3.2016年西安市高新一中中考数学第七次模拟考试
西安市高新第一中学数学高二上期中复习题(培优练)
一、选择题1.(0分)[ID :13027]如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8π C .12D .4π 2.(0分)[ID :13010]已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s =>C .270,75x s ><D .270,75x s <>3.(0分)[ID :13008]为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据: 天数x (天) 3 4 56 繁殖个数y (千个)2.5344.5由最小二乘法得y 与x 的线性回归方程为ˆˆ0.7yx a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95D .6.154.(0分)[ID :13007]函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .5.(0分)[ID :12997]在本次数学考试中,第二大题为多项选择题.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分,小明因某原因网课没有学习,导致题目均不会做,那么小明做一道多选题得5分的概率为( )A .115B .112C .111D .146.(0分)[ID :12995]在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<7.(0分)[ID :12991]在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球. A .1个B .2个C .3个D .4个8.(0分)[ID :12990]如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2019年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长9.(0分)[ID :12979]统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④10.(0分)[ID :12969]某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .5611.(0分)[ID :12965]微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?( )A .1.19B .1.23C .1.26D .1.3112.(0分)[ID :12952]运行该程序框图,若输出的x 的值为16,则判断框中不可能填( )A .5k ≥B .4k >C .9k ≥D .7k >13.(0分)[ID :12947]将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .71014.(0分)[ID :12945]将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p =(m ,n),q =(3,6).则向量p 与q 共线的概率为( ) A .13B .14C .16D .11215.(0分)[ID :12934]某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .6?i >B .7?i >C .6?i ≥D .5?i ≥二、填空题16.(0分)[ID :13125]已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是______.17.(0分)[ID :13119]下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.18.(0分)[ID :13116]已知一组数据:87,,90,89,93x 的平均数为90,则该组数据的方差为______.19.(0分)[ID :13115]从标有1,2,3,4,5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为________;20.(0分)[ID :13106]某校连续5天对同学们穿校服的情况进行统计,没有穿校服的人数用茎叶图表示,如图,若该组数据的平均数为18,则x =_____________.21.(0分)[ID :13092]某校高一年级有600个学生,高二年级有550个学生,高三年级有650个学生,为调查学生的视力情况,用分层抽样的方法抽取一个样本,若在高二、高三共抽取了48个学生,则应在高一年级抽取学生______个.22.(0分)[ID :13063]执行如图所示的程序框图,若输入的A ,S 分别为0,1,则输出的S =____________.23.(0分)[ID :13060]已知x ,y 取值如表,画散点图分析可知y 与x 线性相关,且求得回归方程为35y x =-,则m 的值为__________.x0 13 5 6y 12m 3m - 3.8 9.224.(0分)[ID:13041]如果执行下面的程序框图,那么输出的s=______________.25.(0分)[ID:13029]从一副扑克牌中取出1张A,2张K,2张Q放入一盒子中,然后从这5张牌中随机取出两张,则这两张牌大小不同的概率为__________.三、解答题26.(0分)[ID:13169]高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.27.(0分)[ID:13163]某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A 类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A 类工人中和B 类工人中各抽查多少工人?(2)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 表一 生产能力分组 [100,110) [110,120) [120,130) [130,140) [140,150) 人数48x5 3表二 生产能力分组 [110,120) [120,130) [130,140) [140,150) 人数6y3618①先确定,x y 再补全下列频率分布直方图(用阴影部分表示).②就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)③分别估计A 类工人生产能力的平均数和中位数(求平均数时同一组中的数据用该组区间的中点值作代表).28.(0分)[ID :13161]2013年9月和10月,中国国家主席习近平出访中亚和东南亚国家,先后提出共建“丝绸之路经济带”和“21世纪海上丝绸之路”的重大倡议,即“一带一路”的战略构想.某市为了了解人们对这一复兴中国梦的伟大构想的认识程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x 人,按年龄分成5组(第一组:[20)25,,第二组:[25)30,,第三组:[30)35,,第四组:[35)40,,第五组:[40]45,),得到如图所示的频率分布直方图,已知第一组有5人.(1)求x;(2)求抽取的x人的年龄的中位数(结果保留整数......);(3)从该市大学生,解放军,农民,工人,企业家五种人中用分层抽样的方法依次抽取5,35,30,20,10人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛代表相应组的成绩,年龄组中1~5组的成绩分别为90,96,97,95,92,职业组中l~5组的成绩分别为92,98,93,96,91.(i)分别求5个年龄组和5个职业组成绩的平均数和方差;(ii)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.29.(0分)[ID:13152]2019年的流感来得要比往年更猛烈一些.据四川电视台4SCTV-“新闻现场”播报,近日四川省人民医院一天的最高接诊量超过了一万四千人,成都市妇女儿童中心医院接诊量每天都在九千人次以上.这些浩浩荡荡的看病大军中,有不少人都是因为感冒来的医院.某课外兴趣小组趁着寒假假期空闲,欲研究昼夜温差大小与患感冒人数之间的关系,他们分别到成都市气象局与跳伞塔社区医院抄录了去年1到6月每月20日的昼夜温差情况与患感冒就诊的人数,得到如下资料:日期1月20日2月20日3月20日4月20日5月20日6月20日昼夜温差()x℃1011131286就诊人数(y人)222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.()1若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程y bx a=+;()2若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:b()1122211()()n ni i i ii in ni ii ix x y y x y nxyx x x nx====---==--∑∑∑∑,a y bx=-)30.(0分)[ID:13192]我省某校要进行一次月考,一般考生必须考5门学科,其中语、数、英、综合这四科是必考科目,另外一门在物理、化学、政治、历史、生物、地理、英语2中选择.为节省时间,决定每天上午考两门,下午考一门学科,三天半考完.(1)若语、数、英、综合四门学科安排在上午第一场考试,则“考试日程安排表”有多少种不同的安排方法;(2)如果各科考试顺序不受限制;求数学、化学在同一天考的概率是多少?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.B4.C5.C6.B7.D8.D9.B10.A11.C12.D13.B14.D15.A二、填空题16.【解析】数据4849525556的平均数为×(48+49+52+55+56)=52∴该组数据的方差为:s2=×(48–52)2+(49–52)2+(52–52)2+(55–52)2+(56–52)217.3个【解析】【分析】直接利用线性回归直线的相关理论知识的应用求出结果【详解】(1)已知变量x和y满足关系y=-2x+3则x与y正相关;应该是:x与y负相关故错误(2)线性回归直线必过点线性回归直线18.【解析】该组数据的方差为19.【解析】【分析】设事件A表示第一张抽到奇数事件B表示第二张抽取偶数则P(A)P(AB)利用条件概率计算公式能求出在第一次抽到奇数的情况下第二次抽到偶数的概率【详解】解:从标有12345的五张卡片中依20.8【解析】【分析】根据茎叶图计算平均数【详解】由茎叶图得【点睛】本题考查茎叶图以及平均数考查基本运算能力属基础题21.24【解析】【分析】设应在高一年级抽取学生数为n首先求出高一年级人数占总人数的百分比然后通过分层抽样的性质由此能求出应在高一年级抽取学生数【详解】设应在高一年级抽取学生数为n因为某校高一年级有60022.36【解析】执行程序可得;不满足条件执行循环体不满足条件执行循环体满足条件推出循环输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要23.3【解析】由题意可得:回归方程过样本中心点则:即:解得:点睛:(1)正确理解计算的公式和准确的计算是求线性回归方程的关键(2)回归直线方程必过样本点中心(3)在分析两个变量的相关关系时可根据样本数据24.46【解析】第一次执行程序执行第二次程序执行第三次程序执行第四次程序符合判断框条件退出循环输出故填46点睛:本题主要考查含循环结构的框图问题属于中档题处理此类问题时一般模拟程序的运行经过几次运算即可25.【解析】试题分析:从这5张牌中随机取出两张的情况有:其中不同的有8种故概率是三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B. 点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A .2.A解析:A【解析】【分析】 分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案.【详解】 由题意,根据平均数的计算公式,可得7050806070907050x ⨯+-+-==, 设收集的48个准确数据分别记为1248,,,x x x , 则()()()()()2222212481757070706070907050x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()2221248170707050050x x x ⎡⎤=-+-++-+⎣⎦, ()()()()()222222124817070708070707050s x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()222124817070701007550x x x ⎡⎤=-+-++-+<⎣⎦, 故275s <.选A .【点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,数基础题.3.B解析:B【解析】【分析】 根据表格中的数据,求得样本中心为97(,)22,代入回归直线方程,求得ˆ0.35a=,得到回归直线的方程为ˆ0.70.35yx =+,即可作出预测,得到答案. 【详解】 由题意,根据表格中的数据,可得34569 2.534 4.57,4242x y ++++++====, 即样本中心为97(,)22,代入回归直线方程ˆˆ0.7y x a =+,即79ˆ0.722a =⨯+, 解得ˆ0.35a=,即回归直线的方程为ˆ0.70.35y x =+, 当7x =时,ˆ0.770.35 5.25y=⨯+=,故选B . 【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.4.C解析:C【解析】【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论.【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A .故选C .【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.5.C解析:C【解析】【分析】根据题意结合组合的知识可知,总的答案的个数为11个,而正确的答案只有1个,根据古典概型的计算公式,即可求得结果.【详解】总的可选答案有:AB ,AC ,AD ,BC ,BD ,CD ,ABC ,ABD ,ACD ,BCD ,ABCD ,共11个,而正确的答案只有1个,即得5分的概率为111p =. 故选:C.【点睛】本题考查了古典概型的基本知识,关键是弄清一共有多少个备选答案,属于中档题. 6.B解析:B【解析】【分析】【详解】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分, 对事件“12x y -≤”,如图(2)阴影部分, 对为事件“12xy ≤”,如图(3)阴影部分, 由图知,阴影部分的面积从下到大依次是,正方形的面积为,根据几何概型公式可得231p p p <<.(1)(2)(3)考点:几何概型.7.D解析:D【解析】在(1)中,一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,∴平均说来一队比二队防守技术好,故(1)正确;在(2)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴二队比一队技术水平更稳定,故(2)正确;在(3)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴一队有时表现很差,有时表现又非常好,故(3)正确;在(4)中,二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,∴二队很少不失球,故(4)正确.故选:D.8.D解析:D【解析】【分析】由题意结合所给的统计图确定选项中的说法是否正确即可.【详解】对于选项A: 2018年1~4月的业务量,3月最高,2月最低,-=,接近2000万件,所以A是正确的;差值为439724111986对于选项B: 2018年1~4月的业务量同比增长率分别为55%,53%,62%,58%,均超过50%,在3月最高,所以B是正确的;对于选项C :2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正确的;对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误.本题选择D 选项.【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.9.B解析:B【解析】【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解.【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯, 故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③.故选B.【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.10.A解析:A【解析】【分析】根据互斥事件的和的概率公式求解即可.【详解】 由表知空气质量为优的概率是110, 由互斥事件的和的概率公式知,空气质量为良的概率为111632+=,所以该城市2017年空气质量达到良或优的概率1131025P =+=, 故选:A【点睛】 本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.11.C解析:C【解析】【分析】根据频率分布直方图中平均数的计算方法求解即可.【详解】由题,区间[)[)[)[)0.8,1.0,1.0,1.2,1.2,1.4,1.6,1.8所占频率分别为:0.20.50.1,0.2 1.250.25,0.2 2.250.45,0.20.250.05,⨯=⨯=⨯=⨯=故区间[)1.4,1.6所占频率为10.10.250.450.050.15----=. 故0.90.1 1.10.25 1.30.45 1.50.15 1.70.05 1.26x =⨯+⨯+⨯+⨯+⨯=.故选:C【点睛】本题主要考查了补全频率分布直方图的方法以及根据频率分布直方图计算平均数的问题.属于中档题.12.D解析:D【解析】运行该程序,第一次,1,k 2x ==,第二次,2,k 3x ==,第三次,4,k 4x ==,第四次,16,k 5x ==,第五次,4,k 6x ==,第六次,16,k 7x ==,第七次,4,k 8x ==,第八次,16,k 9x ==,观察可知,若判断框中为5k ≥.,则第四次结束,输出x 的值为16,满足;若判断框中为4k >.,则第四次结束,输出x 的值为16,满足;若判断框中为9k ≥.,则第八次结束,输出x 的值为16,满足;若判断框中为7k >.,则第七次结束,输出x 的值为4,不满足;故选D.13.B解析:B【解析】【分析】根据条件概率的计算公式即可得出答案.【详解】3311166617()216A P AB C C C +==,11155561116691()1216C C C P B C C C =-= ()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B【点睛】 本题主要考查了利用条件概率计算公式计算概率,属于中档题.14.D解析:D【解析】【分析】由将一枚骰子抛掷两次共有36种结果,再列举出向量p 与q 共线的基本事件的个数,利用古典概型及其概率的计算公式,即可求解。
2016年陕西省西安市高新一中八年级上学期期中数学试卷与解析答案
2015-2016学年陕西省西安市高新一中八年级(上)期中数学试卷一、选择题(每小题3分,共30分,每小题只有一个选项符合题意)1.(3分)9的算术平方根是()A.±3 B.﹣3 C.3 D.92.(3分)已知下列各式:①+y=2 ②2x﹣3y=5 ③x+xy=2 ④x+y=z﹣1 ⑤=,其中二元一次方程的个数是()A.1 B.2 C.3 D.43.(3分)如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)4.(3分)如图,在方格纸中,假设每个小正方形的边长都为1,则图中的四条线段长度是有理数的有()A.1条 B.2条 C.3条 D.4条5.(3分)某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.B.C. D.6.(3分)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为()A.B.C.D.7.(3分)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣28.(3分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.9.(3分)若x,y都是实数,且++y=4,则xy的值是()A.0 B.C.2 D.不能确定10.(3分)设直线nx+(n+1)y=(n为正整数)与两坐标轴围成的三角形面积为S n,则S1+S2+S3+…+S2015的值为()A.B.C.D.二、填空题(每小题3分,共21分)11.(3分)在实数0,3.1415926,,,1.010010001…(毎两个1之间依次多一个0),0.123456789…(小数部分由相继的正整数组成),,中无理数有个.12.(3分)点P(﹣1,2)关于y轴对称的点的坐标是.13.(3分)已知P1(2,y1),P2(3,y2)是正比例函数y=﹣2x的图象上的两点,则y1y2.(填“>”或“<”或“=”)14.(3分)已知三元一次方程组,则代数式3x﹣2y+z的值为.15.(3分)若方程组无解,则一次函数y=kx+3的图象不经过第象限.16.(3分)已知是二元一次方程组的解,则m+3n的立方根为.17.(3分)在平面直角坐标系中xOy中,已知点A(0,2),B(2,3),点P在x轴上运动,当点P到A,B两点距离之差的绝对值最大时,点P的坐标是.三、解答题(18、19题各8分,20、21题各7分,22题8分,23题11分,共49分)18.(8分)计算:(1)+﹣4×(2)(+1)(﹣1)﹣+.19.(8分)解方程组(1)(2).20.(7分)已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.21.(7分)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.22.(8分)科学的交通规划和控制是一个城市交通畅通的重要依据,经我校教学社团和高新交警队统计分析,西安唐延路上的车流平均速度y(千米/小时)是车流密度x(辆/千米)的函数,当唐延路上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流平均速度为0千米/小时;当车流密度为20辆/千米,车流平均速度为80千米/小时,研究表明:当20≤x≤220时,车流平均速度y 是车流密度x的一次函数.(1)求唐延路上车流密度为100辆/千米时的车流平均速度;(2)在某一交通时段,为使唐延路上的车流平均速度不小于60千米/小时且不大于80千米/小时,应把唐延路上的车流密度控制在什么范围内?23.(11分)如图,在平面直角坐标系中,已知A(0,2),M(6,4),N(8,8),动点P从点A出发,沿y轴以每秒2个单位长度的速度向上移动,且过点P 的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.四、附加题(每题10分,共20分)24.(10分)(1)若关于x,y的二元一次方程组的解为正整数,则正整数a的值为.(2)已知a,b均为正数,且a+b=2,则m=+的最小值为.25.(10分)如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,设运动时间为t秒(0<t≤4).(1)求A、B两点的坐标;(2)以MN为对角线作矩形OMPN,在直线m的运动过程中,当△MPN完全夹在直线m和直线l之间时,△MPN的面积能否达到△OAB面积的?如果能,请求出此时直线m的解析式;(3)记△MPN和△OAB重合部分的面积为S,在直线m的运动过程中,请写出S与t的函数关系式,并写出相应的自变量取值范围(直接写结果,不必写过程)2015-2016学年陕西省西安市高新一中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分,每小题只有一个选项符合题意)1.(3分)9的算术平方根是()A.±3 B.﹣3 C.3 D.9【解答】解:∵32=9,∴9的算术平方根是3.故选:C.2.(3分)已知下列各式:①+y=2 ②2x﹣3y=5 ③x+xy=2 ④x+y=z﹣1 ⑤=,其中二元一次方程的个数是()A.1 B.2 C.3 D.4【解答】解:①不是整式方程,故错误;②是二元一次方程,故正确;③是二元二次方程,故错误;④含有3个未知数,不是二元方程,故错误;⑤是一元一次方程,故错误.是二元一次方程的只有一个,故选A.3.(3分)如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)【解答】解:如图所示:可得“炮”是原点,则“兵”位于点:(﹣3,1).故选:C.4.(3分)如图,在方格纸中,假设每个小正方形的边长都为1,则图中的四条线段长度是有理数的有()A.1条 B.2条 C.3条 D.4条【解答】解:∵每个小正方形的边长为1,∴∴AB==,CD=2,EF==5,GH==;∴四条线段中长度是有理数的线段是CD、EF;故选:B.5.(3分)某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.B.C. D.【解答】解:设安排x个工人做螺杆,y个工人做螺母,由题意得.故选:C.6.(3分)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为()A.B.C.D.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.7.(3分)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,故选:B.8.(3分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选:A.9.(3分)若x,y都是实数,且++y=4,则xy的值是()A.0 B.C.2 D.不能确定【解答】解:由题意得,2x﹣1≥0,2﹣4x≥0,解得x,x,∴x=,∴y=4,则xy=2,故选:C.10.(3分)设直线nx+(n+1)y=(n为正整数)与两坐标轴围成的三角形面积为S n,则S1+S2+S3+…+S2015的值为()A.B.C.D.【解答】解:当x=0时,y=,则直线与y轴的交点坐标为(0,),当y=0时,x=,则直线与x轴的交点坐标为(,0),所以S n=••=,当n=1时,S1=,当n=2时,S2=,当n=3时,S3=,…当n=2015时,S2015=,所以S1+S2+S3+…+S2015=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:C.二、填空题(每小题3分,共21分)11.(3分)在实数0,3.1415926,,,1.010010001…(毎两个1之间依次多一个0),0.123456789…(小数部分由相继的正整数组成),,中无理数有3个.【解答】解:=2,无理数有:,1.010010001…(毎两个1之间依次多一个0),,共3个,故答案为:3.12.(3分)点P(﹣1,2)关于y轴对称的点的坐标是(1,2).【解答】解:点P(﹣1,2)关于y轴对称的点的坐标是(1,2).故答案为:(1,2).13.(3分)已知P1(2,y1),P2(3,y2)是正比例函数y=﹣2x的图象上的两点,则y1>y2.(填“>”或“<”或“=”)【解答】解:∵正比例函数y=﹣2x中k=﹣2<0,∴正比例函数在其定义域内单调递减.∵2<3,∴y1>y2.故答案为:>.14.(3分)已知三元一次方程组,则代数式3x﹣2y+z的值为6.【解答】解:∵∴①﹣②+③,得3x﹣2y+z=6,故答案为:6.15.(3分)若方程组无解,则一次函数y=kx+3的图象不经过第三象限.【解答】解:∵方程组无解,∴k=3k+1,解得k=﹣,∴一次函数y=﹣x+3的图象经过第一、二、四象限,不经过第三象限.故答案为三.16.(3分)已知是二元一次方程组的解,则m+3n的立方根为2.【解答】解:把代入方程组,得:,则两式相加得:m+3n=8,所以==2.故答案为2.17.(3分)在平面直角坐标系中xOy中,已知点A(0,2),B(2,3),点P在x轴上运动,当点P到A,B两点距离之差的绝对值最大时,点P的坐标是(﹣4,0).【解答】解:由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P 在直线AB上.设直线AB的解析式为y=kx+b,∵A(0,2),B(2,3),∴,解得.∴y=x+2,令y=0,得0=x+4,解得x=﹣4.∴点P的坐标是(﹣4,0).故答案为(﹣4,0).三、解答题(18、19题各8分,20、21题各7分,22题8分,23题11分,共49分)18.(8分)计算:(1)+﹣4×(2)(+1)(﹣1)﹣+.【解答】解:(1)原式=3+﹣4=4﹣2=2;(2)原式=3﹣1﹣3++2=1+.19.(8分)解方程组(1)(2).【解答】解:(1),①+②×2得:7x=21,即x=3,把x=3代入②得:y=5,则方程组的解为;(2)方程组整理得:,①×5+②得:46y=46,即y=1,把y=1代入①得:x=7,则方程组的解为.20.(7分)已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.【解答】解:(1)过点C作CD⊥x轴,CE⊥y,垂足分别为D、E.S△ABC=S四边形CDEO﹣S△AEC﹣S△ABO﹣S△BCD=3×4﹣×2×4﹣×1×2﹣×2×3=12﹣4﹣1﹣3=4.(2)设点P的坐标为(x,0),则BP=|x﹣2|.∵△ABP与△ABC的面积相等,∴×1×|x﹣2|=4.解得:x=10或x=﹣6.所以点P的坐标为(10,0)或(﹣6,0).21.(7分)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.【解答】解:(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y 名学生.则,解得.答:平均每分钟一道正门可通过120名学生,一道侧门可以通过80名学生;(2)解法一:这栋楼最多有学生4×8×45=1440(名),拥挤时5min四道门可通过5×2×(120+80)×(1﹣20%)=1600(名),∵1600>1440.∴建造的4道门符合安全规定.解法二:还可以求出紧急情况下全大楼学生通过这4道门所用时间:=4.5min.4.5<5,因此符合安全规定.22.(8分)科学的交通规划和控制是一个城市交通畅通的重要依据,经我校教学社团和高新交警队统计分析,西安唐延路上的车流平均速度y(千米/小时)是车流密度x(辆/千米)的函数,当唐延路上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流平均速度为0千米/小时;当车流密度为20辆/千米,车流平均速度为80千米/小时,研究表明:当20≤x≤220时,车流平均速度y 是车流密度x的一次函数.(1)求唐延路上车流密度为100辆/千米时的车流平均速度;(2)在某一交通时段,为使唐延路上的车流平均速度不小于60千米/小时且不大于80千米/小时,应把唐延路上的车流密度控制在什么范围内?【解答】解:(1)设y=kx+b,把(220,0)、(20,80)代入得:,解得:,∴y=﹣x+88,当x=100时,y=﹣×100+88=48,答:唐延路上车流密度为100辆/千米时的车流平均速度48千米/小时;(2)当y=60时,60=﹣x+88,x=70,当y=80时,80=﹣x+88,x=20,∴当60≤y≤80时,20≤x≤70,则应把唐延路上的车流密度控制在20辆/千米~70辆/千米范围内.23.(11分)如图,在平面直角坐标系中,已知A(0,2),M(6,4),N(8,8),动点P从点A出发,沿y轴以每秒2个单位长度的速度向上移动,且过点P 的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.【解答】解:(1)当t=3时,P(0,8),将点P(0,8)代入y=﹣x+b中,得:b=8,∴直线l的解析式为y=﹣x+8.(2)将点M(6,4)代入y=﹣x+b中,得:4=﹣6+b,解得:b=10,此时P(0,10),t==4;将点N(8,8)代入y=﹣x+b中,得:8=﹣8+b,解得:b=16,此时P(0,16),t==7.故当点M,N位于l的异侧时,时间t的取值范围为4<t<7.(3)点M关于l的对称点M′落在坐标轴上分两种情况:①当点M′在x轴上时,△MBM′为等腰直角三角形,∵M(6,4),∴B(6,0),∴直线l:y=﹣x+6,∴P(0,6),此时时间t==2;②当点M′在y轴上时,△MBM′为等腰直角三角形,∵M(6,4),∴B(6,﹣2),∴直线l:y=﹣x+4,∴P(0,4),此时时间t==1.综上可知:当时间t为1秒或2秒时,点M关于l的对称点落在坐标轴上.四、附加题(每题10分,共20分)24.(10分)(1)若关于x,y的二元一次方程组的解为正整数,则正整数a的值为4或12.(2)已知a,b均为正数,且a+b=2,则m=+的最小值为.【解答】解:(1)解方程组,得.∵此方程组的解都是正整数,a为正整数,∴a的整数值有4,12.故答案为4或12.(2)如图,PC=a,PD=b,AC=2,BD=1,∴A′E=CD=a+b=2,BE=2+1=3,∴PA=,PB=,∴PA+PB=+,∴PA+PB的最小值为A′B,∴A′B===,∴m=+的最小值为.故答案为.25.(10分)如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,设运动时间为t秒(0<t≤4).(1)求A、B两点的坐标;(2)以MN为对角线作矩形OMPN,在直线m的运动过程中,当△MPN完全夹在直线m和直线l之间时,△MPN的面积能否达到△OAB面积的?如果能,请求出此时直线m的解析式;(3)记△MPN和△OAB重合部分的面积为S,在直线m的运动过程中,请写出S与t的函数关系式,并写出相应的自变量取值范围(直接写结果,不必写过程)【解答】解:(1)令y=﹣x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=﹣x+4中y=0,则﹣x+4=0,解得:x=4,∴点A的坐标为(4,0).(2)假设能,设直线m的解析式为y=﹣x+t,则点M的坐标为(t,0)(t>0),点N的坐标为(0,t),∴四边形OMPN为以MN为对角线的正方形形,∴点M的坐标为(t,t),S=S△OMN=OM•ON=.△MPN=OA•OB=×4×4=8,S△MPN=S△OAB,即=×8=,∵S△OAB∴t=,或t=﹣(舍去),∴此时点P的坐标为(,).将x=代入y=﹣x+4中得:y=4﹣,∵4﹣>2>,∴此时点P在直线l的下方.故当△MPN完全夹在直线m和直线l之间时,△MPN的面积能达到△OAB面积的,此时直线m的解析式为y=﹣x+.(3)当点P(t,t)在直线l:y=﹣x+4上时,有t=﹣t+4,解得:t=2.△MPN和△OAB重合部分分两种情况:①重合部分为△MPN,此时0<t≤2,如图1所示.S△MPN=t2;②重合部分为梯形MFEN,此时2<t≤4,如图2所示.S梯形MFEN=S△MPN﹣S△FPE=t2﹣(2t﹣4)2=﹣+8t﹣8.综上可知:S与t的函数关系式为S=.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-a a-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
2016年陕西省中考数学模拟试卷.pdf
Байду номын сангаас,其中
.
17.(5 分)如图,有一块三角形材料(△ABC),请你画出一个圆,使其 与△ABC 的各边都相切(保留作图痕迹,不要求写作法).
18.(6 分)已知:如图,AB⊥BC,AD⊥DC,AB=AD,若 E 是 AC 上的一点,求证:EB=ED.
19.(7 分)我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个 品种的树苗共 500 株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得 知:丙种树苗的成活率为 89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出). (1)实验所用的乙种树苗的数量是 _________ 株. (2)求出丙种树苗的成活数,并把图 2 补充完整. (3)你认为应选哪种树苗进行推广?请通 过计算说明理由.
元销售,售出了 200 副.十月份如果销售单价不变,预计仍可售出 200 副,鑫都小商品市场
为增加销售量,决定降价销售,根据市场调查,销售单价每降低 5 元,可多售出 10 副,但
最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,
清仓时销售单价为 50 元.设十月份销售单价降低 x 元.
23.(8 分)如图,四边形 ABCD 是平行四边形,以 AB 为直径的圆 O 经过点 D,E 是⊙O 上一点,且∠AED=45°. (1)判断 CD 与⊙O 的位置关系,并说明理由; (2)若⊙O 半径为 6cm,AE=10cm,求∠ADE 的正弦值.
学海无涯
24.(8 分)如图,已知抛物线与 x 轴交于点 A(﹣2,0),B(4,0),与 y 轴交于点 C(0, 8). (1)求抛物线的解析式及其顶点 D 的坐标; (2)设直线 CD 交 x 轴于点 E.在线段 OB 的垂直平分线上是否存在点 P,使得点 P 到直线 CD 的距离等于点 P 到原点 O 的距离?如果存在,求出点 P 的坐标;如果不存在,请说明理 由; (3)过点 B 作 x 轴的垂线,交直线 CD 于点 F,将抛物线沿其对称轴平移,使抛物线与线 段 EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长 度?向下最多可平移多少个单位长度?
2016-2017西安高新中学初三七模数学
2017年初中毕业升学考试模拟(七)试题数学一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.在1-,0,1,2这四个数中,既不是正数也不是负数的是(). A .1 B .0 C .1 D .22.下面几何体中,其主视图与俯视图相同的是().A .B .C .D .3.下列运算正确的是(). A .22(3)9a a -=-B .2488a a ⋅=C .93=±D .382-=-4.如图,等腰直角三角板的顶点A ,C 分别在直线a ,b 上,若a b ∥,135∠=︒,则2∠的度数为().A .35︒B .15︒C .10︒D .5︒5.若一个正比例函数的图象经过不同象限的两点(2,)A m -,(,3)B n ,那么一定有(). A .0m >,0n > B .0m >,0n < C .0m <,0n > D .0m <,0n <6.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价是(). A .24元 B .26元 C .28元 D .30元7.在平面直角坐标系中,将直线1:32l y x =--向左平移1个单位,再向上平移3个单位得到直线2l ,则直线2l 的解析式为(). A .39y x =-- B .32y x =-- C .32y x =-+ D .39y x =-+8.如图,矩形ABCD 中,8AB =,4BC =,点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是().A .25B .35C .5D .621baCBA EAGHBCFD9.在ABC △中,5AB AC ==,4sin 5B =,⊙O 过点B 、C 两点,且⊙O 半径10r =,则OA 的长为().A .3或5B .5C .4或5D .410.已知二次函数2y x bx c =++的对称轴为直线1x =,且图象与x 轴交于A 、B 两点且2AB =.若关于x 的一元二次方程20x bx c t ++-=(t 为实数)在722x -<<的范围内有实数解,则t 的取值范围().A .18t ≤≤-B .18t ≤-<C .2114t -<<D .2184t <<二、选择题(共4小题,每小题3分,计12分) 11.分解因式:2229x xy y --+=__________.12.A 若一个多边形的内角和比外角和大360︒,则这个多边形的边数为__________.B 在ABC △中,90ACB ∠=︒,26ABC ∠=︒,5BC =.若用科技计算器求边AC 长是__________(结果精确到0.01).13.如图,A ,B 是反比例函数ky x=图象上的两点,过点A 作AC y ⊥轴,垂足为C ,AC 交OB 于点D .若D 为OB 的中点,AOD △的面积为3,则k 的值为__________.14.如图,已知正方形ABCD 的边长为2,以点A 为圆心,1为半径作圆,E 是⊙A 上的任意一点,将点E 绕点D 按逆时针方向旋转90︒,得到点F ,连接AF ,则AF 的最大值是__________.三、解答题(共有11个小题,计78分.解答应写出过程)xOD A BC yAFBCDE ACODB15.(本题5分)解不等式组31512123x x x ≥->-⎧⎪⎨+-⎪⎩,并把解集表示在数轴上.16.(本题5分)解方程11222x x x-+=--. 17.(本题5分)如图,在AOB ∠所在的区域内有一个铜矿(用点P 表示),点C ,D 分别表示在边OA ,OB 上的两个村庄,恰好有CP OB ∥,DP OA ∥,请在图中利用直尺和圆规确定点P (铜矿)的位置.(要求保留作图痕迹,不写作法). 18.(本题5分)为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A .饭和菜全部吃完;B .有剩饭但菜吃完;C .饭吃完但菜有剩;D .饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题: (1)这次被抽查的学生共有__________人,扇形统计图中,“B 组”所对应的圆心角的度数为__________度. (2)计算C 组的人数并补全条形统计图.(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭. 19.(本题7分)如图,已知四边形ABCD 是正方形,M 是BC 边上一点,E 是CD 边的中点,AE 平分DAM ∠.求证:AM AD MC =+.20.(本题7分)如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树BC 的高度,他们在斜坡上D 处测得大树顶端B 的仰角是30︒,朝大树方向下坡走6米到达坡度A 处,在A 处测得大树顶端B 的仰角是48︒.若斜坡FA 的坡比1:3i =,求大树的高度.(结果保留一位小数)参考数据:sin 480.74︒≈,cos 480.67︒≈,tan 48 1.11︒≈,3取1.73.60%100%组别D CBA127224012243648607284人数(人)BC D A BM CED A21.(本题7分)西安高新区马拉松竞赛于四月举行,某运动员从起点“都市之门”出发,途经高新一中初中校区,沿比赛路线跑回终点“都市之门”,设该运动员离开起点的路程S (千米)与跑步时间t (分钟)之间的函数关系如图所示,根据图象提供的信息,解答下列问题: (1)请说明图中(35,10.5)A 的实际意义.(2)组委会在距离起点2.1千米处设立一个拍摄点C ,该运动员从第一次经过C 点所用的时间为68分钟. ①求AB 所在直线的函数解析式. ②该运动员跑完赛程用时多少分钟.22.(本题7分)某电视台在它的娱乐性节目中每期抽出两名场外幸运观众,有一期甲、乙两人被抽为场外幸运观众,他们获得一次抽奖的机会,在如图所示的翻奖牌的正面4个数字中任选一个,选中后翻开,可以得到该数字反面的奖品(数字“1的反面是“文具”,数字“2”的反而是“手机”,数字“3”的反面是“计算器”,数字“4”的反面是“海宝”),第一个人选中的数字第二个人不能再选择了.12 34翻奖牌正面 文具 手机 计算器海宝翻奖牌背面(1)如果甲先抽奖,那么甲获得“手机”的概率是__________.(2)小亮同学说:甲先抽奖,乙后抽奖,甲、乙两人获得“手机”的概率不同,且甲获得“手机”的概率更大些.你同意小亮同学的说法吗?请用列表或画树状图分析. 23.(本题8分)如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点C .延长AB 交CD 于点E .连接AC ,作DAC ACD ∠=∠,作AF ED ⊥于点F ,交⊙O 于点G . (1)求证:AD 是⊙O 的切线.(2)如果O 的半径是6cm ,8cm EC =,求GF 的长.30°48°D FEACBt (分)3510.5S (千米)O BA24.(本题10分)已知抛物线21:(1)2C y a x =+-的顶点为A ,且经过点(2,1)B --. (1)求A 点的坐标和抛物线1C 的解析式.(2)如图,将抛物线1C 向下平移2个单位后得到抛物线2C ,抛物线2C 与x 轴交与点1C 与y 轴交于点D ,在1C 的对称轴上是否存在一点P 使得CPA DPA ∠=∠,若存在请求出点P 的坐标;若不存在,请说明理由.25.(本题12分)在Rt ABC △中,90A ∠=︒,D ,E 分别是AB ,AC 的中点,若Rt ADE △绕点A 逆时针旋转,得到11Rt AD E △,设旋转角为(0180)≤αα<︒,连接1BD 和1CE ,记直线1BD 与1CE 的交点为P . (1)如图1,若4AC A B ==,将Rt ADE △绕点A 逆时针旋转至如图1所示的位置,1BD 与AC 交于点F .求证:11BD CE =且11BD CE ⊥.(2)如图2,若6AC =,8AB =,在Rt ADE △绕点A 旋转的过程中,求BCP 面积的最大值. (3)如图1,在(1)的条件下,在Rt ADE △绕点A 旋转的过程中,求BCP △面积的最小值.OB CEFCDAyC 2xO DAC C 1图1 图2FP D 1E 1ADBECE 1D 1P BDA F E C。
2.2016年西安市高新一中第三次模拟考试、
2.2016年西安市高新一中第三次模拟考试一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.实数a ,b 在数轴上的位置如图所示,以下说法正确的是()第1题图A.a +b =0B.b <aC.ab >0D.|b|<|a|2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()3.如图,直线a ∥b ,一块含60°角的直角三角板ABC(∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°第3题图4.已知边长为a 的正方形的面积为8,则下列说法中,错误的是()A.a 是无理数B.a 是方程x 2-8=0的解C.a 是8的算术平方根D.3<a <45.-3>0+1≥0,其解集在数轴上表示正确的是()6.在平面直角坐标系中,把直线y =2x 向左平移1个单位长度,平移后的直线解析式是()A.y =2x +1B.y =2x -1C.y =2x +2D.y =2x -27.将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,则AC =()A.2B.2C.6D.22第7题图8.如图所示,在边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在网格中心点上,则∠AED 的正切值等于()A.55 B.255 C.2 D.12第8题图第9题图9.如图,线段BD 为锐角△ABC 中AC 边上的中线,E 为△ABC 的边上的一个动点,则使△BDE 为直角三角形的点E 的位置有()A.4个B.3个C.2个D.1个10.已知抛物线y =x 2-(4m +1)x +2m -1与x 轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y 轴的交点在点(0,-12)的下方,那么m 的取值范围是()A.16<m <14 B.m <16 C.m >14 D.全体实数第Ⅱ卷(非选择题共90分)二、填空题(共4小题,每小题3分,计12分)11.与2+6最接近的正整数是________.12.请从以下两题中任选一个....作答,若多选,则按第一题计分.A .如果一个正多边形的中心角是72°,那么这个正多边形的边数是________.B .如图是一个相框,将其侧面抽象为右边的几何图形,已知BC =BD =15c m ,∠CBD =40°,则点B 到CD 的距离为________c m .(使用科学计算器,结果精确到0.1c m )第12B 题图第13题图第14题图13.如图,过点A(3,4)作AB ⊥x 轴,垂足为点B ,交反比例函数y =k x的图象于点C(x 1,y 1),连接OA 交反比例函数y =k x的图象于点D(2,y 2),则y 2-y 1=________.14.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是________.三、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:-12016+13+(-12)-1-tan30°.化简(a -2a -1a )÷1-a 2a 2+a,并请从-1,0,1,2中选择你喜欢的数代入求值.17.(本题满分5分)如图,已知直线及其上一点A ,请用尺规作⊙O ,使得⊙O 与直线相切于点A ,且半径等于r 长.(保留作图痕迹,不写作法)第17题图18.(本题满分5分)考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.数据收集整理后,绘制了图①和图②两幅不完整的统计图,请根据统计图中的信息解答下列问题:第18题图(1)请通过计算,补全条形统计图;(2)请直接写出扇形统计图中“享受美食”所对应圆心角的度数为________;(3)根据调查结果,可估计出该校九年级学生中减压方式的众数是________.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:AE=AB.第19题图20.(本题满分7分)如图所示,当小华站立在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°.若小华向后退0.5米到B处,这时他看自己的脚在镜中的像的俯角为30°,求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3≈1.73)第20题图21.(本题满分7分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元.(毛利润=(售价-进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,游戏规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请你用树状图表示出游戏一个回合所有可能出现的结果;(2)求一个回合不能确定....两人先下棋的概率.23.(本题满分8分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=3,求⊙O的直径.第23题图如图,抛物线M:y=(x+1)(x+a)(a>1)交x轴于A、B两点(A在B的左边),交y轴于C点.抛物线M关于y轴对称的抛物线N交x轴于P、Q两点(P在Q的左边).(1)直接写出A、C坐标:A(),C();(用含有a的代数式表示)(2)在第一象限存在点D,使得四边形ACDP为平行四边形,请直接写出点D的坐标(用含a的代数式表示);并判断点D是否在抛物线N上,说明理由;(3)若(2)中平行四边形ACDP为菱形,请确定抛物线N的解析式.第24题图25.(本题满分12分)对于一个四边形给出如下定义:有一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形.如图①中,∠B=∠D,AB=AD;如图②中,∠A=∠C,AB=AD;则这样的四边形均为奇特四边形.(1)在图①中,若AB=AD=4,∠A=60°,∠C=120°,请求出四边形ABCD的面积;(2)在图②中,若AB=AD=4,∠A=∠C=45°,请直接写出四边形ABCD面积的最大值;(3)如图③,在正方形ABCD中,E为AB边上一点,F是AD延长线上一点,且BE=DF,连接EF,取EF的中点G,连接CG并延长交AD于点H.若EB+BC=m,问四边形BCGE的面积是否为定值?如果是,请求出这个定值(用含m的代数式表示);如果不是,请说明理由.第25题图答案。
西安高新一中中考模拟试卷
年西安高新一中中考模拟试卷数学第Ⅰ卷(选择题共分)一、选择题(本大题个小题,每题分,共计分,只有一个选项是符合题目要求的)⒈下列运算正确的是()、22336⨯(-)=-、22220⨯-=、32622()=、24⎛⎫⎪⎝⎭-1=-2⒉一元二次方程2x20-=的根为()、2x=、x=、2x=±、12x x==⒊如图已知圆心角∠°,则圆周角∠的度数为()、°、°、°、°⒋如果矩形的对角线的交点与平面直角坐标系的原点重合,且点和点的坐标分别为 2和 2。
矩形的面积为()、、、、⒌按照我国西部某地区的标准,万元能建成一所希望小学。
如果全国人民(以亿人口计)每人每天节约分钱,那么请你算一算,全国人民一年节约的钱能建设希望小学的个数用科学记数法表示为(一年按天,可以用计算器)()、39.4910⨯所、49.4910⨯所69.4910⨯所、51.94910⨯所⒍在下列几何体中,截面不是等腰梯形的是()、圆台、圆柱、正方体、三棱柱⒎已知实数满足2211x x0 xx x x1++,那么+的值为()、或-、-或、、-⒏甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风、甲的最高、丙的最高、乙的最低、丙的最低⒐如图,⊙与⊙相交,是⊙上的一点,过点作两圆的切线,则切线的条数可能是()、条、条、条、条、条、条⒑(为常数)吨,设该乡平均每人占有粮食为(吨),人口数为,则与之间的函数关系的图象为( )第Ⅱ卷(非选择题 共分)二、填空题(本大题个小体,每题分,共分,将结果直接填在题中的横线上)⒒若∠是锐角,cos A 2=,则∠ 。
.中华人民共和国国旗上的五角星的画法通常是先把圆五等分,然后连接五等分点而得到(如图),五角星的每一个角的度数 。
.因式分解:322a a -= 。
.小红买了一支温度计,回家后发现里面有一个小气泡,先拿它在冰箱里试一下,在标准温度是零下℃时,显示为-℃ ,在℃的温水中,显示为℃,那么用这个温度计量得的室外气温是℃,则室外的实际气温应是 。
陕西西安高新一中2024届高三第7次月考数学试题
陕西西安高新一中2024届高三第7次月考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量a 与a b +的夹角为60︒,1a =,3b =,则a b ⋅=( )A .32-B .0C .0或32-D .32- 2.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F 、2F ,过1F 的直线l 交双曲线的右支于点P ,以双曲线的实轴为直径的圆与直线l 相切,切点为H ,若113F P F H =,则双曲线C 的离心率为( )A .132B .5C .25D .133.已知ABC ∆为等腰直角三角形,2A π=,22BC =,M 为ABC ∆所在平面内一点,且1142CM CB CA =+,则MB MA ⋅=( )A .224-B .72-C .52-D .12- 4.20201i i=-( ) A .2 2 B . 2 C .1 D .145.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( ) A .B .2C .3D .66.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( )A .1212,()()p p E E ξξ><B .1212,()()p p E E ξξC .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<< 7.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .8.已知等差数列{}n a 的前n 项和为n S ,37a =,39S =,则10a =( )A .25B .32C .35D .409.将函数()sin 2f x x =的图象向左平移02πϕϕ⎛⎫≤≤⎪⎝⎭个单位长度,得到的函数为偶函数,则ϕ的值为( ) A .12π B .6π C .3π D .4π 10.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .2511.二项式22()n x x +的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ) A .180 B .90 C .45 D .36012.()f x 是定义在()0,∞+上的增函数,且满足:()f x 的导函数存在,且()()f x x f x '<,则下列不等式成立的是( ) A .()()221f f <B .()()3344f f <C .()()2334f f <D .()()3223f f <二、填空题:本题共4小题,每小题5分,共20分。
2016-2017某高新一中初三第一学期期中考试数学试卷(答案)
【解答】解:灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离 有关,此距离越大,影子才越小.
故答案为:变小.
第7页 共6页
【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据 S△ DEF:S△ABF=4:10:25 即可得出其相似比,由相似三角形的性质即可求出 的值,由 AB=CD 即可得出结论.
比例函数的增减性必须强调在每一个象限内.
9.(3 分)如图,将四根长度相同的细木条首尾相接,用钉子钉成四边形 ABCD,转动这个 四边形,使它形状改变.当∠B=90°时,如图①测得 AC=5.当∠B=30°时,如图②,△ABC 的面积为( )
第5页 共6页
A.
B. C. D.以上都不对
【分析】如图 1,连接 AC,由根据题意知 AB=BC=CD=DA 且∠B=90°可得四边形 ABCD 是正 方形,则∠ACB=45°,由 AC=5 可得 BC=ACcos∠ACB=5× = ,再如图②,作 AE⊥
【分析】易证△AEB∽△ADC,利用相似三角形的对应边成比例,列出方程求解即可.
【解答】解:因为 BE∥CD,所以△AEB∽△ADC,
于是 = ,即
= ,解得:CD=12m.
旗杆的高为 12m.
二、填空题 11.(3 分)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一
2016年陕西省西安市碑林区中考数学七模试题含答案
2016年陕西省西安市碑林区中考数学七模试卷一、选择题(共10小题,每小题3分,计30分)1.﹣的倒数等于()A.B.﹣C.﹣2D.22.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A.B.C.D.3.下面计算正确的是()A.6b﹣5b=1B.2m+3m2=5m3C.﹣(c﹣d)=﹣c+d D.2(a﹣b)=2a﹣b4.如图,已知AB∥CD,BC平分∠ABE,∠C=29°,则∠BED的度数是()A.18°B.29°C.58°D.38°5.不等式组的解集在数轴上表示为()A.B.C.D.6.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=30°,AB=4,则CD的长为()A.2B.6C.4D.37.如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E,若AD=3,则△AEC的面积为()A.12B.4C.3D.68.如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,3),则该圆弧所在圆的圆心坐标是()A.(﹣1,1)B.(0,1)C.(﹣3,1)D.(﹣3,0)9.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是()A.2B.1C.0.5D.2.510.在平面直角坐标系中,已知点A(0,3),B(1,0),C(0,﹣2),D(3,4),求过其中三个点的抛物线的顶点坐标是()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,)二、填空题(共1小题,每小题3分,计12分)11.因式分解:a3﹣9ab2=.请从12,13两个小题中任选一个作答,若多选,则按第12题计分.12.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=.13.在Rt△ABC中,∠C=90°,AC=5.3,BC=2.8,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.设A(x1,y1),B(x2,y2)为双曲线y=﹣图象上的点,若x1>x2时y1<y2,则点B(x2,y2)在第象限.15.如图,在Rt△ABO中,∠AOB=90°,AO+BO=5,延长AO到C,使OC=3,延长BO到D,使OD=4,连接BC、CD、DA,则四边形ABCD面积的最大值为.三、解答题(共11小题,计78分)16.计算:.17.解方程:.18.如图,已知矩形ABCD,分别在边AD,BC上找一点E和F,使四边形DEBF是菱形.19.为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?20.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,分别以直角边AC和斜边AB向外作等边△ACD、等边△ABE,过点E,作EF⊥AB,垂足为F,连结DF.求证:AE=DF.21.某中学教学楼的后面靠近一座山坡,坡面下是一块草地,如图所示,BC∥AD,斜坡AB=160米,坡度i=:1,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造,当坡角不超过45°时可保证山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC进到E处,问BE至少是多少米?(结果保留根号)22.如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?23.如图是一个被平均分成6等份的转盘,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为x,乙转动转盘后指针所指区域内的数字为y(当指针在边界上时,重转一次,直到指向一个区域为止).(1)直接写出甲转动转盘后所指区域内的数字为负数的概率;(2)用树状图或列表法,求出点(x,y)落在第二象限内的概率.24.如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC.(1)求证:AB=AC;(2)若sin∠BAC=,求tan∠PCB的值.25.如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,A点在原点的左侧,B点在原点右侧,与y轴交于C点,点P是x轴下方的抛物线上的一动点.(1)求A、B、C三点坐标;(2)当点P运动到什么位置时,CP∥AB,且AC=BP,直接写出此时P点的坐标:P (,)(3)连接PO、PC,并把抛物线沿CO翻折,此时,可得到四边形POP'C,那么,是否存在点P,使四边形POP'C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.26.阅读理解如图1,在△ABC中,当DE∥BC时可以得到三组成比例线段:①②③;反之,当对应线段成比例时也可以推出DE∥BC.理解运用三角形的内接四边形是指顶点在三角形各边上的四边形.(1)如图2,已知矩形DEFG是△ABC的一个内接矩形,将矩形DEFG延CB方向向左平移得矩形PBQH,其中顶点D、E、F、G的对应点分别为F、B、Q、H,在图2中画出平移后的图形;(2)在(1)所得图形中,连接CH并延长交BP的延长线于点R,连接AR,求证:AR∥BC;综合实践(3)如图3,某个区有一块三角形空地,已知△ABC空地的边AB=400米、BC=600米,∠ABC=45°;准备在△ABC内建设一个内接矩形广场DEFG(点E、F在边BC上,点D、G分别在边AB和AC 上),三角形其余部分进行植被绿化,按要求欲使矩形DEFG的对角线EG最短,请在备用图中画出使对角线EG最短的矩形?并求出对角线EG最短距离(不要求证明).2016年陕西省西安市碑林区中考数学七模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分)1.﹣的倒数等于()A.B.﹣C.﹣2D.2【考点】倒数.【专题】常规题型.【分析】根据倒数定义可知,﹣的倒数是﹣2.【解答】解:﹣的倒数是﹣2.故选:C.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形与轴对称图形的概念解答即可.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下面计算正确的是()A.6b﹣5b=1B.2m+3m2=5m3C.﹣(c﹣d)=﹣c+d D.2(a﹣b)=2a﹣b【考点】整式的加减.【分析】根据合并同类项得法则进行计算即可.【解答】解:A、6b﹣5b=b,故A错误;B、2m+3m2,不能合并,故B错误;C、﹣(c﹣d)=﹣c+d,故C正确;D、2(a﹣b)=2a﹣2b,故D错误;故选C.【点评】本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.4.如图,已知AB∥CD,BC平分∠ABE,∠C=29°,则∠BED的度数是()A.18°B.29°C.58°D.38°【考点】平行线的性质.【分析】根据平行线的性质得到∠ABC=∠C=29°,再根据角平分线的定义得到∠ABC=∠EBC=29°,然后利用三角形外角性质计算即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=29°,又∵BC平分∠ABE,∴∠ABC=∠EBC=29°,∴∠BED=∠C+∠EBC=29°+29°=58°.故选C.【点评】本题考查了平行线的性质:两直线平行,内错角相等.也考查了三角形外角性质以及角平分线的定义.5.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选A.【点评】本题考查的是在数轴上表示不等式组得解集,熟知“小于向左,大于向右”是解答此题的关键.6.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=30°,AB=4,则CD的长为()A.2B.6C.4D.3【考点】垂径定理;勾股定理.【分析】根据垂径定理和勾股定理即可得到结论.【解答】解:连接OC,如图所示:则∠BOC=2∠A=60°,∵AB⊥CD,AB=4,∴OE=OC=,∴CE=3,∴CD=2CE=6.故选B.【点评】本题考查了垂径定理、圆周角定理以及三角函数;熟练掌握圆周角定理,由垂径定理求出CE是解决问题的关键.7.如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E,若AD=3,则△AEC的面积为()A.12B.4C.3D.6【考点】旋转的性质;矩形的性质.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,根据正切的概念求出CD,确定出EC的长,即可求出三角形AEC面积.【解答】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=AE=CE,∴CE=2DE,CD=AD=3,∴EC=2,∴△AEC的面积=×EC×AD=3,故选:C.【点评】本题考查了旋转的性质、矩形的性质、特殊角的三角函数,三角形面积计算等知识点,清楚旋转的“不变”特性是解答的关键.8.如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,3),则该圆弧所在圆的圆心坐标是()A.(﹣1,1)B.(0,1)C.(﹣3,1)D.(﹣3,0)【考点】垂径定理;坐标与图形性质.【分析】连接AC,作出AB、AC的垂直平分线,其交点即为圆心.【解答】解:如图所示,连接AC,作出AB、AC的垂直平分线,其交点即为圆心.∵点A的坐标为(﹣2,3),∴该圆弧所在圆的圆心坐标是(﹣3,0).故选:D.【点评】此题主要考查了垂径定理的应用,根据线段垂直平分线上的点到这条线段两端点的距离相等,找到圆的半径,半径的交点即为圆心是解题关键.9.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是()A.2B.1C.0.5D.2.5【考点】相似三角形的判定与性质;勾股定理的逆定理;解直角三角形.【分析】直接利用平移的方法将∠APD平移到格点上,进而求出答案.【解答】解:连接AE,BE,由网格可得:AE∥DC,则∠EAB=∠APD,故tan∠APD=tan∠EAB===2.故选:A.【点评】此题主要考查了解直角三角形的应用,正确转化角的位置上是解题关键.10.在平面直角坐标系中,已知点A(0,3),B(1,0),C(0,﹣2),D(3,4),求过其中三个点的抛物线的顶点坐标是()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,)【考点】二次函数的性质.【分析】如图,由图象可知,B、C、D共线,所以抛物线过A、B、D三点,设抛物线的解析式为y=ax2+bx+c,则有,求出抛物线的解析式,再求出顶点坐标即可.【解答】解:如图,由图象可知,B、C、D共线,∴抛物线过A、B、D三点,设抛物线的解析式为y=ax2+bx+c,则有,解得,∴抛物线的解析式为y=x2﹣x+3=(x﹣)2﹣,∴顶点坐标为(,﹣).【点评】本题考查二次函数的性质、待定系数法、配方法等知识,解题的关键是灵活运用所学知识解决问题,学会用配方法求顶点坐标,属于基础题.二、填空题(共1小题,每小题3分,计12分)11.因式分解:a3﹣9ab2=a(a﹣3b)(a+3b).【考点】因式分解﹣提公因式法.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣9ab2=a(a2﹣9b2)=a(a﹣3b)(a+3b).故答案为:a(a﹣3b)(a+3b).【点评】此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键.请从12,13两个小题中任选一个作答,若多选,则按第12题计分.12.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=36°.【考点】多边形内角与外角;平行线的性质.【分析】首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°.故答案为:36°.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.13.(2016•碑林区校级模拟)在Rt△ABC中,∠C=90°,AC=5.3,BC=2.8,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).【考点】计算器—三角函数.【分析】根据题意画出直角三角形,再利用tanA==,结合计算器得出答案.【解答】解:如图所示:tanA==,则∠A≈27.8°.故答案为:27.8°.【点评】此题主要考查了计算器求三角函数值,正确应用计算器是解题关键.14.设A(x1,y1),B(x2,y2)为双曲线y=﹣图象上的点,若x1>x2时y1<y2,则点B(x2,y2)在第二象限.【考点】反比例函数的性质;反比例函数图象上点的坐标特征.【分析】由双曲线解析式中k=﹣1即可得出该双曲线在第二、四象限,且在每个单调区间内单调递减,再根据x1>x2、y1<y2即可得出x1>0>x2,由此即可得出点B在第二象限.【解答】解:∵双曲线y=﹣中k=﹣1,∴该双曲线在第二、四象限,且在每个单调区间内单调递减.∵x1>x2,y1<y2,∴x1>0>x2,∴点B(x2,y2)在第二象限.故答案为:二.【点评】本题考查了反比例函数的性质,熟练掌握“当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大”是解题的关键.15.如图,在Rt△ABO中,∠AOB=90°,AO+BO=5,延长AO到C,使OC=3,延长BO到D,使OD=4,连接BC、CD、DA,则四边形ABCD面积的最大值为18.【考点】二次函数的最值.【分析】设AO=x,则BO=5﹣x,得到AC=x+3,BD=9﹣x,得到二次函数的解析式,于是得到结论.【解答】解:设AO=x,则BO=5﹣x,∵OC=3,OD=4,∴AC=x+3,BD=9﹣x,=AC•BD=(x+3)(9﹣x)=﹣x2+3x+=﹣(x﹣3)2+18,∴S四边形ABCD∴当x=3时,四边形ABCD的面积有最大值为18,即四边形ABCD面积的最大值为18,故答案为:18.【点评】本题考查了二次函数的最值,四边形的面积的计算,能根据题意列出函数关系式是解题的关键.三、解答题(共11小题,计78分)16.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据二次根式的化简、特殊三角函数值、负整数指数幂、零指数幂的法则计算即可.【解答】解:原式=3﹣6×+2﹣1=1.【点评】本题考查了实数的运算,解题的关键是掌握有关运算的相关法则.17.解方程:.【考点】解分式方程.【分析】直接找出最简公分母,进而去分母求出答案.【解答】解:方程两边同乘以(x+2)(x﹣2)得:(x+2)2﹣x(x﹣2)=16,整理得:x=2,检验:当x=2时,(x+2)(x﹣2)=0,故此方程无解.【点评】此题主要考查了解分式方程,正确掌握解分式方程的步骤是解题关键.18.如图,已知矩形ABCD,分别在边AD,BC上找一点E和F,使四边形DEBF是菱形.【考点】矩形的性质;菱形的判定.【分析】如图,连接AC、BD交于点O,过点O作BD的垂线交AD于E,交BC于F.则四边形DEBF是菱形,根据邻边相等四边形是菱形即可证明.【解答】解:如图,连接AC、BD交于点O,过点O作BD的垂线交AD于E,交BC于F.则四边形DEBF是菱形.理由:∵四边形ABCD是矩形,∴OB=OD,AD∥BC,∴∠EDB=∠FBO.在△EDO和△FBO中,,∴△EDO≌△FBO,∴DE=BF,∵DE∥BF,∴四边形DEBF是平行四边形,∵OB=OD,EO⊥BD,∴EB=ED,∴四边形DEBF是菱形.【点评】本题考查矩形的性质、菱形的判定等知识,解题的关键是熟练掌握矩形的性质,菱形的判定,属于中考常考题型.19.为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有25人,抽测成绩的众数是6次;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用7次的人数除以7次所占的百分比即可求得总人数,然后求得6次的人数即可确定众数;(2)补齐6次小组的小长方形即可.(2)用总人数乘以达标率即可.【解答】解:(1)观察统计图知达到7次的有7人,占28%,∴7÷28%=25人,达到6次的有25﹣2﹣5﹣7﹣3=8人,故众数为6次;…(4分)(2)(3)(人).答:该校125名九年级男生约有90人体能达标.…【点评】本题考查了条形统计图的知识,解题的关键是从统计图中整理出进一步解题的有关信息.20.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,分别以直角边AC和斜边AB向外作等边△ACD、等边△ABE,过点E,作EF⊥AB,垂足为F,连结DF.求证:AE=DF.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】求出∠ABC=60°,根据等边三角形的性质得出等边三角形,∠DAC=∠BAE=∠FAE=60°,AB=AE,AC=AD,根据AAS推出Rt△ABC≌Rt△AEF,根据全等得出EF=AC=AD,求出∠DAB=∠AFE,推出AD∥EF,得到四边形ADFE是平行四边形,进而得到结论.【解答】证明:∵在Rt△ABC中,∠BAC=30°,∴∠ABC=60°,∵△ACD、△ABE是等边三角形,∴∠DAC=∠BAE=∠FAE=60°,AB=AE,AC=AD,∵EF⊥AB,即∠AFE=90°,∴△AEF是直角三角形,在Rt△ABC和Rt△AEF中,,∴Rt△ABC≌Rt△AEF(AAS),∴EF=AC=AD,∵∠DAB=∠DAC+∠CAB=60°+30°=90°,∴∠DAB=∠AFE,∴AD∥EF,∴四边形ADFE是平行四边形,∴AE=DF.【点评】本题考查了平行四边形的性质和判定,等边三角形的性质,全等三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.21.某中学教学楼的后面靠近一座山坡,坡面下是一块草地,如图所示,BC∥AD,斜坡AB=160米,坡度i=:1,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造,当坡角不超过45°时可保证山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC进到E处,问BE至少是多少米?(结果保留根号)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】首先过点E作EF⊥AD于F,过点B作BH⊥AD于H,由BC∥AD,可得四边形EFHB 是矩形,即可得BE=FH,EF=BH,然后分别在Rt△ABH中与Rt△AEF中,利用三角函数的知识求得AH,AF,EF的长,继而求得答案.【解答】解:过点E作EF⊥AD于F,过点B作BH⊥AD于H,∵BC∥AD,∴四边形EFHB是矩形,∴EF=BH,BE=FH,∵斜坡AB=40米,坡度i=:1,∴tan∠BAH=,∴∠BAH=60°,在Rt△ABH中,BH=AB•sin∠BAH=40×=20(米),AH=AB•cos∠BAH=40×=20(米),∴BH=20米,∴EF=20米,∵∠EAF=45°,∴在Rt△AEF中,AF===20(米),∴BE=FH=AF﹣AH=20﹣20(米).∴BE至少是(20﹣20)米.【点评】此题考查了坡度坡角问题.此题难度适中,注意掌握辅助线的作法,注意能借助于坡度坡角的定义构造直角三角形并解直角三角形是解此题的关键.22.如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:(1)汽车行驶2h后加油,中途加油190L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?【考点】一次函数的应用.【分析】(1)由图象可以直接看出汽车行驶两小时后加油,汽车2小时耗油25×=40,由此可知加油量为:250﹣(100﹣40)=190;(2)根据每百公里耗油量约为25L,可知每公里耗油0.25L,根据余油量=出发前油箱油量﹣耗油量列出函数表达式即可;(3)由于速度相同,因此每小时耗油量也是相同的,可知k不变,设加油后的函数为y=﹣20x+b,代入(2,250)求出b的值,然后计算余油量为10时的行驶时间,计算行驶路程即可.【解答】解:(1)由图象可以直接看出汽车行驶两小时后加油,汽车2小时耗油25×=40,由此可知加油量为:250﹣(100﹣40)=190;故答案为:2,190;(2)y=100﹣80×0.25▪x=﹣20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,设此时油箱剩余油量y与行驶时间x的解析式为y=kx+b把k=﹣20代入,得到y=﹣20x+b,再把(2,250)代入,得b=290,所以y=﹣20x+290,当y=10时,x=14,所以14×80=1120,因此该车从出发到现在已经跑了1120km,用时14h.【点评】此题主要考查了一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题关键.23.如图是一个被平均分成6等份的转盘,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为x,乙转动转盘后指针所指区域内的数字为y(当指针在边界上时,重转一次,直到指向一个区域为止).(1)直接写出甲转动转盘后所指区域内的数字为负数的概率;(2)用树状图或列表法,求出点(x,y)落在第二象限内的概率.【考点】列表法与树状图法.【分析】(1)根据古典概率的知识,利用概率公式即可求得答案;(2)根据题意列出表格,然后根据表格即可求得所有等可能的结果与点(x,y)落在第二象限内的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵一共有6种等可能的结果,甲转动转盘后所指区域内的数字为负数的有:﹣1,﹣2共2种情况,∴甲转动转盘后所指区域内的数字为负数的概率为:=;甲﹣1﹣20234乙﹣1(﹣1,﹣1)(﹣2,﹣1)(0,﹣1)(2,﹣1)(3,﹣1)(4,﹣1)﹣2(﹣1,﹣2)(﹣2,﹣2)(0,﹣2)(2,﹣2)(3,﹣2)(4,﹣2)0(﹣1,0)(﹣2,0)(0,0)(2,0)(3,0)(4,0)2(﹣1,2)(﹣2,2)(0,2)(2,2)(3,2)(4,2)3(﹣1,3)(﹣2,3)(0,3)(2,3)(3,3)(4,3)4(﹣1,4)(﹣2,4)(0,4)(2,4)(3,4)(4,4)(2)根据题意,列表得:∴点(x,y)的坐标一共有36种等可能的结果,且每种结果发生的可能性相等,其中点(x,y)落在第二象限的结果共有6种,∴点(x,y)落在第二象限内的概率为:=.【点评】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏的表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.24.如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC.(1)求证:AB=AC;(2)若sin∠BAC=,求tan∠PCB的值.【考点】切线的性质.【分析】(1)连接AD,由切线的性质及圆周角定理可证明∠CAD=∠BAD,可证明∠ABC=∠ACB,可证明AB=AC;(2)过B作BE⊥AC于点E,可得∠PCB=∠CBE,在Rt△ABE和△BCE中可求得tan∠PCB.【解答】(1)证明:如图1,连接AD,∵AC为直径,PC为⊙O的切线,∴∠PCA=∠CDA=90°,∴∠PCB+∠DCA=∠DCA+∠DAC,∴∠PCB=∠DAC,又∵∠PCB=∠BAC,∴∠BAD=∠PCB,∴∠DAC=∠DAB,∴∠ABC=∠ACB,∴AB=AC;(2)解:如图2,过B作BE⊥AC于点E,∵sin∠BAC=,∴可设BE=3x,则AB=5x,在Rt△ABE中,由勾股定理可求得AE=4x,又∵AC=AB=5x,∴CE=AC﹣AE=5x﹣4x=x,∴tan∠CBE==,又∵PC⊥AC,∴BE∥PC,∴∠CBE=∠PCB,∴tan∠PCB=.【点评】本题主要考查切线的性质及等腰三角形的判定和三角函数的定义,掌握过切点的半径与切线垂直是解题的关键,在(2)中注意三角函数的定义.25.如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,A点在原点的左侧,B点在原点右侧,与y轴交于C点,点P是x轴下方的抛物线上的一动点.(1)求A、B、C三点坐标;(2)当点P运动到什么位置时,CP∥AB,且AC=BP,直接写出此时P点的坐标:P(2,﹣3)(3)连接PO、PC,并把抛物线沿CO翻折,此时,可得到四边形POP'C,那么,是否存在点P,使四边形POP'C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,A点在原点的左侧,B 点在原点右侧,与y轴交于C点,从而可以求得A、B、C三点坐标;(2)根据二次函数的图象具有对称性,由点C的坐标和对称轴即可得到点P的坐标;(3)根据菱形的性质和二次函数图象上点的特征,翻折的性质即可求得使四边形POP'C为菱形的点P的坐标.【解答】解:(1)∵y=x2﹣2x﹣3,∴当y=0时,0=x2﹣2x﹣3,得x1=﹣1,x2=3,当x=0时,y=﹣3,∴点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(0,﹣3);(2)∵CP∥AB,且AC=BP,点C(0,﹣3),y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∴点P的坐标为(2,﹣3),故答案为:(2,﹣3);(3)存在点P,使四边形POP'C为菱形,∵四边形POP'C为菱形,∴PP′⊥OC,且PP′平分OC,∵点O(0,0),点C(0,﹣3),∴点P的纵坐标为y=﹣1.5,将y=﹣1.5代入y=x2﹣2x﹣3,得﹣1.5=x2﹣2x﹣3,解得,x1=,x2=,即点P的坐标为()或().【点评】本题考查二次函数综合题、菱形的性质、翻折的性质,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合和二次函数以及翻折的性质解答.26.阅读理解如图1,在△ABC中,当DE∥BC时可以得到三组成比例线段:①②③;反之,当对应线段成比例时也可以推出DE∥BC.理解运用三角形的内接四边形是指顶点在三角形各边上的四边形.(1)如图2,已知矩形DEFG是△ABC的一个内接矩形,将矩形DEFG延CB方向向左平移得矩形PBQH,其中顶点D、E、F、G的对应点分别为F、B、Q、H,在图2中画出平移后的图形;(2)在(1)所得图形中,连接CH并延长交BP的延长线于点R,连接AR,求证:AR∥BC;综合实践(3)如图3,某个区有一块三角形空地,已知△ABC空地的边AB=400米、BC=600米,∠ABC=45°;准备在△ABC内建设一个内接矩形广场DEFG(点E、F在边BC上,点D、G分别在边AB和AC 上),三角形其余部分进行植被绿化,按要求欲使矩形DEFG的对角线EG最短,请在备用图中画出使对角线EG最短的矩形?并求出对角线EG最短距离(不要求证明).【考点】相似形综合题.【分析】(1)根据条件画出矩形PBQH即可.(2)如图1中,连接CH并延长交BP的延长线于点R,连接AR.由PH∥BC,推出=,由DG∥BC,推出=,由PH=DG,推出=,推出AR∥HG,由HG∥BC,即可证明AR ∥BC.(3)如图2中,作AR∥BC,BR⊥BC,连接CR,作BH⊥CR,过点H作PH∥BC交RB于P交AB于D交AC于G.作HQ⊥BC于Q,DE⊥BC于E,GF⊥BC于F.则四边形DEFG是矩形,此时矩形的对角线最短.由(2)可知BH=EG,求出BH即可解决问题.【解答】解:(1)矩形PBQH如图1所示.(2)如图1中,连接CH并延长交BP的延长线于点R,连接AR.∵PH∥BC,∴=,∵DG∥BC,∴=,∵PH=DG,∴=,∴AR∥HG,∵HG∥BC,∴AR∥BC.(3)如图2中,作AR∥BC,BR⊥BC,连接CR,作BH⊥CR,过点H作PH∥BC交RB于P交AB于D交AC于G.作HQ⊥BC于Q,DE⊥BC于E,GF⊥BC于F.则四边形DEFG是矩形,此时矩形的对角线最短.(BH是垂线段,垂线段最短,易证EG=BH,故此时矩形的对角线EG最短).在Rt△RBC中,∵BC=600,BR=200,∴CR===200,∴BH===.。
西安名校初三第七次模考数学试题(含答案)
初三第七次模拟考试数学试题(满分120分,考试时间120分钟)第I 卷(选择题共30分)一、选择题(共10小题,每小题3分,计30分) 1. 61-的相反数是( ) A .61 B .-6 C .6 D .61- 2. 将一根圆柱形的空心钢管任意放置,它的主视图不可能是( ) A .B .C .D .3. 一次函数112y x =-+的图像不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4. 如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .54°C .66°D .56°5. 把a a a 28823+-进行因式分解,结果正确的是( )A .)144(22+-a a aB .)1(82-a aC .2)12(2-a aD .2)12(2+a a 6. 如图,在∆ABC 中,∠C =90°,AC =4,BC =3,将∆ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处, 则B 、D 两点间的距离为( )A .B .2C .3D .2第2题图第4题图第6题图EODCBA7.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为( )A .8073B .8072C .8071D .80708. 如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )A.3.5B.7C.7D.149. 如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,CD 的长为( ) A .22B .4C .42D .810.若二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴有两个交点,坐标分别为 (x 1,0)、(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则 下列判断正确的是( ) A .a (x 0-x 1)(x 0-x 2)<0 B .a >0 C .b 2-4ac ≥0 D .x 1<x 0<x 2第II 卷(非选择题共90分)二、填空题(共4小题,每题3分,计12分)11.在实数-2,0,-1,2,-2中,最小的实数是_____ .12.若一个正n 边形的每个内角为144°,则这个正n 边形的所有对角线的条数是 .13. 如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为 .第8题图第9题图 第10题图第7题图14.如图,3sin=5∠C,长度为2的线段ED在射线CF上滑动,点B在射线CA 上,且BC=5,则BDE∆周长的最小值为.三、解答题(共11小题,计78分. 解答应写出过程)15.(本题满分51011()20182-+-16.(本题满分5分)先化简,再求值:2211()111xx x x-÷+--,其中12x=-.17.(本题满分5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)18.(本题满分5分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽査了部分学生进行调査统计(设每天的诵读时间为t分钟),将调查统计的结果分为四个等级:I级(0≤t<20),II级(20≤t<40),III级(40≤t<60),IV级(t≥60).将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:所抽查学生平均每天“诵读经典”情况统计图xyBCAO第14题图第18题图(1) 请补全上面的条形统计图;(2) 所抽查学生“诵读经典”时间的中位数落在_________级;(3) 如果该校共有1200名学生,请你估计该校平均每天“诵读经典”的时间不低于40分钟的学生约有多少人? 19.(本题满分7分)如图,AC BD ⊥于点D ,AB CE ⊥于点E ,AE AD =. 求证:CD BE =.20.(本题满分7分)某中学广场上有旗杆,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为4米,落在斜坡上的影长CD 为3米,AB ⊥BC ,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ 在斜坡上的影长QR 为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)21.(本题满分7分)某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种,B 种树木每棵各多少元?(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其它因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.A BC DE 第19题图 第20题图22.(本题满分7分)端午节放假期间,小明和小华准备到西安的大雁塔(记为A )、钟楼(记为B )、兵马俑(记为C )、华山(记为D )的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同. (1)小明选择去大雁塔旅游的概率为 .(2)用树状图或列表的方法求小明和小华都选择去兵马俑旅游的概率. 23.(本题满分8分)如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,交⊙O 于点P ,OA =5,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C . (1)求证:AB =AC ;(2)若PC =25,求⊙O 的半径.24.(本题满分10分)如图,在平面直角坐标系中,抛物线C 1经过点A (-4,0) 、B (-1,0),其顶点为D (-52,-3).(1)求该抛物线C 1的表达式. (2)将抛物线C 1绕点B 旋转180°,得到抛物线C 2,求抛物线C 2的表达式.(3)再将抛物线C 2沿x 轴向右平移得到抛物线C 3.设抛物线C 3与x 轴分别交于点E 、F (点E 在点F 左边),顶点为G ,连接AG 、DF 、AD 、GF ,若四边形ADFG 为矩形,求点E 的坐标.xy–5–4–3–2–112345–4–3–2–1123B A OD第23题图OPB第24题图25.(本题满分12分)问题提出(1)如图①,正方形ABCD的对角线交于点O,∆CDE是边长为6的等边三角形,则O、E之间的距离为__________;问题探究(2)如图②,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD 上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点.家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图③所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2 m,BC=3.2 m,弓高MN=1.2 m(N为AD的中点,MN⊥AD).小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.第25题图初三第七次模拟考试 数学试题答案一、选择题(每题3分,共30分,每小题只有一个正确选项)题号 1 2 3 4 5 6 7 8 9 10 答案AACDCAAACA二.填空题(每题3分,共12分)11. -2 12. 35 13. -32 14. 10+2 三.解答题(共72分)15. 原式=121333-+-+ = 43.16. 解:原式2221(1)11x x x x x --+-=⨯-2x =-.当12x =-时,原式=4. 17.⊙P 就是所求作的图形.18. (1)补全的条形统计图如解图所示:(2) II 级;(3)1200×10750+=408(人), ∴该校平均每天"诵读经典"的时间不低于40分钟的学生约有408人.19. 证明:∵AC BD ⊥,AB CE ⊥, ∴ADB ∠=AEC ∠=90°在△ADB 和△AEC 中,⎪⎩⎪⎨⎧===A A AE AD AEC ADB ∠∠∠∠,∴△ADB ≌△AEC (ASA ),∴AC AB =. 又AE AD =,∴ADAC AE AB -=- 即CD BE =..20. 解:如图作CM ∥AB 交AD 于M ,MN ⊥AB 于N . 由题意=,即=,CM =,在RT △AMN 中,∵∠ANM =90°,MN =BC =4,∠AMN =72°, ∴tan72°=,∴AN ≈12.3,∵MN ∥BC ,AB ∥CM ,∴四边形MNBC 是平行四边形, ∴BN =CM =,∴AB =AN +BN =13.8米.21.解:(1)设A 种,B 种树木每棵分别为a 元,b 元,则 ⎩⎨⎧=+=+380360052b a b a ,解得⎩⎨⎧==80100b a . 答:A 种,B 种树木每棵分别为100元,80元.(2)设购买A 种树木为x 棵,则购买B 种树木为)100(x -棵,则x ≥)100(3x -,∴x ≥75.设实际付款总金额为y 元,则)]100(80100[9.0x x y -+=720018+=x y∵018>,y 随x 的增大而增大,∴75=x 时,y 最小. 即75=x ,855072007518=+⨯=最小值y (元).∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8550元. 22.解:(1)P (A )=14; (2)列表如下ABCDA (A 、A ) (B 、A ) (C 、A ) (D 、A ) B (A 、B ) (B 、B ) (C 、B ) (D 、B ) C (A 、C ) (B 、C ) (C 、C ) (D 、C ) D (A 、D ) (B 、D ) (C 、D ) (D 、D )共16种情况,其中都选去兵马俑的有1中,故P (C 、C )=116.23.证明:(1)连接OB ,如图.∵AB 与⊙O 相切于点B ,∴OB ⊥AB . ∴∠1+∠4=90°.∵OA ⊥l , ∴∠2+∠5=90°.∵OP =OB ,∴∠3=∠4.∵∠3=∠5,∴∠5=∠4. ∴∠1=∠2.∴AB =AC . 解:(2)设⊙O 的半径为r , ∵OA =5,∴AP =5-r .在Rt △ABO 中,22225AC r AB =-=,在Rt △ACP 中,222PC AP AC =+,PC =52, ∴2222)52()5(5=-+-r r . ∴r =3.∴⊙O 的半径为3.24. 解:(1)抛物线的表达式为y =43x 2+203x +163; (2)将抛物线C 1化成顶点式为245()332y x =+-顶点坐标为5(,3)2--,又因为B (-1,0),旋转后二次函数顶点为1(,3)2旋转后二次函数开口大小不变,开口方向相反.所以旋转后二次函数解析式为241()332y x =--+(3)设抛物线C 3的表达式为y =mx 2 +nx +p . 如解图,设直线AD 的解析式为y =kx +b ',将点A (-4,0)、D (-52,-3)代入其中得0-4'5-3-'2k b k b =+⎧⎪⎨=+⎪⎩, 解得-3'-8k b =⎧⎨=⎩,∴直线AD 的解析式为y =-2x -8.∵四边形ADFG 为矩形, ∴D F 丄AD ,过点D 作D H 丄x 轴于点H ,∴H (-52,0),且△ADH ~△DFH ,∴AH HD = HD HF ,OH =52, 又∵AH =-52-(-4)=32,HD =3,∴HF =2HD AH=6,∴OF =HF -OH =72,∴点F 的坐标为(72,0).又∵AB =3,AB = EF ,∴点E 的坐标为(12,0).25. 解:(1)∴OE =OH +HE 3;(2)如解图②,连接AO 并延长交»CD于点P ,则此时AP 最大. 在»CD上取一异于点P 的点P ',连接AP '、OP ', 在△AOP '中,AO +OP '>AP ',∵OP = OP ', ∴AO + OP >AP ',即AP >AP ',∴AP 最大. 在Rt △AOD 中,AD -6,DO =12DC =3,∴AO 22AD DO +5,∴AP 最大为5+3;(3)小贝的说法正确.如解图③,延长MN 交BC 于点E ,∵N 为AD 中点,MN 丄AD , ∴»AD 所在圆的圆心O 在直线MN 上. 设圆O 半径为r ,则O N = r -1.2,连接OA ,在Rt △AON 中,AO 2=AN 2 + NO 2, 即r 2=1.62 +(r -1.2)2,解得r =53, ∴MO =53<ME =MN +NE =1.2+2 =3.2, ∴点O 在NE 线段上,∴NO =53-1.2=715,OE =2-715=2315. 连接BO ,并延长BO 交»AD 于点M ',则BM '为最大.在Rt △BOE 中,BE =AE = 1.6=85,∴OB 22BE OE +22823515+()()1105, 又OM '=OM =53.∴BM 1105+53.在△BOM 中,OM +OB >BN , ∴OM '+OB >BN ,即BM '>BM ,∴BM '之间的距离为门角B 到门窗弓形弧AD 的最1105+53. ∴小贝说得正确第25题解图①第25题解图②第25题解图③。
【全国百强校】陕西省西安市高新第一中学2016-2017学年七年级上学期期末考试数学试题解析(解析版)
一、选择题1. 下列调查中,适合用普查方式的是()A. 了解某班学生最喜爱的体育项目B. 核实某位病人血液中被感染的病毒C. 了解长江中鱼的种类D. 调查一批炮弹的杀伤半径【答案】A【解析】试题分析:普查是专门组织的一次性的全面调查,用来调查属于一定时点上或一定时期内的社会现象总量.普查具有资料包括的范围全面、详尽、系统的优点,但是普查的工作量大,耗资也多;抽样调查是一种非全面调查,它是按照随机原则从总体中抽取一部分单位作为样本来进行观察研究.本题中B、C、D都只适合抽样调查.2. 下列四个图形中是左图的侧面展开图的是()A. B. C. D.【答案】C【解析】试题分析:圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形,圆台的侧面展开图是扇环.3. 在下列各数:错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
中,负有理数的个数是()A. 错误!未找到引用源。
个B. 错误!未找到引用源。
个C. 错误!未找到引用源。
个D. 错误!未找到引用源。
【答案】C4. 如图,下列说法中正确的个数是()①直线错误!未找到引用源。
和直线错误!未找到引用源。
是同一条直线;②射线错误!未找到引用源。
与射线错误!未找到引用源。
是同一条射线;③线段错误!未找到引用源。
和线段错误!未找到引用源。
是同一条线段;④图中有两条射线.A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
【答案】D【解析】试题分析:根据直线、射线、线段的表示方法可得:直线AB和直线BA是同一条直线;线段AB和线段BA 是同一条线段;射线AB和射线AB不是同一条射线,端点不同;图中共有4条射线.5. 下列解方程去分母正确的是()A. 由错误!未找到引用源。
,得错误!未找到引用源。
B. 由错误!未找到引用源。
,得错误!未找到引用源。
陕西省西安市高新2016年中考数学三模试卷含答案解析
2016年陕西省西安市高新中考数学三模试卷一、选择题1.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.3.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115° D.120°4.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣3=0的解C.a是8的算术平方根 D.3<a<45.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.6.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣27.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.28.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2 D.9.如图,线段BD为锐角△ABC上AC边上的中线,E为△ABC的边上的一个动点,则使△BDE为直角三角形的点E的位置有()A.4个 B.3个 C.2个 D.1个10.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数二、填空题11.与2+最接近的正整数是.12.如图,过点A(3,4)作AB⊥x轴,垂足为B,交反比例函数y=的图象于点C(x1,y1),连接OA交反比例函数y=的图象于点D(2,y2),则y2﹣y1=.13.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.三、填空题14.如果一个正多边形的中心角为72°,那么这个正多边形的边数是.15.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).三、解答题16.计算:﹣12016++(﹣)﹣1﹣tan30°.17.化简(a﹣)+,并请从﹣1,0,1,2中选择你喜欢的数代入求值.18.如图,已知直线及其上一点A,请用尺规作⊙O,使得⊙O与直线相切于点A,且半径等于r长.(保留作图痕迹,不写作法)19.考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.数据收集整理后,绘制了图1和图2两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)请通过计算,补全条形统计图;(2)请直接写出扇形统计图中“享受美食”所对应圆心角的度数为;(3)根据调查结果,可估计出该校九年级学生中减压方式的众数和中位数分别是,.20.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:AE=AB.21.如图所示,当小华站立在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°.若小华向后退0.5米到B处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:≈1.73)22.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.23.小明、小亮、和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如下:游戏规则:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)如图,请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求一个回合不能确定两人先下棋的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,抛物线M:y=(x+1)(x+a)(a>1)交x轴于A、B两点(A在B的左边),交y轴于C点.抛物线M关于y轴对称的抛物线N交x轴于P、Q两点(P在Q的左边)(1)直接写出A、C坐标:A(),C();(用含有a的代数式表示)(2)在第一象限存在点D,使得四边形ACDP为平行四边形,请直接写出点D的坐标(用含a的代数式表示);并判断点D是否在抛物线N上,说明理由.(3)若(2)中平行四边形ACDP为菱形,请确定抛物线N的解析式.26.对于一个四边形给出如下定义:有一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形.如图①中,∠B=∠D,AB=AD;如图②中,∠A=∠C,AB=AD则这样的四边形均为奇特四边形.(1)在图①中,若AB=AD=4,∠A=60°,∠C=120°,请求出四边形ABCD的面积;(2)在图②中,若AB=AD=4,∠A=∠C=45°,请直接写出四边形ABCD面积的最大值;(3)如图③,在正方形ABCD中,E为AB边上一点,F是AD延长线上一点,且BE=DF,连接EF,取EF的中点G,连接CG并延长交AD于点H.若EB+BC=m,问四边形BCGE 的面积是否为定值?如果是,请求出这个定值(用含m的代数式表示);如果不是,请说明理由.2016年陕西省西安市高新中考数学三模试卷参考答案与试题解析一、选择题1.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|【考点】实数与数轴.【专题】常规题型.【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【解答】解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选:D.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115° D.120°【考点】平行线的性质.【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.【解答】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,∴∠2=∠AMO=115°.故选C.【点评】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.4.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣3=0的解C .a 是8的算术平方根D .3<a <4【考点】一元二次方程的解;无理数.【分析】由无理数,算术平方根,方程的解的概念进行判断即可.【解答】解:∵边长为a 的正方形的面积为8,∴a==2,∴A ,C ,D 都正确,故选B .【点评】本题考查了无理数,算术平方根,方程的解,熟记概念是解题的关键.5.已知不等式组,其解集在数轴上表示正确的是( )A .B .C .D . 【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由x ﹣3>0,得x >3,由x +1≥0,得x ≥﹣1.不等式组的解集是x >3,故选:C .【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.在平面直角坐标系中,把直线y=2x 向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣2【考点】一次函数图象与几何变换.【分析】根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将直线y=2x向左平移1个单位所得的直线的解析式是y=2(x+1)=2x+2.即y=2x+2,故选C【点评】本题考查的是一次函数的图象与几何变换,熟知“左加右减”的原则是解答此题的关键.7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.2【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.8.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2 D.【考点】圆周角定理;锐角三角函数的定义.【专题】网格型.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故选D.【点评】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.9.如图,线段BD为锐角△ABC上AC边上的中线,E为△ABC的边上的一个动点,则使△BDE为直角三角形的点E的位置有()A.4个 B.3个 C.2个 D.1个【考点】圆周角定理.【分析】根据直径所对的圆周角是直角,分BD是斜边和BD是直角边两种情况作出图形,然后确定出点E的位置即可.【解答】解:如图,BD是斜边时,点E有两个位置,BD是直角边时点E有一个位置,综上所述,使△BDE为直角三角形的点E的位置有3个.故选B.【点评】本题考查了圆周角定理,直角三角形的定义,主要利用了直径所对的圆周角是直角,作出图形更形象直观.10.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数【考点】抛物线与x轴的交点.【专题】压轴题.【分析】因为抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,所以令f(x)=x2﹣(4m+1)x+2m﹣1,则f(2)<0,解不等式可得m>,又因为抛物线与y轴的交点在点(0,)的下方,所以f(0)<﹣,解得m<,即可得解.【解答】解:根据题意,令f(x)=x2﹣(4m+1)x+2m﹣1,∵抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,∴f(2)<0,即4﹣2(4m+1)+2m﹣1<0,解得:m>,又∵抛物线与y轴的交点在点(0,)的下方,∴f(0)<﹣,解得:m<,综上可得:<m<,故选A.【点评】本题考查二次函数图象特征,要善于合理运用题目已知条件.二、填空题11.与2+最接近的正整数是4.【考点】估算无理数的大小.【分析】先估算出的范围,然后再确定即可.【解答】解:∵4<6<6.25,∴2<<2.5,∴4<2+<4.5.所以与2+最接近的正整数是4.故答案为:4.【点评】本题主要考查的是估算无理数的大小,估算出2+的大致范围是解题的关键.12.如图,过点A(3,4)作AB⊥x轴,垂足为B,交反比例函数y=的图象于点C(x1,y1),连接OA交反比例函数y=的图象于点D(2,y2),则y2﹣y1=.【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征结合点A的坐标以及点D的横坐标即可得出点C、D的坐标,由点A的坐标利用待定系数法即可求出直线OA的解析式,将点D的坐标代入直线OA的解析式中即可求出k值,再将其代入y2﹣y1=中即可得出结论.【解答】解:∵过点A(3,4)作AB⊥x轴,垂足为B,交反比例函数y=的图象于点C(x1,y1),∴点C(3,).∵连接OA交反比例函数y=的图象于点D(2,y2),∴点D(2,).设直线OA的解析式为y=mx(m≠0),将A(3,4)代入y=mx中,4=3m,解得:m=,∴直线OA的解析式为y=x.∴点D(2,)在直线OA上,∴=×2,解得:k=,∴y2﹣y1=﹣==.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征以及待定系数法求正比例函数解析式,根据点A的坐标利用待定系数法求出直线OA的解析式是解题的关键.13.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1.【考点】旋转的性质;全等三角形的判定与性质;角平分线的性质;等边三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故答案为:1+.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.三、填空题14.如果一个正多边形的中心角为72°,那么这个正多边形的边数是5.【考点】正多边形和圆.【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.【解答】解:根据题意得:这个多边形的边数是360°÷72°=5,故答案为:5.【点评】本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和边数的关系是解题的关键.15.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为14.1cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).【考点】解直角三角形的应用.【分析】作BE⊥CD于E,根据等腰三角形的性质和∠CBD=40°,求出∠CBE的度数,根据余弦的定义求出BE的长.【解答】解:如图2,作BE⊥CD于E,∵BC=BD,∠CBD=40°,∴∠CBE=20°,在Rt△CBE中,cos∠CBE=,∴BE=BC•cos∠CBE=15×0.940=14.1cm.故答案为:14.1.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,作出合适的辅助线构造直角三角形是解题的重要环节.三、解答题16.计算:﹣12016++(﹣)﹣1﹣tan30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用乘方的意义,二次根式性质,负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1+﹣2﹣=﹣3.【点评】此题考查了实数的运算,负整数指数幂,以及特殊角的三角函数值,注意区别﹣12016与(﹣1)2016.17.化简(a﹣)+,并请从﹣1,0,1,2中选择你喜欢的数代入求值.【考点】分式的化简求值.【分析】首先对括号内的分式进行通分相加,把除法转化为乘法,计算乘法即可化简,然后代入a=2求解.【解答】解:原式=+=+==当a=2时,原式==0.【点评】本题考查了分式的化简求值,正确进行通分、约分是关键,本题中要注意a不能取﹣1,0以及1.18.如图,已知直线及其上一点A,请用尺规作⊙O,使得⊙O与直线相切于点A,且半径等于r长.(保留作图痕迹,不写作法)【考点】作图—应用与设计作图;切线的判定与性质.【分析】过点A作直线DE⊥BC,在直线DE上截取OA=r,以O为圆心,OA为半径画圆即可.【解答】解:如图所示,圆O为所求.【点评】本题考查了尺规作图以及切线的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19.考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.数据收集整理后,绘制了图1和图2两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)请通过计算,补全条形统计图;(2)请直接写出扇形统计图中“享受美食”所对应圆心角的度数为72°;(3)根据调查结果,可估计出该校九年级学生中减压方式的众数和中位数分别是B,C.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)利用“流谈心”的人数除以所占的百分比计算求得总人数,用总人数乘以“体育活动”所占的百分比计算求出体育活动的人数,然后补全统计图即可;(2)用360°乘以“享受美食”所占的百分比计算即可得解;(3)根据众数和中位数的定义求解即可.【解答】解:(1)一共抽查的学生:8÷16%=50人,参加“体育活动”的人数为:50×30%=15人,补全统计图如图所示:(2)“享受美食”所对应扇形的圆心角的度数为:360°×=72°;(3)B出现了15次,出现的次数最多,则众数是B;因为共有50人,把这组数据从小到大排列,最中间两个都是C,所以中位数是C.故答案为:72°;B,C.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了众数和中位数的计算.20.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:AE=AB.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由在平行四边形ABCD中,AM=DM,易证得△AEM≌△DCM(AAS),即可得AE=CD=AB.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠E=∠DCM,在△AEM和△DCM中,,∴△AEM≌△DCM(AAS),∴AE=CD,∴AE=AB.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质,熟记平行四边形的各种性质以及全等三角形各种判断方法是解题的关键.21.如图所示,当小华站立在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°.若小华向后退0.5米到B处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:≈1.73)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用等腰直角三角形的性质得出AC=AA1,进而得出tan30°==求出即可.【解答】解:∵当小华站立在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°.∴AC=AA1,∵若小华向后退0.5米到B处,这时他看自己的脚在镜中的像的俯角为30°,∴AB=A1B1=0.5米,∠DB1B=30°,∴tan30°====,解得:BD=≈≈1.4(米),答:小华的眼睛到地面的距离为1.4米.【点评】此题主要考查了解直角三角形中仰角与俯角问题以及平面镜成像的性质,得出AB=A1B1=0.5米,再利用锐角三角函数求出是解题关键.22.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为15.5万元和两种手机的销售利润为2.1万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金不超过17.25万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.【解答】解:(1)设该商场计划购进甲种手机x部,乙种手机y部,由题意得,解得.答:该商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机减少a部,则乙种手机增加3a部,由题意得4000(20﹣a)+2500(30+3a)≤172500解得a≤5设全部销售后的毛利润为w元.则w=300(20﹣a)+500(30+3a)=1200a+21000.∵1200>0,∴w随着a的增大而增大,5+21000=27000∴当a=5时,w有最大值,w最大=1200×答:当商场购进甲种手机15部,乙种手机45部时,全部销售后毛利润最大,最大毛利润是2.7万元.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用及一次函数的性质的运用,解答本题时灵活运用一次函数的性质求解是关键.23.小明、小亮、和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如下:游戏规则:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)如图,请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求一个回合不能确定两人先下棋的概率.【考点】列表法与树状图法.【专题】图表型.【分析】(1)此题需两步完成,可根据题意画树状图求得所有可能出现的结果;(2)根据树状图求得一个回合不能确定两人先下棋的情况,再根据概率公式求解即可.【解答】解:(1)画树状图得:(2)∴一共有8种等可能的结果,一个回合不能确定两人先下棋的有2种情况,∴一个回合能确定两人先下棋的概率为:=.【点评】此题考查了树状图法与列表法求概率.树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.【点评】本题考查了切线的判定及圆周角定理,解答本题的关键是掌握切线的判定定理、圆周角定理及含30°直角三角形的性质.25.如图,抛物线M:y=(x+1)(x+a)(a>1)交x轴于A、B两点(A在B的左边),交y轴于C点.抛物线M关于y轴对称的抛物线N交x轴于P、Q两点(P在Q的左边)(1)直接写出A、C坐标:A(﹣a,0),C(0,a);(用含有a的代数式表示)(2)在第一象限存在点D,使得四边形ACDP为平行四边形,请直接写出点D的坐标(用含a的代数式表示);并判断点D是否在抛物线N上,说明理由.(3)若(2)中平行四边形ACDP为菱形,请确定抛物线N的解析式.【考点】二次函数综合题.【分析】(1)令y=0可求得x,则可求得A、B坐标,令x=0可求得C点坐标;(2)可先求得抛物线N的解析式,则可求得P点坐标,由平行四边形的性质可知CD=AP,则可求得D点坐标;(3)由菱形的性质可知AC=AP,则可得到关于a的方程,可求得抛物线N的解析式.【解答】解:(1)在y=(x+1)(x+a)中,令y=0可得(x+1)(x+a)=0,解得x=﹣1或x=﹣a,∵a>1,∴﹣a<﹣1,∴A(﹣a,0),B(﹣1,0),令x=0可得y=a,∴C(0,a),故答案为:﹣a,0;0,a;(2)∵抛物线N与抛物线M关于y轴对称,∴抛物线N的解析式为y=(x﹣1)(x﹣a),令y=0可解得x=1或x=a,∴P(1,0),Q(a,0),∴AP=1﹣(﹣a)=1+a,∵四边形ACDP为平行四边形,∴CD∥AP,且CD=AP,∴CD=1+a,且OC=a,∴D(1+a,a);(3)∵A(﹣a,0),C(0,a),∴AC=a,当四边形ACDP为菱形时则有AP=AC,∴a=1+a,解得a=+1,∴抛物线N的解析式为y=(x﹣1)(x﹣﹣1).【点评】本题为二次函数的综合应用,涉及函数图象与坐标轴的交点、轴对称、平行四边形的性质、菱形的性质、勾股定理等知识.在(1)中注意函数图象与坐标轴交点的求法,在(2)中由平行四边形的性质求得AP=CD、AP∥CD是解题的关键,在(3)中由菱形的性质得到AC=AP是解题的关键.本题考查知识点较多,综合性较强,难度适中.26.对于一个四边形给出如下定义:有一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形.如图①中,∠B=∠D,AB=AD;如图②中,∠A=∠C,AB=AD则这样的四边形均为奇特四边形.(1)在图①中,若AB=AD=4,∠A=60°,∠C=120°,请求出四边形ABCD的面积;(2)在图②中,若AB=AD=4,∠A=∠C=45°,请直接写出四边形ABCD面积的最大值;(3)如图③,在正方形ABCD中,E为AB边上一点,F是AD延长线上一点,且BE=DF,连接EF,取EF的中点G,连接CG并延长交AD于点H.若EB+BC=m,问四边形BCGE 的面积是否为定值?如果是,请求出这个定值(用含m的代数式表示);如果不是,请。
陕西省西安市中考数学一模试卷(含解析)
2016年陕西省西安市中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A .B .C .D .8.在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP′位置,则点P′的坐标为( )A .(3,4)B .(﹣4,3)C .(﹣3,4)D .(4,﹣3)9.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,点E 为垂足,连接DF ,则∠CDF 为( )A .80°B .70°C .65°D .60°10.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是( )A .abc >0B .a+b=0C .2b+c >0D .4a+c <2b二、填空题 11.分解因式:ab 2﹣4ab+4a= .12.如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 面积为2,则这个反比例函数的解析式为 .13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B 到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A 到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市电子科大附中中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP 绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80° B.70° C.65° D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a= a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,∴S△ABC==,∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为 2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15 .【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68 .(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;(2)首先求出DE和CE的长度,再根据S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得出结果.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,∴S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴,解得,∴y=﹣90x+900.函数的定义域为5≤x≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时, =,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时, =,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B 到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A 到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.。
陕西省西安市高新一中2015-2016学年七年级(下)期末试卷(含解析)
2015-2016学年陕西省西安市高新一中七年级(下)期末数学试卷一、选择题1.倡导节约,进入绿色,节约型社会,在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水的标志,在这些标志中,是轴对称图形的是( )A .B .C .D .2.在相同条件下重复试验,若事件A 发生的概率是,下列陈述中,正确的是( )A .事件A 发生的频率是B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生7次D .做100次这种试验,事件A 可能发生7次3.如图,直线a ∥b ,将含有30°角的三角板ABC 的直角顶点C 放在直线a 上,若∠1=65°,则∠2的度数为( )A .25°B .30°C .35°D .40°4.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y 与火车进入隧道的时间x 之间的关系用图象描述正确的是( )A .B .C .D .5.下列说法中,正确的是( )A .等于±4 B .﹣42的平方根是±4C.8的立方根是±2 D.﹣是5的平方根6.下列各组数据中的是三个数作为三角形的边长,其中能构成直角三角形的是()A.1,,B.,,C.5,6,7 D.7,8,97.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.8.如图,在△ABC中,AB=AC,∠A=80°,BD平分∠ABC,则∠BDC的度数为()A.100°B.65°C.75°D.105°9.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米10.如图:△ABC中,AC=,∠BAC=22.5°,点M、N分别是射线AB和AC上动点,则CM+MN的最小值是()A.B.C.D.311.下列各数:,,,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1),其中是无理数的有个.12.如图,在△ABD中,AD=13,BD=12,若在△ABD内有一点C,其中AC=3,BC=4,∠C=90°,则阴影部分的面积为.13.一位汽车司机准备去商场购物,然后他随意把汽车停在某个停车场内,停车场分A、B 两区,停车场内一个停车位置正好占一个方格且每一个方格除颜色外完全一样,则汽车停在B区阴影区域的概率是.14.正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根是.15.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,连结DC,过点C作CE⊥AB于点E,如果AD=3,BD=8,那么△ADC的周长为.16.如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD 沿直线BE翻折,点A恰好落在EC上的点A′处,则A′C=cm.17.已知:如图,线段AB,∠α,∠β,求作:△DEF,使DE=AB,∠FDE=∠α,∠DEF=∠β,(尺规作图,不写作法,留作图痕迹)18.如图,已知等腰直角△ABC的直角边长与正方形DEFG的边长均为8cm,EF与AC在同一条直线上,开始时点A与点F重合,让△ABC向左移动,运动速度为1cm/s,最后点A 与点E重合.(1)试写出两图形重叠部分的面积y(cm2)与△ABC的运动时间x(s)之间的关系式;(2)当点A向左运动2.5s时,重叠部分的面积是多少?19.某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙两位同学分别设计出如下两种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC 至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上两位同学所设计的方案,可行的有;(2)请你选择一可行的方案,说说它可行的理由.20.小明和小颖用一副去掉大、小王的扑克牌做摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A,且牌面的大小与花色无关),然后两人把摸到的牌都放回,重新开始游戏(1)若小明已经摸到的牌面为A,然后小颖摸牌,那么小明获胜的概率是;(2)若小明已经摸到的牌面为5,然后小颖摸牌,请求出此时小颖获胜的概率.21.如图所示,A、B两块试验田相距200米,C为水源地,AC=160m,BC=120m,为了方便灌溉,现有两种方案修筑水渠.甲方案:从水源地C直接修筑两条水渠分别到A、B;乙方案;过点C作AB的垂线,垂足为H,先从水源地C修筑一条水渠到AB所在直线上的H处,再从H分别向A、B进行修筑.(1)请判断△ABC的形状(要求写出推理过程);(2)两种方案中,哪一种方案所修的水渠较短?请通过计算说明.22.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.(1)若∠A=60°,∠ABD=24°,求∠ACF的度数;(2)若BC=5,BF:FD=5:3,S△BCF=10,求点D到AB的距离.23.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A 的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=1s时,求△ACP的面积.(2)t为何值时,线段AP是∠CAB的平分线?(3)请利用备用图2继续探索:当△ACP是等腰三角形时,求t的值.四、附加题24.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为.25.如图,△ABC中,∠ACB=45°,边AB上一定点P,M、N分别是AC和BC边上的动点,当△PMN的周长最短时,∠MPN的度数是.26.如图1,将两个完全相同的三角形纸片ABC和DEC如图1放置,点D在AB边上,其中∠ACB=∠DCE=90°,∠B=∠DEC=30°.(1)操作发现连接AE,设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当这两个完全相同的三角形纸片ABC和DEC如图2放置时,连接AE和BD,(1)中S1与S2的数量关系仍然成立吗?请说明理由.(3)拓展探究已知∠ABC=60°,点D是∠ABC角平分线上一点,BD=CD=4,DE=4,BC=12,DE∥AB 交BC于点E且DE=4(如图3).若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.2015-2016学年陕西省西安市高新一中七年级(下)期末数学试卷参考答案与试题解析一、选择题1.倡导节约,进入绿色,节约型社会,在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水的标志,在这些标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各图形判断后即可得解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次【考点】概率的意义.【分析】根据概率的意义,可得事件A发生的概率是,表示事件A可能发生7次,但不是一定发生7次,或者只发生了7次,也不表示事件A发生的频率是,据此判断即可.【解答】解:∵事件A发生的概率是,不表示事件A发生的频率是,∴选项A不正确;∵事件A发生的概率是,不表示事件A只发生了7次,可能比7次多,也有可能比7次少,∴选项B不正确;∵事件A发生的概率是,不表示事件A一定发生7次,∴选项C不正确;∵事件A发生的概率是,表示事件A可能发生7次,∴选项D正确.故选:D.3.如图,直线a∥b,将含有30°角的三角板ABC的直角顶点C放在直线a上,若∠1=65°,则∠2的度数为()A.25°B.30°C.35°D.40°【考点】平行线的性质.【分析】先由平行线的性质求出∠3的度数,再根据三角形外角的性质求出∠4的度数,由对顶角相等即可得出结论.【解答】解:∵直线a∥b,∠1=65°,∴∠3=∠1=65°.∵∠3=∠A+∠4,∠A=30°,∴∠4=65°﹣30°=35°.∵∠2=∠4,∴∠2=35°.故选C.4.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()A.B.C.D.【考点】函数的图象.【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,因此反映到图象上应选B.故选:B.5.下列说法中,正确的是()A.等于±4 B.﹣42的平方根是±4C.8的立方根是±2 D.﹣是5的平方根【考点】立方根;平方根.【分析】根据算术平方根的意义判断A;根据乘方的意义判断B;根据立方根的意义判断C;根据平方根的意义判断D.【解答】解:A、=4,故本选项错误;B、﹣42=﹣16,负数没有平方根,故本选项错误;C、8的立方根是2,故本选项错误;D、﹣是5的平方根,故本选项正确;故选D.6.下列各组数据中的是三个数作为三角形的边长,其中能构成直角三角形的是()A.1,,B.,,C.5,6,7 D.7,8,9【考点】勾股定理的逆定理.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、∵12+()2=()2,∴能构成直角三角形;B、()2+()2≠()2,∴不能构成直角三角形;C、52+62≠72,∴不能构成直角三角形;D、∵72+82≠92,∴不能构成直角三角形.故选A.7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选C.8.如图,在△ABC中,AB=AC,∠A=80°,BD平分∠ABC,则∠BDC的度数为()A.100°B.65°C.75°D.105°【考点】等腰三角形的性质.【分析】由AB=AC,根据等腰三角形的性质得到∠ABC=∠C,再根据三角形内角和定理得到∠ABC=∠C=÷2=50°,然后利用角平分线的定义求出∠DBC,最后根据三角形内角和定理可求出∠BD C.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠A=40°,∴∠ABC=∠C=÷2=50°,而BD为∠ABC的平分线,∴∠DBC=×50°=25°,∴∠BDC=180°﹣80°﹣25°=75°.故选C.9.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【考点】勾股定理的应用.【分析】根据题意构造出直角三角形,利用勾股定理解答.【解答】解:由题意可知.BE=CD=1.5m,AE=AB﹣BE=4.5﹣1.5=3m,AC=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选A.10.如图:△ABC中,AC=,∠BAC=22.5°,点M、N分别是射线AB和AC上动点,则CM+MN的最小值是()A.B.C.D.3【考点】轴对称﹣最短路线问题.【分析】作C关于AB的对称点E,过E作EN⊥AC于N,连接AE,则EN=CM+MN的最小值,由对称的性质得到AB垂直平分BC,推出△AEN是等腰直角三角形,解直角三角形即可得到结论.【解答】解:作C关于AB的对称点E,过E作EN⊥AC于N,连接AE,则EN=CM+MN的最小值,由对称的性质得:AB垂直平分BC,∴AE=AC=,∠EAC=2∠BAC=45°,∴△AEN是等腰直角三角形,∴EN=AE=,故选B二、填空题11.下列各数:,,,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1),其中是无理数的有4个.【考点】无理数.【分析】无理数就是无限不循环小数,依据定义即可判断.【解答】解:无理数有:,,﹣,2.181181118…(两个8之间1的个数逐次多1)共4个.故答案是:4.12.如图,在△ABD中,AD=13,BD=12,若在△ABD内有一点C,其中AC=3,BC=4,∠C=90°,则阴影部分的面积为24.【考点】勾股定理;勾股定理的逆定理.【分析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.【解答】解:在RT△ABC中,AB===5,∵AD=13,BD=12,∴AB2+BD2=AD2,∴△ABD为直角三角形,∴阴影部分的面积=△ABD的面积﹣△ABC的面积=AB×BD﹣BC×AC=30﹣6=24.故答案为:24.13.一位汽车司机准备去商场购物,然后他随意把汽车停在某个停车场内,停车场分A、B 两区,停车场内一个停车位置正好占一个方格且每一个方格除颜色外完全一样,则汽车停在B区阴影区域的概率是.【考点】几何概率.【分析】根据几何概率的求法,在B区,用蓝色区域的面积除以B区的总面积可得到汽车停在B区蓝色区域的概率.【解答】解:B区域内,共等分为9部分,阴影区域为5部分,所以汽车停在B区阴影区域的概率是,故答案为:.14.正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根是﹣5.【考点】立方根;平方根.【分析】根据平方根的性质求出a的值,进而求出x的值,从而求出44﹣x的值.【解答】解:由题意可知:3﹣a+2a+7=0,∴a=﹣10,∴3﹣a=13,∴x=132=169,∴44﹣x=﹣125,∴﹣125的立方根为﹣5,故答案为:﹣515.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,连结DC,过点C作CE⊥AB于点E,如果AD=3,BD=8,那么△ADC的周长为19.【考点】线段垂直平分线的性质.【分析】根据三角形的内角和得到∠ACB=60°,根据线段垂直平分线的性质得到BD=CD=8,∠DCB=∠B=40°,推出∠ACE=∠DCE,得到AC=CD=8,于是得到结论.【解答】解:∵∠A=80°,∠B=40°,∴∠ACB=60°,∵BC的垂直平分线交AB于点D,∴BD=CD=8,∠DCB=∠B=40°,∴∠ACD=20°,∵CE⊥AB,∴∠AEC=90°,∴∠ACE=10°,∴∠DCE=10°,∴∠ACE=∠DCE,∴AC=CD=8,∴△ADC的周长=AC+CD+AD=19,故答案为:19.16.如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD 沿直线BE翻折,点A恰好落在EC上的点A′处,则A′C=8cm.【考点】翻折变换(折叠问题).【分析】由题意易证得△A′BC≌△DCE(AAS),BC=AD,A′B=AB=CD=15cm,然后设A′C=xcm,在Rt△A′BC中,由勾股定理可得BC2=A′B2+A′C2,即可得方程,解方程即可求得答案.【解答】解:∵四边形ABCD是矩形,∴AB=CD=15cm,∠A=∠D=90°,AD∥BC,AD=BC,∴∠DEC=∠A′CB,由折叠的性质,得:A′B=AB=15cm,∠BA′E=∠A=90°,∴A′B=CD,∠BA′C=∠D=90°,在△A′BC和△DCE中,,∴△A′BC≌△DCE(AAS),∴A′C=DE,设A′C=xcm,则BC=AD=DE+AE=x+9(cm),在Rt△A′BC中,BC2=A′B2+A′C2,即(x+9)2=x2+152,解得:x=8,∴A′C=8cm.故答案为:8.三、解答题17.已知:如图,线段AB,∠α,∠β,求作:△DEF,使DE=AB,∠FDE=∠α,∠DEF=∠β,(尺规作图,不写作法,留作图痕迹)【考点】作图—复杂作图.【分析】先作AB的垂直平分线和∠β的平分线,再作线段DE=AB,接着分别作∠MDE=α,∠NED=∠β,DM与NE相交于F,则△DEF满足条件.【解答】解:如图,△DEF为所作.18.如图,已知等腰直角△ABC的直角边长与正方形DEFG的边长均为8cm,EF与AC在同一条直线上,开始时点A与点F重合,让△ABC向左移动,运动速度为1cm/s,最后点A 与点E重合.(1)试写出两图形重叠部分的面积y(cm2)与△ABC的运动时间x(s)之间的关系式;(2)当点A向左运动2.5s时,重叠部分的面积是多少?【考点】二次函数的应用.【分析】(1)重合部分是等腰直角三角形,利用直角三角形的面积公式即可求解;(2)把x=2代入(1)得到的函数解析式即可求解.【解答】解(1)重叠部分的面积y与线段AF的长度x之间的函数关系式为y=x2.(2)当点A向左移动2cm,即x=2cm,当x=25时,y=×2.52=3.125(cm2).所以当点A向左移动2.5cm时,重叠部分的面积是3.125cm2.19.某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙两位同学分别设计出如下两种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC 至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上两位同学所设计的方案,可行的有甲、乙;(2)请你选择一可行的方案,说说它可行的理由.【考点】全等三角形的应用.【分析】(1)两位同学作出的都是全等三角形,然后根据全等三角形对应边相等测量的,所以,都是可行的;(2)甲同学利用的是“边角边”,乙同学利用的是“角边角”证明两三角形全等,分别证明即可.【解答】解:(1)以上两位同学所设计的方案,可行的有甲、乙;故答案为:甲、乙;(2)答案不唯一.选甲:在△ABC和△DEC中,∵,∴△ABC≌△DEC(SAS),∴AB=ED;选乙:在△ABD和△CBD中∵,∴△ABD≌△CBD(ASA),∴AB=B C.20.小明和小颖用一副去掉大、小王的扑克牌做摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A,且牌面的大小与花色无关),然后两人把摸到的牌都放回,重新开始游戏(1)若小明已经摸到的牌面为A,然后小颖摸牌,那么小明获胜的概率是;(2)若小明已经摸到的牌面为5,然后小颖摸牌,请求出此时小颖获胜的概率.【考点】列表法与树状图法;概率公式.【分析】(1)小颖在剩下的51张中上摸出3张A时,小颖才不会输,于是利用概率公式可求出小明获胜的概率;(2)找出牌面数字比5的牌的张数,然后根据概率公式计算小颖获胜的概率.【解答】解:(1)若小明已经摸到的牌面为A,然后小颖摸牌,那么小明获胜的概率==;故答案为(2)若小明已经摸到的牌面为5,然后小颖摸牌,此时小颖获胜的概率==.21.如图所示,A、B两块试验田相距200米,C为水源地,AC=160m,BC=120m,为了方便灌溉,现有两种方案修筑水渠.甲方案:从水源地C直接修筑两条水渠分别到A、B;乙方案;过点C作AB的垂线,垂足为H,先从水源地C修筑一条水渠到AB所在直线上的H处,再从H分别向A、B进行修筑.(1)请判断△ABC的形状(要求写出推理过程);(2)两种方案中,哪一种方案所修的水渠较短?请通过计算说明.【考点】勾股定理的应用.【分析】(1)由勾股定理的逆定理即可得出△ABC是直角三角形;(2)由△ABC的面积求出CH,得出AC+BC<CH+AH+BH,即可得出结果.【解答】解:(1)△ABC是直角三角形;理由如下:∴AC2+BC2=1602+1202=40000,AB2=2002=40000,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)甲方案所修的水渠较短;理由如下:∵△ABC是直角三角形,∴△ABC的面积=AB•CH=AC•BC,∴CH===96(m),∵CH⊥AB,∴∠AHC=90°,∴AH===128(m),∴BH=AB﹣AH=72m,∵AC+BC=160m+120m=280m,CH+AH+BH=96m+200m=296m,∴AC+BC<CH+AH+BH,∴甲方案所修的水渠较短.22.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.(1)若∠A=60°,∠ABD=24°,求∠ACF的度数;(2)若BC=5,BF:FD=5:3,S△BCF=10,求点D到AB的距离.【考点】线段垂直平分线的性质;角平分线的性质.【分析】(1)根据线段垂直平分线的性质得到FB=FC,根据角平分线的定义得到∠CBA=48°,根据三角形内角和定理计算即可;(2)根据三角形的面积公式求出DG,根据角平分线的性质解答即可.【解答】解:(1)∵BD平分∠ABC,∴∠CBA=2∠CBD=2∠ABD=48°,∴∠ACB=180°﹣60°﹣48°=72°,∵EF是BC的中垂线,∴FB=FC,∴∠FCB=∠FBC=24°,∴∠ACF=72°﹣24°=48°;(2)作DG⊥BC于G,DH⊥AB于H,∵BD平分∠ABC,DG⊥BC,DH⊥AB,∴DH=DG,∵BF:FD=5:3,S△BCF=10,∴S△DCF=6,∴S△BCD=16,∴DG=,∴DH=DG=,即点D到AB的距离为.23.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A 的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=1s时,求△ACP的面积.(2)t为何值时,线段AP是∠CAB的平分线?(3)请利用备用图2继续探索:当△ACP是等腰三角形时,求t的值.【考点】三角形综合题.【分析】(1)当t=1s时,△ACP是直角三角形,根据公式求△ACP的面积;(2)如图3,过P作PH⊥AB于H,Rt△PHB中,PB=8﹣2t,根据勾股定理列方程可求解;(3)分四种情况进行讨论:①如图4,根据AC=CP列式求解;②如图5,根据AC=AP列式求解;③如图6,AP=PC,根据AP=PB列式求解;④如图7,AC=CP,根据AP的值列式求解.【解答】解:(1)如图1,点P在BC上,由题意得:CP=2t,当t=1时,PC=2,∴S△ACP=AC•PC=×6×2=6;如图2,Rt△ACB中,由勾股定理得:AB==10,(2)如图3,AP平分∠CAB,过P作PH⊥AB于H,∵∠C=90°,∴PC=PH=2t,∵∠C=∠AHP=90°,AP=AP,∴△ACP≌△AHP,∴AH=AC=6,∴BH=4,在Rt△PHB中,PB=8﹣2t,∴(2t)2+42=(8﹣2t)2,t=;则当t=时,线段AP是∠CAB的平分线;(3)当△ACP是等腰三角形时,有四种情况:①如图4,AC=CP,2t=6,t=3,②如图5,AC=AP,18﹣2t=6,t=6,③如图6,AP=PC,过P作PG⊥AC于G,∵∠C=90°,∴PG∥BC,∴AP=PB,即18﹣2t=2t﹣8,t=,④如图7,AC=CP,过C作CM⊥AB于M,∴AM=PM,tan∠CAB==,设CM=4x,AM=3x,则AC=5x,5x=6,x=,∴AP=6x=6×=,18﹣2t=,t=5.4,综上所述,当△ACP是等腰三角形时,t的值是3s或6s或s或5.4s.四、附加题24.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为8:40.【考点】函数的图象.【分析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.【解答】解:因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷=12,所以乙走完全程需要时间为:4÷12=(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.25.如图,△ABC中,∠ACB=45°,边AB上一定点P,M、N分别是AC和BC边上的动点,当△PMN的周长最短时,∠MPN的度数是90°.【考点】轴对称﹣最短路线问题.【分析】根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=45°,易求得∠D+∠G=45°,继而求得答案.【解答】解:∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=45°,∴∠EPF=135°,∵∠D+∠G+∠EPF=180°,∴∠D+∠G=45°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=45°,∴∠MPN=135°﹣45°=90°,故答案为:90°26.如图1,将两个完全相同的三角形纸片ABC和DEC如图1放置,点D在AB边上,其中∠ACB=∠DCE=90°,∠B=∠DEC=30°.(1)操作发现连接AE,设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当这两个完全相同的三角形纸片ABC和DEC如图2放置时,连接AE和BD,(1)中S1与S2的数量关系仍然成立吗?请说明理由.(3)拓展探究已知∠ABC=60°,点D是∠ABC角平分线上一点,BD=CD=4,DE=4,BC=12,DE∥AB 交BC于点E且DE=4(如图3).若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.【考点】三角形综合题.【分析】(1)根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答即可.(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长即可.【解答】解:(1))∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:S1=S2;(2)如图,延长EC过点A做AN⊥EC延长线于N,过点D做DM⊥BC于M,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=,∴BF1=,BF2=BF1+F1F2=,故BF的长为或.2017年3月17日。
精选陕西省西安市2016届九年级数学第七次模拟考试试题无答案
陕西2016届中考数学模拟试题第Ⅰ卷一、下列四个实数中,最大的是() A.20 D.1-2.如图所示的几何体的俯视图是()A B C D3.不等式组2502103x x +>⎧⎪⎨-⎪⎩≤的最小整数解是()A.3-B.2-C.0D.14.下列关于x 的方程中,没有实数解的是()A.2440x x -+=B.2230x x --=C.220x x -=D.2250x x -+= 5.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加() A.12 B.12- C.2 D.2- 6.如图,点P 是ABC △内一点,且PD PE PF ==,则点P 是() A.ABC △三边垂直平分线的交点 B.ABC △三条角平分线的交点 C.ABC △三条高所在直线的交点 D.ABC △三条中线的交点PDFE CB A7.如图,四边形ABCD 内接于O ,已知140ADC ∠=︒,则AOC ∠的大小是() A.100︒ B.80︒ C.60︒ D.40︒8.已知一次函数y kx b =+的图象经过点()2,3-,且y 的值随x 值的增大而增大,则下列判断正确的是()A.0k >,0b >B.0k >,0b <C.0k <,0b >D.0k <,0b <9.如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,120A ∠=︒,则图中阴影部分的面积是()A.3B.210.已知点()11,A x y ,()22,B x y 均在抛物线()22403y ax ax a =+-<<上,若12x x >,121x x a +=-,则下列结论中正确的是()A.12y y >B.12y y =C.12y y <D.1y 与2y 的大小不确定 第Ⅱ卷 二、填空题11.因式分解:2288x y xy y -+=______.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分. A.一个八边形的外角和是______︒.B.计划在楼层间修建一个坡角为35︒的楼梯,若楼层间高度为2.7m ,为了节省成本,现要将楼梯坡角增加11︒,则楼梯的斜面长度约减少_____m .(用科学计算器计算,结果精确到0.01m )13.如图,在函数()110k y x x =<和()220ky x x=>的图象上,分别有A 、B 两点,若AB x ∥轴,交y 轴于点C ,且OA OB ⊥,12AOC S =△,92BOC S =△,则线段AB 的长度=_______.14.如图,正方形ABCD 的边长为6,点E 在边AB 上,且2AE BE =,过点A 作直线CE 的垂线AF 交CB的延长线于点G ,连接BF ,则BF 的长为______.EF G DCB A三、解答题15.计算:111tan304-⎛⎫+︒ ⎪⎝⎭16.化简:2221bab a a b a b b a+⎛⎫-÷ ⎪+--⎝⎭. 17.如图,已知Rt ABC △,90C ∠=︒,请用尺规作斜边AB 边上的高CD ,垂足为D .(保留作图痕迹,不写作法)CA18.据报道,“国籍剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:了解很少50%不了解基本了解了解扇形统计图条形统计图程度很少了解(1)接受问卷调查的学生共有______名,扇形统计图中“基本了解”部分所对应扇形的圆心角为_____;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数.19.如图,四边形ABCD 中,E 点在AD 上,其中90BAE BCE ACD ∠=∠=∠=︒,且BC CE =,求证:ABC DEC △≌△.EA20.如图,为了测量山顶铁塔AE 的高,小聪在27m 高的楼CD 底部D 测得塔顶A 的仰角为45︒,在楼顶C 测得塔顶A 的仰角3652'︒.已知山高BE 为56m ,楼的底部D 与山脚在同一水平线上,求该铁搭的高AE .(参考数据:sin3652'0.60︒≈,tan3652'0.75︒≈)45°CE36°52'21.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元.(1)分别求出0200x ≤≤和200x >时,y 与x 的函数表达式; (2)小聪家5月份加纳电费117元,小聪家这个月用电多少度? 22.小明准备今年暑假到北京参加夏令营活动,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同,每次抛一枚硬币,连掷三次. (1)用树状图列表三次抛掷硬币的所有结果; (2)若规定:有两次或两次以上.......正面向上,由爸爸陪同前往北京;有两次或两次以上.......反面向上,则由妈妈陪同前往北京,分别求由爸爸陪同小明前往北京和由妈妈陪同小明前往北京的概率;(3)若将“每次掷一次硬币,连掷三次,有两次或两次以上正面向上时,由爸爸陪同小明前往北京”改为“同时掷三枚硬币,掷一次,有两枚或两枚以上.......正面向上时,由爸爸陪同小明前往北京”.求:在这种规定下,由爸爸陪同小明前往北京的概率.23.如图,在Rt ABC △中,90C ∠=︒,AB =2AC =,AC 切O 于点D ,BC 切O 于点E . (1)求证:四边形ODCE 是正方形; (2)求BCD △的面积.24.在平面直角坐标系中,抛物线254y x x =-+-的顶点为M ,与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点.(1)求点A 、B 、C 的坐标;(2)直接写出抛物线254y x x =-+-先关于x 轴对称,再关于y 轴对称的抛物线的表达式; (3)设(2)中所求抛物线的顶点为'M ,与x 轴交于'A 、'B 两点(点'A 在点'B 的右侧),与y 轴交于点'C ,在以A 、B 、C 、M 、'A 、'B 、'C 、'M 这八个点中的四个点为顶点的平行四边形中,求其中所有不是菱形的平行四边形的面积. 25.如图,四边形ABCD 是矩形,2AD AB =,6AB =,E 为AD 中点,M 为CD 上的任意一点,PE EM ⊥交BC 于点P ,EN 平分PEM ∠交BC 于点N .(1)若PEN △为等腰三角形,请直接写出DEM ∠所有可能的值; (2)当1DM =时,求PN 的值;(3)过点P 作PG EN ⊥于点G ,K 为EM 中点,连接DK 、KG .当时,求DK KG GP ++的最小值和最大值.AEBP D MN CCN MD P BEA备用图。
3.2016年西安市高新一中第七次模拟考试
21. (本题满分 7 分) 现正是樱桃热销的季节,某水果零售商店分两批次从批发市场共购进樱桃 40 箱,已知 第一、二次进货价分别为每箱 50 元、40 元,且第二次比第一次多付款 700 元. (1)设第一、二次购进樱桃的箱数分别为 a 箱、b 箱,则 a=______,b=______; (2)若商店对这 40 箱樱桃先按每箱 60 元销售了 x 箱,其余的按每箱 35 元全部售完. ①求商店销售完全部樱桃所获利.润.y(元)与 x(箱)之间的函数关系式; ②当 x 的值至少为多少时,商店才不会亏本?并说明理由.
第 24 题图
25. (本题满分 分) 【阅读理解】我们曾经见过“等邻边四边形”,即有一组邻边相等的凸四边形. 正方形是一个特殊的“等邻边四边形”,如图①,点 E、F 分别在正方形 ABCD 的边 BC、CD 上,∠EAF=45°,我们把△ABE 绕点 A 逆时针旋转 90°至△ADG,再通过证明△AEF 与△AGF 全等,从而发现 BE、EF、FD 之间的数量关系是 EF=BE+FD. 【探究引申】如图②,在等邻边四边形 ABCD 中,AB=AD,∠BAD≠90°,∠B+ ∠D=180°,点 E、F 分别在边 BC、CD 上,则当∠EAF 与∠BAD 满足怎样的数量关系时, 仍有 EF=BE+FD.并证明你的结论. 【问题解决】如图③,在等邻边四边形 ABCD 中,已知 AB=AD=80 米,∠B=60°, ∠ADC=120°,∠BAD=150°,在 BC、CD 上分别取点 E、F,且 AE⊥AD,DF=40( 3-1) 米,求线段 EF 的长.(结果保留根号)
第 12A 题图
第 12B 题图
13. 如图,点 A 是双曲线 y=-9在第二象限分支上的一个动点,连接 AO 并延长交另 x
2024年陕西省西安市高新一中中考七模数学试题
2024年陕西省西安市高新一中中考七模数学试题一、单选题1.2024-的相反数是( )A .2024B .12024-C .2024-D .120242.若54A ∠=︒,则A ∠补角的大小是( )A .146︒B .126︒C .46︒D .36︒3.某品牌椅子的侧面图如图所示,DE 与地面AB 平行.若120DEF ∠=︒,50ABD ∠=︒,则ACB =∠( )A .50︒B .60︒C .65︒D .70︒4.将直线1:3l y ax =+关于x 轴对称后,所得直线2l 过点()3,1,则直线2l 的表达式为( )A .233y x =-+B .433y x =-+C .233y x =-D .433y x =- 5.如图,在ABCD Y 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若∠B =60°,AB =2,则ADE ∆的面积为( )A .8B .C .D .46.如图所示,在ABC V 中,4AB AC ==,90A ∠=︒,以点A 为圆心,以AB 的长为半径作»BC,以BC 为直径作半圆¼BFC ,则阴影部分的面积为( )A .12π8+B .8C .8π8+D .2π8+7.已知二次函数2y ax bx c =++的部分图象如图所示,则下列结论正确的是( )A .0abc >B .关于x 的一元二次方程20ax bx c ++=的根是12x =-,23x =C .a b c b +=-D .43a b c +=二、填空题8.实数a 、b 、c 在数轴上的对应点的位置如图所示.若a b =,则a c +0(填“>”“<”或“=”)9.用菱形按照如图所示的规律拼图案,其中第1个图案中有1个菱形,第2个图案中有3个菱形,第3个图案中有5个菱形,…,按此规律排列下去,则第2024个图案中菱形的个数为.10.如图,正六边形ABCDEF 的两个顶点与正方形AGDH 的两个顶点重合,且正方形与正六边形的中心(点O )重合,则HAB ∠=度.11.菱形ABCD 的边长为4,连接AC ,30BAC ∠=︒,则AC 长为.12.如图,过()0k y x x =>的图象上点A ,分别作x 轴,y 轴的平行线交1y x=-的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ++=,则k 的值为13.如图,在矩形ABCD 中,4,2AD AB ==,点E 、点F 分别是边,AB BC 的中点,四边形EBFG 是矩形.若将矩形EBFG 绕点B 顺时针旋转()090αα︒︒<<︒得到四边形BE G F ''',连接DF ',在旋转过程中,当E G DF '''⊥时,点C 到直线DF '的距离为.三、解答题14.计算:(2202411-.15.解不等式组:543213x x x +<⎧⎪-⎨+>-⎪⎩. 16.先化简:2241244x x x x -⎛⎫-÷ ⎪--+⎝⎭,然后从0,2,4中选取一个合适的数作为x的值代入求值.17.如图,已知⊙O 和点P (点P 在⊙O 内部),请用直尺和圆规作⊙O 的一条弦AB ,使得弦AB 经过点P 且最短(要求不写作法,保留作图痕迹).18.如图,已知等边三角形ABC ,延长BA 至点D ,延长AC 至点E ,使AD =CE ,连接CD ,BE .求证:∠BCD =∠ABE .19.如图所示的平面直角坐标系中,ABC V 的三个顶点坐标分别为()3,2A -,()1,3B -,()2,0C -,111A B C △与ABC V 关于坐标原点O 位似,且相似比为2:1.(1)在x 轴下方,画出111A B C △;(2)直接写出1OA OA=______. 20.某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.在一个不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出一个球,则摸出这个球是红球的概率是______.(2)活动设置了一等奖和二等奖两个奖项,一等奖的获奖率低于二等奖.摸球规则如下:从袋中随机摸出一个球,不放回,再从袋中剩余的两个球中随机摸出一个球.规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖项,请写出它们分别对应的奖项,并说明理由.21.“圣诞节”前期,某水果店用1000元购进一批苹果进行销售,由于销售良好,该店又以2500元购进同一种苹果,第二次进货价格比第一次每千克贵了1元,第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍.求该水果店第一次购进苹果的单价.22.从燃油车时代的“市场换技术”,到新能源汽车赛道的突飞猛进,中国在全球汽车产业的地位不断提高,众多中国车企正积极融入全球产业链,与其他国家共享绿色发展最新成果.现有一款新能源汽车在充满电后,汽车行驶的路程x ()km 与剩余电量y ()kW h ⋅之间满足一次函数关系.该汽车每公里耗电0.1kW h ⋅,汽车行驶了100km 时剩余电量为40()kW h ⋅,为保证汽车内电子系统的正常工作,当电量低于2kW h ⋅时,汽车将无法正常行驶.(1)求y ()kW h ⋅与x ()km 之间的函数表达式;(2)该款汽车充满电后最多可以行驶多少千米?23.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按4:4:2的比例计算出每人的总评成绩.小华、小明的三项测试成绩和总评成绩如表,这20名学生的总评成绩频数分布直方图(每组含最小值,不含最大值)如图.(1)在摄影测试中,七位评委给小明打出的分数如下:66,72,69,69,75,69,70.则小明摄影测试成绩为______分;(2)请你计算出小明的总评成绩;(3)此次测试20名同学的总评成绩平均数是76.4分,计划选拔10名同学进入小记者站,小华认为她的总评成绩高于平均分,所以她一定能入选,你认为小华的说法正确吗?请说明理由.24.如图,小唯和小华想利用所学的知识测量教学楼AB 的高度.由于教学楼下种有草坪,无法到达底部,小华先在教学楼周围的平地E 处放置一个测倾器,测得楼顶仰角为27︒,测倾器高为1米,小唯在距离小华正前方15米的点F 处,利用自制的直角三角形纸板GPQ 测量,90GPQ ∠=︒,40cm GP =,30cm PQ =,用眼观察到G 、Q 、B 在同一条直线上,直角边GP 与地面AF 平行,小唯的眼睛与地面的距离 1.6m FG =,CE FG AB 、、均垂直于地面AE ,求教学楼AB 的高度.(结果保留整数,参考数据:sin 270.45cos270.89tan270.5︒≈︒≈︒≈,,)25.如图,ABC V 内接于O e ,AB 为O e 的直径,ACB ∠的平分线交O e 于点D ,过点D 作直线l 交CB 的延长线于点E ,且BDE DCE ∠=∠.(1)求证:DE 是O e 的切线;(2)若O e 的半径为52,4AC =,求DB 的长. 26.【情境探究】小明和小强做弹力球游戏.游戏规则如下:小明抛出弹力球,弹力球落地后弹起再落下,小强在某个位置放置一块接球板,若弹力球在第二次落地前碰到接球板则小强胜(球与接球板触碰),否则小明胜.【数学建模】弹力球两次运动轨迹均可近似看成抛物线,如图所示.一次游戏过程中:小明站在起点O 处抛弹力球,以O 为坐标原点,水平方向直线和竖直方向直线分别为x 轴和y 轴建立平面直角坐标系,弹力球从离地面2米的A 处抛出,第一次落地前,球在距离起点O 水平距离为2m 处,达到飞行最大高度为3.6m ,弹力球在B 处落地后再次弹起,第二次飞行的水平距离=4BC 米,且飞行的最大高度为第一次的一半.【问题解决】(1)求弹力球第一次着地前抛物线的函数表达式;(2)小强在距起点8米处放置接球板EF ,EF 垂直地面于点E ,且=1EF m ,请通过计算判断谁会获胜.27.(1)如图1,ABC V 中,AB AC a ==,8BC =,则a 的最小整数值为______.(2)如图2,ABC V 中,90C ∠=︒,3BC =,4AC =,点O 为AB 边的中点,过O 作OE OF ⊥,OE 、OF 分别交边BC 、AC 于E 、F ,请求出EF 长度的最小值.(3)如图3,有一块四边形草地ABCD ,规划部门计划在这块空地内种植花卉,计划在边BC 、CD 上分别取点E 、F ,利用小路AE 、AF 把这块草地分割开,在四边形AECF 内种植郁金香,其他区域种植草坪,EF 为观赏长廊.已知AD BC ∥,AB =,100AD = m ,140BC = m ,45B ∠=︒.设计师认为当tan 2EAF ∠=时,规划更美观,已知种植郁金香每平米20元,请帮助规划部门解决问题:当观赏长廊EF 长度最小时,求出种植郁金香所需费用(观赏长廊所占面积忽略不计).。
西安铁一中初三数学第七次模拟数学试卷Word版
西安铁一中初三数学第七次模拟数学试卷Word版级:姓名:一、选择题(共10 小题,每题3 分,计30 分.每小题只有一个选项是相符题意的)1.下列实数中的无理数是( )A. 0.6 B .12C.2D. -92.如图,该几多体的主视图是()3.下列运算正确的是()A.a³-a²=a B. a³.a4=a12 C. a6÷a²=a³D. (-a²)³=-a6 4.将一副三角板如图部署,使点A 在DE 上,BC∥DE,已知:∠C=45°,∠D=30°,则∠ABD 的度数为( )A.10ºB.15º C.20º D.25º5.已知正比例函数y=(m-1)x,若y 的值随x 的增大而增大,则点(m,1-m)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6.如图,BE,CF 为△ABC 的两条高,若AB=6,BC=5,EF=3,则AE 的长为( )A. 185B.4C.215D.2457.在平面直角坐标系中,将直线l1 :y=-4x-1 平移后,得到直线l2 :y=-4x+7,则下列平移操纵要领正确的是( )A.将l1 向右平移8 个单位长度B.将l1 向右平移2 个单位长度C.将l1 向左平移2 个单位长度D.将l1 向下平移8 个单位长度8.如图,四边形ABC D是边长为8 的正方形,点E 在边AB 上,BE=6,链接BD,CE,过点E 作EF∥BC,分别交BD、CD 于G、F 两点,若点M、N 分别是DG、CE 的中点,则MN的长为()A.5 B. 41 C .27 D. 329.如图,在平面直角坐标系中,已知⊙A 议决点E、B、O.C 且点O 为坐标原点,点C 在y 轴上,点E 在x 轴上,A(-3.2)则cos∠OBC的值为( )A.23B.313C .213D.2第 1 页第 2 页10.已知二次函数y=x 2-bx+2 (-2≤b≤2),当 b 从-2 逐渐增加到 2 的历程中, 它所对应的抛物线的位置也随之变动,下列关于抛物线的移动偏向的描述中,正 确的是( )A 、先往左上方移动,再往左下方移动B 、先往左下方移动,再往左上方移动C 、先往右上方移动,再往右下方移动D 、先往右下方移动,再往右上方移动二、填空题(共 4 小题,每小题 3 分,计 12 分)11.不等式-13 x +1≤-5 的解集是 。
【精选试卷】西安高新一中校区中考数学专项练习测试题 (2)
一、选择题1.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y=4x ﹣12x 2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:22.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x-=+ B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-=D .6060(125%)30x x⨯+-= 3.如图,在半径为13的O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .10C .211D .434.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒5.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)6.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤7.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .548.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( )A .B .C .D .9.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <10.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°11.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A .53B .255C .52D .2312.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°13.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .2514.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,015.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .16.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.517.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .218.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A .12B .24C .3D .319.如图,在ABC 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒ 20.下列运算正确的是( )A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=21.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个22.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°23.2-的相反数是( ) A .2-B .2C .12D .12-24.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元 A .8B .16C .24D .3225.不等式x+1≥2的解集在数轴上表示正确的是( ) A . B . C .D .26.如图,点A ,B 在反比例函数y =1x(x >0)的图象上,点C ,D 在反比例函数y =k x(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为94,则k 的值为( )A .2B .3C .4D .27.下列各式化简后的结果为32 的是( ) A .6B .12C .18D .3628.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)29.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=- D .244(2)(2)x x x x -+=+-30.8×200=x+40 解得:x=120答:商品进价为120元. 故选:B . 【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题31.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数100100050001000050000100000“摸出黑球”的次数 36 387 2019 4009 19970 40008“摸出黑球”的频率 (结果保留小数点后三位)0.360 0.387 0.404 0.401 0.399 0.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 32.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.33.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为 .34.使分式x 2−1x+1的值为0,这时x=_____.35.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.36.分解因式:2x 3﹣6x 2+4x =__________.37.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).38.计算:82-=_______________.39.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______40.正六边形的边长为8cm,则它的面积为____cm 2.41.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.42.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.43.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.44.如图,⊙O是△ABC的外接圆,∠A=45°,则cos∠OCB的值是________.45.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.46.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m 3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01). 47.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.48.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.49.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C落在该反比例函数图象上,则n 的值为___.50.若一个数的平方等于5,则这个数等于_____.51.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.52.10a b b --=,则1a +=__.53.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 54.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .55.计算:21(1)211x x x x ÷-+++=________.56.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .57.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.58.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.59.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.60.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.A 2.C 3.C 4.B 5.D 6.A 7.B 8.A 9.A 10.D 11.A 12.B 13.B 14.D 15.A 16.B 17.C 18.D 19.B 20.D 21.C 22.C 23.B 24.D 25.A 26.C 27.C28.D29.C30.无二、填空题31.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率32.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:33.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角34.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法35.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<36.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点37.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确38.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键39.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m+m=10解得m=此时AF=2 40.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD41.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【42.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E ∵∠B=90°∴∴BE=∴43.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(05144.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】45.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=46.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数0 07左右故男性中男性患色盲的概率为007故47.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣748.【解析】根据弧长公式可得:=故答案为49.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA50.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质51.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM52.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要53.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2 m=0有一个根为0∴m2﹣2m=54.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式55.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛56.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB =×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G57.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到58.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达59.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣4060.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.详解:当y=7.5时,7.5=4x﹣12x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意;∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.2.C解析:C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.3.C解析:C【解析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出222OG OB BG =-=,证出EOG ∆是等腰直角三角形,得出45,222OEG OE OG ∠=︒==,求出30OEF ∠=︒,由直角三角形的性质得出122OF OE ==,由勾股定理得出11DF =,即可得出答案. 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,221392OG OB BG =-=-=,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,222OE OG ==, ∵75DEB ∠=︒,∴30OEF ∠=︒,∴122OF OE ==, 在Rt ODF ∆中,2213211DF OD OF =-=-=,∴2211CD DF ==;故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.4.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.解:直线//m n,21180ABC BAC∴∠+∠∠+∠=+︒,30ABC=︒∠,90BAC∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键. 5.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 6.A解析:A【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x 取何值时,y>0.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴1,2bxa=-=∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <0,∴a ﹣(﹣2a )+c=3a+c <0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于0.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c ).7.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 8.A 解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 9.A解析:A【解析】【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答.【详解】解:a b =,∴原点在a ,b 的中间, 如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.10.D解析:D【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.A解析:A【解析】【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .【详解】在直角△ABC 中,根据勾股定理可得:AB 222252AC BC =+=+=()3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 5AC AB ==. 故选A .【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.12.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a ∥b ,∴∠2=∠3=110°,故选B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.13.B解析:B【解析】【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m 11(5)25mx dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B.【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.14.D解析:D【解析】【分析】根据1l 与2l 关于x 轴对称,可知2l 必经过(0,-4),1l 必经过点(3,-2),然后根据待定系数法分别求出1l 、2l 的解析式后,再联立解方程组即可求得1l 与2l 的交点坐标.【详解】∵直线1l 经过点(0,4),2l 经过点(3,2),且1l 与2l 关于x 轴对称,∴直线1l 经过点(3,﹣2),2l 经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.15.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.16.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.17.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB=22.故选C.18.D解析:D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.19.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.20.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.21.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.22.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.23.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .24.D解析:D【解析】【分析】设每块方形巧克力x 元,每块圆形巧克力y 元,根据小明身上的钱数不变得出方程3x +5y -8=5x +3y +8,化简整理得y -x =8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x +3y +8)-8x ,化简得3(y -x )+8,将y -x =8代入计算即可.【详解】解:设每块方形巧克力x 元,每块圆形巧克力y 元,则小明身上的钱有(3x +5y -8)元或(5x +3y +8)元.由题意,可得3x +5y -8=5x +3y +8,,化简整理,得y -x =8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x +3y +8)-8x =3(y -x )+8=3×8+8=32(元).故选D .【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.25.A解析:A【解析】试题解析:∵x+1≥2,∴x ≥1.故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.26.C解析:C【解析】【分析】由题意,可得A (1,1),C (1,k ),B (2,12),D (2,12k ),则△OAC 面积=12(k-1),△CBD 的面积=12×(2-1)×(12k-12)=14(k-1),根据△OAC 与△CBD 的面积之和为94,即可得出k 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2016年西安市高新一中第七次模拟考试
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)
1. 计算2016-1=( )
A. 2016
B. -2016
C. 12016
D. -12016
2. 下列水平放置的几何体中,俯视图是矩形的是( )
3. 计算(-a)3·(-a)2的结果是( )
A. a5
B. -a5
C. a6
D. -a6
4. 如图,直线l1∥l2,AB ⊥CD ,∠1=22°,那么∠2的度数是( )
第4题图
A. 68°
B. 58°
C. 22°
D. 28°
5. 把直线y =2x 向左平移两个单位长度后的直线表达式是( )
A. y =2x -2
B. y =2x +2
C. y =2x +3
D. y =2x +4
6. 不等式组⎩⎪⎨⎪⎧x -1>04-2x≤0的解集在数轴上表示为( )
7. 如图,AD 是△ABC 的中线,∠ADC =45°,BC =2,把△ACD 沿AD 对折,使点C 落在点E 的位置,则BE 的长为( )
A. 23
B. 3
C. 2
D. 22
第7题图 第8题图 第9题图
8. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED =120°,则图中阴影部分的面积之和为( ) A. 3 B. 23 C. 32
D. 1 9. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 在BD 的延长线上,且△EAC 是等边三角形,若AC =8,AB =5,则ED 的长等于( )
A. 23
B. 43
C. 43-3
D. 23+3
10. 已知点A(1,0)和点B(3,0),若抛物线y =-(x -32
)2+k 与线段AB 有且只有一个公共点,则k 的取值范围是( ) A. 14<k ≤94 B. 14≤k ≤94
C. 14<k <94
D. 14<k ≤94
或k =0 第Ⅱ卷(非选择题 共90分)
二、填空题(共4小题,每小题3分,计12分)
11. 因式分解:x3y -x =________.
12. 请从以下两个小题中任选一个作答,若多选,则按第一题计分.
A. 如图,已知⊙O 的周长等于8π cm ,则圆内接正六边形ABCDEF 的边心距OM 的长为________cm.
B. 某同学在距电视塔BC 塔底水平距离200米的A 处,看塔顶C 的仰
角为20°(不考虑身高因素),则此塔BC的高约为________米.(精确到0.01米)
第12A题图第12B题图
13.如图,点A是双曲线y=-9
x在第二象限分支上的一个动点,连接
AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终
在双曲线y=k
x上运动,则k的值为________.
第13题图第14题图
14. 如图,在Rt△ABC中,∠ACB=90°,AB=8,cosB=1
2,动点P
在AB边上,动点Q在AC边上,且∠CPQ=90°,则线段CQ长的最小值为________.
三、解答题(共11小题,计78分,解答应写出过程)
15. (本题满分5分)
计算:12+2-1-4cos30°+|-1 2|.
16. (本题满分5分)
解方程:x-2
x+2
-1=
3
x2-4
.
17. (本题满分5分)
如图,点A、B为直线MN两侧的两点,在直线MN上,求作一点P,使AP=BP.(用尺规作图,不写作法,但保留作图痕迹)
第17题图
18. (本题满分5分)
某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.
组
别
正确字
数x
人
数A0≤x<810 B
8≤x<
16
15 C
16≤x<
24
25 D
24≤x<
32
m E
32≤x<
40
n
第18题图
根据以上信息完成下列问题:
(1)统计表中的m=________,n=________,并补全频数分布直方图;
(2)扇形统计图中“C组”所对应的圆心角的度数是________;
(3)规定“听写汉字正确的个数少于24个”为不合格,已知该校共有900人,计算本次听写比赛不合格的学生人数.
19. (本题满分7分)
如图,三点A、B、C在同一条直线上,AB=2BC,分别以AB和BC为边作正方形ABEF和正方形BCMN,连接FN,EC.
求证:FN=EC.
第19题图
20. (本题满分7分)
已知,如右图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1∶2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B 的仰角为76°.
求:(1)坡顶A到地面PO的距离;
(2)古塔BC的高度.(结果精确到1米)
(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
第20题图
21. (本题满分7分)
现正是樱桃热销的季节,某水果零售商店分两批次从批发市场共购进樱桃40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.
(1)设第一、二次购进樱桃的箱数分别为a箱、b箱,则a=______,b=______;
(2)若商店对这40箱樱桃先按每箱60元销售了x箱,其余的按每箱35元全部售完.
①求商店销售完全部樱桃所获利润y(元)与x(箱)之间的函数关系式;
②当x的值至少为多少时,商店才不会亏本?并说明理由.
22. (本题满分7分)
某中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,共2名男生和1名女生被推荐为候选主持人.
(1)如果从3名候选主持人中随机选拔1名主持人,选到女生的概率为________;
(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或画树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.
23. (本题满分8分)
如下图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于点E,⊙O的切线BF交AD的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5,求BF的长.
第23题图
24. (本题满分10分)
如图,在平面直角坐标系xOy中,菱形ABCD的三个顶点A、B、D在坐标轴上,且已知点A(-3,0)、点B(0,4),现有抛物线m经过点B、C 和OD的中点E.
(1)点C、D的坐标是C( ),D( );
(2)求抛物线m的解析式,并在图中画出抛物线示意图;(3)在抛物线m上是否存在一点P,使得S△PBC=S△PDC,若存在,求出点P的坐标,若不存在,请说明理由.
第24
题图
25. (本题满分12分)
【阅读理解】我们曾经见过“等邻边四边形”,即有一组邻边相等的
凸四边形.
正方形是一个特殊的“等邻边四边形”,如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,我们把△ABE绕点A逆时针旋转90°至△ADG,再通过证明△AEF与△AGF全等,从而发现BE、EF、FD之间的数量关系是EF=BE+FD.
【探究引申】如图②,在等邻边四边形ABCD中,AB=AD,∠BAD≠90°,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足怎样的数量关系时,仍有EF=BE+FD.并证明你的结论.
【问题解决】如图③,在等邻边四边形ABCD中,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,在BC、CD上分别取点E、F,且AE⊥AD,DF=40(3-1)米,求线段EF的长.(结果保留根号)
第25题图
答案。