm 2),现从这批钢索中抽取容量为9的样本,测得断裂强度的平均值x 较以往正常生产的μ大20(kg/cm 2),设总体方差不变,问在1.00=α下,能否认为这批钢索质量有显著提高?解 依题意,检验假设0100μμμμ>≤:;:H H , 由于40=σ已知,选择检验统计量nX U /0σμ-=因为0H 中的μ全部都比1H 中的μ要小,从直观上看,当0H 成立时,X 的取值x 不应比μ大很多,若偏差0μ-x 过大,则拒绝0H 而接受1H .因为 0100μμμμ>=:;:H H 的拒绝域为}{αu U W >=, 故在显著性水平1.00=α下原假设的拒绝域为}{}{0nu X u U W σμαα+>=>=.本题中,9=n ,40=σ,200=-μx ,33.201.0=u , 计算U 的值33.25.1/0<=-=nx u σμ因此在显著性水平1.00=α下不能拒绝0H ,即认为这批钢索质量没有显著提高.2.方差2σ未知,μ的检验——t 检验法. 检验假设0100μμμμ≠=:;:H H .因为2σ未知,而样本方差2S 是总体方差2σ的无偏估计量,用S 代替σ. 选择检验统计量 nS X T /0μ-=,当0H 成立时,)1(~-n t T .给定显著性水平α,由t 分布分位点的定义, 有αα=->)}1(|{|2/n t T P ,故拒绝域)}1({)}1({)}1(|{|2/2/2/->--<=->=n t T n t T n t T W ααα , 这种利用服从t 分布的检验统计量的检验方法称为t 检验法.例2 某切割机工作正常时,切割每段金属棒的平均长度为10.5cm .今在某段时间随机地抽取15段进行测量,其结果如下(cm):10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7问此段时间该机工作是否正常(5.00=α)?假设金属棒长度服从正态分布.解 依题意,检验假设0100.510μμμμ≠==:;:H H , 由于2σ未知,故选择检验统计量nS X T /0μ-=.在0H 下,)1(~-n t T ,15=n .给定显著性水平5.00=α,查t 分布表, 得临界值1448.2)14()1(025.02/==-t n t α,故拒绝域)}1(|{|2/->=n t T W α.由已知条件可得48.102.15715111=⨯==∑=n i i x n x056.0784.0141)(11122=⨯=--=∑=n i ix x n s 故2366.0=s .计算统计量的值3274.015/2366.05.1048.10/0-=-=-=ns x t μ因为)1(||2/-<n t t α,所以接受0H ,认为切割机工作正常.例3 设木材的小头直径),(~2σμN X ,12≥μcm 为合格,今抽出12根测得小头直径的样本均值为2.11=x cm ,样本方差为44.12=s cm 2,问该批木材是否合格(5.00=α)?解 依题意,检验假设010012μμμμ<=≥:;:H H ,选择检验统计量nS X T /0μ-=.在假设0100μμμμ<=:;:H H 下,)1(~-n t T ,12=n .给定显著性水平5.00=α,查t 分布表,得临界值7959.1)11()1(05.0==-t n t α,故拒绝域)}1({--<=n t T W α,也是假设010012μμμμ<=≥:;:H H 的拒绝域. 由于2.11=x ,44.12=s ,计算统计量的值3094.212/44.1122.11/0-=-=-=ns x t μ因为)1(--<n t t α,故拒绝0H ,认为该批木材是不合格的. 二、正态总体方差的检验——2χ检验法设n X X X ,,, 21为来自总体),(2σμN 的一个样本,检验假设 20212020σσσσ≠=:;:H H .1.均值μ已知. 因为)1,0(~N X i σμ-,n i ,,2,1 =,则选取检验统计量∑∑==-=⎪⎪⎭⎫ ⎝⎛-=ni ini i XX 12201202)(1μσσμχ.当0H 成立时,)(~22n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=><-))}(())({(22/222/12n n P ,故得拒绝域)}({)}({22/222/12n n W ααχχχχ><=- .2.均值μ未知.因为X 是总体均值μ的无偏估计量,用X 代替μ.选择检验统计量202122)1(σσχS n XX ni i -=⎪⎪⎭⎫ ⎝⎛-=∑=. 当0H 成立时,)1(~22-n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=->-<-))}1(())1({(22/222/12n n P故得拒绝域)}1({)}1({22/222/12->-<=-n n W ααχχχχ .类似地,在μ已知和μ未知时,可以求出检验假设20212020σσσσ>≤:;:H H 和20212020σσσσ<≥:;:H H的拒绝域.例如,在μ未知时,检验假设2020σσ≤:H 的拒绝域为)}1({22->=n W αχχ.上述检验所用的检验统计量均服从2χ分布,称这种检验方法为2χ检验法例4 某无线电厂生产的一种高频管,其中一指标服从正态分布),(2σμN ,今从一批产品中抽取8只管子,测得指标数据:68 43 70 65 55 56 60 72(1) 总体均值60=μ时,检验228=σ(取5.00=α); (2) 总体均值μ未知时,检验228=σ(取5.00=α). 解 本题是在显著性水平5.00=α下,检验假设2021220208σσσσ≠==:;:H H ,这里8=n .(1) 60=μ已知时临界值35.517)8()(2025.022/==χχαn ,80.12)8()(2975.022/1==-χχαn ,而检验统计量的值359.10663641)(811222=⨯=-=∑=ni i x μχ, 由于)()(22/222/1n n ααχχχ<<-,故接受0H .(2) μ未知时临界值13.016)7()1(2025.022/==-χχαn ,90.61)7()1(2975.022/1==--χχαn ,而125.614898111=⨯==∑=n i i x n x ,875.652)()1(122=-=-∑=ni i x x s n ,检验统计量的值2012.1075.86526412=⨯=χ, 由于)1()1(22/222/1-<<--n n ααχχχ,故接受0H .§8.3 两个正态总体参数的假设检验设121n X X X ,,, 为总体),(~112σμN X 的一个样本,221n Y Y Y ,,, 为总体),(~222σμN Y 的一个样本.∑==1111n i i X n X 和∑==2121n i iYn Y 分别是两个样本的样本均值,∑=--=112121)(11n i i X X n S 和∑=--=212222)(11n i i Y Y n S 是相应的两个样本方差.设这两个样本相互独立..一、两个正态总体均值的检验考虑检验假设 211210μμμμ≠=:;:H H . 1.方差21σ与22σ已知——u 检验法. 选取 22212121)()(n n Y X U σσμμ+---=.当0H 成立时,检验统计量)1,0(~222121N n n YX U σσ+-=.给定显著性水平α,由标准正态分布表分位点的定义,有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= .例1 设从甲乙两场所生产的钢丝总体X ,Y 中各取50束作拉力强度试验,得1208=x ,1282=y ,已知801=σ,942=σ,请问两厂钢丝的抗拉强度是否有显著差别(5.00=α)?解 本题是在显著性水平5.00=α下, 检验假设211210μμμμ≠=:;:H H , 这里5021==n n .选取检验统计量222121n n YX U σσ+-=.给定显著性水平05.0=α,查标准正态分布表,得临界值96.1025.02/==u u α,故拒绝域}|{|2/αu U W >=.由于1208=x ,1282=y ,801=σ,942=σ, 计算检验统计量的值2392.450/)(2221-=+-=σσy x u .由于2/||αu u >,故拒绝0H ,认为两厂钢丝的抗拉强度有显著差别. 2.方差21σ与22σ未知,但2221σσ=——t 检验法.选取 212111)()(n n S Y X T w+---=μμ.这里2)1()1(21222211-+-+-=n n S n S n S w .当0H 成立时,检验统计量)2(~112121-++-=n n t n n S Y X T w.给定显著性水平α,由t 分布表分位点的定义, 有αα=-+>)}2(|{|212/n n t T P ,故拒绝域)}2({)}2({212/212/-+>-+-<=n n t T n n t T W αα .例2 某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量有无显著差异?解 检验假设211210μμμμ≠=:;:H H ,这里621==n n ..525=x ,67.625=y ,7386.21=s ,3267.32=s ,0469.3=w s . 选取检验统计量2111n n S Y X T w+-=.给定显著性水平5.00=α,查t 分布表,得临界值2281.2)10()2(025.0212/==-+t n n t α,故拒绝域)}2(|{|212/-+>=n n t T W α.计算统计量的值0949.00469.33)667.255.25(1121-=⨯-=+-=n n s y x t w.由于)2(||212/-+<n n t t α,故接受0H ,认为两种香烟的尼古丁含量无显著差异. 二、两个正态总体方差的检验——F 检验法 考虑检验假设 2221122210σσσσ≠=:;:H H . 1.均值1μ与2μ已知.因为)(~)(11212121211n Xn i iχμσχ∑=-=,)(~)(12212222222n Yn i iχμσχ∑=-=,选取221222211211222121/)(1/)(1//21σμσμχχ∑∑==--==n i i n i i Y n X n n n F . 当0H 成立时,检验统计量),(~)(1)(1211222121121n n F Y n X n F n i i n i i ∑∑==--=μμ.给定显著性水平α,由F 分布分位点的定义,有ααα=><-))},(()),({(212/212/1n n F F n n F F P , 故得拒绝域)},({)},({212/212/1n n F F n n F F W αα><=- . 2.均值1μ与2μ未知.因为)1(~)1()(112212111221211--=-=∑=n S n X X n i i χσσχ,)1(~)1()(122222221222222--=-=∑=n S n Y Yn i iχσσχ,选取22222121222121//)1/()1/(σσχχS S n n F =--=.当0H 成立时,检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,由F 分布分位点的定义,有ααα=-->--<-))}1,1(())1,1({(212/212/1n n F F n n F F P , 故得拒绝域)}1,1({)}1,1({212/212/1-->--<=-n n F F n n F F W αα .例3某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量的方差是否相等? 解 考虑检验假设2221122210σσσσ≠=:;:H H . 由于两个正态总体的均值都未知,选取检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,查F 分布表,得两个临界值:15.7)5,5()1,1(025.0212/==--F n n F α1399.015.71)5,5(1)5,5()1,1(025.0975.0212/1====---F F n n F α,故得拒绝域}15.7{}1399.0{><=F F W . 计算统计量的值6777.03267.37386.2222221===s s F .由于15.71399.0<<F , 故接受0H ,认为两种香烟的尼古丁含量的方差也无显著差异.§8.4 非正态总体参数的大样本检验本节讨论一般总体参数的检验.设总体X 的均值为μ,方差为2σ, n X X X ,,, 21为总体X 的一个样本.由中心极限定理可知,当样本容量n 足够大时,nX U /σμ-=近似地服从标准正态分布.因此,我们可以用正态分布去近似.如果对均值μ进行检验,方差2σ未知时,可以用样本方差2S 代替2σ;如果对方差2σ进行检验,均值μ未知时,可以用样本均值X 代替μ.下面举两个例子.例1 设某段高速公路上汽车限速为104.6km/h ,现检验85辆汽车的样本,测出的平均车速为106.7km/h ,已知总体标准差为.413=σ km/h ,但不知总体是否服从正态分布.在显著性水平50.0=α下,试检验高速公路上的汽车是否比限制速度104.6km/h 显著地快?解 依题意,检验假设0100.6104μμμμ>=≤:;:H H , 由于.413=σ已知,n =85足够大, 选择检验统计量nX U /0σμ-=近似地服从)10(,N .其拒绝域}{αu U W >=,其中65.105.0==u u α. 计算U 的值449.4185/4.136.1047.106=-=u ,由于αu u <,因此接受0H ,没有理由认为高速公路上的汽车比限制速度104.6km/h 显著地快.例2 为比较甲乙两种小麦植株的高度(单位:cm),分别抽得甲、乙小麦各100穗,在相同条件下进行高度测定,算得甲乙小麦样本均值和样本方差分别为28=x ,8.3521=s ,26=y ,3.3222=s ,问这两种小麦的株高有无显著差异(50.0=α)?解 依题意,检验假设 211210μμμμ≠=:;:H H , 选取 22212121)()(n n Y X U σσμμ+---=,这里两个方差用样本方差代替.当0H 成立时, 检验统计量 222121n Sn S Y X U +-=近似地服从)1,0(N .给定显著性水平05.0=α,查附表3,得临界值96.1025.02/==u u α, 得拒绝域}|{|2/αu U W >=.计算U 的值4236.21003.328.352628=+-=u ,由于αu u >,因此拒绝0H ,认为这两种小麦的株高有显著差异.当总体服从(0-1)分布),1(p b 时,由于只有一个参数p ,总体均值p 和方差)1(p p -均只与p 有关,这时对参数p 进行假设检验时,检验统计量可以直接用样本和参数p 表示出来.例3 某厂有一批产品须经检验后方可出厂.按规定二级品率不得超过10%,从中随机抽取100件产品进行检查,发现有二级品14件,问这批产品是否可以出厂(50.0=α)?解 这里n =100,14.0=x .检验假设01001.0p p H p p H >=≤:;:, 选取检验统计量 np p p X U )1(000--=,U 近似地服从)1,0(N .由显著性水平50.0=α,可以得到拒绝域}{αu U W >=,其中65.105.0==u u α,计算U 的值333.31100.90.10.104.10=⨯-=u ,由于αu u <,因此接受0H ,认为这批产品二级品率没有超过10%,可以出厂.§8.5 分布的拟合检验前几节的检验都是参数的检验.实际问题中,有时需要对分布作出假设,进行检验.本节只介绍一种分布的检验方法——皮尔逊2χ检验法,它只适合于大样本的情形,一般要求样本容量50≥n .设总体X 的分布函数为)(x F ,)(0x F 为一个已知的分布函数,n X X X ,,, 21为总体X 的一个样本,我们来检验关于总体分布的假设)()()()(0100x F x F H x F x F H ≠=:;:.一、基本原理2χ检验法的基本思想是:将随机试验的所有可能结果的全体分成k 个两两互不相容的事件k A A A ,,, 21,在n 次试验中,将i A 发生的次数i f 叫做i A 发生的频数,如果0H 为真,则由大数定律,在n 次试验中(n 足够大),i A (k i ,,, 21=)出现的实际频率nf i与理论频率)(i i A P p =(可由分布函数)(0x F 算出)不应相差很大.基于这种想法,皮尔逊构造了统计量∑=-=ki i i i np np f 122)(χ或∑=-=ki i i i p n p n f 122ˆ)ˆ(χ, 其中i p ˆ是由)(ˆ0x F 计算出来的理论频率,)(ˆ0x F 是)(0x F 中未知参数估计出后的分布函数,并证明了如下定理:定理1 若n 足够大,当0H 成立时,统计量2χ总是近似地服从自由度为1--r k 的2χ分布,其中r 是已知的分布函数)(0x F 中未知参数的个数.直观上看,2χ值表示实际观测结果与理论期望结果的相对差异的总和,当它的取值大于临界值时,应拒绝0H . 二、检验步骤如果)(0x F 为不带有未知参数的已知分布,皮尔逊2χ检验法的具体步骤如下:(1) 将总体X 的值域划分成k 个不交的区间i A (k i ,,, 21=),使得每个区间包含的理论频数满足5≥i np ,否则将区间适当调整; (2) 在0H 成立时,计算各理论频率即概率i p 的值:)()()(100--==i i i i y F y F A P p ,k i ,,, 21=.这里1-i y 与i y 为区间i A 的端点,即](1i i i y y A ,-=;(3) 数出i A 中含有样本值的个数,即i A 的频数i f ,并计算统计量∑=-=ki i iinp np f 122)(χ 的值2χ;(4) 由2χ分布,对于给定的显著性水平α,找出临界值)1(2-k αχ; (5) 判断:若)1(22->k αχχ,则拒绝0H ,否则可接受0H . 如果总体X 是离散型的,则假设0H 相当于假设总体X 的概率分布00}{i i p x X P H ==:, ,,21=i .如果总体X 是连续型的,则假设0H 相当于)()(00x f x f H =:,这里)(x f 为总体的概率密度.例1 至1984年底,市开办有奖储蓄以来,13期兑奖中诸数码的频数汇总如表8.1:表8.1试检验器械或操作方法是否有问题(50.0=α).解 设抽取的数码为X ,它可能的取值为0~9,如果检验器械或操作方法没有问题,则0~9出现是等可能的,即检验假设 1010=i p H :,9210,,,, =i ,这里}{i X P p i ==. 依题意知k =10,令}{i A i =,9210,,,, =i ,n =350,则理论频数35=i np .57.61935688)(9022==-=∑=i ii i np np f χ给定显著性水平5.00=α,查2χ分布表,得临界值9.16)9()1(205.02==-χχαk .由于19.675>16.9,故拒绝0H ,即认为器械或操作方法有问题.如果)(0x F 为带有未知参数的已知分布,未知参数为r θθθ,,, 21,这时用这r 个未知参数的极大似然估计量r θθθˆˆˆ21,,, 来代替)(0x F 中的参数r θθθ,,, 21,得到分布函数)(ˆ0x F ,然后建立统计量∑=-=ki ii i p n p n f 122ˆ)ˆ(χ,这里i p ˆ是由)(ˆ0x F 计算出来的理论频率,再用以上检验步骤进行检验,但此时检验统计量2χ近似服从)1(2--r k χ分布(这里k >r +1).例2 某高校对100名新生的身高(厘米)做了检查,把测得的100个数据按由大到小的顺序排列,相同的数合并得表8.2:表8.2试问,在显著性水平5.00=α下是否可以认为学生身高X 服从正态分布? 解 这里n =100,我们来检验假设222)(021)(σμσπ--=x ex f H :,+∞<<∞-x ,这里)(x f 为正态分布),(2σμN 的概率密度,设其分布函数为)(x F ,μ与0>σ为未知参数.先求μ与2σ的极大似然估计值μˆ,2ˆσ: 33.1661ˆ1==∑=n i i x n μ, 06.28)ˆ(1ˆ212=-=∑=μσn i i x n . 设服从正态分布)ˆ,ˆ(2σμN 的随机变量为Y ,分布函数为)(ˆy F .按照分组要求,每个小区间的理论频数i pn ˆ不应小于5,因此我们将数据分成了7个组,使得每组的实际频数不小于5,各计算结果如下表8.3所示.表8.3中第3列i pˆ的计算如下: )(ˆ)(ˆ}{ˆ11---=≤<=i i i i i y F y F y Y y P p ,7210,,,, =i , 例如,}06.2833.1665.164ˆˆ06.2833.1665.161{}5.1645.161{ˆ3-≤-<-=≤<=σμY P Y P p1837.0)911.0()345.0(=-Φ--Φ=.给定显著性水平5.00=α,查2χ分布表,得临界值488.9)4()127()1(205.0205.02==--=--χχχαr k .由于1.8843<9.488,故接受0H ,即认为学生身高服从正态分布.。

第三章 总体均数的估计与假设检验

第三章 总体均数的估计与假设检验
2
Sd
d
d Sd / n
2

(
d)
n
n 1
S d 0.1087 t 2.7424 0.1087/ 10 7.925
v 10 1 9
3)确定P值,作出推断结论 T0.05,9=2.262, 7.925>2.262,故P<0.05.可以认为两种 方法对脂肪含量的测定结果不同。
167.41, 2.74
165.56, 6.57
168.20, 5.36 n j=10
…. 165.69, 5.09
将上述100个样本均数看成新变量值,则这个 100个样本均数构成一新分布,绘制直方图
样本均数的抽样分布具有如下特点:
1) 各样本均数未必等于总体均数
2) 各样本均数间存在差异
3) 样本均数的分布很有规律,围绕着总体均 数,中间多,两边少,左右基本对称,也 服从正态分布
假设检验的基本步骤:
1、建立检验假设
H0: 检验假设, 无效假设,零假设 μ=μ0
H1: 备择假设,对立假设
μ≠μ0
2、确定检验水准 α=0.05 单双侧
3、选定检验方法和计算检验统计量
4、确定P值和作出推论结论。
P值是指从H0所规定的总体进行随机抽样,获 得大于(或等于及小于)现有样本获得的检验 统计量值的概率。
(1012/L)
血红蛋白 (g/L)

男 女
255
360 255
4.18
134.5 117.6
0.29
7.1 10.2
4.33
140.2 124.7
*标准值:使用内科学(1976年)所载均数(转位法定单位)
1)说明女性的红细胞数与血红蛋白的变异程度何者为大? 2)抽样误差是? 3)试估计该地健康成年女性红细胞数的均数? 4) 该地健康成年男女血红蛋白含量是否不同? 5)该地男性两项血压指标是否均低于上表的标准值(若测 定方法相同)?

总体均数的假设检验

总体均数的假设检验

n 1 n 2 2 1 2 1 2 2 2 2
(3) 确定P值,作出统计推断
查附表3 , t界值表,
0.002<P<0.005,按=0.05水准拒 绝H0,接受H1,差异有统计学意
义,可认为…..
方差齐性检验
F
S12(较大) S22(较小)
1 n1 1 2 n2 1
总体方差不等时处理方式
H0
160 样本均值
P (t≥4.841)
0 t=4.841 t分布
若只考虑单侧,P值就是统计量t≥4.841的概率
QUESTION
如果考虑双侧,即回答例7.3的问题, P是什么?
结论
➢若P≤,表示在H0成立的条件下,出现等
于及大于(或等于及小于)现有统计量的概 率是小概率,按小概率事件原理现有样本
P93例8.3
某医生研究血清白介素-6(IL-6)与银屑病的 关系,收集了12例处于进行期的银屑病患者 及12例正常人的血清标本进行IL-6检测,得 到表8.2结果,问银屑病患者与正常人的血 清IL-6均数是否不同?
未知总体 1 ?
(银屑病患者)
未知总体 2 (正常人)
样本1
X1 182.4
样本2
I 型错误与II 型错误(p85)
拒绝了实际上成立的H0,这类“弃真” 的错误为I 型错误(type I error);
不拒绝实际上不成立的H0,这类“存伪” 的错误为II 型错误(type II error)。
0.08
0.06 0.04
=0
0.02 0 40
,
60
X80
100
120
0.07 0.06 0.05 0.04 0.03 0.02 0.01

总体均值的假设检验

总体均值的假设检验

总体均值的假设检验一、正态总体均值的检验设n X X X ,,, 21为总体),(2σμN 的一个容量为n 的样本. 1.方差2σ已知,μ的检验——u 检验法. 当202σσ=已知时,假设检验问题:0100μμμμ≠=:;:H H . 选择检验统计量nX U /00σμ-=,当0H 成立时,)1,0(~N U .给定显著性水平α,由标准正态分布分位点的定义, 有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= ,这种利用服从正态分布的检验统计量的检验方法称为u 检验法.有时我们只关心总体的均值是否增大(或减小).比如,经过工艺改革后,产品的质量(如材料的强度)比以前是否提高,此时我们要研究的是新工艺下总体的均值μ是小于等于原来的均值0μ,还是大于0μ,即检验假设 0100μμμμ>≤:;:H H . 可以证明,在显著性水平α下,上述假设检验问题和检验假设0100μμμμ>=:;:H H 有相同的拒绝域,因此,遇到形如00μμ≤:H 的检验问题,可归结为后一个假设检验问题讨论. 类似地,形如0100μμμμ<≥:;:H H 的检验问题, 可归结为检验假设 0100μμμμ<=:;:H H .这都是单边检验问题.给定显著性水平α,求得的临界值点是上α分位点或上α-1分位点.例1 某厂生产的某种钢索的断裂强度X 服从),(2σμN ,其中40=σ(kg/cm 2),现从这批钢索中抽取容量为9的样本,测得断裂强度的平均值x 较以往正常生产的μ大20(kg/cm 2),设总体方差不变,问在1.00=α下,能否认为这批钢索质量有显著提高?解 依题意,检验假设0100μμμμ>≤:;:H H , 由于40=σ已知,选择检验统计量nX U /0σμ-=因为0H 中的μ全部都比1H 中的μ要小,从直观上看,当0H 成立时,X 的取值x 不应比μ大很多,若偏差0μ-x 过大,则拒绝0H 而接受1H .因为 0100μμμμ>=:;:H H 的拒绝域为}{αu U W >=, 故在显著性水平1.00=α下原假设的拒绝域为}{}{0nu X u U W σμαα+>=>=.本题中,9=n ,40=σ,200=-μx ,33.201.0=u , 计算U 的值33.25.1/0<=-=nx u σμ因此在显著性水平1.00=α下不能拒绝0H ,即认为这批钢索质量没有显著提高.2.方差2σ未知,μ的检验——t 检验法. 检验假设0100μμμμ≠=:;:H H .因为2σ未知,而样本方差2S 是总体方差2σ的无偏估计量,用S 代替σ. 选择检验统计量 nS X T /0μ-=,当0H 成立时,)1(~-n t T .给定显著性水平α,由t 分布分位点的定义, 有αα=->)}1(|{|2/n t T P ,故拒绝域)}1({)}1({)}1(|{|2/2/2/->--<=->=n t T n t T n t T W ααα , 这种利用服从t 分布的检验统计量的检验方法称为t 检验法.例2 某切割机工作正常时,切割每段金属棒的平均长度为10.5cm .今在某段时间内随机地抽取15段进行测量,其结果如下(cm):10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7问此段时间内该机工作是否正常(5.00=α)?假设金属棒长度服从正态分布.解 依题意,检验假设0100.510μμμμ≠==:;:H H , 由于2σ未知,故选择检验统计量nS X T /0μ-=.在0H 下,)1(~-n t T ,15=n .给定显著性水平5.00=α,查t 分布表, 得临界值1448.2)14()1(025.02/==-t n t α,故拒绝域)}1(|{|2/->=n t T W α.由已知条件可得48.102.15715111=⨯==∑=n i i x n x056.0784.0141)(11122=⨯=--=∑=n i ix x n s 故2366.0=s .计算统计量的值3274.015/2366.05.1048.10/0-=-=-=ns x t μ因为)1(||2/-<n t t α,所以接受0H ,认为切割机工作正常.例3 设木材的小头直径),(~2σμN X ,12≥μcm 为合格,今抽出12根测得小头直径的样本均值为2.11=x cm ,样本方差为44.12=s cm 2,问该批木材是否合格(5.00=α)?解 依题意,检验假设010012μμμμ<=≥:;:H H ,选择检验统计量nS X T /0μ-=.在假设0100μμμμ<=:;:H H 下,)1(~-n t T ,12=n .给定显著性水平5.00=α,查t 分布表,得临界值7959.1)11()1(05.0==-t n t α,故拒绝域)}1({--<=n t T W α,也是假设010012μμμμ<=≥:;:H H 的拒绝域. 由于2.11=x ,44.12=s ,计算统计量的值3094.212/44.1122.11/0-=-=-=ns x t μ因为)1(--<n t t α,故拒绝0H ,认为该批木材是不合格的. 二、正态总体方差的检验——2χ检验法设n X X X ,,, 21为来自总体),(2σμN 的一个样本,检验假设 20212020σσσσ≠=:;:H H .1.均值μ已知. 因为)1,0(~N X i σμ-,n i ,,2,1 =,则选取检验统计量∑∑==-=⎪⎪⎭⎫ ⎝⎛-=ni ini i XX 12201202)(1μσσμχ.当0H 成立时,)(~22n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=><-))}(())({(22/222/12n n P ,故得拒绝域)}({)}({22/222/12n n W ααχχχχ><=- .2.均值μ未知.因为X 是总体均值μ的无偏估计量,用X 代替μ.选择检验统计量202122)1(σσχS n XX ni i -=⎪⎪⎭⎫ ⎝⎛-=∑=. 当0H 成立时,)1(~22-n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=->-<-))}1(())1({(22/222/12n n P故得拒绝域)}1({)}1({22/222/12->-<=-n n W ααχχχχ .类似地,在μ已知和μ未知时,可以求出检验假设20212020σσσσ>≤:;:H H 和20212020σσσσ<≥:;:H H的拒绝域.例如,在μ未知时,检验假设2020σσ≤:H 的拒绝域为)}1({22->=n W αχχ.上述检验所用的检验统计量均服从2χ分布,称这种检验方法为2χ检验法例4 某无线电厂生产的一种高频管,其中一指标服从正态分布),(2σμN ,今从一批产品中抽取8只管子,测得指标数据:68 43 70 65 55 56 60 72(1) 总体均值60=μ时,检验228=σ(取5.00=α); (2) 总体均值μ未知时,检验228=σ(取5.00=α). 解 本题是在显著性水平5.00=α下,检验假设2021220208σσσσ≠==:;:H H ,这里8=n .(1) 60=μ已知时临界值35.517)8()(2025.022/==χχαn ,80.12)8()(2975.022/1==-χχαn ,而检验统计量的值359.10663641)(811222=⨯=-=∑=ni i x μχ, 由于)()(22/222/1n n ααχχχ<<-,故接受0H .(2) μ未知时临界值13.016)7()1(2025.022/==-χχαn ,90.61)7()1(2975.022/1==--χχαn ,而125.614898111=⨯==∑=n i i x n x ,875.652)()1(122=-=-∑=ni i x x s n ,检验统计量的值2012.1075.86526412=⨯=χ, 由于)1()1(22/222/1-<<--n n ααχχχ,故接受0H .§8.3 两个正态总体参数的假设检验设121n X X X ,,, 为总体),(~112σμN X 的一个样本,221n Y Y Y ,,, 为总体),(~222σμN Y 的一个样本.∑==1111n i i X n X 和∑==2121n i iYn Y 分别是两个样本的样本均值,∑=--=112121)(11n i i X X n S 和∑=--=212222)(11n i i Y Y n S 是相应的两个样本方差.设这两个样本相互独立..一、两个正态总体均值的检验考虑检验假设 211210μμμμ≠=:;:H H . 1.方差21σ与22σ已知——u 检验法. 选取 22212121)()(n n Y X U σσμμ+---=.当0H 成立时,检验统计量)1,0(~222121N n n YX U σσ+-=.给定显著性水平α,由标准正态分布表分位点的定义,有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= .例1 设从甲乙两场所生产的钢丝总体X ,Y 中各取50束作拉力强度试验,得1208=x ,1282=y ,已知801=σ,942=σ,请问两厂钢丝的抗拉强度是否有显著差别(5.00=α)?解 本题是在显著性水平5.00=α下, 检验假设211210μμμμ≠=:;:H H , 这里5021==n n .选取检验统计量222121n n YX U σσ+-=.给定显著性水平05.0=α,查标准正态分布表,得临界值96.1025.02/==u u α,故拒绝域}|{|2/αu U W >=.由于1208=x ,1282=y ,801=σ,942=σ, 计算检验统计量的值2392.450/)(2221-=+-=σσy x u .由于2/||αu u >,故拒绝0H ,认为两厂钢丝的抗拉强度有显著差别. 2.方差21σ与22σ未知,但2221σσ=——t 检验法.选取 212111)()(n n S Y X T w+---=μμ.这里2)1()1(21222211-+-+-=n n S n S n S w .当0H 成立时,检验统计量)2(~112121-++-=n n t n n S Y X T w.给定显著性水平α,由t 分布表分位点的定义, 有αα=-+>)}2(|{|212/n n t T P ,故拒绝域)}2({)}2({212/212/-+>-+-<=n n t T n n t T W αα .例2 某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量有无显著差异?解 检验假设211210μμμμ≠=:;:H H ,这里621==n n ..525=x ,67.625=y ,7386.21=s ,3267.32=s ,0469.3=w s . 选取检验统计量2111n n S Y X T w+-=.给定显著性水平5.00=α,查t 分布表,得临界值2281.2)10()2(025.0212/==-+t n n t α,故拒绝域)}2(|{|212/-+>=n n t T W α.计算统计量的值0949.00469.33)667.255.25(1121-=⨯-=+-=n n s y x t w.由于)2(||212/-+<n n t t α,故接受0H ,认为两种香烟的尼古丁含量无显著差异. 二、两个正态总体方差的检验——F 检验法 考虑检验假设 2221122210σσσσ≠=:;:H H . 1.均值1μ与2μ已知.因为)(~)(11212121211n Xn i iχμσχ∑=-=,)(~)(12212222222n Yn i iχμσχ∑=-=,选取221222211211222121/)(1/)(1//21σμσμχχ∑∑==--==n i i n i i Y n X n n n F . 当0H 成立时,检验统计量),(~)(1)(1211222121121n n F Y n X n F n i i n i i ∑∑==--=μμ.给定显著性水平α,由F 分布分位点的定义,有ααα=><-))},(()),({(212/212/1n n F F n n F F P , 故得拒绝域)},({)},({212/212/1n n F F n n F F W αα><=- . 2.均值1μ与2μ未知.因为)1(~)1()(112212111221211--=-=∑=n S n X X n i i χσσχ,)1(~)1()(122222221222222--=-=∑=n S n Y Yn i iχσσχ,选取22222121222121//)1/()1/(σσχχS S n n F =--=.当0H 成立时,检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,由F 分布分位点的定义,有ααα=-->--<-))}1,1(())1,1({(212/212/1n n F F n n F F P , 故得拒绝域)}1,1({)}1,1({212/212/1-->--<=-n n F F n n F F W αα .例3某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量的方差是否相等? 解 考虑检验假设2221122210σσσσ≠=:;:H H . 由于两个正态总体的均值都未知,选取检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,查F 分布表,得两个临界值:15.7)5,5()1,1(025.0212/==--F n n F α1399.015.71)5,5(1)5,5()1,1(025.0975.0212/1====---F F n n F α,故得拒绝域}15.7{}1399.0{><=F F W . 计算统计量的值6777.03267.37386.2222221===s s F .由于15.71399.0<<F , 故接受0H ,认为两种香烟的尼古丁含量的方差也无显著差异.§8.4 非正态总体参数的大样本检验本节讨论一般总体参数的检验.设总体X 的均值为μ,方差为2σ, n X X X ,,, 21为总体X 的一个样本.由中心极限定理可知,当样本容量n 足够大时,nX U /σμ-=近似地服从标准正态分布.因此,我们可以用正态分布去近似.如果对均值μ进行检验,方差2σ未知时,可以用样本方差2S 代替2σ;如果对方差2σ进行检验,均值μ未知时,可以用样本均值X 代替μ.下面举两个例子.例1 设某段高速公路上汽车限速为104.6km/h ,现检验85辆汽车的样本,测出的平均车速为106.7km/h ,已知总体标准差为.413=σ km/h ,但不知总体是否服从正态分布.在显著性水平50.0=α下,试检验高速公路上的汽车是否比限制速度104.6km/h 显著地快?解 依题意,检验假设0100.6104μμμμ>=≤:;:H H , 由于.413=σ已知,n =85足够大, 选择检验统计量nX U /0σμ-=近似地服从)10(,N .其拒绝域}{αu U W >=,其中65.105.0==u u α. 计算U 的值449.4185/4.136.1047.106=-=u ,由于αu u <,因此接受0H ,没有理由认为高速公路上的汽车比限制速度104.6km/h 显著地快.例2 为比较甲乙两种小麦植株的高度(单位:cm),分别抽得甲、乙小麦各100穗,在相同条件下进行高度测定,算得甲乙小麦样本均值和样本方差分别为28=x ,8.3521=s ,26=y ,3.3222=s ,问这两种小麦的株高有无显著差异(50.0=α)?解 依题意,检验假设 211210μμμμ≠=:;:H H , 选取 22212121)()(n n Y X U σσμμ+---=,这里两个方差用样本方差代替.当0H 成立时, 检验统计量 222121n Sn S Y X U +-=近似地服从)1,0(N .给定显著性水平05.0=α,查附表3,得临界值96.1025.02/==u u α, 得拒绝域}|{|2/αu U W >=.计算U 的值4236.21003.328.352628=+-=u ,由于αu u >,因此拒绝0H ,认为这两种小麦的株高有显著差异.当总体服从(0-1)分布),1(p b 时,由于只有一个参数p ,总体均值p 和方差)1(p p -均只与p 有关,这时对参数p 进行假设检验时,检验统计量可以直接用样本和参数p 表示出来.例3 某厂有一批产品须经检验后方可出厂.按规定二级品率不得超过10%,从中随机抽取100件产品进行检查,发现有二级品14件,问这批产品是否可以出厂(50.0=α)?解 这里n =100,14.0=x .检验假设01001.0p p H p p H >=≤:;:, 选取检验统计量 np p p X U )1(000--=,U 近似地服从)1,0(N .由显著性水平50.0=α,可以得到拒绝域}{αu U W >=,其中65.105.0==u u α,计算U 的值333.31100.90.10.104.10=⨯-=u ,由于αu u <,因此接受0H ,认为这批产品二级品率没有超过10%,可以出厂.§8.5 分布的拟合检验前几节的检验都是参数的检验.实际问题中,有时需要对分布作出假设,进行检验.本节只介绍一种分布的检验方法——皮尔逊2χ检验法,它只适合于大样本的情形,一般要求样本容量50≥n .设总体X 的分布函数为)(x F ,)(0x F 为一个已知的分布函数,n X X X ,,, 21为总体X 的一个样本,我们来检验关于总体分布的假设)()()()(0100x F x F H x F x F H ≠=:;:.一、基本原理2χ检验法的基本思想是:将随机试验的所有可能结果的全体分成k 个两两互不相容的事件k A A A ,,, 21,在n 次试验中,将i A 发生的次数i f 叫做i A 发生的频数,如果0H 为真,则由大数定律,在n 次试验中(n 足够大),i A (k i ,,, 21=)出现的实际频率nf i与理论频率)(i i A P p =(可由分布函数)(0x F 算出)不应相差很大.基于这种想法,皮尔逊构造了统计量∑=-=ki i i i np np f 122)(χ或∑=-=ki i i i p n p n f 122ˆ)ˆ(χ, 其中i p ˆ是由)(ˆ0x F 计算出来的理论频率,)(ˆ0x F 是)(0x F 中未知参数估计出后的分布函数,并证明了如下定理:定理1 若n 足够大,当0H 成立时,统计量2χ总是近似地服从自由度为1--r k 的2χ分布,其中r 是已知的分布函数)(0x F 中未知参数的个数.直观上看,2χ值表示实际观测结果与理论期望结果的相对差异的总和,当它的取值大于临界值时,应拒绝0H . 二、检验步骤如果)(0x F 为不带有未知参数的已知分布,皮尔逊2χ检验法的具体步骤如下: (1) 将总体X 的值域划分成k 个不交的区间i A (k i ,,, 21=),使得每个区间包含的理论频数满足5≥i np ,否则将区间适当调整; (2) 在0H 成立时,计算各理论频率即概率i p 的值:)()()(100--==i i i i y F y F A P p ,k i ,,, 21=.这里1-i y 与i y 为区间i A 的端点,即](1i i i y y A ,-=;(3) 数出i A 中含有样本值的个数,即i A 的频数i f ,并计算统计量∑=-=ki ii i np np f 122)(χ 的值2χ;(4) 由2χ分布,对于给定的显著性水平α,找出临界值)1(2-k αχ; (5) 判断:若)1(22->k αχχ,则拒绝0H ,否则可接受0H . 如果总体X 是离散型的,则假设0H 相当于假设总体X 的概率分布00}{i i p x X P H ==:, ,,21=i .如果总体X 是连续型的,则假设0H 相当于)()(00x f x f H =:,这里)(x f 为总体的概率密度.例1 至1984年底,南京市开办有奖储蓄以来,13期兑奖号码中诸数码的频数汇总如表8.1:表8.1试检验器械或操作方法是否有问题(50.0=α).解 设抽取的数码为X ,它可能的取值为0~9,如果检验器械或操作方法没有问题,则0~9出现是等可能的,即检验假设 1010=i p H :,9210,,,, =i ,这里}{i X P p i ==. 依题意知k =10,令}{i A i =,9210,,,, =i ,n =350,则理论频数35=i np .57.61935688)(922==-=∑=i i i i np np f χ给定显著性水平5.00=α,查2χ分布表,得临界值9.16)9()1(205.02==-χχαk .由于19.675>16.9,故拒绝0H ,即认为器械或操作方法有问题.如果)(0x F 为带有未知参数的已知分布,未知参数为r θθθ,,, 21,这时用这r 个未知参数的极大似然估计量r θθθˆˆˆ21,,, 来代替)(0x F 中的参数r θθθ,,, 21,得到分布函数)(ˆ0x F ,然后建立统计量∑=-=ki i i i p n p n f 122ˆ)ˆ(χ, 这里i p ˆ是由)(ˆ0x F 计算出来的理论频率,再用以上检验步骤进行检验,但此时检验统计量2χ近似服从)1(2--r k χ分布(这里k >r +1).例2 某高校对100名新生的身高(厘米)做了检查,把测得的100个数据按由大到小的顺序排列,相同的数合并得表8.2:表8.2试问,在显著性水平5.00=α下是否可以认为学生身高X 服从正态分布? 解 这里n =100,我们来检验假设222)(021)(σμσπ--=x ex f H :,+∞<<∞-x ,这里)(x f 为正态分布),(2σμN 的概率密度,设其分布函数为)(x F ,μ与0>σ为未知参数.先求μ与2σ的极大似然估计值μˆ,2ˆσ: 33.1661ˆ1==∑=n i i x n μ, 06.28)ˆ(1ˆ212=-=∑=μσn i i x n . 设服从正态分布)ˆ,ˆ(2σμN 的随机变量为Y ,分布函数为)(ˆy F .按照分组要求,每个小区间的理论频数i pn ˆ不应小于5,因此我们将数据分成了7个组,使得每组的实际频数不小于5,各计算结果如下表8.3所示.表8.3中第3列i pˆ的计算如下: )(ˆ)(ˆ}{ˆ11---=≤<=i i i i i y F y F y Y y P p ,7210,,,, =i , 例如,}06.2833.1665.164ˆˆ06.2833.1665.161{}5.1645.161{ˆ3-≤-<-=≤<=σμY P Y P p1837.0)911.0()345.0(=-Φ--Φ=.给定显著性水平5.00=α,查2χ分布表,得临界值488.9)4()127()1(205.0205.02==--=--χχχαr k .由于1.8843<9.488,故接受0H ,即认为学生身高服从正态分布.。

总体均值的假设检验

总体均值的假设检验
有检验统计量

Z X 0 ~ N (0,1)
2
n
天津财经大学 统计学系
(二)总体分布未知,总体方差已知,大 样本
统 • 来自总体的样本为(x1, x2, …, xn)。对于
假设:H0: = 0,在H0成立的前提下,
计 如果样本足够大(n≥30),近似地有检 验统计量

Z X 0 ~ N (0,1)
(四)总体分布未知,总体方差未知,大 样本

• 来自总体的样本为(x1, x2, …, xn)。对于
假设:H0: = 0,在H0成立的前提下,

如果总体偏斜适度,且样本足够大,近 似地有检验统计量

Z X - m0 ~ N (0,1)
S2
n
天津财经大学 统计学系
• 例:某厂采用自动包装机分装产品,假 定每包产品的重量服从正态分布,每包
新方法(x2) 35 31 29 25 34 40 27 32 31
旧方法(x1) 32 37 35 38 41 44 35 31 34
天津财经大学 统计学系
• 解:原假设与备择假设如下:

H0:旧 - 新 0 H1:旧 - 新 > 0
计 该题属于两个正态总体,方差相等(但
学 未知)的情况。因此,可利用下式计算 检验统计量。
x2i
i 1
,
s
2 2
1 n2Biblioteka n2 1 i1x2i
x2
2
并且,两样本独立。
天津财经大学 统计学系
• 那么,只要n1和n2都足够大,在原假设
H0: 1 = 2成立的条件下,以下检验统
统 计量近似服从标准正态分布。

假设检验的一般步骤

假设检验的一般步骤

假设检验的一般步骤假设检验是统计学中一种重要的方法,用于检验研究者提出的关于总体参数的假设是否成立。

它的一般步骤如下:第一步:确定问题并建立假设在开始假设检验之前,需要确定所要研究的问题并建立相应的假设。

一般来说,假设分为原假设和备择假设两种。

原假设通常是指总体参数没有变化或存在某种规律性,备择假设则是指总体参数发生了变化或不存在任何规律性。

第二步:选择检验统计量在确定假设之后,需要选择检验统计量。

检验统计量是用来度量样本数据与假设的差异程度的统计量,通常是样本均值、样本比率、样本方差等。

第三步:设定显著性水平显著性水平是指在进行假设检验时所允许的犯错误的概率。

通常情况下,显著性水平设定为0.05或0.01。

第四步:计算检验统计量的值在进行假设检验时,需要计算出检验统计量的值。

具体计算方法根据所选择的检验统计量的不同而有所差异。

第五步:确定拒绝域拒绝域是指当检验统计量的值落在该区域内时,拒绝原假设。

拒绝域的确定需要根据所选的显著性水平和自由度来进行计算。

第六步:进行统计决策在计算出检验统计量的值并确定了拒绝域之后,需要进行统计决策,判断是拒绝原假设还是接受原假设。

具体决策方法根据所选的显著性水平和自由度而有所不同。

第七步:得出结论在进行统计决策之后,需要根据结果得出结论。

如果拒绝原假设,则表明样本数据与原假设存在显著差异,否则则表明样本数据与原假设不存在显著差异。

假设检验是一种重要的统计方法,它能够帮助研究者确定总体参数的真实情况,提高研究的可靠性和准确性。

熟练掌握假设检验的一般步骤和方法,对于科学研究和实践应用都具有重要的意义。

假设检验 正态总体均值的假设检验

假设检验 正态总体均值的假设检验
如在前面实例中,
拒绝域 |u|为 u/2,
临界点 u/2及 为 u/2.
.
11
3. 两类错误及记号
假设检验是根据样本的信息并依据小概率原 理,作出接受还是拒绝H0的判断。由于样本具有 随机性,因而假设检验所作出的结论有可能是错 误的. 这种错误有两类:
(1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称做第一类错误, 又叫弃
第八章 假 设 检 验
第1节 假设检验
一、假设检验的基本原理 二、假设检验的相关概念 三、假设检验的一般步骤
.
1
一、假设检验的基本原理
在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下, 为了推断总体的某些性 质, 提出某些关于总体的假设.
例如, 提出总体服从泊松分布的假设;
又如 ,对于正态总体 期提 望出 等 0的 数 于学
1.9 0 1.6 0 1.8 0 1.5 0 1.7 0 1.2 0 1.7 0 假定切割的长度X服从正态分布, 且标准差没有 变化, 试问该机工作是否正常?
解 X~N(,2),0.15,
1.提出假设
H0:1.0 5, H 1:1.0 5,
.
17
2.求统计量值
n15, X 10.48, 则 uX01.048 1.05 0.51,6
下面结合实例来说明假设检验的基本思想.
.
3
实例 某车间用一台包装机包装葡萄糖, 包得的 袋装糖重是一个随机变量, 它服从正态分布.当 机器正常时, 其均值为0.5公斤, 标准差为0.015 公斤.某日开工后为检验包装机是否正常, 随机 地抽取它所包装的糖9袋, 称得净重为(公斤): 0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?

3总体均值的假设检验

3总体均值的假设检验

• 第3步:在分析工具中选择“t检验:平均值的成对二样 本分析”
• 第4步:当出现对话框后

在“变量1的区域”方框内键入数据区域

在“变量2的区域”方框内键入数据区域
• 为0)
在“假设平均差”方框内键入假设的差值(这里

在“”框内键入给定的显著性水平
1 - 29
质量管理 学实验
匹配样本
(数据形式)
质量管理
实验三
学实验 总体均值的假设检验
1 一个(单)总体均值的检验 2 两个(双)总体均值之差的检验
1 -1
质量管σ2理已知时,样本均值的抽样分布 学实验
总体是否正态分布


样本容量n


正态分布
x
~N
(, 1 2 )
n
或Z x ~ N (0,1) / n
1 -2
正态分布 非正态分布
x
~N
•第1步:将原始数据输入到Excel工作表格中
•第2步:选择“工具”下拉菜单并选择“数据分析”选项
•第3步:在“数据分析”对话框中选择 “t-检验:双样本异方 差假设”
•第4步:当对话框出现后

在“变量1的区域”方框中输入第1个样本的数据区域

在“变量2的区域”方框中输入第2个样本的数据区域

在“假设平均差”方框中输入假定的总体均值之差

在“”方框中输入给定的显著性水平(本例为0.05)

在“输出选项”选择计算结果的输出位置,然后“确
定”
1 - 25
质量管理 学实验
两个总体均值之差的 检验
(匹配样本)
1 - 26
质量管理 两个总体均值之差的检验

常用的假设检验方法(U检验、T检验、卡方检验、F检验)

常用的假设检验方法(U检验、T检验、卡方检验、F检验)

常⽤的假设检验⽅法(U检验、T检验、卡⽅检验、F检验)⼀、假设检验假设检验是根据⼀定的假设条件,由样本推断总体的⼀种⽅法。

假设检验的基本思想是⼩概率反证法思想,⼩概率思想认为⼩概率事件在⼀次试验中基本上不可能发⽣,在这个⽅法下,我们⾸先对总体作出⼀个假设,这个假设⼤概率会成⽴,如果在⼀次试验中,试验结果和原假设相背离,也就是⼩概率事件竟然发⽣了,那我们就有理由怀疑原假设的真实性,从⽽拒绝这⼀假设。

⼆、假设检验的四种⽅法1、有关平均值参数u的假设检验根据是否已知⽅差,分为两类检验:U检验和T检验。

如果已知⽅差,则使⽤U检验,如果⽅差未知则采取T检验。

2、有关参数⽅差σ2的假设检验F检验是对两个正态分布的⽅差齐性检验,简单来说,就是检验两个分布的⽅差是否相等3、检验两个或多个变量之间是否关联卡⽅检验属于⾮参数检验,主要是⽐较两个及两个以上样本率(构成⽐)以及两个分类变量的关联性分析。

根本思想在于⽐较理论频数和实际频数的吻合程度或者拟合优度问题。

三、U检验(Z检验)U检验⼜称Z检验。

Z检验是⼀般⽤于⼤样本(即⼤于30)平均值差异性检验的⽅法(总体的⽅差已知)。

它是⽤标准的理论来推断差异发⽣的概率,从⽽⽐较两个的差异是否显著。

Z检验步骤:第⼀步:建⽴虚⽆假设 H0:µ1 = µ2 ,即先假定两个平均数之间没有显著差异,第⼆步:计算Z值,对于不同类型的问题选⽤不同的计算⽅法,1、如果检验⼀个样本平均数(X)与⼀个已知的总体平均数(µ0)的差异是否显著。

其Z值计算公式为:其中:X是检验样本的均值;µ0是已知总体的平均数;S是总体的标准差;n是样本容量。

2、如果检验来⾃两个的两组样本平均数的差异性,从⽽判断它们各⾃代表的总体的差异是否显著。

其Z值计算公式为:第三步:⽐较计算所得Z值与理论Z值,推断发⽣的概率,依据Z值与差异显著性关系表作出判断。

如下表所⽰:第四步:根据是以上分析,结合具体情况,作出结论。

统计学中假设检验的基本步骤详解

统计学中假设检验的基本步骤详解

统计学中假设检验的基本步骤详解假设检验是统计学中一种重要的统计推断方法,用于根据样本数据对总体参数进行推断。

它的基本步骤包括以下几个方面。

1.建立假设:在进行假设检验之前,首先需要明确研究者的研究问题,并建立相应的假设。

常见的研究问题包括总体均值是否等于一些特定值、两个总体均值是否相等以及总体比例是否等于一些特定比例等等。

根据研究问题的不同,构建出相应的零假设(H0)和备择假设(H1或HA)。

2.确定检验统计量:检验统计量是用于度量样本数据与假设之间的差异程度的一个统计量,它的选择应当与所建立的假设相一致。

常见的检验统计量有Z统计量(用于已知总体均值和标准差的情况),T统计量(用于只知道总体均值和标准差的样本的情况),以及χ2统计量(用于比较两个或多个分类变量之间的关系)等。

3.设置显著性水平:显著性水平(α)是在进行假设检验时所允许的错误发生概率,一般常见的显著性水平是0.05或者0.01、根据研究问题的重要程度和数据的可靠性来确定显著性水平,从而决策是否拒绝或接受原假设。

4.计算检验统计量的值:假设检验要根据样本数据来推断总体参数,因此需要计算出检验统计量的具体数值。

根据样本数据的类型和所选择的检验方法,进行相关的计算。

例如,对于两个总体均值是否相等的检验,可以通过计算两个样本均值的差异来得到T统计量的值。

5.做出决策:在进行假设检验时,需要根据计算得到的检验统计量的值来做出决策。

根据显著性水平和检验统计量的临界值,我们可以通过比较检验统计量的值与临界值来判断是否拒绝原假设。

如果检验统计量的值在临界值的拒绝域内,那么就拒绝原假设,否则就接受原假设。

6.得出结论:根据做出的决策,最终给出关于原假设的结论。

如果拒绝了原假设,说明样本数据与原假设之间存在显著的差异,可以接受备择假设。

如果不能拒绝原假设,则无法得出结论表明样本数据对于总体参数没有明显的证据。

7.给出推断:在假设检验中,最终的目的是对总体参数进行推断。

统计学--第三章总体均数的估计与假设检验

统计学--第三章总体均数的估计与假设检验
第三章
总体均数的估计 与假设检验
课件
1
统计推断的目的:
用样本的信息去推论总体。
医学研究中大多数是无限总体, 即使是有限总体,但也经常受各种条 件的限制,不可能直接获得总体的信 息。
课件本科生卫生学(5)
2
第一节 均数的抽样误差与标准误
• 抽样误差(sampling
error):因各样本 包含的个体不同,所得的各个样本统计量 (如均数)往往不相等,这种由于个体差 异和抽样造成的样本统计量与总体参数的 差异,称为抽样误差。
均数的95%可信区间为3.47~ 3.81(mmol / L) 95%参考值范围为1.29~ 5.99(mmol / L)
S 1.20 X u / 2 S X X 1.96 3.64 1.96 n 200 (3.47, 3.81)
X 1.96S 3.64 1.961.20 (1.29, 5.99) 32 课件本科生卫生学(5)
t分布的应用: 总体均数的区间估计 t检验
课件本科生卫生学(5) 18
第三节 总体均数的置信区间估计 confidence interval
可信区间的概念 总体均数可信区间的计算 均数可信区间与参考值范围的区别
课件本科生卫生学(5)
19
一、可信区间的概念
统计推断:参数估计与假设检验。 参数估计: parametric estimation,用样本统 计量估计总体参数的方法。 点(值)估计:point estimation,直接用样 本统计量作为总体参数的估计值。方法简 单但未考虑抽样误差大小。 区间估计:interval estimation,按预先给定 的概率95%,或(1-),确定的包含未知总 体参数的可能范围。考虑了抽样误差。

假设检验与总体均值检验

假设检验与总体均值检验
原假设H0为真
点估计量的抽样分布
3. 标准化的检验统计量
标准化检验统计点量 点估估计计量量 —的假抽设样值标准差
第 六章 假设检验
第一节 假设检验的基本问题
总体方差 是否已知
大样本
总体是否服从 正态分布
Z

x
0
n
第 六章
样本方差 代替
总体方差 是否已知
将样本容量 增加到30
Z x 0 s
2. 将检验统计量的值与 水平的临界值进
行比较
3. 作出决策
双侧检验: I统计量I > 临界值,拒绝H0 左侧检验: 统计量 < -临界值,拒绝H0 右侧检验: 统计量 > 临界值,拒绝H0
第 六章 假设检验
第一节 假设检验的基本问题
假设 检验统 H0的拒--------计量 绝域
H0: μ=μ0 H1 :μ≠μ
第 六章 假设检验
第一节 假设检验的基本问题
提出假设
(结论与建议)
1. 原假设和备择假设是一个完备事件组,而且 相互对立
在一项假设检验中,原假设和备择假设必有 一个成立,而且只有一个成立
2. 先确定备择假设,再确定原假设
3. 等号“=”总是放在原假设上
4. 因研究目的不同,对同一问题可能提出不同 的假设(也可能得出不同的结论)
n
Z

x 0
n
样本方差 代替
t

x s
0
n
假设检验
第一节 假设检验的基本问题
抽样分布
拒绝H0
显著性水平和拒绝域
(双侧检验 )
置信水平
拒绝H0
/2
1-
/2

总体参数的假设检验

总体参数的假设检验

多元统计分析——假设检验⏹如果一个人说他从来没有骂过人。

他能够证明吗?⏹要证明他没有骂过人,他必须出示他从小到大每一时刻的录音录像,所有书写的东西等等,还要证明这些物证是完全的、真实的、没有间断的。

这简直是不可能的。

⏹即使他找到一些证人,比如他的同学、家人和同事,那也只能够证明在那些证人在场的某些片刻,他没有被听到骂人。

⏹反过来,如果要证明这个人骂过人很容易,只要有一次被抓住就足够了。

⏹看来,企图肯定什么事物很难,而否定却要相对容易得多。

这就是假设检验背后的哲学。

⏹科学总往往是在否定中发展⏹在假设检验中,一般要设立一个原假设(上面的“从来没骂过人”就是一个例子);⏹而设立该假设的动机主要是企图利用人们掌握的反映现实世界的数据来找出假设与现实之间的矛盾,从而否定这个假设。

⏹在多数统计教科书中(除理论探讨外)假设检验都是以否定原假设为目标。

⏹如否定不了,说明证据不足,无法否定原假设。

但不能说明原假设正确。

⏹就像一两次没有听过他骂人还远不能证明他从来没有骂过人。

假设检验的过程和逻辑⏹先要提出个原假设,比如某正态总体的均值等于5(m=5)。

这种原假设也称为零假设(null hypothesis),记为H 0。

⏹与此同时必须提出备选假设(或称为备择假设,alternative hypothesis),比如总体均值大于5(m>5)。

备选假设记为H 1或H a 。

形式上,这个关于总体均值的H 0相对于H 1的检验记为01:5:5H H μμ=⇔>⏹备选假设应该按照实际世界所代表的方向来确定,即它通常是被认为可能比零假设更符合数据所代表的现实。

⏹比如上面的H1为m>5;这意味着,至少样本均值应该大于5;⏹至于是否显著,依检验结果而定。

⏹检验结果显著(significant)意味着有理由拒绝零假设。

因此,假设检验也被称为显著性检验(significant test)。

⏹有了两个假设,就要根据数据来对它们进行判断。

6.假设检验方法--均值

6.假设检验方法--均值

统计假设检验中的两类错误
例 箱中有白、黑球共100个,已知两种颜色的球一种 99个,另一种1个,判断哪种颜色的球为99个。 假设检验的思想如下: 首先,假设白颜色的球有99个;进行检验,从箱 子中抽取一个球,若抽到的为黑球,我们认为小概率 事件发生了(因为在原假设条件下,抽到黑球的概率 为0.01,小概率事件),小概率事件发生了,说明假设错误. 但实际上,也存在抽到了黑球,但实际上白球的个数 就是99的事实,因此我们的推断存在着错误,为第一类错 误. 第一类错误,弃真.原假设符合实际情况,但检验结果 却否定了原假设,称为弃真,即把”对”说成”不对”,把真 说成假;
0
备择假设为
H1 : 65
单总体假设检验

• • • • • •
单总体假设检验是对样本统计量与已 知总体参数之间差异的显著性进行检验. 根据总体的分布形态、总体方差是否 已知、样本大小不同,平均数显著性检 验采用不同的检验方法。 1、总体正态分布,总体标准差已知 2、总体正态分布,总体标准差未知 (大样本和小样本情况) 3、总体非正态分布
统计假设检验方法
统计假设检验是统计推断的重要方法,根据一定原理,利用样本信息,根 据一定概率,对总体参数或分布的某一假设作出拒绝或保留的决断.基本 思想是假设检验(类似于反正法)在一前提假设下进行推断;基本原则是小 概率事件原理(即,小概率事件在一次试验中实际上是不可能发生的);根 据研究对象分布情况我们所选的统计量不同,相对应的检验方法有Z检验、 t检验、F检验、卡方检验。本章主要介绍: 1、理解统计假设检验的一般原理 2、掌握单\双总体均值\方差假设检验的方法
统计假设检验的一般原理
理解统计假设检验的思想,掌握统计假 设检验的原理是掌握假设检验方法的关键。 本节主要介绍: 1、统计假设检验的一般思想(基本想法、 小概率事件原理、统计假设检验的逻辑思 想); 2、统计假设检验的一般步骤(4步); 3、统计假设检验中的两类错误(弃真、 取伪); 4、统计假设检验的两种方式(单侧检验、 双侧检验)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§7.4 一般总体均值的假设检验一、一般总体均值的大样本假设检验1. 一个总体均值的大样本假设检验设样本12(,,,)n X X X 取自非正态总体X ,记总体均值μ=)(X E 。

样本均值及样本方差分别为11ni i X X n ==∑,2211()1n i i S X X n ==--∑。

如果我们要做双侧检验:0100::μμμμ≠↔=H H ,在大样本情况(样本容量30≥n )下可选 n S X Z /0μ-=为检验统计量,由中心极限定理知,它在0H 成立时近似服从)1,0(N 。

检验的P 值近似为|))(|1(2)||(20O O z z Z P Φ-==≥μμ,其中检验统计量Z 的观测值为 n s x z O /0μ-=。

例7.4.1 一种机床加工的零件尺寸绝对平均误差为1.35mm 。

生产厂家现采用一种新的机床进行加工以期降低误差。

为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。

50个零件尺寸的绝对误差数据(mm )如下所示:1.26 1.19 1.31 0.97 1.81 1.13 0.96 1.06 1.00 0.94 0.98 1.10 1.12 1.03 1.16 1.12 1.12 0.95 1.021.13 1.23 0.74 1.50 0.50 0.59 0.99 1.45 1.24 1.012.03 1.98 1.97 0.91 1.22 1.06 1.11 1.54 1.081.10 1.64 1.702.37 1.38 1.60 1.26 1.17 1.12 1.23 0.82 0.86利用这些数据,检验新机床加工的零件尺寸的平均误差是否显著降低?(0.01α=) 解:这里研究者所关心的是新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低,也就是新机床加工的零件尺寸的误差的数学期望μ=)(X E 是否小于1.35,因此属于单左侧检验。

提出的假设如下:0: 1.35H μ≥↔1: 1.35H μ<现在50=n ,检验统计量可选为 )1,0(~/35.135.1N nS X Z =-=μ; 由数据得:215.1=x ,366.0=s ,故检验统计量Z 的观测值为608.250/366.035.1215.1-≈-≈O z ,所以检验的P 值近似为0046.0)608.2()35.1608.2(=-Φ≈=-≤μZ P 。

因为01.0<P ,应拒绝原假设,可认为新机床加工的零件尺寸的平均误差与旧机床相比有显著降低。

注:本例也可以直接根据原始数据计算检验的P 值,操作步骤如下:第1步:进入Excel 表格界面,直接点击“f(x)”(粘贴函数)命令。

第2步:在函数分类中点击“统计”,并在函数名菜单下选择“ZTEST”,然后确定。

第3步:在所出现的对话Array 框中,输入原始数据所在区域;在X 后输入参数的某一假定值(这里为1.35);在Sigma 后输入已知的总体标准差(若总体标准差未知则可忽略不填,系统将自动使用样本标准差代替),如下图所示。

图7.2.2此时给出的分布右侧面积为0.995421058,用1减去该值,即为左侧检验的P 值,即0046.09954.01=-≈P 。

2. 两个总体均值的大样本假设检验设两独立样本1,,1n X X 和2,,1n Y Y 分别取自非正态总体X 和Y (总体均值记为1)(μ=X E 和2)(μ=Y E ),它们的样本均值分别为∑==1111n i i X n X ,∑==2121n j j Y n Y ,样本方差分别为∑=--=112121)(11n i i X X n S ,∑=--=212222)(11n j j Y Y n S 。

如果我们要做双侧检验:211210::μμμμ≠↔=H H ,在大样本情况下可选 222121//n S n S YX Z +-=为检验统计量,由中心极限定理知,它在0H 成立时近似服从)1,0(N 。

检验的P 值近似为|))(|1(2)||(221O O z z Z P Φ-==≥μμ,其中222121n s n s yx z O +-=为检验统计量Z 的观测值。

例7.4.2 一个随机样本由居民一区的100个家庭组成,另一随机样本由居民二区的150个家庭组成,这两个样本所给出的关于目前住房中居住了多长时间的信息如下:41=x 个月, 49=y 个月,21900s =,221050s =。

这些数据是否提供了充分的证据,说明一区家庭在目前住房中居住的时间平均来说比二区家庭短?(设0.05α=) 解:建立假设012:H μμ≥↔112:H μμ<本题的样本容量足够大,1100n =,2150n =,检验统计量为)1,0(~//21222121N n S n S Y X Z μμ=+-=其样本观测值为215010501009004941-=+-=O z 。

此题属于左侧检验,检验的P 值近似为02275.0)2()2(21=-Φ==-≤μμZ P ,故拒绝0H ,接受1H ,即说明一区家庭在目前住房的时间平均来说比二区家庭短。

二、 总体比率的假设检验1. 单个总体比率的大样本假设检验设样本12(,,,)n X X X 取自0-1分布总体),1(~p B X ,总体均值p X E =)(。

样本均值为11ni i X X n ==∑。

如果我们要做双侧检验:0100::p p H p p H ≠↔=,在大样本情况(30≥n 且5))1(,m in(00>-p n np )下可选 n X X p X Z /)1(0--=或np p p X Z /)1(000*--=为检验统计量,由中心极限定理知,它们在0H 成立时都近似服从)1,0(N 。

所以检验的P 值近似为|))(|1(2)||(20O O z H z Z P Φ-≈≥或|))(|1(2)||(2*0**O O z H z Z P Φ-≈≥,其中n x x p x z O /)1(0--=和np p p x z O /)1(000*--=分别为检验统计量Z 和*Z 的观测值。

例7.4.3 某企业的产品畅销于国内市场。

据以往调查,购买该产品的顾客有50%是30岁以上的男子。

该企业负责人关心这个比例是否发生了变化(无论是增加还是减少)?于是委托一家咨询公司进行调查,这家咨询机构从众多的购买者中随机抽选了400名进行调查,结果有210名为30岁以上的男子。

该厂负责人希望在显著性水平0.05α=下检验“50%的顾客是30岁以上的男子”这个假设。

解:提出假设:0100:%50:p p H p p H ≠↔==由于样本容量40030n =>,且5200))1(,m in(00>=-p n np ,所以可以使用正态分布进行检验。

检验统计量为n X X p X Z /)1(0--=或np p p X Z /)1(000*--=,它们在0H 成立时都近似服从)1,0(N 。

现在525.0400/210==x ,检验统计量Z 和*Z 的样本观测值分别为001.1400/)525.01(525.05.0525.0≈--=O z 和1400/)5.01(5.05.0525.0*=--=O z 。

检验的P 值近似为3168.0)8416.01(2))001.1(1(2)001.1(20=-=Φ-≈≥H Z P 或3174.0))1(1(2)1(20*=Φ-≈≥H Z P 。

因为检验的P 值都大于显著性水平0.05,故不拒绝0H ,即没有充分理由认为比例发生了变化。

2. 两个总体比率的大样本假设检验设两独立样本1,,1n X X 和2,,1n Y Y 分别取自0-1分布总体X 和Y (总体均值记为1)(p X E =和2)(p Y E =),样本均值分别为∑==1111n i i X n X ,∑==2121n j j Y n Y 。

如果我们要做双侧检验:211210::p p H p p H ≠↔=,在大样本情况下可选 )/1/1)(ˆ1(ˆ21n n p pY X Z +--=(这里2121ˆn n Y n X n p ++=)为检验统计量,由中心极限定理知,它在0H 成立时近似服从)1,0(N 。

所以检验的P 值近似为|))(|1(2)||(20O O z H z Z P Φ-≈≥,其中)/1/1)(ˆ1(ˆ21n n p py x z O +--=为检验统计量Z 的观测值。

例7.4.4 甲、乙2公司属于同一行业,有人问这2个公司的工人是愿意得到特定增加的福利费,还是愿意得到特定增加的基本工资。

在甲公司150名工人的简单随机样本中,有75人愿意得到增加基本工资;在乙公司200名工人的随机样本中,120人愿意得到增加的基本工资。

在每个公司,样本容量占全部工人数的比率不超过5%。

试问:可以判定这2个公司中愿意增加基本工资的工人所占比例不同吗?(α=0.05)解:建立假设012:H p p =↔112:H p p ≠现在是大样本情形,检验统计量为)/1/1)(ˆ1(ˆ21n n p pY X Z +--=(这里)/()(ˆ2121n n Y n X n p ++=),它在0H 成立时近似服从)1,0(N 。

由样本观测值知,5.0150/75==x ,6.0200/120==y ,557.020*********ˆ≈++=p ,864.1)200/1150/1)(557.01(557.06.05.0-≈+--=O z , 所以检验的P 值近似为062.0)969.01(2))864.1(1(2)864.1(20=-=Φ-≈≥H Z P 。

由于05.0>P ,所以不拒绝原假设0H ,即没有充分理由认为这2个公司中愿意增加基本工资的工人所占比例不同。

有时我们要检验两个总体比率之差是否为某一个不为0的常数0d ,即要检验假设: 02110210::d p p H d p p H ≠-↔=-,在大样本情况下可选 210/)1(/)1(n Y Y n X X d Y X Z -+---=为检验统计量,由中心极限定理知,它在0H 成立时近似服从)1,0(N 。

所以检验的P 值近似为|))(|1(2)||(20O O z H z Z P Φ-≈≥,其中210/)1(/)1(n y y n x x d y x z O -+---=为检验统计量Z 的观测值。

例7.4.5 某厂质量检验人员认为该厂一车间的产品一级品的比率比二车间产品一级品的比率大5%。

现从一车间和二车间分别抽出2个独立随机样本,得到如下数据:1150n =,其中一级品数为113;1602=n ,其中一级品为104。

相关文档
最新文档