2-1结构动力学(单自由度和阻尼)
结构动力学
§1.3 体系振动的自由度
象静力计算一样,在动力计算时,首先需要选取一个 合理的计算简图。但由于需要考虑惯性力,因此在动力计 算的简图中,多了一项关于质量分布的处理问题。当体系 振动时,它的惯性力与质量的运动情况有关,所以确定质 量在运动中的位置具有重要的意义。 振动的自由度:我们把确定体系上全部质量位置所需 的独立几何参变数的数目,称为该体系的振动自由度。 例1.1 如图(a)所示跨中置一质量为m电动机的简支梁,当 梁自身的质量远小于电动机的质量时,梁的质量可忽略不 计。其计算简图如图(b)所示。
Fp
如:具有偏心质量的回旋机器它所传递 给结构上的横向力就是时间 t 的函数。
t
这类荷载称为动力荷载
图(a)
显然,结构在动力荷载作用下的计 算与静力荷载作用下的计算将有很大的 的区别,而且要复杂的多。
Fpsin t
图(b)
这是因为,在进行动力计算时,除了需要考虑惯 性力外,还需取时间作为自变量。在动力问题中,内 力与荷载不能构成静力平衡,但根据达朗伯原理,可 以将动力问题转化为静力问题,方法是任一时刻在结 构上加入假想的惯性力作为外力。即结构在形式上处 于“平衡状态”,这样,就可以应用静力学的有关原 理和方法计算在给定时刻的内力和位移等。 在实际工程中,大多数荷载都是随时间的改变而 变化的,但有一些荷载使结构产生很小的振动,以至 于其上的惯性力可以忽略不计,此时为了简化计算, 可将其视为静力荷载。仅将那些随时间变化,且使结 构产生较大的振动的荷载才作为动力荷载来考虑。
dmy Fp t dt
1 2
t m y 1 3
当质量m不随时间变化时,有 Fp
0 即:Fp t m y
因此,如果把惯性力(-mÿ)加到原来受力的质量上,则动 力学问题就可以按静力平衡来处理,这种列运动方程的 方法常称为动静法。这种方法较为方便,因此得到广泛 应用。 (2)拉格朗日(Lagrange)方程 应用虚位移原理,作用在任意质量mi上的所有力 (包括惯性力),对任意的虚位移所作的虚功总和应 等于零,得
结构动力学课后习题答案
结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。
它涉及到结构的振动、冲击响应、疲劳分析等方面。
课后习题是帮助学生巩固课堂知识、深化理解的重要手段。
以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。
系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。
习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。
特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。
习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。
结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。
冲击响应分析的结果可以用来评估结构的耐冲击性能。
习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。
振动力学与结构动力学-(第一章).
摩擦力: Fd cdx2sgxn
c d :阻力系数
在运动方向不变的半个周期内计算耗散能量,再乘2:
Ecdx2sgxndx2
T/4
c T/4 d
x3dt
8 3
cd02
A2
等效粘性阻尼系数:
ce
8
3
cd0
A
24
四、结构阻尼
由于材料为非完全弹性,在变形过程中材料的内摩擦所引起 的阻尼称为结构阻尼
特征:应力-应变曲线存在滞回曲线
6
第一章 概 论
§1-1 动荷载及其分类 - 从广义上讲,如果表征一种运动的物理量作时而增大时而减
小的反复变化,就可以称这种运动为振动。 - 如果变化的物理量是一些机械量或力学量,例如物体的位移
、速度、加速度、应力及应变等,这种振动便称为机械振动 。 - 各种物理现象,诸如声、光、热等都包含振动
7
– 知识要点:结构被动控制、主动控制的基本概念。常用主动 控制方法的原理。结构主动控制在机械、土木结构工程中应 用简介。
– 重点难点:理解各种控制方法的原理及其具体实现。 – 教学方法:课堂讲授与引导讨论相结合。
主要参考书: • 刘延柱.振动力学.北京:高等教育出版社,1998 • 倪振华. 振动力学. 西安:西安交通大学出版社,1989 • 张准、汪凤泉. 振动分析.南京:东南大学出版社,1991 • 陈予恕.非线性振动. 天津:天津科技出版社,1983 • 龙驭球等编著.《结构力学》下册. 北京:高等教育出版 社,1994
– 教学方法:课堂讲授与引导讨论相结合
• 第六章 结构反应谱与地震荷载计算(8学 时)
– 知识要点:结构反应谱、单自由度和多自由度地震 荷载计算公式、规范中地震荷载计算公式。
结构动力学习题解答一二章
2、 动量距定理法
适用范围:绕定轴转动的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析与动量距分析;
(2) 利用动量距定理J ,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
3、 拉格朗日方程法:
;
1、7求图1-36所示齿轮系统的固有频率。已知齿轮A的质量为mA,半径为rA,齿轮B的质量为mB,半径为rB,杆AC的扭转刚度为KA,,杆BD的扭转刚度为KB,
解:由齿轮转速之间的关系 得角速度 ;转角 ;
系统的动能为:
CA
;B D
图1-36
系统的势能为:
;
系统的机械能为
;
由 得系统运动微分方程
;
适用范围:所有的单自由度系统的振动。
解题步骤:(1)设系统的广义坐标为 ,写出系统对于坐标 的动能T与势能U的表达式;进一步写求出拉格朗日函数的表达式:L=T-U;
(2)由格朗日方程 =0,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、 能量守恒定理法
1、2叙述用衰减法求单自由度系统阻尼比的方法与步骤。
用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。
方法一:衰减曲线法。
求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值 、 。
(2)由对数衰减率定义 , 进一步推导有
,
因为 较小,所以有
。
方法二:共振法求单自由度系统的阻尼比。
;L/2L/2
则固有频率为:
图1-33(b)
结构动力学习题答案
结构动力学习题答案在结构动力学中,习题答案通常涉及对结构在动态载荷下的行为进行分析和计算。
这些习题可能包括自由振动分析、受迫振动分析、随机振动分析、模态分析、响应谱分析等。
以下是一些典型的结构动力学习题答案示例。
习题一:单自由度系统的自由振动问题:一个单自由度系统具有质量m=2kg,阻尼系数c=0.5N·s/m,弹簧刚度k=800N/m。
初始条件为位移x(0)=0.1m,速度v(0)=0。
求该系统自由振动的位移时间历程。
答案:首先,确定系统的自然频率ωn:\[ \omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{800}{2}}\text{ rad/s} \]然后,计算阻尼比ζ:\[ \zeta = \frac{c}{2\sqrt{mk}} = \frac{0.5}{2\sqrt{2 \cdot 800}} \]由于ζ < 1,系统将进行衰减振动。
可以使用以下公式计算位移时间历程:\[ x(t) = A e^{-\zeta \omega_n t} \cos(\omega_d t + \phi) \] 其中,\( \omega_d = \sqrt{\omega_n^2 - \zeta^2 \omega_n^2} \) 是阻尼频率,A是振幅,\( \phi \)是相位角。
初始条件给出x(0)=0.1m,v(0)=0,可以解出A和\( \phi \)。
最终位移时间历程的表达式为:\[ x(t) = 0.1 e^{-\zeta \omega_n t} \cos(\omega_d t) \]习题二:单自由度系统的受迫振动问题:考虑上述单自由度系统,现在施加一个简谐力F(t)=F_0sin(ωt),其中F_0=100N,ω=10 ra d/s。
求系统的稳态响应。
答案:稳态响应可以通过傅里叶级数或直接应用受迫振动的公式来求解。
对于简谐力,系统的稳态响应为:\[ x_{ss}(t) = \frac{F_0}{k - m\omega^2} \sin(\omega t + \phi) \]其中,\( \phi \) 是相位差,可以通过以下公式计算:\[ \phi = \arctan\left(\frac{2\zeta\omega}{\omega_n^2 -\omega^2}\right) \]习题三:多自由度系统的模态分析问题:考虑一个二自由度系统,其质量矩阵M和刚度矩阵K如下:\[ M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix},\quad K = \begin{bmatrix} k_1 & -k_c \\ -k_c & k_2\end{bmatrix} \]其中,\( m_1 = 2kg \),\( m_2 = 1kg \),\( k_1 = 800N/m \),\( k_2 = 1600N/m \),\( k_c = 200N/m \)。
结构动力学-第三章 单自由度体系 (Part 1)
结构动力学Dynamics of Structures 第三章单自由度体系Chapter 3 Single-Degree-of-Freedom SystemsPart 1华南理工大学土木工程系马海涛/陈太聪本章主要目的及内容目的:z 通过单自由度体系介绍动力学的基本概念z 若干实际问题的解内容:(1)无阻尼自由振动(2)有阻尼自由振动(3)对简谐荷载的反应(4)对周期荷载的反应(5)对任意荷载的反应(6)体系的阻尼和振动过程中的能量(7)隔振(震)原理(8)结构地震反应分析的反应谱法自由振动free vibration强迫振动forced vibration第三章单自由度体系SDOF Systems自由振动:结构受到扰动离开平衡位置以后,不再受任何外力影响的振动过程。
0mucu ku ++= 无阻尼自由振动单自由度系统的运动方程()mucu ku P t ++=00c muku =⇒+= 自由振动运动方程单自由度系统无阻尼自由振动的运动方程0muku += 初始扰动:00(0)(0)t t u u uu ==== 初始位移初始速度二阶齐次常微分方程Homogeneous second orderordinary differential equation无阻尼自由振动的数学模型000;(0),(0)t t muku u u uu ==+=== 初始条件Initial conditions2()0stC ms k e +=设解有以下形式()stu t Ce=代入方程得 C 和s 为待定常数。
因此,方程通解为:121212()n n i ti ts t s tu t C e C eC eC eωω−=+=+或模型求解0muku += 2ms k ⇒+=1,2n ks i mω⇒=±=±()cos sin n n u t A t B tωω=+三角函数形式通解()sin cos n n n n ut A t B t ωωωω=−+00(0)(0)t n t u A u uB u ω====== (0)()(0)cos sin n n nuu t u t tωωω=+(0)(0),nuA uB ω⇒==利用初始条件,我们有单自由度系统无阻尼自由振动问题的解其中n kmω=无阻尼自由振动为简谐运动Simple harmonic motion ωn 称为圆频率或角速度Angular frequency / velocity ()cos sin n n u t A t B tωω=+三角函数形式通解()sin cos n n n n ut A t B t ωωωω=−+振幅无阻尼自由振动问题解的图示(1)振幅–Amplitude of motion[]220(0)(0)n u u u ω⎡⎤=+⎢⎥⎣⎦基本参数(2)固有周期–Natural period of vibration2n nT πω=(3)固有频率–Natural frequency of vibration1n nf T =Hz (赫兹)固有频率s (秒)固有周期rad/s (弧度/秒)固有圆频率单位定义物理量名称2n nT πω=1n nf T =n k m ω=单自由度系统无阻尼自由振动系统参数§3.2 有阻尼自由振动0c uk u m u ++= 运动方程2()0stC ms cs k e ++=设解有以下形式()stu t Ce =代入方程得解为:221,222nc c s m m ω⎛⎞=−±−⎜⎟⎝⎠粘性阻尼模型2ms cs k ++=2c k s s m m++=22n c s s mω++=阻尼系数影响此项的取值进一步决定解的特征Critical damping and damping ration临界阻尼22022n cr n c c m m k c m ωω⎛⎞−=⇒⎜⎟⎝⎠===此时运动方程的解为12ns s ω==−()()n tu t A Bt e ω−=+0mucu ku ++= 验证—分别将两个解代入方程()n tu t Aeω−=()n tu t Bteω−=()22220n t nnnAem m m ωωωω−=−+=()2n t nnAem c k ωωω−−+左端=()()221n t nnnBem t c t kt ωωωω−⎡⎤−++−+⎣⎦左端=()2220n tnnnBec m t m k ωωωω−⎡⎤=−+−+=⎣⎦Critical damping and damping ration运动方程的解为()()n tu t A Bt e ω−=+()()(0)(1)(0)n tn u t u t ut e ωω−=++ (0)(0)n u AuA B ω==−+ 因此,解为根据初始条件,有()()n tn u t A Bt B eωω−=−++⎡⎤⎣⎦ 对应的速度表达式为(0)(0)(0)n A u B u uω==+ 或者(0)()(0)1(0)n t n uu t u t e u ωω−⎡⎤⎛⎞=++⎢⎥⎜⎟⎝⎠⎣⎦(0)()(0)1(0)n t n uu t u t e u ωω−⎡⎤⎛⎞=++⎢⎥⎜⎟⎝⎠⎣⎦ 解的特征由此项控制当阻尼大于临界阻尼时,0mucu ku ++= 220n n uu u ζωω++= 2n crc cm c ζω==其中,阻尼比1221120()s ts ts s u t C e C e<<=+临界阻尼可定义为:体系自由振动反应中不出现往复振动所需的最小阻尼值。
结构动力学 -单自由度体系的振动
13
§2.2 无阻尼自由振动
自由振动(free vibration) :无外界干扰的体系振动形 态称为自由振动(free vibration)。振动是由初始位 移或初始速度或两者共同影响下所引起的。 无阻尼自由振动:如果阻尼系数等于零,则这种自由 振动称为无阻尼自由振动(undamped free vibration)。 假设由于外界干扰,质点离开平衡位置,干扰消失后, 质点将围绕静力平衡点作自由振动。
或:m y ( t) c y ( t) k ( t) y m y g ( t) P e( f t) f
Peff (t ) :等效荷载,即在地面加速度yg (t )影响下,结构的响
应就和在外荷载p (t )作用下的响应一样,只是外荷载 p (t )
等于质量和地面加速度的乘积。
干扰力的大小只能影响振幅A的大小,而对结构自
振周期T的大小没影响。
(2)自振周期与质量平方根成正比,质量越大,则
周期越大;自振周期与刚度的平方根成反比,刚度
越大,则周期越小。要改变结构的自振周期,只有
改变结构的质量或刚度。
24
§2.2 无阻尼自由振动
k g
m
st
(3)把集中质点放在结构上产生最大位移的地方,则可
1、位移以静力平衡位置作为基准的,而这样确定的位移 即为动力响应。
2、在求总挠度和总应力时,要把动力分析的结果与静
力分析结果相加。
9
§2.1运动方程的建立
3、支座运动的影响 结构的动位移和动应力既可以由动荷载引起,也
可以由结构支座的运动而产生。 1)由地震引起建筑物基础的运动; 2)由建筑物的振动而引起安置在建筑物内的设备 基底的运动等等。
[美]R.克里夫《结构动力学》补充详解及习题解
前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。
结构动力学学习的难点主要有以下两个方面。
1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。
二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。
2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。
克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。
之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。
为什么难懂呢?是因为公式的推导过程比较简单,省略过多。
本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。
所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。
达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。
以下黑体字是注释,其它为原书文字。
[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。
为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。
2-1结构动力学(单自由度)
O
t
这条曲线仍具有衰减性,但不具有波动性。
1, cr 2m
c 2m
c cr
阻尼比
(2)ξ> 1(强阻尼)情况
1,2 2 1 0
y t C1e1t C2e2t
t
y( t )
O
y (t ) e t C1 sinh 2 1 t C 2 cosh 2 1 t
g y st
y st m T 2 2 k g
频率只取决于体系的质量和刚度,而与外界因素 无关,是体系本身固有的属性,所以又称为固有频率
(natural frequency)。
(3)简谐自由振动的特性
y(t ) Asin( t )
(t ) A 2 sin(t ) y 加速度为: 惯性力为: FI (t ) m (t ) mA 2 sin(t ) y
特征根 一般解
2 2 2 0
1, 2 2 1
y(t ) C1e
1t
C2 e
2t
(1)ξ= 1(临界阻尼)情况
1,2
y C1 C2 t e t
y( t )
tan v
t
y y0 (1 t ) v0t e
d
阻尼对自振频率、周期的影响
,
d
Td T
在工程结构问题中,若0.01<ξ<0.1,可近似取:
d , Td T
y(t ) e t Asin ( d t )
阻尼对振幅的影响
yk Aetk Td e y k 1 Ae (tk Td )
结构动力学第二章 单自由度系统的振动2
0.39 0.66 0.73 1.00 1.05 1.20 1.42 1.55 1.69 1.76 2.00
23
24
解: 水塔的自振频率和周期分别为
k 29.4106 N / m 31.305rad / s
m
30103 kg
T 2 0.2007s
取微小时段 0.01s ,约相当于水塔自振
同理,积分项 B(t) 可用相同的方法进行计算。
16
因此,无阻尼体系动力响应的数值解: y(t) A(t) sin t B(t) cost
同理,也可求得有阻尼体系动力响应。 注:数值积分解答的精确度与计算中选择和微 小时段 有关,一般可取小于系统自振周期 的十分之一,便可得到较好的结果。
17
A yst
1
2
t1
2
( 1 cost1
) 2
t1
1/ 2
sint1
t1 T
0.371
动力系数只与 t1 有关,即只与 t1 T 有关
下表列出不同 t1 T 值时的动力系数。
表 不同 t1 T 值时的动力系数表
t1/T 0.125 0.20 0.25 0.371 0.40 0.50 0.75 1.00 1.50 2.00
用下式进行计算。
无阻尼:
( 0)
y(t) 1 t p( ) sin (t )d
m 0
有阻尼: y(t) 1
( 0)
md
t 0
p(
)e (t )
sin d
(t
)d
2)对于许多实际情况,如果荷载的变化规律是 用一系列离散数据表示(如试验数据),此时 的响应计算就必须借助于数值分析方法。
11
于开平-结构动力学第二讲
(2) 阻尼力的功:
Wd A cos t dt c 2 / 1 cos 2 t cA2 2 dt 0 2 1 2 1 2 2 2 / cA2 2 cA cos 2 t dt 0 2 2
5 稳态响应振幅和相位
5.2 初始相位角 根据初相位角表达式
2 tg 1 2
可以画出初相位角随频率比的变化曲线,简称相频曲线:
在共振点,不管阻尼比多大,初相位角均为90度。
6 稳态响应复数解法及频响函数
之前将外载荷假设为正弦形式,其运动控制方程为:
������������ሷ 1 + ������������ሶ 1 + ������������1 = ������0 sin������������ 简谐激励的另一种典型形式为余弦形式,其运动控制方程写作: ������������ሷ 2 + ������ ������ሶ 2 + ������������2 = ������0 cos������������ (2) (1)
o o o
o
1 2 Fo A sin Fo A sin 2
6 稳态响应复数解法及频响函数
令方程特解为������ ������ = ������������ ������ ������������������ ,代入运动控制方程得: (−������2 ������������������ + ������������������������������ + ������������������ )������ ������������������ = ������0 ������ ������������������ 方程对任意时刻t恒等,则方程两边指数函数������ ������������������ 前系数相等,由此可得: ������������ = ������0 ������ − ������������ 2 + ������������������
结构动力学中的阻尼
结构动力学中的阻尼 一、租你的分类1)粘滞阻尼(大小与啥速度成正比,方向与速度相反) 2)滞后阻尼(结构阻尼,大小与位移成正比,方向与速度相反)3)干摩擦阻尼(库伦阻尼,大小与正压力成正比,方向与速度相反) 二、阻尼的测定1)自由振动衰减法,见教材p7)1n n ln(个循环的幅值第个循环的幅值第+=δ (1)tT t t n n e eu e u u u ςωςωςω==+--+)(001 (2) πςςωδ2==t (3)如果相隔n 个周倜,则ςπδn n 2= (4)2)共振法222m a x )2()1(1ςρρ+-===st d y y DLF 最大静位移最大动位移 (5) 222)(210)(ωςρρΩ=-=⇒=d DLF d (6)2max 121ςς-=DLF (7)当共振时,1≈ρ,可以推出;maxmax 2121DLF DLF =⇒=ςξ(8)3)带宽法 (0.707法)频率反应曲线ωωως212-=(9)式(9)推导如下:2222222)121()21())2()1(1(ςςςρρ-=+- (10) 化简 式(10),可得0)1(81)21(222224=--+--ςςρςρ (11)解得:2221221ςςςρ-±-= (12)由于2ζ很小,式(12)可以化简为:ςρ212±= (13)ζρζρ±≈⇒±=121 (14)ωωωζζωωω221212-=⇒=- (15)三、对几种阻尼的比较 1)粘滞阻尼yc fd -= (16))sin(ϕ+Ω=t A y (17) )cos(ϕ+ΩΩ=t A y(18) )cos(ϕ+ΩΩ-=t cA f d (19) 2222222222222222222222)(sin ))(sin 1()(cos y c A c t A c A c t A c t A c f d Ω-Ω=+ΩΩ-Ω=+Ω-Ω=+ΩΩ=ϕϕϕ (20)1222222=+ΩA y c A f d (椭圆方程) (21)椭圆面积为阻尼李在一个周期内所做的功⎰Ω==Td T cA dy f W /202ππ (22)221kA U =(23) 能量耗散系数kcU W T Ω==πφ2 (24) 实验表明Ω与φ无关,与实际不符。
1工程结构中的阻尼及其力学模型
y1 2 ln y 2 1 2
一、工程结构中的阻尼及其力学模型
例题:研究一座桥梁的竖向振动,对于基频,结 构可以看成是单自由度体系。让桥梁在跨中产生 挠度(用绞车把桥梁向下拉),然后突然释放。
在初始扰动之后,求得振动按指数衰减,即在频
率为1.62Hz的三个周期内,振幅从10mm衰减为 5.8mm。在跨中停放质量为40000kg的车辆重复进
宏观尺度的滑动被降低而微观滑动开始这种微观滑动包括接触面间的相互凹凸的微小位移相对于滑动面的对面3连接处嵌固压力的进一步增加将使粗糙面的贯入度变得更大
结构动力学
——单自由度系统的振动 湖南大学土木工程学院
尹华伟
2013年7月
一、工程结构中的阻尼及其力学模型
粘滞阻尼
k c m
cy ky 0 m y
对库仑阻尼,可导出等效粘滞阻尼系数:
cd
4 Fd
一、工程结构中的阻尼及其力学模型
阻尼引起的能量耗散
滞变阻尼: 对简谐激励: 得:
y sin t
Fdy k (1 j )ydy
y , cost y /
2 2
2 2
F k sin t jk sin t k sin t k cost
行试验,并测得其自振频率为1.54HZ。
求有效质量,有效刚度系数和结构阻尼。
设m为有效质量,k为有效刚度系数。
一、工程结构中的阻尼及其力学模型
因为:
1 f1 1.62 2 1 f 2 1.54 2
k m k 3 m 4010
3
故得:
1.62 m 4010 m 1.54 因此有效质量: m 375103 kg 2 有效刚度: k (2f1 ) m 38850 kN/m
清华大学结构动力学2-1
2.2 运动方程的建立 4. Hamilton原理
可以应用变分法(原理)建立结构体系的运动方程。 体系的平衡位置是体系的稳定位置,在稳定位置,体系 的能量取得极值,一般是极小值。 Hamilton原理是动力学中的变分法(原理)。
2.2 运动方程的建立 4. Hamilton原理(积分形式的动力问题的变分方法)
∫
t2 t1
用 Hamilton 原理推导 Lagrange 方程 对于有 N 个自由度的结构体系,体系的动能和位能分别为:
& & & T = T ( u1 , u 2 , L u N , u1 , u 2 , L u N ) V = V ( u1 , u 2 ,L u N )
(a) (b)
因此动能和位能的变分为:
∫
∫
t2 t1
t2
t1
& & & [ muδu − cuδu − kuδu + p(t )δu]dt = 0
对上式中的第一项进行分部积分
& & & muδudt = ∫ mu(δ
t2 t1 t t t t d d & & & && && u )dt = ∫ mu (δu )dt = ∫ mud (δu ) = muδu tt − ∫ δu ⋅ mudt = − ∫ muδudt t t t t dt dt
结构动力学
(2004秋)
结构动力学
第二章
运动方程的建立
运动方程: 描述结构中力与位移关系的数学表达式 (有时称动力方程) 运动方程是进行结构动力分析的基础 运动方程的建立是结构动力学的重点和难点
结构力学应用-结构动力学
(小阻尼) 令
有阻尼的自振频率
1
2
y(t ) e
t
y0 y0 ( y0 cos t sin t )
*写成
y(t ) b e
2 0
t
sin(t )
(14-12)
y0 y0 2 其中 b y ( )
柔度法(力法)
MY KY 0 MY Y 0
10、按柔度法求解
振型方程: ([ ][ 2 [ 1 M ]){Y } 00} ([ I ] M ] ][ [ I ]){Y } { 2 频率(特征)方程
D [ ][ M ] [ I ] 0
y0 tg y0 y0
位移-时间曲线如图示:
阻尼比——阻尼的基本参数: a.阻尼对频率(周期)的影响
k
2m
1 2
T T 1 2 T
0.2
T T
b、阻尼对振幅的影响
be
t
——振幅随时间逐渐衰减
11m1
1
12 m2
(k )
0 0
(14 63)
{Y }
(k )
Y1 Y2
(k )
11m1 k 12 m2
12 m2
k2
(k=1、2)
结构的刚度和质量分布 ——对称 其主振型 ——对称、反对称 计算自振频率: ——分别就正、反对称情况 ——取半跨结构计算 ——两个单自由度问题计算 显然,振型分别为: [1 1]T、[1 -1]T
1
0.2,
yn ln 2 j yn j 相隔j个周期: 1
单自由度无阻尼自由振动的系统分析
单自由度无阻尼自由振动的系统分析在结构动力学之中,单自由度体系的振动是最简单的振动,但单自由度体系的频率计算在结构动力学计算中有着十分重要的意义,因为从中我们能得到关于振动理论的一些最基本的概念和分析方法同时也为更复杂的多质点多自由度体系振动问题奠定基础,同时现实工程中也有许多振动问题可以简化为单自由度问题近似的利用单自由度振动理论去分析解决。
在单层厂房、水塔等建筑物中得到有效的利用结构的自由振动是指结构受到扰动离开平衡位置后,不再受到任何外力影响的振动过程,此处动力系统是否有阻尼项,会直接影响到动力系统的反应。
在此,我们把自由振动分为无阻尼自由振动与有阻尼的自由振动。
一、无阻尼自由系统的振动分析目前,以弹簧-质量系统为力学模型,研究单自由度系统的振动具有非常普遍的实际意义,因为工程中许多问题简化后,用单自由度体系的振动理论就能得到很好的解决。
而对多自由度系统和连续振动,在特殊坐标的考察时,也会显示出与单自由度系统类似的振动。
进行无阻尼自由振动分析的主要目的是为了获得系统固有振动的特性,只有充分地了解系统的自身振动特性才能有效的计算系统的动力响应,目前在单质点单自由度无阻尼自由振动体系中我们的运动方程为:0)()(..=+t ku t um (1) 或 0u(t))(=+ωt u (2)其中的ω是振动圆频率,是反应系统动力的重要参数,其计算公式为:m k m ==δω12 (3)由上式可以看出,ω只和系统的刚度及质量有关,而与系统所受到的初始受力状态无关。
ω的量纲与角速度相同为rad/s ,它反映了系统自由振动的快慢。
自由振动系统的这一特性,我们在日常生活中司空见惯。
比如,键盘类乐器标定后,按动某一个琴键,不管你按动的轻重如何,琴键所发出的声音的频率是一定的,按得轻或按得重仅影响声音的强弱。
(2)式经过三角函数的转换可表示为:)sin()(νω+=t A t u (4)其通解为t A t A t u ωωsin cos )(21+= 常数A 1与A 2与初始条件有关,01χ=A ωχ/02 =A式(4)是标准的简谐方程其中A 是其振幅,则ν是其初相角,他们的计算公式2020)(ωx x A += ,00arctan x x v ω=对于质点振动系统,质量越大,则系统的固有频率越低;刚度越大,则系统的固有频率越高。
结构动力学习题解答(一二章)
结构动力学习题解答(一二章)第一章单自由度系统1.1 总结求单自由度系统固有频率的方法和步骤。
单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。
1、牛顿第二定律法适用范围:所有的单自由度系统的振动。
解题步骤:(1)对系统进行受力分析,得到系统所受的合力;(2)利用牛顿第二定律∑xm&&,得到=F系统的运动微分方程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
2、动量距定理法适用范围:绕定轴转动的单自由度系统的振动。
解题步骤:(1)对系统进行受力分析和动量距分析;(2)利用动量距定理J∑θ&&,得到系=M统的运动微分方程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
3、 拉格朗日方程法:适用范围:所有的单自由度系统的振动。
解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ;(2)由格朗日方程θθ∂∂-∂∂∂L L dt )(&=0,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、 能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。
解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式T+U=Const(2)将能量守恒定理T+U=Const 对时间求导得零,即0)(=+dt U T d ,进一步得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。
用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。
方法一:衰减曲线法。
求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值iA 、1+i A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率相关的粘滞阻尼
在无阻尼自由振动中,位移、加速度和惯性力都按 正弦规律变化,且作相位相同的同步运动,即它们在同 一时刻均达极值,而且惯性力的方向与位移的方向一致。
(3)简谐自由振动的特性
它们的幅值产生于 sin(t ) 1 时,其值分别为:
y A
0
A y
0
2
FI0 mA 2
2 0 2
y(t ) e
t
Asin ( d t )
y
Aet
An
1. 衰减性振动;
An+1
t
2. 非周期性振动;
O
Td
2
3. 质点两次通过平衡位置 的时间间隔相等。
d
y(t ) e t Asin ( d t )
d 1
2
Td
2
既然在运动的任一瞬时质体都处于平衡状态,在幅 值出现时间也一样,于是可在幅值处建立运动方程,
此时方程中将不含时间 t ,这样就把微分方程转化为
代数方程了,使计算得以简化。
例题
例1 求图示伸臂梁体系的自振频率和周期
EI m
解
(1) 静定梁,采用柔度法 (2) 画质体单位
1
g y st
y st m T 2 2 k g
频率只取决于体系的质量和刚度,而与外界因素 无关,是体系本身固有的属性,所以又称为固有频率
(natural frequency)。
(3)简谐自由振动的特性
y(t ) Asin( t )
(t ) A 2 sin(t ) y 加速度为: 惯性力为: FI (t ) m (t ) mA 2 sin(t ) y
2
2
初始相位角
y0 y0 arctan =arctan y v 0 0
y(t ) A sin t
y y
T t
0
y cos t
振动将以 y 一个连续地 v 定常幅度振 0 动。经过一 v y 固定时段又 恢复原运动 A 状态。
y 0 y0 0 v0 y
y (t ) y 0 cost
v0
sin t
(1)方程的解
y(t ) y0 cost v0
sin t
y(t ) A sin t
振幅
(amplitude of vibration)
A
y0
2
0 y v0 2 = y0
m 2 k 0
k m
练习
1. 计算图示结构的自振频率。
m
l /2 EI l /2 l /2
m
EI l /2
m
l /2
EI
l /2
ω1 ׃ω2 ׃ω3= 1 ׃1.512 ׃2
结构约束越强,其刚度越大;刚度越大,其自振动频率也越大。
2. 求图示体系的自振频率。
2 y y 0
为什么要讨 论这种简单 模型?
这种理想情况所得到的某些结果,可以相当精确地反映实际 结构的一些动力特性;可以与有阻尼情况加以对比,以便更好地 了解阻尼的作用。
(1)方程的解
k m
2
y 0 y
2
通解 代入初始条件 得动位移为
y C1 cost C2 sin t
c 2m 2 km
当体系由某一时刻tk,经过 n 个准周期后,其振幅的 比值按几何级数递减。通过实测y(tk) 和y(tk+nTd)可计算阻 尼比,从而确定阻尼系数c 。
工程实际中阻尼比常在0.02~0.2之间,所以
d 1
2
Td T
1 2 n ( n )
(3) 弯矩图自乘,求柔度系数。
l3 l 2 l 1 l l 2 l 1 l EI 2 3 2 2 2 2 3 2 8 EI 2
(4)
8 EI ml 3 T 2 ml 3 8 EI
例2 求图示单层刚架的自振频率和周期
m EI1=∞ EI EI 体系 1 h 6i/h 6i/h 单位侧移时的弯矩图 1 k 12i/h2 12i/h2 1
uc P[(k m ) (c ) ]
2 2 2 1 2
sin( t )
3.6-2
在稳态反应的一个循环中,体系的耗能为:
U πc P2 [(k m 2 )2 (c )2 ]1
3.6-3
显然,体系耗能与扰力频率成正比,但这并不符合一般工程结构的实验结 果。
第二章
单自由度体系的振动
2.2 单自由度体系的自由振动
Free Vibration of Single Degree of Freedom Systems
1. 无阻尼自由振动
cy ky FP (t ) m y
ky 0 m y
k m
2
c =0, FP(t)=0
m/2
EI EI EI
m
l
2 l3 11 3 EI
l
1 3 2l 3 m 2 3EI
EI ml 3
3. 质点重W,求图示体系的自振频率。
k11 k
EI k
3EI l3
l
m W / g
3EI k 3 l g W
4. 求图示体系的自振频率。
m
EI EI1=∞ EA l
B EI= l C
3
A
l /2
k l /2
D
m1
B
k
C
FI0 1
FS
m2
FI02
l 3 FI02 l FS l 0 2 2 l 2 0 2 FI 1 m1 A1 m 2 m 3l l 2 2 2 FI 2 m 2 A2 m 3 2 2 FS kl FI0 1
yk 1 ln 2 y k 1 2
yk 2 Td ln ln e Td 2 y k 1 d
称为振幅的对数递减率
yk y k y k 1 y k ( n1) y k n y k 1 y k 2 yk n
yk ln n nTd yk n
研究动力系统在振动过程中能量耗散的现象、机 理和数学物理模式的学说。人们观察到,振动体系 在外荷载停止作用之后,其自由振动将随时间延续 而衰减;另外,在材料、构件和结构的往复荷载作 用实验中,即使在弹性范围内,实测得到的力-变形 曲线也并非严格的直线,而是具有一定面积和形状 的滞回环;这些现象表明,振动体系具有能量耗散 (即阻尼)的普遍特征。阻尼理论是结构动力反应 分析的重要基础之一。
由于阻尼机制的复杂性以及在振动过程中直接测 量阻尼力的困难,长期以来,人们只能借助阻尼效应 的实测结果,在某种假定的机理下对阻尼进行定量描 述,并未形成系统严格的阻尼理论。有关阻尼物理机 制的经典研究涉及干摩擦和内摩擦两种。干摩擦的研 究结果以库伦摩擦理论为代表;内摩擦亦称粘滞摩擦, 研究结果表述为粘滞阻尼理论。实际上,振动体系的 耗能机制还包括材料塑性变形、断裂乃至超弹性和相 变等,并非库伦摩擦和粘性所能概括。
一些文献认为,阻尼可以分为内阻尼和外阻尼两类,内阻尼 是因结构材料的内摩擦和构件之间的干摩擦造成的振动能量耗 损;外阻尼则是所研究的振动体系在与外部介质(土、空气、 水、电场和磁场)相互作用中发生的能量耗散(如辐射阻尼)。 然而,内阻尼和外阻尼并没有严格的界限。例如,上述内阻尼 也可理解为振动能量转化为热能并向外界温度场的扩散。若将 研究对象局限于地面结构自身,则结构振动能量向地基的扩散 可视为外阻尼;但研究对象若为土-结相互作用体系,上述阻尼 效应则属体系内的能量传递。 结构弹性地震反应的阻尼理论主要涉及常系数粘滞阻尼、 频率相关粘滞阻尼和复阻尼。
阻尼过大,由于外界干扰积聚的能量全部用于消耗阻尼, 没有多余的能量再引起的振动。实际工程中一般不会出现。
(3)ξ< 1(低阻尼)情况
1, 2 i 1
令 d 1 2
2
y(t ) e
t
(C1 cosd t C2 sin d t )
由初始条件确定C1 和 C2
c 2 m
O
t
这条曲线仍具有衰减性,但不具有波动性。
1, cr 2m
c 2m
c cr
阻尼比
(2)ξ> 1(强阻尼)情况
1,2 2 1 0
y t C1e1t C2e2t
t
y( t )
O
y (t ) e t C1 sinh 2 1 t C 2 cosh 2 1 t
2. 有阻尼自由振动
cy ky FP (t ) m y
FP(t)=0
cy ky 0 m y
k c , 2 m m
2
2y y 0 y
2
2. 有阻尼自由振动
2 y 2y y 0
特征方程
y ( 0 ) y 设 (0) v y
得 C1 y0
C2
v0 y0
d
y(t ) e
t
v0 y 0 sin d t y 0 cos d t d
v0 y 0 A y d d y0 arctan v0 y 0
1 2
感知结构概念
通过简单的模型演示来说明结构概念和原理,
以更好的理解这些基本概念;
通过工程实例来说明结构概念和原理的应用,