江苏省靖江市新港城初级中学九年级数学双休日作业(11.2811.29)(无答案) 苏科版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第5题)

(第3题)

(第4题)

九年级数学双休日作业(11.28-11.29)

一、选择题

1.一元二次方程x 2

-x -2=0的解是( ). A .x 1=1,x 2=2

B .x 1=1,x 2=-2

C .x 1=-1,x 2=-2

D .x 1=-1,x 2=2

2.已知1是关于x 的一元二次方程(m ﹣1)x 2

+x+1=0的一个根,则m 的值是( ) A . 1 B . ﹣1 C .0

D . 无法确定

3.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔60海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( ).

A .302海里

B .303海里

C .60

海里 D .306海里 4.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为6m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是 ( ).

A .A

B =12m B .MN ∥AB

C .△CMN ∽△CAB

D .CM ∶MA =1∶2 5. 如图,已知∠POx=120°,OP=4,则点P 的坐标是( )

A . (2,4)

B . (﹣2,4)

C . (﹣2,2

D . (﹣2

,2)

6.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( ).

A .2

B . 3

C . 32

D . 3

2

二、填空题

7.已知:5:2x y =,那么():x y y +=

8.如图,已知⊙O 的半径为5,⊙O 的一条弦AB 长为8,那么以4为半径的同心圆与弦AB 位置关系是

9.如图,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,

与边AC 相交于点E . 如果3AD =,(第6题)

(第14题)

(第15题)

C

4BD =,2AE =,那么AC = .

10.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .

11.如图,添加一个条件: ,使△ADE ∽△ACB .

12.已知y 是关于x 的函数,函数图象如图所示,则当y >0时,自变量x 的取值范围是 . 13.如图,一块直角三角板ABC 的斜边AB 与量角器的直径恰好重合,点D 对应的刻度是58°,则∠ACD 的度数为

(第13题)

14.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODA 等于 .

15.如图,在Rt △ABC 中,∠B =90°, sin ∠BAC =1

3

,点D 是AC 上一点,且BC =BD =2,将Rt △

ABC 绕点C 旋转到Rt △FEC 的位置,并使点E 在射线BD 上,连接AF 交射线BD 于点G ,则AG 的长

为 . 三、解答题

16.(1)解方程:(4x -1)2-9=0 (2)计算:011

tan 601(2014)()cos303

π-︒-+++-︒

O

A

B

(第8题)

(第9题)

B

C

D

E

A

B

C

D

E

O

17.如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E .(1)求证:△BPD ∽△CEP .

(2)是否存在这样的位置,使PD ⊥DE ?若存在,求出BD 的长;若不存在,说明理由.

18.如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD =CB ,延长CD 交BA 的延长线于点E .

(1)求证:CD 为⊙O 的切线.

(2)若圆心O 到弦DB 的距离为1,∠ABD =30°,求图中阴影部分的面积.(结果保留π)

19.2014年12月31日晚23时35分许,上海外滩陈毅广场发生拥挤踩踏事故.为了排除安全隐患,因此无锡市政府决定改造蠡湖公园的一处观景平台.如图,一平台的坡角∠ABC =62°,坡面长度

AB =25米(图为横截面),为了使平台更加牢固,欲改变平台的坡面,使得坡面的坡角∠ADB =50°,

则此时应将平台底部向外拓宽多少米?(结果保留到0.01米)(参考数据:sin 62°≈0.88,cos 62°≈0.47,tan 50°≈1.20)

20.某新建公园有一个圆形人工湖,湖中心O 处有一座喷泉.小明为测量湖的半径,在湖边选择A 、

B 两个点,

在A 处测得45OAB ∠=o ,在AB 延长线上的C 处测得30OCA ∠=o

,已知50BC =米,求人工湖的半径.(结果保留根号)

21.如图,在△ABC 中,∠A =90°,AB =2cm ,AC =4cm .动点P 、Q 分别从点A 、点B 同时出发,相向而行,速度都为1cm/s .以AP 为一边向上作正方形APDE ,过点Q 作QF ∥BC ,交AC 于点F .设运动时间为t (0≤t ≤2,单位:s),正方形APDE 和梯形BCFQ 重合部分的面积为S (cm 2

) . (1)当t = s 时,点P 与点Q 重合. (2)当t = s 时,点D 在QF 上.

(3)当点P 在Q ,B 两点之间(不包括Q ,B 两点)时,求S 与t 之间的函数表达式.

B

O

C

A

相关文档
最新文档