高中数学知识点总结【文科】
高中数学知识点汇总(文科)
必修1第一章 集合与函数概念1. 集合三要素:确定性、互异性、无序性.2. 常见集合:整数集合:N ;正整数集合:*N 或+N ;整数集合:Z ;有理数集合:Q ;实数集合:R.3.集合的表示方法:列举法、描述法、韦恩图法.4. 子集:一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集.记作B A ⊆.5. 真子集:如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.6. 把不含任何元素的集合叫做空集.记作:Φ.并规定:空集是任何集合的子集;空集是任何集合的真子集.7. 如果集合A 中含有n 个元素,则集合A 有n 2个子集.8. 并集:一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A与B 的并集.记作:A B ,即A B ={|,x x A ∈或}x B ∈.9. 交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A与B 的交集.记作:A B ,即A B ={|,x x A ∈且}x B ∈.10.补集:对于集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作:UA ,即UA ={|,}x x U x A ∈∉且.11. 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. 12. 函数的三种表示方法:解析法、图象法、列表法.13. 用定义法判断函数单调性的步骤:①取值;②作差变形;③定号;④判断.14. 一般地,如果对于函数()x f 的定义域任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.15. 一般地,如果对于函数()x f 的定义域任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.16.求函数定义域:①分母不为0;②偶次方根被开方数0≥;③对数的真数0>. 17.用定义判断奇偶性的方法:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定)(x f -与)(x f 的关系;③得出结论:若)()(x f x f =-或者0)()(=--x f x f ,则)(x f 是偶函数;若)()(x f x f -=-或者0)()(=+-x f x f ,则)(x f 是奇函数;第二章 基本初等函数(Ⅰ)1. 一般地,如果a x n =,那么x 叫做a 的n 次方根。
高三文科数学知识要点总结
高三文科数学知识要点总结一、函数与方程1. 函数的概念与性质:函数的定义、函数的自变量和因变量、函数的定义域和值域、函数的奇偶性等。
2. 一次函数与二次函数:一次函数的特征、一次函数的图像与性质、一次函数的解析式、二次函数的标准型、顶点式与一般式、二次函数的图像与性质等。
3. 指数函数与对数函数:指数函数与指数方程的定义与性质、对数函数与对数方程的定义与性质、指数函数与对数函数的图像与性质等。
4. 三角函数与三角方程:三角函数的概念与性质、三角函数的图像、三角函数的基本关系式、三角方程的解法等。
5. 幂函数与反比例函数:幂函数的概念与性质、幂函数的图像与性质、反比例函数的概念与性质、反比例函数的图像与性质等。
6. 方程与不等式:方程的变形、方程及不等式的解集表示、一元一次方程及一元一次不等式的解法、二元一次方程组的解法、一元二次方程与一元二次不等式的解法等。
二、数列与数学归纳法1. 等差数列与等比数列:等差数列的概念与性质、等差数列的通项公式与前n项和公式、等比数列的概念与性质、等比数列的通项公式与前n项和公式等。
2. 数学归纳法:数学归纳法的基本思想与应用、数列与数学归纳法的关系、数学归纳法的证明与推理等。
3. 递推数列与递推关系式:递推数列的概念与性质、递推关系式的建立与应用、递推数列求极限与求和等。
三、三角函数与解三角形1. 三角函数的基本关系式与诱导公式:正弦定理、余弦定理、正切定理等。
2. 解三角形:已知两边及夹角求第三边、已知两角及一边求其它边、已知三角形的三边求角等。
四、空间几何与立体几何1. 空间向量:向量的定义与性质、向量的线性运算、共线、共面等。
2. 空间平面与直线:平面的一般方程与点法式、直线的三种表示方法、平面与直线的位置关系等。
3. 空间几何体的求体积与表面积:长方体、正方体、柱体、锥体、球体等的体积与表面积的计算等。
五、概率与统计1. 随机事件与概率:随机事件与样本空间、事件的运算、概率的定义与性质、条件概率与乘法定理、独立事件与加法定理等。
高中数学知识点总结大全(文科)
高中数学知识点总结目录第一章一一集合与简易逻辑 (1)第二章一一函数 (4)第四章三角函数 (19)第六章不等式 (33)第七章直线和圆的方程 (38)第八章圆锥曲线 (48)第九章(B)直线、平面、简单几何体 (53)第十章排列、组台、二项式定理 (69)第三章导数 (78)第一章一一集合与简易逻辑集合一识点归纳:定义:一组对象的全体形成一个集合.特征:确定性、互异性、无序性.表示法:列举法{1,2,3,…}、描述法{x|P}.韦恩图分类:有限集、无限集.数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N*、空集如关系:属于E、不属于£、包含于J(或U)、真包含于5、集合相等=・运算:交运算ACB={x|xEA且XEB};并运算AUB={x|xGA或xEB};补运算C u A={x\x^A且xCU},U为全集性质:ACA:<1)CA:若ACB.BJC,则AJC:AAA=AUA=A;AA4> =4>:AU4)=A:AAB=A<=>AUB=B<=>ACB;Anc t/A=4);AUC"A=I:C[7(C L rA)=A:C L-(AoB)=(C Lr A)n(C L.B).方法:韦恩示意图,数轴分析.注意:①区别6与W、乒与己、a与{a}、4>与{4)}.{(1,2)}与{1,2};②ACB时,A有两种情况:A=4>与AN4>・③若集合A中有n(WGAT)个元素,则集合A的所有不同的子集个数为2”,所有真子集的个数是2”-1,所有非空真子集的个数是2”-2.④区分集合中元素的形式:如A={x\y=x2+2x+l}^B={y\y=x2+2x+l}^ C={(x,y)|y=X:+2x+1}:D={x\x=x2+2x+]}i E=((x,y)|y=x2+2x+l,x e Z,y e Z}:F={(x,V)|y=尸+2x+1};G={z|y=[2+2x+l,z=与.X空集是指不含任何元素的集合.{0}、。
高考文科数学所有知识点总结
高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A (2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ AB B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集 U A ð{|,}x x U x A ∈∉且1()U A A =∅ð 2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )()()()U U U A B A B =痧?()()()U U U A B A B =痧?叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数yxo 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =x a y =xy(0,1)O 1y =定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2bm f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2bM f a=- ③若2b q a ->,则()M f q =x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2bf a-x>O-=f (p)f (q)()2bf a-x>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q)()2bf a-x<O-=f (p)f(q)()2bf a-x<O-=f (p)f(q)()2bf a-①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高三数学文科必考知识点
高三数学文科必考知识点一、函数与方程1. 函数的概念函数是一种将一个集合的元素对应到另一个集合的元素的规则或关系。
用f(x)表示函数,其中x是定义域中的元素,f(x)是值域中的元素。
2. 一次函数一次函数是形如f(x) = ax + b的函数,其中a和b是常数,a称为斜率,b称为截距。
一次函数的图像是一条直线。
3. 二次函数二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b和c是常数,且a不等于0。
二次函数的图像是开口向上或向下的抛物线。
4. 对数函数对数函数是形如f(x) = loga(x)的函数,其中a是一个正实数且不等于1,x是定义域中的正实数。
对数函数的图像与指数函数的图像呈镜像对称关系。
5. 方程方程是含有未知数的等式。
常见的方程类型包括一元一次方程、一元二次方程和一元高次方程。
6. 高阶方程高阶方程是指次数大于等于3的方程。
高阶方程的求解方法有因式分解、配方法、求根公式等。
二、概率与统计1. 概率概率是事件发生的可能性。
概率的计算方法包括频率法、几何概型法和古典概型法。
2. 统计统计是通过收集和分析数据来描述和解释现象。
统计中常用的方法包括样本调查、频率分布表、直方图、折线图、帕累托图等。
3. 二项分布二项分布是指在n次独立重复试验中,成功事件发生k次的概率分布。
4. 正态分布正态分布是一种连续概率分布,通常用来描述各种自然现象中的变量分布。
5. 抽样与推断抽样是指从总体中选择一部分样本进行调查和分析。
推断是根据样本数据推断总体特征或参数值。
三、数学问题的建模与求解1. 建模建模是将实际问题转化为数学问题的过程,包括定义变量、建立方程或不等式等。
2. 求解求解是根据建立的数学模型,利用数学知识和方法来解决实际问题。
常见的求解方法包括方程求解、函数图像分析和优化方法。
3. 应用数学问题的建模与求解在各个领域都有广泛的应用,例如经济学、管理学、物理学等。
总结:高三数学文科必考知识点涵盖了函数与方程、概率与统计以及数学问题的建模与求解。
高中文科数学知识点全总结
高中文科数学知识点全总结1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。
(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。
(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。
(4)根与系数的关系:x1+x2=-b/ax1*x2=c/a,备注:韦达定理。
(5)判别式1)b2-4a=0,备注:方程存有成正比的两实根。
2)b2-4ac\ue0,注:方程有一个实根。
3)b2-4ac\uc0,备注:方程存有共轭复数根。
2、三角函数公式(1)两角和公式sin(a+b)=sinacosb+cosasinb;sin(a-b)=sinacosb-sinbcosa;cos(a+b)=cosacosb-sinasinb;cos(a-b)=cosacosb+sinasinb;tan(a+b)=(tana+tanb)/(1-tanatanb);tan(a-b)=(tana-tanb)/(1+tanatanb);ctg(a+b)=(ctgactgb-1)/(ctgb+ctga);ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。
(2)倍角公式tan2a=2tana/(1-tan2a);ctg2a=(ctg2a-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
(3)半角公式sin(a/2)=√((1-cosa)/2);sin(a/2)=-√((1-cosa)/2);cos(a/2)=√((1+cosa)/2);cos(a/2)=-√((1+cosa)/2);tan(a/2)=√((1-cosa)/((1+cosa));tan(a/2)=-√((1-cosa)/((1+cosa));ctg(a/2)=√((1+cosa)/((1-cosa));ctg(a/2)=-√((1+cosa)/((1-cosa))。
高考文科数学总知识点
高考文科数学总知识点高考文科数学是高中毕业生参加高考时必须考察的科目之一,它的考察对象包括数学的基本概念、运算规则、解题方法等等。
下面是高考文科数学的总知识点。
1.数与代数1.1 数的性质与运算1.2 代数运算与因式分解1.3 一元一次方程与一元一次不等式1.4 二次根式与二次方程1.5 高次方程与不等式1.6 数列的概念与性质2.函数2.1 函数的性质与图像2.2 一次函数与二次函数2.3 指数函数与对数函数2.4 三角函数3.几何3.1 点、直线和平面3.2 各种角的概念与性质3.3 三角形的概念与性质3.4 四边形的概念与性质3.5 圆的概念与性质3.6 空间几何4.概率与统计4.1 随机事件与概率4.2 统计的基本概念和方法4.3 相关系数与回归直线5.数学推理与证明5.1 几何证明5.2 数学归纳法5.3 数论证明以上是高考文科数学的总知识点,通过对这些知识点的掌握,考生能够在高考中取得较好的成绩。
高考数学的重点在于对基本概念的理解和解题能力的培养,所以考生在备考过程中要注重理论的学习和题目的练习。
同时,考生还要注重方法的灵活运用,多思考、多总结,提高解题的效率和准确性。
为了高效地备考数学,考生可以采取以下方法:首先,理论学习要扎实。
要充分理解并掌握每一个知识点,掌握其内在的联系和运用方法。
其次,进行大量的习题训练。
通过大量的练习,逐步提高解题的技巧和速度。
再次,注重错题的总结和订正。
对于做错的题目,要找出错因,加以总结和订正,避免同样的错误再次出现。
最后,要有计划地进行复习。
将所有的知识点进行系统的梳理,进行有针对性的复习,强化薄弱环节。
总之,高考文科数学是一门理论与实践相结合的学科,需要灵活运用所学知识进行解题。
通过系统的学习和大量的练习,考生一定能够取得令人满意的成绩。
希望大家都能在高考中取得优异的成绩,实现自己的理想!。
高中文科数学知识点总结
高中文科数学知识点总结高中文科数学涵盖了众多重要的知识点,掌握这些知识点对于取得好成绩和提升数学素养至关重要。
以下是对高中文科数学主要知识点的详细总结。
一、集合与函数集合是数学中最基本的概念之一。
集合由具有某种特定性质的对象组成。
常见的集合表示方法有列举法、描述法等。
集合的运算包括交集、并集和补集。
函数是高中数学的核心概念。
函数的定义为对于给定的集合 A 和 B,如果按照某种对应关系 f,对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f 是集合 A 到集合 B 的一个函数。
函数的三要素是定义域、值域和对应法则。
常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数等。
一次函数的表达式为 y = kx + b(k ≠ 0),其图象是一条直线。
二次函数的表达式为 y = ax²+ bx + c(a ≠ 0),图象是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
指数函数的表达式为 y = a^x(a > 0 且a ≠ 1),其性质包括单调性、过定点等。
对数函数的表达式为 y = lo gₐx(a > 0 且a ≠ 1),与指数函数互为反函数。
函数的单调性、奇偶性和周期性也是重要的性质。
二、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数 y = sin x,余弦函数 y = cos x,正切函数 y = tan x。
三角函数的诱导公式可以帮助我们将不同角度的三角函数值进行转化。
三角函数的图象和性质需要重点掌握,比如正弦函数和余弦函数的周期性、最值、对称轴等。
解三角形中,正弦定理和余弦定理用于求解三角形的边和角。
三、数列数列是按照一定顺序排列的一列数。
等差数列的通项公式为 aₙ = a₁+(n 1)d,前 n 项和公式为 Sₙ = n(a₁+ aₙ) / 2 。
等比数列的通项公式为 aₙ = a₁qⁿ⁻¹,前 n 项和公式为 Sₙ = a₁(1 qⁿ) /(1 q)(q ≠ 1)。
高三文科数知识点总结
高三文科数知识点总结一、函数与方程函数的基本概念:定义域、值域、奇偶性、单调性、周期性以及函数图像的绘制等。
一次函数:y=ax+b,其中a为斜率,b为截距。
求解方程和不等式,确定函数的性质。
二次函数:y=ax²+bx+c,其中a、b、c为给定常数。
求解方程和不等式,确定函数的性质。
通过平移与拉伸,确定函数图像。
指数函数:y=a^x,其中a为底数,x为指数。
掌握指数函数的性质,求解指数方程与不等式。
对数函数:y=loga(x),其中a为底数,x为真数。
掌握对数函数的性质,求解对数方程与不等式。
解题时注意换底公式的应用。
幂函数:y=x^a,其中a为指数。
了解幂函数的特征,掌握幂函数的性质。
二、数列与数列求和等差数列:a(n)=a₁+(n-1)d,其中a₁为首项,d为公差。
掌握等差数列的通项公式,求和公式,以及常用的性质。
等比数列:b(n)=b₁*q^(n-1),其中b₁为首项,q为公比。
掌握等比数列的通项公式,求和公式,以及常用的性质。
通项公式的推导与证明。
求和公式的推导与证明。
利用数列求和的应用:等差中项数的计算,等差数列的分类求和,等差数列模型的建立与求解。
利用数列求和解决实际问题。
三、概率与统计基本概率论:样本空间、随机事件、频率与概率的关系,事件的求并、交、差,乘法原理与加法原理,条件概率。
排列与组合:全排列、k排列、全组合、k组合的求解,乘法原理与加法原理在排列组合中的应用。
概率的计算与性质:计数概率、几何概率、概率的性质。
统计:频数表、频率表、频率直方图、统计量,样本均值、样本方差、样本标准差的计算。
四、平面几何直线与函数:点斜式、两点式、截距式、一般式等直线方程的转换与应用。
圆与函数:标准方程、一般方程等圆方程的转换与应用。
三角形与函数:余弦定理、正弦定理、解三角形。
相似三角形:相似三角形的判定与性质,相似三角形的应用。
五、立体几何平行线与平面:平行线的判定,平行线间距离的计算,平面与平行线的关系,解决直线与平面的交点问题。
高三数学文科学习知识点
高三数学文科学习知识点高三数学文科学习知识点11.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.高三数学文科学习知识点2一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
高中文科数学知识点归纳(完整版)
≠⊂最全版高中文科数学知识点必修1数学集合:1、集合的定义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。
集合中的每个对象叫做这个集合中的元素2、集合元素的特征:①确定性 ②互异性 ③无序性3、集合的分类:①有限集 ②无限集 ③空集,记作∅4、集合的表示法:①列举法 ②描述法 ③文氏图法 ④特殊集合 ⑤区间法常用数集及其记法:①自然数集(或非负整数集)记为N 正整数集记为*N 或+N②整数集记为Z ③实数集记为R ④有理数集记为Q5、元素与集合的关系:①属于关系,用“∈”表示;②不属于关系,用“∉”表示6、集合间的关系:①包含:用“⊆”表示 ②真包含:用“ ”表示 ③相等 ④不相等7、集合的交、并、补交集的定义:由所有属于集合A 且属于集合的元素组成的集合,叫做A 与B 的交集,记作B A I ,即{}B x A x x B A ∈∈=且I并集的定义:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作B A Y , 即{}B x A x x B A ∈∈=或Y8、全集与补集:对于一个集合A ,由全集UA 相对于集合U的补集,记作A C U ,即}A x A C U ∉且9、交集、并集、补集的运算:(1)交换律:B A AB B A Y I I == (2)结合律:)()()()(C B A C B A C B A C B A Y Y Y Y I I I I== (3)分配律:.)()()()()()(C A B A C B A C A B A C B A Y I Y I Y I Y I Y I== (4)0-1律:,,,A A A U A A U A U Φ=ΦΦ===IU I U (5)等幂律:A A A A A A ==Y I(6)求补律:A A C C U C U C U A C A A C A U U U U U U =====)(φφφY I(7)反演律:)()()(B C A C B A C U U U Y I = )()()(B C A C B A C U U U I Y =10、文氏图的应用:交集、并集、补集的文氏图表示11、重要的等价关系:B A B B A A B A ⊆⇔=⇔=Y I12、一个由n 个元素组成的集合有n 2个不同的子集,其中有12-n 个非空子集,也有12-n个真子集函数:1、映射:设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素a ,在集合B 中都有唯一的元素b 和它对应,则这样的对应(包括集合B A 、以及A 到B 的对应法则f )叫做从集合A 到集合的映射,记作B A f →:,其中b 叫做a 的象,a 叫做b的原象如果在这个映射下,对于集合A 中的不同元素,在集合中有不同的象,而且B 中的每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射2、 函数:设B A 、是两个非空数集,那么从A 到B 的映射B A f →:就叫做函数,记作)(x f y =,其中B y A x ∈∈,,x 叫做自变量,y 是x 的函数值.自变量的取值集合A 叫做函数的定义域,函数值的集合C 叫做函数的值域,值域B C ⊆,函数三要素:定义域、值域、对应法则;两个函数相同:定义域和对应关系都分别相同3、函数的表示方法:(1)列表法 (2)图象法 (3)解析法4、分段函数:在自变量的不同取值范围内,其解析式不同,分段函数不是几个函数,是一个函数5、(1)函数的定义域的常用求法:①分式的分母不等于零 ②偶次方根的被开方数大于等于零 ③对数的真数大于零④指数函数和对数函数的底数大于零且不等于1⑤三角函数正切函数tan y x =中()2x k k Z ππ≠+∈,余切函数cot y x =中,)(Z k k x ∈≠π⑥如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围(2)值域的求法:①直接法 ②分离常数法 ③图象法 ④换元法 ⑤判别式法 ⑥不等式与对勾函数6、求函数解析式的方法:①直代 ②凑配法 ③ 换元法 ④待定系数法 ⑤列方程组法 ⑥特殊值法7、增减函数的定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值21,x x①若当21x x <时,都有)()(21x f x f <,则说)(x f 在这个区间上是增函数②若21x x <当时,都有)()(21x f x f >,则说)(x f 在这个区间上是减函数8、(1)单调性的证明:讨论函数的增减性应先确定单调区间, 用定义证明函数的增减性, 有“一设, 二差, 三判断”三个步骤(2)函数单调性的常用结论:①若(),()f x g x 均为某区间上的增(减)函数,则()()f x g x +在这个区间上也为增(减)函数②若()f x 为增(减)函数,则()f x -为减(增)函数③若()f x 与()g x 的单调性相同,则[()]y f g x =是增函数;若()f x 与()g x 的单调性不同,则[()]y f g x =是减函数,即复合函数的单调性是“同增异减”④奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反9、(1)奇、偶函数的定义:对于函数)(x f①如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数②如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数注意:①函数为奇偶函数的前提是定义域在数轴上关于原点对称②)()()()(x f x f x f x f =--=-或是定义域上的恒等式③若奇函数)(x f 在0=x 处有意义,则0)0(=f④奇函数的图像关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形(2)函数奇偶性的常用结论:①如果一个奇函数在0x =处有定义,则(0)0f =,如果一个函数()y f x =既是奇函数又是偶函数,则()0f x =(反之不成立)②两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数③一个奇函数与一个偶函数的积(商)为奇函数④两个函数()y f u =和()u g x =复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数基本初等函数1、(1)一般地,如果a x n=,那么x 叫做a 的n 次方根。
高中数学知识点总结大全(文科)
高中数学知识点总结目录第一章——集合与简易逻辑 (1)第二章——函数 (4)第四章三角函数 (19)第六章不等式 (33)第七章直线和圆的方程 (38)第八章圆锥曲线 (48)第九章(B)直线、平面、简单几何体 (53)第十章排列、组台、二项式定理 (69)第三章导数 (78)第一章——集合与简易逻辑集合——知识点归纳定义:一组对象的全体形成一个集合特征:确定性、互异性、无序性表示法:列举法{1,2,3,…}、描述法{x|P}韦恩图分类:有限集、无限集数集:自然数集N 、整数集Z 、有理数集Q 、实数集R 、正整数集N 、空集φ*关系:属于∈、不属于、包含于(或)、真包含于、集合相等=∉⊆⊂运算:交运算A ∩B ={x|x ∈A 且x ∈B};并运算A ∪B ={x|x ∈A 或x ∈B};补运算={x|x A 且x ∈U},U 为全集A C U ∉性质:A A ; φA ; 若AB ,BC ,则A C ;⊆⊆⊆⊆⊆A ∩A =A ∪A =A ; A ∩φ=φ;A ∪φ=A ;A ∩B =A A ∪B =B A B ;⇔⇔⊆A ∩C A =φ; A ∪C A =I ;C ( C A)=A ;U U U U C (A B)=(C A)∩(C B)U ⋃U U 方法:韦恩示意图, 数轴分析注意:① 区别∈与、与、a 与{a}、φ与{φ}、{(1,2)}与{1,2};⊆ ② A B 时,A 有两种情况:A =φ与A ≠φ⊆③若集合A 中有n 个元素,则集合A 的所有不同的子集个数为,所有真)(N n ∈n 2子集的个数是-1, 所有非空真子集的个数是n 222-n ④区分集合中元素的形式:如;;}12|{2++==x x y x A }12|{2++==x x y y B ;;;}12|),{(2++==x x y y x C }12|{2++==x x x x D },,12|),{(2Z y Z x x x y y x E ∈∈++==; }12|)',{(2++==x x y y x F },12|{2xy z x x y z G =++==⑤空集是指不含任何元素的集合、和的区别;0与三者间的关系空集是任何集}0{φ}{φ合的子集,是任何非空集合的真子集条件为,在讨论的时候不要遗忘了的情B A ⊆φ=A况⑥符号“”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关∉∈,系 ;符号“”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 ,⊄Ø绝对值不等式——知识点归纳 1绝对值不等式 与型不等式与型不等式的解法与a x <)0(>>a a x c b ax <+)0(>>+c c b ax 解集:不等式的解集是;)0(><a a x {}a x a x <<-不等式的解集是)0(>>a a x {}a x a x x -<>或,不等式的解集为 ;)0(><+c c b ax {})0(|><+<-c c b ax c x 不等式的解集为)0(>>+c c b ax {})0(,|>>+-<+c c b ax c b ax x 或2解一元一次不等式 )0(≠>a b ax ① ② ⎭⎬⎫⎩⎨⎧>>a b x x a ,0⎭⎬⎫⎩⎨⎧<<a b x x a ,03韦达定理:方程()的二实根为、, 02=++c bx ax 0≠a 1x 2x 则且 240b ac ∆=-≥⎪⎩⎪⎨⎧=-=+a c x x a b x x 2121①两个正根,则需满足,⎪⎩⎪⎨⎧>>+≥∆0002121x x x x ②两个负根,则需满足,1212000x x x x ∆≥⎧⎪+<⎨⎪>⎩③一正根和一负根,则需满足⎩⎨⎧<>∆0021x x4.一元二次不等式的解法步骤对于一元二次不等式,设相应的一元二次方程()22000ax bx c ax bx c a ++>++<>或的两根为,,则不等式的解的各种()200ax bx c a ++=>2121x x x x ≤且、ac b 42-=∆情况如下表:方程的根→函数草图→观察得解,对于的情况可以化为的情况解决0a <0a >注意:含参数的不等式ax +bx +c>0恒成立问题含参不等式ax +bx +c>0的解2⇔2集是R ;其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况 简易逻辑——知识点归纳命题 可以判断真假的语句;逻辑联结词 或、且、非;简单命题 不含逻辑联结词的命题;复合命题 由简单命题与逻辑联结词构成的命题三种形式 p 或q 、p 且q 、非p真假判断 p 或q ,同假为假,否则为真;p 且q ,同真为真, 否则为假;非p ,真假相反原命题 若p 则q ;逆命题 若q 则p ;否命题 若p 则q ;逆否命题 若q 则p ;⌝⌝⌝⌝互为逆否的两个命题是等价的反证法步骤假设结论不成立→推出矛盾→假设不成立⇒充要条件条件p成立结论q成立,则称条件p是结论q的充分条件,⇒ 结论q成立条件p成立,则称条件p是结论q的必要条件,⇔条件p成立结论q成立,则称条件p是结论q的充要条件,第二章——函数函数定义——知识点归纳1函数的定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫做自变量x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域2两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数3映射的定义:一般地,设A、B是两个集合,如果按照某种对应关系f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么,这样的对应(包括集合A、B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射,记作f:A→B 由映射和函数的定义可知,函数是一类特殊的映射,它要求A、B非空且皆为数集4映射的概念中象、原象的理解:(1) A中每一个元素都有象;(2)B中每一个元素不一定都有原象,不一定只一个原象;(3)A中每一个元素的象唯一函数解析式——知识点归纳1函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式(2)列表法:就是列出表格来表示两个变量的函数关系(3)图象法:就是用函数图象表示两个变量之间的关系2求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;()f x [()]f g x [()]f g x ()f x (3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式解方程组()f x ()f x 法;(5)应用题求函数解析式常用方法有待定系数法等 题型讲解例1(1)已知,求; 3311(f x x x x+=+()f x (2)已知,求;2(1)lg f x x +=()f x (3)已知是一次函数,且满足,求;()f x 3(1)2(1)217f x f x x +--=+()f x (4)已知满足,求()f x 12()()3f x f x x +=()f x 解:(1)∵, 3331111()()3(f x x x x x x x x +=+=+-+∴(或)3()3f x x x =-2x ≥2x ≤-(2)令(), 21t x+=1t >则,∴,∴ 21x t =-2()lg 1f t t =-2()lg (1)1f x x x =>-(3)设,()(0)f x ax b a =+≠则3(1)2(1)333222f x f x ax a b ax a b +--=++-+-,5217ax b a x =++=+∴,,∴2a =7b =()27f x x =+(4) ①,12()()3f x f x x +=把①中的换成,得 ②, x 1x 132()()f f x x x+=①②得,∴ 2⨯-33()6f x x x =-1()2f x x x =-注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法定义域和值域——知识点归纳由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x 的取值范围它依赖于对各种式的认识与解不等式技能的熟练 1求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;()f x [()]f g x [()]f g x ()f x (3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程()f x ()f x 组法;(5)应用题求函数解析式常用方法有待定系数法等 2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知的定义域求的定义域或已知的定义域求的定义域: ()f x [()]f g x [()]f g x ()f x ①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知的定义域,其复合函数的定义域应由解出 ()f x [],a b []()f g x ()a g x b ≤≤3求函数值域的各种方法 函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域①直接法:利用常见函数的值域来求一次函数y=ax+b(a 0)的定义域为R ,值域为R ;≠反比例函数的定义域为{x|x 0},值域为{y|y 0}; )0(≠=k xk y ≠≠二次函数的定义域为R ,)0()(2≠++=a c bx ax x f 当a>0时,值域为{}; ab ac y y 4)4(|2-≥当a<0时,值域为{} ab ac y y 4)4(|2-≤②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;),(,)(2n m x c bx ax x f ∈++=③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域; )0(>+=k xk x y ⑦单调性法:函数为单调函数,可根据函数的单调性求值域⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域⑨逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,y x x 得出的取值范围;常用来解,型如: y ),(,n m x dcx b ax y ∈++=单调性——知识点归纳 1函数单调性的定义: 2 证明函数单调性的一般方法:①定义法:设;作差(一般结果要分解为若干个因式2121,x x A x x <∈且)()(21x f x f -的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号②用导数证明: 若在某个区间A 内有导数,则 )(x f ()0f x ≥’,)x A ∈(在A 内为增函数;在A 内为减函数⇔)(x f ⇔∈≤)0)(A x x f ,(’)(x f 3 求单调区间的方法:定义法、导数法、图象法4复合函数在公共定义域上的单调性:[])(x g f y =①若f 与g 的单调性相同,则为增函数;[])(x g f ②若f 与g 的单调性相反,则为减函数 [])(x g f 注意:先求定义域,单调区间是定义域的子集5一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数增函数是增函数;+)(x f )(x g 减函数减函数是减函数;+)(x f )(x g 增函数减函数是增函数;-)(x f )(x g 减函数增函数是减函数-)(x f )(x g上是单调递减 奇偶性——知识点归纳 1函数的奇偶性的定义;2奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称; y 3为偶函数 ()f x ()(||)f x f x ⇔=4若奇函数的定义域包含,则()f x 0(0)0f =5判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;6牢记奇偶函数的图象特征,有助于判断函数的奇偶性;7判断函数的奇偶性有时可以用定义的等价形式:, ()()0f x f x ±-=()1()f x f x =±-8设,的定义域分别是,那么在它们的公共定义域上:()f x ()g x 12,D D 奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇⨯⨯⨯1判断函数的奇偶性,必须按照函数的奇偶性定义进行,为了便于判断,常应用定义的等价形式:f(-x)= ±f(x) f(-x) f(x)=0;+2讨论函数的奇偶性的前提条件是函数的定义域关于原点对称,要重视这一点;3若奇函数的定义域包含0,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件; 4奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,因此根据图象的对称性可以判断函数的奇偶性 5若存在常数T ,使得f(x+T)=f(x)对f(x)定义域内任意x 恒成立,则称T 为函数f(x)的周期,(5)函数的周期性定义:若T 为非零常数,对于定义域内的任一x ,使恒成立 )()(x f T x f =+ 则f(x)叫做周期函数,T 叫做这个函数的一个周期反函数——知识点归纳 1反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; 2定义域、值域:反函数的定义域、值域上分别是原函数的值域、定义域,若()y f x =与互为反函数,函数的定义域为、值域为,则1()y f x -=()y f x =A B ,;1[()]()f f x x x B -=∈1[()]()f f x x x A -=∈3单调性、图象:互为反函数的两个函数具有相同的单调性,它们的图象关于对y x =称 4求反函数的一般方法:(1)由解出,(2)将中的互换位置,得()y f x =1()x f y -=1()x f y -=,x y ,(3)求的值域得的定义域 1()y f x -=()y f x =1()y f x -=二次函数——知识点归纳二次函数是高中最重要的函数,它与不等式、解析几何、数列、复数等有着广泛的联系1二次函数的图象及性质:二次函数的图象的对称轴方程是,c bx ax y ++=2ab x 2-=顶点坐标是 ⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,2二次函数的解析式的三种形式:用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即,和(一般式)c bx ax x f ++=2)((零点式))()()(21x x x x a x f -⋅-=(顶点式)n m x a x f +-=2)()(3 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0)(1)x 1<α,x 2<α ,则;(2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b (3)α<x 1<β,α<x 2<β,则 (4)x 1<α,x 2>β (α<β),则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f ⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f (5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f 4 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响1讨论二次函数的区间最值问题:①注意对称轴与区间的相对位置;②2讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置5二次函数、一元二次方程及一元二次不等式之间的关系:①f(x)=ax 2+bx+c 的图像与x 轴无交点ax 2+bx+c=0无实根ax 2+bx+c>0(<0)的0∆<⇔⇔⇔解集为或者是R;∅②f(x)=ax 2+bx+c 的图像与x 轴相切ax 2+bx+c=0有两个相等的实根0∆=⇔⇔⇔ax 2+bx+c>0(<0)的解集为或者是R;∅③f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点ax 2+bx+c=0有两个不等的实0∆>⇔⇔根ax 2+bx+c>0(<0)的解集为或者是 ⇔(,)αβ()αβ<(,)(,)αβ-∞+∞ 指数对数函数——知识点归纳1根式的运算性质:①当n 为任意正整数时,(n a )=an②当n 为奇数时,=a ;当n 为偶数时,=|a|=nna nna ⎩⎨⎧<-≥)0()0(a a a a ⑶根式的基本性质:,(a 0)n m np mp a a =≥2分数指数幂的运算性质:)()(),()(),(Q n b a ab Q n m a a Q n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+3 的图象和性质)10(≠>=a a a y x且4指数式与对数式的互化: log ba a N Nb =⇔=5重要公式: , 对数恒等式01log =a 1log =a a N a Na =log 6对数的运算法则如果有0,1,0,0a a N M >≠>>log ()log log a a a MN M N =+ log log log aa a MM N N=-log log n m a a mM M n=7对数换底公式:( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)aNN m m a log log log =8两个常用的推论:①, 1log log =⋅a b b a 1log log log =⋅⋅a c b c b a ② ( a, b > 0且均不为1) b mnb a na m log log =9对数函数的性质:∞)上是增函数10同底的指数函数与对数函数互为反函数 xy a =log a y x =11指数方程和对数方程主要有以下几种类型: (1) a f(x)=b ⇔f(x)=log a b, log a f(x)=b ⇔f(x)=a b ; (定义法)(2) a f(x)=a g(x)⇔f(x)=g(x), log a f(x)=log a g(x)⇔f(x)=g(x)>0(转化法) (3) a f(x)=b g(x)⇔f(x)log m a=g(x)log m b (取对数法) (4) l og a f(x)=log b g(x)⇔log a f(x)=log a g(x)/log a b(换底法)函数图象变换——知识点归纳1作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象2三种图象变换:平移变换、对称变换和伸缩变换等等; 3识图:分布范围、变化趋势、对称性、周期性等等方面4平移变换:(1)水平平移:函数的图像可以把函数的图像沿轴()y f x a =+()y f x =x 方向向左或向右平移个单位即可得到;(0)a >(0)a <||a(2)竖直平移:函数的图像可以把函数的图像沿轴方向向上()y f x a =+()y f x =x 或向下平移个单位即可得到(0)a >(0)a <||a ① y=f(x)y=f(x+h); ② y=f(x) y=f(x -h); h 左移→h右移→③y=f(x) y=f(x)+h; ④y=f(x) y=f(x)-hh 上移→h下移→5对称变换:(1)函数的图像可以将函数的图像关于轴对称即可得()y f x =-()y f x =y 到;(2)函数的图像可以将函数的图像关于轴对称即可得到; ()y f x =-()y f x =x (3)函数的图像可以将函数的图像关于原点对称即可得到; ()y f x =--()y f x =(4)函数的图像可以将函数的图像关于直线对称得到1()y fx -=()y f x =y x =①y=f(x)y= -f(x);②y=f(x)y=f(-x);轴x →轴y →③y=f(x)y=f(2a -x); ④y=f(x)y=f -1(x);ax =→直线xy =→直线⑤y=f(x)y= -f(-x)原点→6翻折变换:(1)函数的图像可以将函数的图像的轴下方部分沿|()|y f x =()y f x =x x 轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到; x x ()y f x =x (2)函数的图像可以将函数的图像右边沿轴翻折到轴左边替代(||)y f x =()y f x =y y 原轴左边部分并保留在轴右边部分即可得到y ()y f x =y7伸缩变换:(1)函数的图像可以将函数的图像中的每一点横()y af x =(0)a >()y f x =坐标不变纵坐标伸长或压缩()为原来的倍得到;(1)a >01a <<a (2)函数的图像可以将函数的图像中的每一点纵坐标不变横()y f ax =(0)a >()y f x =坐标伸长或压缩()为原来的倍得到 (1)a >01a <<1a①y=f(x)y=f();② y=f(x)y=ωf(x)ω⨯→x ωxω⨯→y 第三章数列数列数列定义——知识点归纳 (1)一般形式: n a a a ,,,21⋯(2)通项公式:)(n f a n =(3)前n 项和:及数列的通项a n 与前n 项和S n 的关系:12n n S a a a =++⋯ 1121(1)(2)n n n nn S n S a a a a S S n -=⎧=++⋯⇔=⎨-≥⎩等差数列——知识点归纳 1等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列 {}n a d a a n n =-+1{}n a ③等差中项:对于数列,若,则数列是等差数列 {}n a 212+++=n n n a a a {}n a 3等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为{}n a 1a d d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和:⑤ ⑥ 2)(1n n a a n S +=d n n na S n 2)1(1-+=对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或a A b A a b 2ba A +=b a A +=2在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,n a n m a m 且,公差为,则有n m ≤d d m n a a m n )(-+=⑧ 对于等差数列,若,则 {}n a q p m n +=+q p m n a a a a +=+也就是:=+=+=+--23121n n n a a a a a a ⑨若数列是等差数列,是其前n 项的和,,那么,,{}n a n S *N k ∈k S k k S S -2成等差数列如下图所示:k k S S 23-k kk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++6奇数项和与偶数项和的关系:⑩设数列是等差数列,是奇数项的和,是偶数项项的和,是前{}n a 奇S 偶S n S n 项的和,则有如下性质: 前n 项的和偶奇S S S n +=当n 为偶数时,,其中d 为公差; d 2nS =-奇偶S 当n 为奇数时,则,,,中偶奇a S =-S 中奇a 21n S +=中偶a 21n S -=,(其中是等差数列的中间一项)11S S -+=n n 偶奇n =-+=-偶奇偶奇偶奇S S S S S S S n中a 7前n 项和与通项的关系:⑾若等差数列的前项的和为,等差数列的前项的和为,{}n a 12-n 12-n S {}n b 12-n '12-n S 则'1212--=n n n n S S b a 等比数列——知识点归纳1等比数列的概念:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示()0≠q 2等比中项:如果在与之间插入一个数,使,,成等比数列,那么叫做a b G a G b G a 与的等比中项b 也就是,如果是的等比中项,那么,即 Gb a G =ab G =23等比数列的判定方法: ①定义法:对于数列,若,则数列是等比数列 {}n a )0(1≠=+q q a a nn {}n a ②等比中项:对于数列,若,则数列是等比数列{}n a 212++=n n n a a a {}n a 4等比数列的通项公式:如果等比数列的首项是,公比是,则等比数列的通项为{}n a 1a q 或着11-=n n q a a n m n m a a q -=5等比数列的前n 项和:○1)1(1)1(1≠--=q qq a S n n ○2)1(11≠--=q qqa a S n n 当时, ○31=q 1na S n =当时,前n 项和必须具备形式1q ≠(1),(0)n n S A q A =-≠6等比数列的性质:①等比数列任意两项间的关系:如果是等比数列的第项,是等差数列的第项,且n a n m a m ,公比为,则有n m ≤q m n m n q a a -=② 对于等比数列,若,则{}n a v u m n +=+v u m n a a a a ⋅=⋅也就是:=⋅=⋅=⋅--23121n n n a a a a a a 如图所示:nn a a na a n n a a a a a a ⋅⋅---112,,,,,,12321③若数列是等比数列,是其前n 项的和,,那么,,成{}n a n S *N k ∈k S k k S S -2k k S S 23-等比数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++数列的求和——知识点归纳1等差数列的前n 项和公式: S n = S n =S n = d n n na 2)1(1-+2)(1n a a n +d n n na n 2)1(--当d ≠0时,S n 是关于n 的二次式且常数项为0; 当d=0时(a 1≠0),S n =na 1是关于n 的正比例式 2等比数列的前n 项和公式:当q=1时,S n =n a 1 (是关于n 的正比例式);当q≠1时,S n =S n =qq a n --1)1(1qqa a n --113拆项法求数列的和,如a n =2n+3n 4错位相减法求和,如a n =(2n-1)2n(非常数列的等差数列与等比数列的积的形式) 5分裂项法求和,如a n =1/n(n+1) 111n n =-+(分子为非零常数,分母为非常数列的等差数列的两项积的形式) 6反序相加法求和,如a n = nnC 1007求数列{a n }的最大、最小项的方法:①a n+1-a n =…… 如a n = -2n 2+29n-3⎪⎩⎪⎨⎧<=>000②(a n >0) 如a n = ⎪⎩⎪⎨⎧<=>=+1111 nn a a nn n 10)1(9+③ a n =f(n) 研究函数f(n)的增减性 如a n =1562+n n数列的综合应用——知识点归纳 1通项与前n 项和的关系:⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 2迭加累加法:,1(),(2)n n a a f n n --=≥若 , ,………,)2(12f a a =-则)3(23f a a =-)(1n f a a n n =--1(2)(3)()n a a f f f n ⇒-=++⋯3迭乘累乘法:,,,………, )(1n g a a n n =-若)2(12g a a=则)3(23g a a =)(1n g a a n n =- 1(2)()na g g n a ⇒=⋯4裂项相消法:11(1))((1CAn B An B C C An B An a n +-+-=++=5错位相减法:, 是公差d ≠0等差数列,是公比q ≠1等比数列n n n c b a ⋅={}n b {}n c n n n n n c b c b c b c b S ++⋯++=--1122111121+-++⋯⋯+=n n n n n c b c b c b qS 则所以有 13211)()1(+-⋯⋯+++=-n n n n c b d c c c c b S q 6通项分解法: n n n c b a ±=7等差与等比的互变关系:{}{}na n ab ⇔≠成等差数列(b>0,b 1)成等比数列 {}{}n n a ca d ⇔+≠成等差数列(c 0)成等差数列 {}{}0log n a n b n a a >⇔成等比数列成等差数列{}{}k n n a a ⇒成等比数列成等比数列 8等比、等差数列和的形式:{}Bn An S B An a a n nn +=⇔+=⇔2成等差数列{}(1)(0)n n n a S A q A ≠⇔=-≠(q 1)成等比数列9无穷递缩等比数列的所有项和:{}1lim 1n n n a a S S q→∞⇔==-(|q|<1)成等比数列第四章三角函数角的概念的推广和弧度制——知识点归纳 1角和终边相同:αβZ k k ∈︒⨯+=360αβ2几种终边在特殊位置时对应角的集合为:角的终边所在位置 角的集合X 轴正半轴{}Z k k ∈︒⨯=,360|ααY 轴正半轴 {}Z k k ∈︒+︒⨯=,90360|ααX 轴负半轴 {}Z k k ∈︒+︒⨯=,180360|ααY 轴负半轴{}Z k k ∈︒+︒⨯=,270360|ααX 轴{}Z k k ∈︒⨯=,180|ααY 轴{}Z k k ∈︒+︒⨯=,90180|αα坐标轴{}Z k k ∈︒⨯=,90|αα3弧度制定义:我们把长度等于半径长的弧所对的圆心角叫1弧度角 角度制与弧度制的互化:π=︒180 1弧度1801π=︒︒≈︒=3.57180π4弧长公式: (是圆心角的弧度数) r l ||α=α5 扇形面积公式: 2||2121r r l S α==任意角的三角函数、诱导公式——知识点归纳1 三角函数的定义:以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角αα的终边上任取一个异于原点的点,点P 到原点的距离记为),(y x P,那么(0)r r ==>; ; ; sin y r α=cos x r α=tan yx α=(; ; )cot x y α=sec r x α=csc ryα=2 三角函数的符号:由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值对于第yr一、二象限为正(),对于第三、四0,0y r >>象限为负();②余弦值对于0,0y r <>xr第一、四象限为正(),对于第0,0x r >>二、三象限为负();③正切值对于第一、三象限为正(同号),对于第0,0x r <>yx,x y 二、四象限为负(异号),x y 说明:若终边落在轴线上,则可用定义求出三角函数值。
文科高等数学重要知识点汇总
第一章函数与极限一、内容提要1.函数是微积分研究的对象,定义域、对应法则构成其两要素。
2.极限分成数列极限与函数极限,是微积分学的基础,以后的内容绝大多数与此紧密相关。
3.无穷小与无穷大是两个特殊的变量,为了更精细的研究它们之间的关系,必须讨论它们之间比较时产生的阶的关系。
4.求极限的方法有多种,本章主要有利用极限运算法则及两个极限存在法则方法,并利用后者得到两个重要极限。
5.利用极限来描述连续这种直观现象是用极限对函数研究的第一次应用,并得到了初等函数的连续性。
作为连续函数,当其在闭区间上时具有特殊的性质。
二、重要结论1.lim an =a的定义为:∀ε>0,∃N>0,∀n>N,满足an−a<ε。
n→∞2.lim f (x)=A的定义为:∀ε>0,∃δ>0,∀x∈U(x,δ),满足f(x)−A<ε。
x→x0lim+f(x)=A的定义为:∀ε>0,∃δ>0,∀x∈(x,x+δ),满足f(x)−A<ε。
x→xlim−f(x)=A的定义为:∀ε>0,∃δ>0,∀x∈(x−δ,x),满足f(x)−A<ε。
x→xlim f(x)=A的定义为:∀ε>0,∃X>0,∀x满足x>X时,成立f(x)−A<ε。
x→∞lim f(x)=A的定义为:∀ε>0,∃X>0,∀x满足x>X时,成立f(x)−A<ε。
x→+∞lim f(x)=A的定义为:∀ε>0,∃X>0,∀x满足x<−X时,成立f(x)−A<ε。
x→−∞3.数列极限或函数极限若存在则必唯一。
4.收敛数列必为有界数列,函数极限存在有局部有界性。
5.函数极限若存在,则有局部保号性。
6.lim f (x)=A,当n→∞时,xn与上极限中的x有相同的变化趋势,则lim f(xn)=A。
n→∞7.lim f(x)=A⇔f(x)=A+o(1)。
高三文科数学全部知识点
高三文科数学全部知识点一、数与代数1. 自然数、整数、有理数、实数、复数的定义及性质2. 点、线、面的基本概念及性质3. 等差数列、等比数列及其求和公式4. 二次函数的定义、性质及图像特征5. 不等式的基本性质及解法6. 排列、组合与概率的基本概念及计算方法二、函数与方程1. 函数的定义、性质及表示方法2. 一次函数、二次函数、指数函数、对数函数的图像特征3. 一元一次方程、一元二次方程、一元高次方程的解法4. 二元一次方程组、二元二次方程组的解法5. 求函数零点、极值点以及函数的凹凸区间6. 不等式与方程的等价转化三、初等数论与代数1. 整数的基本性质:因数分解、最大公因数、最小公倍数等2. 同余方程与同余定理的应用3. 二次剩余与勾股数的相关性4. 二次同余方程及二次剩余定理的运用5. 多项式的基本性质、因式分解及根的性质6. 代数证明与数学归纳法的运用四、平面几何与立体几何1. 角、线段、圆的性质及计算2. 三角形的性质、分类及计算3. 正多边形的性质与计算4. 圆的切线、割线、切圆、切割线的性质及运用5. 空间几何体的概念、性质及计算6. 空间几何体的平行与垂直关系五、概率与统计1. 随机事件、概率的基本概念与性质2. 条件概率、独立事件、事件的组合与计算方法3. 事件的发生次数与期望值的计算4. 随机变量的概念、离散型与连续型随机变量的分布5. 统计数据的收集、整理、描述与分析6. 抽样与估计,假设检验与推断六、数理统计与决策数学1. 矩阵的性质、基本运算及特殊类型矩阵的应用2. 线性方程组与线性不等式组的解法3. 线性规划与解法4. 图论基本概念、最短路径、最小生成树及网络流的应用5. 动态规划与贪心算法的应用6. 概率论、统计学及预测模型的应用以上是高三文科数学的全部知识点,通过系统的学习和理解这些知识点,能够为学生们的高考备考提供良好的基础。
希望同学们在备考过程中充分掌握这些知识,灵活运用,取得优异的成绩。
高考文科数学最全知识点
高考文科数学最全知识点导语:数学是文科生高考的一门重要科目,掌握好数学知识对于取得理想的高考成绩至关重要。
本文将为文科生总结整理高考文科数学的最全知识点,帮助大家更好地备考。
一、函数与方程1. 基础函数:包括一次函数、二次函数、指数函数、对数函数、幂函数等的定义、性质和图像。
2. 基本图像的变换:平移、对称、伸缩等基本图像变换。
3. 方程与不等式:一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等的解法和性质。
4. 函数的性质和应用:奇偶性、周期性、最值、增减性等函数的基本性质及其在实际问题中的应用。
二、概率与统计1. 基本概念:样本空间、随机事件、概率等基本概念的定义和性质。
2. 事件的运算:包括事件的并、交、差与对立等运算规则。
3. 条件概率与独立事件:条件概率的定义与性质,独立事件的判定与性质。
4. 离散型随机变量:离散型随机变量的期望、方差等基本概念和性质。
5. 统计图与统计量:包括直方图、折线图、饼图等统计图的绘制和解读,以及平均数、中位数等统计量的计算和应用。
三、数列与数列极限1. 等差数列与等比数列:等差数列的通项公式、求和公式以及等比数列的通项公式、求和公式的推导与应用。
2. 数列极限:数列极限的定义、性质以及常见数列的极限值计算方法。
四、函数的导数与微分1. 导数定义与基本性质:导数的定义、可导条件、导数的性质、基本导数公式及其推论。
2. 导数的运算:和差积商的导数运算法则、复合函数的导数、反函数的导数等导数的运算规则和方法。
3. 微分:微分的定义及其与导数的关系,微分的应用与求法。
五、三角函数与解三角形1. 三角比的定义与性质:正弦、余弦、正切等三角比的定义、性质及其补角关系。
2. 三角函数的图像与性质:三角函数图像的绘制、奇偶性、周期性、单调性等性质。
3. 解三角形:利用三角函数的基本关系式求解三角形的边长与角度。
六、导数与函数的应用1. 函数的极值与单调性:函数驻点、极值点的判定与性质,函数单调性的判定与性质。
高考文科数学知识点总结
原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互集合与简易逻辑知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性.3⑴①一个命题的否命题为真,它的逆命题一定为真.否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真.原命题⇔逆否命题. 二含绝对值不等式、一元二次不等式的解法及延伸1.含绝对值不等式的解法1公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. 2定义法:用“零点分区间法”分类讨论.3几何法:根据绝对值的几何意义用数形结合思想方法解题. 特例①一元一次不等式ax>b 解的讨论;21、命题的定义:可以判断真假的语句叫做命题; 2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题; 构成复合命题的形式:p 或q 记作“p ∨q ”;p 且q 记作“p ∧q ”;非p 记作“┑q ”;3、“或”、“且”、“非”的真值判断 1“非p ”形式复合命题的真假与F 的真假相反; 2“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; 3“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P 则q ;逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p;6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件; 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为pq.函数知识回顾:(一)映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二函数的性质 ⒈函数的单调性定义:对于函数fx 的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有fx 1<fx 2,则说fx 在这个区间上是增函数; ⑵若当x 1<x 2时,都有fx 1>fx 2,则说fx 在这个区间上是减函数.若函数y=fx 在某个区间是增函数或减函数,则就说函数y=fx 在这一区间具有严格的单调性,这一区间叫做函数y=fx 的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性4.判断函数单调性定义作差法:对带根号的一定要分子有理化,例如:指数函数与对数函数指数函数及其性质y=a x a>0,a≠122122212122222121)()()(b x b x x x x x b x b x x f x f x ++++-=+-+=-)(1)(.............*∈⋅⋅=N n a a a a a nn2)0(10≠=a a 3).0(1*∈≠=-N p a aa p p 4)1,,,0(>*∈>=n N n m a a a n m nm且5nm nm aa1=-)1,,,0(>*∈>n N n m a 且60的正分数指数幂等于0,0的负分数指数幂无意义 9),0,0(,)(Q r b a a a ab s r r ∈>>⋅= 对数函数及其性质y=log a x a>0,a≠1的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等..函数值域的求法:①配方法二次或四次;②“判别式法”;③换元法;④不等式法;⑤函数的单调性法.数列①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a 2≥n⑶看数列是不是等比数列有以下方法: ①,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n n a a a 2≥n ,011≠-+n n n a a a ①在等差数列{n a }中,有关S n 的最值问题:1当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值.2当1a <0,d>0时,满足⎩⎨⎧≥≤+01m m a a 的项数m 使得m s 取最小值;三、数列求和的常用方法1.公式法:适用于等差、等比数列或可转化为等差、等比数列的数列;2.裂项相消法:适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{n a }是各项不为0的等差数列,c 为常数; 3.错位相减法:适用于{}n n b a 其中{n a }是等差数列,{}n b 是各项不为0的等比数列; 4.倒序相加法:类似于等差数列前n 项和公式的推导方法.5.常用结论111)1(1+-=+n n n n )211(21)2(1+-=+n n n n三角函数2、同角三角函数的基本关系式:αααtan cos sin =1cos sin 22=+αα3、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限” 三角函数的公式:一基本关系②)sin(ϕω+=x y 或)cos(ϕω+=x y 0≠ω的周期ω2=T .④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x Zk ∈,对称中心0,πk ;)cos(ϕω+=x y 的对称轴方程是πk x =Zk ∈,对称中心0,21ππ+k ;)tan(ϕω+=x y 的对称中心0,2πk . 奇偶性的两个条件:一是定义域关于原点对称奇偶都要,二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-奇偶性的单调性:奇同偶反.例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.定义域不关于原点对称奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .x ∉0的定义域,则无此性质⑨x y sin =不是周期函数;x y sin =为周期函数π=T x y cos =是周期函数如图;xy cos =为周期函数π=T 212cos +=x y 的周期为π如图,并非所有周期函数都有最小正周期,例如:y=|cos2x +1/2|图象R k k x f x f y ∈+===),(5)(.三角函数图象的作法:1、描点法及其特例——五点作图法正、余弦曲线,三点二线作图法正、余切曲线.2、利用图象变换作三角函数图象.平面向量向量的概念1向量的基本要素:大小和方向.2向量的表示:几何表示法AB ;字母表示:a ;坐标表示法a =xi+yj =x,y. 3向量的长度:即向量的大小,记作|a |. 4特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1.5相等的向量:大小相等,方向相同x1,y1=x2,y2⎩⎨⎧==⇔2121y y x x6相反向量:a =-b ⇔b =-a ⇔a +b =07平行向量共线向量:方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量.运算类型 几何方法 坐标方法 运算性质 向量的 加法 1.平行四边形法则 2.三角形法则向量的 减法三角形法则AB BA =-,AB OA OB =-数 乘 向 量1.a λ是一个向量,满足:||||||a a λλ= 2.λ>0时,a a λ与同向;λ<0时,a a λ与异向;λ=0时,0a λ=.向 量 的 数 量 积a b •是一个数1.00a b ==或时,0a b •=.2.00||||cos(,)a b a b a b a b ≠≠=且时,4.重要定理、公式1平面向量基本定理e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a =λ1e 1+λ2e 2.2两个向量平行的充要条件a ∥b ⇔a =λbb ≠0⇔x 1y 2-x 2y 1=O. 3两个向量垂直的充要条件a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O.中点公式OP =211OP +2OP 或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x 正、余弦定理:a /sinA=b /sinB=c /sinC=2R 其中R 为三角形外接圆的半径余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C . 三角形面积计算公式:1S =ah/22.已知三角形三边a,b,c,则S=√pp -ap-bp-c=1/4√a+b+ca+b -ca+c-bb+c-ap=a+b+c/23.已知三角形两边a,b,这两边夹角C,则S =1/2absinC4.设三角形三边分别为a 、b 、c,内切圆半径为rS=a+b+cr/25.设三角形三边分别为a 、b 、c,外接圆半径为RS=abc/4R6.根据三角函数求面积:S=absinC/2a/sinA=b/sinB=c/sinC=2R 注:其中R 为外切圆半径;不等式知识要点1. 不等式的基本概念不等等号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- 2.不等式的基本性质1a b b a <⇔>对称性2c a c b b a >⇒>>,传递性3c b c a b a +>+⇒>加法单调性4d b c a d c b a +>+⇒>>,同向不等式相加5d b c a d c b a ->-⇒<>,异向不等式相减6bc ac c b a >⇒>>0,.7bc ac c b a <⇒<>0,乘法单调性8bd ac d c b a >⇒>>>>0,0同向不等式相乘(9)0,0a b a b c d c d>><<⇒>异向不等式相除11(10),0a b ab ab>>⇒<倒数关系11)1,(0>∈>⇒>>n Z n b a b a n n 且平方法则12)1,(0>∈>⇒>>n Z n b a b a n n 且开方法则 3.几个重要不等式10,0||,2≥≥∈a a R a 则若2)2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若当仅当a=b 时取等号3如果a ,b 都是正数,.2a b +当仅当a=b 时取等号极值定理:若,,,,x y R x y S xy P +∈+==则:如果P 是定值,那么当x=y 时,S 的值最小; 如果S 是定值,那么当x =y 时,P 的值最大.利用极值定理求最值的必要条件:一正、二定、三相等.,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号0,2b aab a b>+≥(5)若则当仅当a=b 时取等号不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法.不等式的解法直线和圆的方程一、直线方程.1.直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2.直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3.⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线.②在1l 和2l 的斜率都存在的前提下得到的.因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠ 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在.②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在.即01221=+B A B A 是垂直的充要条件 .点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200BA C By Ax d +++=.注:1. 两点P 1x 1,y 1、P 2x 2,y 2的距离公式:21221221)()(||y y x x P P -+-=.特例:点Px,y 到原点O 的距离:||OP =2. 直线的倾斜角0°≤α<180°、斜率:αtan =k 3. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:.12()x x ≠当2121,y y x x ≠=即直线和x 轴垂直时,直线的倾斜角α=︒90,没有斜率⑵两条平行线间的距离公式:设两条平行直线)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++,它们之间的距离为d ,则有2221BA C C d +-=.7.关于点对称和关于某直线对称:⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线. ⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上方程①,过两对称点的直线方程与对称直线方程垂直方程②①②可解得所求对称点. 二、圆的方程.如果曲线C 的方程是fx,y=0,那么点P 0x 0,y 线C 上的充要条件是fx 0,y 0=02.圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 3.圆的一般方程:022=++++F Ey Dx y x .当0422F E D -+时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D . 当0422F E D -+时,方程无图形称虚圆.4.点和圆的位置关系:给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x -+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x -+-⇔ 5.直线和圆的位置关系:设圆圆C :)0()()(222 r r b y a x =-+-;直线l :)0(022≠+=++B A C By Ax ; 圆心),(b a C 到直线l 的距离22BA C Bb Aa d +++=.①r d =时,l 与C 相切;附:若两圆相切,则⇒⎪⎩⎪⎨⎧=++++=++++02222211122F y E x D y x F y E x D y x 相减为公切线方程.②r d 时,l 与C 相交;附:公共弦方程:设有两个交点,则其公共弦方程为0)()()(212121=-+-+-F F y E E x D D . ③r d 时,l 与C 相离.由代数特征判断:方程组⎪⎩⎪⎨⎧=++=-+-0)()(222C Bx Ax r b y a x 用代入法,得关于x 或y 的一元二次方程,其判别式为∆,则:l ⇔=∆0与C 相切; l ⇔∆0 与C 相交; l ⇔∆0 与C 相离.一般方程若点x 0,y 0在圆上,则x –a x 0–a+y –b y 0–b=R 2.特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+.圆锥曲线方程:0:222222111221=++++=++++F y E x D y x C F y E x D y x C一、椭圆方程.1.椭圆方程的第一定义: ⑴①椭圆的标准方程:i.中心在原点,焦点在x 轴上:)0(12222 b a by ax =+.ii.中心在原点,焦点在y 轴上:)0(12222 b a bx ay=+.②一般方程:)0,0(122 B A By Ax =+.⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:c a x 2±=或c a y 2±=.⑥离心率:)10( e ace =. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222a b c a b d -=和),(2ab c二、双曲线方程.1.双曲线的第一定义: ⑴①双曲线标准方程:)0,(1),0,(122222222 b a bx ay b a by ax =-=-.一般方程:)0(122 AC Cy Ax =+.⑵①i.焦点在x 轴上:顶点:)0,(),0,(a a -焦点:)0,(),0,(c c -准线方程c a x 2±=渐近线方程:0=±b ya x 或02222=-by a x②轴y x ,为对称轴,实轴长为2a ,虚轴长为2b ,焦距2c.③离心率ace =.④通径a b 22.⑤参数关系a ce b a c =+=,222.⑥焦点半径公式:对于双曲线方程12222=-by a x 21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 三、抛物线方程.3.设0 p ,抛物线的标准方程、类型及其几何性质:注:通径为2p,这是过焦点的所有弦中最短的.四、圆锥曲线的统一定义..:立体几何平面.1.经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2.两个平面可将平面分成3或4部分.①两个平面平行,②两个平面相交3.过三条互相平行的直线可以确定1或3个平面.①三条直线在一个平面内平行,②三条直线不在一个平面内平行一、空间直线.1.空间直线位置分三种:相交、平行、异面.相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内2.异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.不在任何一个平面内的两条直线3.平行公理:平行于同一条直线的两条直线互相平行.4.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等如下图.二面角的取值范围[) 180,0∈θ 直线与直线所成角(] 90,0∈θ斜线与平面成角() 90,0∈θ 直线与平面所成角[] 90,0∈θ向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角或直角相等.二、 直线与平面平行、直线与平面垂直.1.空间直线与平面位置分三种:相交、平行、在平面内.2.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.“线线平行,线面平行”注:①直线a 与平面α内一条直线平行,则a ∥α.×平面外一条直线 ②直线a 与平面α内一条直线相交,则a 与平面α相交.×平面外一条直线③若直线a 与平面α平行,则α内必存在无数条直线与a 平行.√不是任意一条直线,可利用平行的传递性证之④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面.×可能在此平面内 ⑤平行于同一直线的两个平面平行.×两个平面可能相交⑥平行于同一个平面的两直线平行.×两直线可能相交或者异面 ⑦直线l 与平面α、β所成角相等,则α∥β.×α、β可能相交3.直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.“线面平行,线线平行”直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.注:①垂直于同一平面....的两个平面平行.×可能相交,垂直于同一条直线.....的两个平面平行 ②垂直于同一直线的两个平面平行.√一条直线垂直于平行的一个平面,必垂直于另一个平面③垂直于同一平面的两条直线平行.√ 三、 平面平行与平面垂直.1.空间两个平面的位置关系:相交、平行.2.平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.“线面平行,面面平行”推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. 注:一平面间的任一直线平行于另一平面.3.两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.“面面平行,线线平行”12方向相同12方向不相同4.两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.“线面垂直,面面垂直” 四. 空间几何体.异面直线所成角的求法:1平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系; .直线与平面所成的角 .二面角的求法.空间距离的求法求点到直线的距离转化为求三棱锥的高,利用等体积法列方程求解; 正方体和长方体的外接球的直径等于其体对角线长;概率知识要点1.概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2.等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3.①互斥事件:不可能同时发生的两个事件叫互斥事件.如果事件A 、B 互斥,那么事件A+B 发生即A 、B 中有一个发生的概率,等于事件A 、B 分别发生的概率和,即PA+B=PA+PB,推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A 或B 是否发生对事件B 或A 发生的概率没有影响.这样的两个事件叫做相互独立事件.如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即PA·B=PA·PB.回归分析和独立性检验第一步:提出假设检验问题 H 0:吸烟与患肺癌没有关系↔H 1:吸烟与患肺癌有关系第二步:选择检验的指标 22()K ()()()()n ad bc a b c d a c b d -=++++它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大.回归直线方程的求法:1221()ni i i ni i x y nx y b x n x a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑导数互斥对立1.导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 2.求导数的四则运算法则:''''''')()(cv cv v c cv u v vu uv =+=⇒+=c 为常数注:v u ,必须是可导函数. 4.函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数. 零点定理⑴零点定理:设函数)(x f 在闭区间],[b a 上连续,且0)()( b f a f ⋅.那么在开区间),(b a 内至少有函数)(x f 的一个零点,即至少有一点ξa <ξ<b 使0)(=ξf .注:①0)( x f 是fx 递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时fx =0,同样0)( x f 是fx 递减的充分非必要条件.②一般地,如果fx 在某区间内有限个点处为零,在其余各点均为正或负,那么fx 在该区间上仍旧是单调增加或单调减少的. 6.极值的判别方法:注①:若点0x 是可导函数)(x f 的极值点,则)('x f =0.但反过来不一定成立.对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9.几种常见的函数导数: 复数1.⑴复数的单位为i,它的平方等于-1,即1i 2-=. ⑵常用的结论:。
高三文科数学知识要点总结
高三文科数学知识要点总结无论你是理科生还是文科生,数学公式,你必须掌握。
接下来是小编为大家整理的高三文科数学知识要点总结,希望大家喜欢!高三文科数学知识要点总结一1、函数的单调性(1)设x1、x2[a,b],x1x2那么f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
高三文科数学知识要点总结二【一、《集合与函数》】内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
【二、《三角函数》】三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
高考文科数学必考知识点归纳
高考文科数学必考知识点归纳精选全国高考文科数学必考知识点一、基本概念1.函数与曲线:定义函数与曲线,二次函数方程;二次曲线函数表达式;参数方程的图形;定义域和值域;一次函数与l2函数的性质;反函数的求解;函数和曲线变换;极坐标函数图形;求值点;联系函数和曲线。
2.三角函数:三角函数基本性质;弧度和角度的关系;周期性特点;正弦定理、余弦定理及其应用;正弦曲线以及余弦曲线的性质;三角函数变换;三角函数的值的计算。
3.解析几何:定义几何图形,平面直角坐标系;圆的性质;椭圆及其性质;双曲线的特点;点、直线、圆及其几何关系;不等式的图形表示;空间几何图形;解析几何方法解决几何问题;锐角三角形内角和外角的关系;三角函数与角度;等腰三角形及其特殊性质;空间三角形和其内角和外角关系;四边形面积;六边形面积;新结构和性质;特殊定点定理和性质。
4.统计:统计的基本概念;概率的含义;概率的计算;分类资料的相互关系;抽样分析;概率的判断;统计数据的分类;统计数据的计算;统计图的制作及其应用;回归分析;误差估计。
二、代数与方程1.代数:定义多项式;解题步骤和算法;系数;根;因式分解;乘法定理;互异因数;无穷序列求和;除号自由把法;十二项式;因式定理;求取代数方程的根;多项式的因式分解;代数的性质;多项式的奇偶性;分数的运算;平方根运算。
2.方程:定义方程;一元二次方程的求解;整式化简;同余方程;不等式及其解法;定义不等式;不等式解法;二元一次方程组;合并算法;解法及应用;三元一次方程组;连立方程解法;恒等变换;解三元一次方程组。
三、推理与证明1.数学推理:数学推理的基本概念;式子、条件、命题、证明;直觉猜想;演绎推理;证明方式和思路;言语推理;判断推理;数列的构造;数列的求和及其性质;模式推理;推理与逻辑;数学归纳法;归纳证明;归纳定理;反证法的应用;数论。
2.证明方法:数论的基本概念;数论的证明方法;数学分析的基本任务;证明的步骤和思路;数学初步证明;假设证明法;特例法;反证法;常数项法;例证法;椭圆函数的性质;变量分离法。
高中文科数学知识点大全及解题方法
高中文科数学知识点大全及解题方法一、函数与方程1.二次函数:定义、图像、性质、定点、求最值、解方程、应用2.一次函数与斜率:定义、图像、性质、直线方程、平行线、垂直线、解方程、应用3.线性规划:线性规划问题、解法、图像解法、应用4.幂函数与指数函数:定义、图像、性质、对数函数、解方程、应用5.极限与连续:定义、性质、计算方法、极限存在准则、连续性、中值定理、应用二、概率与统计1.随机事件与随机变量:概率、样本空间、事件、概率计算、离散随机变量、连续随机变量、期望、方差、标准差、应用2.抽样调查与统计描述:抽样方法、频率分布表、组织数据、图表、统计参数、抽样误差、应用3.统计推断:参数估计、假设检验、置信区间、显著性检验、两个总体参数的推断、回归分析、相关分析、应用三、数列与数学归纳法1.等差数列与等比数列:定义、通项公式、求和公式、性质、应用2.数学归纳法:原理、应用四、平面与立体几何1.平面几何:点、线、面、平行线、垂直线、角、三角形、四边形、相似、全等、平行四边形、圆、周长、面积、体积、应用2.立体几何:正方体、长方体、棱柱、棱锥、棱台、球、圆锥、圆柱、剖面、二面角、弓形、扇形、投影、旋转体、应用五、数与函数1.数与运算:有理数、实数、复数、分数、整式、混合运算、因式分解、分式方程、幂次方程、根式、二次方程、不等式、绝对值、应用2.函数:定义、图像、性质、逆函数、复合函数、函数方程、函数图像、应用六、解析几何1.坐标系与坐标变换:平面直角坐标系、空间直角坐标系、坐标变换、终点、中点、距离、斜率、条件、方程、离散点2.直线与圆:直线方程、圆方程、位置关系、切线、判别式、解题方法、应用3.抛物线、双曲线与椭圆:标准方程、参数方程、性质、坐标变换、焦点、准线、渐近线、应用七、数学推理与证明1.数学推理基础:条件、命题、谓词、命题连接词、充分条件、必要条件、推理方法、证明方法、逆否命题、矛盾法、应用2.数学归纳法:原理、应用3.基本证明方法:直接证明、间接证明、逆证法、归谬法、应用八、解题方法1.立体几何解题:画图法、标志线法、平面坐标法、计算法、平面投影法、力学法、综合法、分析法、应用2.函数与方程解题:整体法、逐步法、转化法、因果法、逆向法、归纳法、举反例法、综合法、应用3.统计与概率解题:列出可能性、通过问题分析建立模型、估计数据、推断、应用4.数学推理与证明解题:抽取条件、列出结论、寻找证明方法、推理过程、验证结果、应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学 必修1知识点第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系名称 记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于BA ⊆(1)A A∅⊆(2) A C ⊆,则B C ⊆且B A ⊆若(3) A B =,则B A ⊆且B A ⊆若(4)A(B)或BA真子集A ≠⊂B(或B ≠⊃A ) BA ⊆中至少B ,且有一元素不属于A为非空子集)A (A ≠∅⊂)1( A C≠⊂,则B C ≠⊂且A B ≠⊂若(2) B A集合 相等 A B =A 中的任一元素都属于B ,B 中的任一元素都属于AB ⊆(1)A A⊆(2)B A(B)(7)已知集合A 有(1)n n ≥个元素,则它有2个子集,它有21-个真子集,它有21-个非空子集,它有22-非空真子集.【1.1.3】集合的基本运算名称 记号意义性质 示意图交集A B I{|,x x A ∈且}x B ∈(1)A A A =I (2)A ∅=∅I (3)AB A ⊆I A B B ⊆I BA并集A B U{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇UBA补集U A ð {|,}x x U x A ∈∉且 ()U A A U =U ð2 ()U A A =∅I ð1(1不等式解集||(0)x a a <>{|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>,||x a<看成一个整体,化成ax b+把型不等式来求解||(0)x a a >>(2()()()U U U A B A B =I U 痧?()()()U U U A B A B =U I 痧?判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x > {|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.yxo【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,a Ab B∈∈.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< x..2.时,都有f(x...1.)<f(x.....2.).,那么就说f(x)在这个区间上是增函数....x1x2y=f(X)xyf(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量时,都2.< x..1.x.,当2x、1x的值,那么就说).2.)>f(x.....1.f(x...有f(x)在这个区间上是减函数....y=f(X)yxo x x2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质(,]a-∞-、[,)a+∞上为增函数,分别在[,0)a、]a上()f x分别在为减函数.(3)最大(小)值定义如果存在实数M满足:(1)对于任意的x I∈,都有()f x M≤;①一般地,设函数()y f x=的定义域为I,(2)存在x I∈,使得()f x M=.那么,我们称M是函数()f x的最大值,记作max()f x M=.②一般地,设函数()y f x=的定义域为I,如果存在实数m满足:(1)对于任意的x I∈,都有()f x m≥;(2)存在x I∈,使得()f x m=.那么,我们称m是函数()f x的最小值,记作max()f x m=.【1.3.2】奇偶性(4)函数的奇偶性函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数为奇函数,且在处有定义,则.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号na n 是偶数时,正数a 的正的n n a n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.na 这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:)n na a =;当n n n a a =;当n 为偶数时, (0)|| (0) n n a a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-=③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b na an M M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数函数名称对数函数定义函数log(0ay x a=>且1)a≠叫做对数函数图象1a>01a<<定义域(0,)+∞值域R过定点图象过定点(1,0),即当1x=时,0y=.奇偶性非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的变化情况log0(1)log0(1)log0(01)aaax xx xx x>>==<<<log0(1)log0(1)log0(01)aaax xx xx x<>==><< a变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(1)幂函数的定义一般地,函数y xα=叫做幂函数,其中x为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q互质,p和q Z∈),若p为奇数q为奇数时,则qpy x=是奇函数,若p为奇数q为偶数时,则qpy x=是偶函数,若p为偶数q为奇数时,则qpy x=是非奇非偶函数.xyO(1,0)1x=logay x=xyO(1,0)1x=logay x=⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2②x 1≤2③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =)q()f pxxxxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m q = ②02bx a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。