七年级数学有理数的乘方
人教版数学七年级上册 有理数的乘方及混合运算
有理数的乘方及混合运算(基础)【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power ). 即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数. 要点诠释:(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即 . 要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数.要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用.【典型例题】类型一、有理数乘方1. 把下列各式写成幂的形式:(1)22225555⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (2)(-3.7)×(-3.7)×(-3.7)×(-3.7)×5×5;(3)xxxxxxyy .2.计算:(1)3(4)-(2)(3)(4)(5)⎛⎫⎪⎝⎭335(6)335(7)22×3()(8)22×3举一反三:【变式1】计算:(1)(-4)4(2)23(3)225⎛⎫⎪⎝⎭(4)(-1.5)2【变式2】(2015•长沙模拟)比较(﹣4)3和﹣43,下列说法正确的是()A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.虽然它们底数不同,但运算结果相同类型二、乘方的符号法则3.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫⎪⎝⎭,-(-2)2010 34-4(3)-43-举一反三:【变式】计算:(-1)2009的结果是( ).A .-lB .1C .-2009D .2009类型三、有理数的混合运算4.计算: (1)()⎡⎤⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎣⎦211-1-0.5××2--33(2)()⎡⎤⎣⎦341-1-×2--36 (3)3201111(1+-2.75)×(-24)+(-1)--238(4)33211-+|-2-3|(-0.1)(-0.2)举一反三:【变式1】计算:4211(10.5)[2(3)]3---⨯---【变式2】计算:2421(2)(4)12⎛⎫-÷-⨯- ⎪⎝⎭5. 20032004(2)(2)-+-= ( )(A )2- (B )4007(2)- (C )20032 (D )20032-举一反三: 【变式】计算:7734()()43-⨯-【巩固练习】一、选择题1.(2015•郴州)计算(﹣3)2的结果是( )A .﹣6B . 6C . ﹣9D . 92.下列说法中,正确的是( )A .一个数的平方一定大于这个数;B .一个数的平方一定是正数;C .一个数的平方一定小于这个数;D .一个数的平方不可能是负数.3.下列各组数中,计算结果相等的是 ( ).A .-23与(-2)3B .-22与(-2)2C .22()5与225D .(2)--与2-- 4.式子345-的意义是 ( ) A. 4与5商的立方的相反数 B.4的立方与5的商的相反数 C.4的立方的相反数除5 D.45-的立方 5.计算(-1)2+(-1)3=( )A .-2B .- 1C .0D .26.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649…由此可判断7100的个位数字是( ) .A .7B .9C .3D .17.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第6次后剩下的绳子的长度为( ) .A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米二、填空题8.在(-2)4中,指数是________,底数是________,在-23中,指数是________,底数是________,在225中底数是________,指数是________. 9.(2015•湖州)计算:23×()2= . 10.()3--= ;52-= ;313⎛⎫-- ⎪⎝⎭= ;225= . 11. 3[(3)]_______---=,233(2)_______-⨯-=12.213____+= , 2135_____++=,21357_____+++= ,……,从而猜想:135+++……22005_____+=.13. 21(2)________3-=三、解答题14.(2014秋•渭城区校级期末)﹣23+(﹣3)2﹣32×(﹣2)2.15. 已知x 的倒数和绝对值都是它本身,y 、z 是有理数,并且2|3|(23)0y x z +++=,求32525x yz x y --+-的值.。
七年级数学有理数的乘方
退出
100
返回 上一张下一张
2 ×2
… ×
×2 ×2
记作210 记作 an
10个2
a×a
… × ×a
×a
n个a 求n个相同因数a的积的运算叫做乘方
议一议 !
3
2
与 (-3) 结果相等吗?
2
3 读作-3的 平方 所以
2
2
2 2 (- 3 ) 读作 3 的相反数,而
(-3) =9
-3 =-9
2
探究性问题 乘方的结果叫做幂,设n为正整数,
(-1) (-1) (-1)
1 3
= =
-1 ________ -1 ________
(-1) (-1) (-1) (-1)
正数的任何次幂都是正1 (源自 ) 231 =- 8
数 负数的偶次幂是正数, 奇次幂是负数
注意:(1)负数的乘方,在书写时一定 要把整个负数(连同符号),用小括 号括起来.这也是辨认底数的方(2) 分数的乘方,在书写的时一定要把 整个分数用小括号括起来. 3 2 1 ( ) 、 ( -3 ) 如: 2
退出
返回 上一张下一张
课堂小结 1、通过这节课的学习,你有 哪些收获?
猜一猜
珠穆朗玛峰是世 界的最高峰,它 的海拔高度是 8848米。
≈
把一张足够大的 厚度为0.1毫米 的纸,连续对折 30次的厚度能超 过珠穆朗玛峰。 这是真的吗?
同学们再见!
;
/ 菲皇娱乐
1.5有理数的乘方(1)
问题情境
新人教版数学七年级上有理数的乘方课件
(5)、 0.=13 -0;.001 (6)、
(7)、 1=2n ;1 (8)、
点击中招:
= =
;.112n31
2
-1
1
8
2 若
x
3
=27,
=y225,xy<0,则x+y的值为____
若a、b互为相反数,c、d互为倒数,则
a b=2009 0 = cd 2008 1
课堂小结 通过这节课的学习,你有哪些收获?
思考:
(-1)的偶数次幂为_1__
(-1)的奇数次幂为_-_1_
1的任何次幂为__1__
0的正整数次幂为_0___
0.13 ___, 1 4 _____ 2
104 _____,104 ____, 103 _____,103 _____
例1 :计算 (1) 53 =125 (2) 4 2 =16 (3) (-3)4 =81
22 2
100
计算,在这个积中有100个2相乘。 这么长的算式有简单的记法吗?
§1.5.1有理数的乘方
知识目标:了解乘方的意义并能正确的读、写; 掌握幂的性质并能进行乘方的运算。
能力目标:培养观察、类比、归纳、知识迁移的能力。 通过乘方运算,培养运算能力;
教学重难点: 重点:有理数乘方的意义; 难点:幂、底数、指数的概念及其表示
课堂小结
1、通过这节课的学习,你有 哪些收获?
2、乘方的结果叫做幂,设n为正整数,
(-1)2n+1=_-1____
(-1)
2n
=
___1_____
珠穆朗玛峰是世 界的最高峰,它 的海拔高度是 8848米。
猜一猜
≈ 把一张足够大的 厚度为0.1毫米
七年级上册数学教案《有理数的乘方》
七年级上册数学教案《有理数的乘方》教学目标1、理解并掌握有理数的乘方、幂、底数、指数的概念及含义。
2、能够正确进行有理数的乘方运算。
教学重点理解并掌握有理数乘方的意义及运算。
教学难点有理数乘方中幂、指数、底数的概念及其相互关系的理解。
教学过程一、情境导入1、列式求边长为3的正方形面积。
3 × 3 = 3² = 9读作3的平方(或3的二次方)2、列式求边长为5的正方体体积。
5×5×5= 5³= 125读作5的立方(或5的三次方)二、讲授新知1、仿照上述算式,写出这些算式的简便写法或读法。
(-2)×(-2)×(-2)×(-2)记作:(-2)^4 读作:-2的四次方(-2/5)×(-2/5)×(-2/5)×(-2/5)记作:(-2/5)^5 读作:-2/5的五次方3×3…3×3(n个3相乘)记作:3^n 读作:3的n次方a×a×a×…a(n个a相乘)记作:a^n 读作:a的n次方思考:这4个式子有什么共同特征,表示什么运算?因数有什么特征?2、下定义乘方:n个相同因数的积的运算。
记作:读作:a的n次方幂举例:在9^4中,底数是9,指数是4,9^4读作“9的4次方”或“9的4次幂”。
乘方定义理解需注意:①指数n取正整数。
②底数a可代表所有数,可以是正数、负数、0。
③一个数可看作这个数本身的一次方,如 5 = 5^1,指数1通常省略不写。
④书写需注意,当底数为负数、分数时,要用括号把整个底数括起来。
3、计算(1)(-4)^3=(-4)×(-4)×(-4)= 16 ×(-4)= -64(2)(-2)^4= (-2)×(-2)×(-2)= 4 ×(-2)= -8(3)(-2/3)^3= (-2/3)×(-2/3)×(-2/3)= 4/9 × (-2/3)= -8/274、观察上面式子的结果,你发现负数的幂的符号和指数有什么关系?当指数是奇数时,负数的幂是负数;当指数是偶数时,负数的幂是偶数。
七年级数学《有理数的乘方(一)》教案
七年级数学《有理数的乘方(一)》教案教学内容:P41-43教学重点:数的乘方运算。
教学难点:乘方运算的探索及底数是负数的幂的符号的确定一、板书课题,揭示目标1.今天,我们一起来学习1.6有理数的乘方。
2.学习目标(1)理解有理数乘方的意义(2)掌握幂的符号法则,会进行有理数乘方运算二、学生自学前的指导怎样才能达到这些目标呢?主要靠大家自学。
下面,请同学们按照指导(手指投影屏幕)自学。
自学指导自学P41-42的内容,思考并回答:1、求n 个相同因数的乘积的运算,叫做乘方.乘方的结果叫做幂,n a 中的a 叫做底数,n 叫做指数.读作:a 的n 次方.当n a 看作是a 的n 次方的结果是,读作a 的n 次幂.2、乘方:n 个相同因数的连乘运算.(特殊的乘法)幂:n 个相同因数的连乘的积.底数:相同的因数.指数:相同因数的连乘运算中,相同因数的个数.3、一个数可以看做这个数的一次方.即5就是15,通常指数是1时,省略不写.三、学生自学,教师巡视学生看书,教师巡视,确保人人紧张看书。
四、检验学生自学情况。
1、计算:(1)4)2(- (2) 42- (3)3)32(- (4)-323 (1)要求学生读出运算,指出底数和指数,说出运算的实质.(2)应用幂的符号确定原则,先定符号,再算绝对值.2、P43:1、2五、引导更正,指导运用1.学生训练。
(1)布置任务:看完了的同学,请举手。
(学生举手)好!下面请XX做第43页练习第3(1)题,其余的同学在座位上练习……请XX做第43页练习第2(1)题……(2)学生练习,教师巡视,把数学练习中的典型错误写在黑板上(同一题下)。
观察板演,找错误。
请大家看黑板,找错误。
找到的请举手。
2.学生更正。
3.学生讨论,评判。
(1)先看第一位同学做的(再看第二位同学做的……)[若对,则师:认为对的举手,师判“√”][若有错,则引导学生错误的原因及更正的道理][估计出现的错误](2)第3(1)题中,符号出错。
七年级数学上册《有理数的乘方》教案、教学设计
3.注重培养学生的观察、分析、总结能力,引导学生发现乘方的性质和规律,提高学生的数学思维能力。
4.考虑到学生的年龄特点,采用生动、有趣的教学方法,激发学生的学习兴趣,营造轻松愉快的学习氛围。
5.关注学生的学习情感,鼓励学生积极参与课堂讨论,培养合作精神,提高学生的自信心和自主学习能力。
(三)教学设想
1.创设情境,引入乘方概念
利用生活中的实例,如平方土地面积、立方体体积等,引导学生理解乘方的意义。通过实际操作,让学生感受乘方的产生过程,从而加深对乘方概念的理解。
2.分层教学,突破难点
针对学生的认知差异,设计不同层次的例题和练习题。对基础薄弱的学生,重点辅导乘方的基本运算;对中等程度的学生,引导他们发现乘方的性质,提高解题能力;对优秀学生,设置拓展题,培养他们的数学思维能力。
(2)学生回答:“边长乘以边长,即a×a。”
(3)教师继续提问:“如果这个正方体的体积怎么计算呢?如果边长为a,那么它的体积是多少呢?”
(4)学生回答:“边长的三次方,即a×a×a。”
通过这个实例,引出乘方的概念,让学生明白乘方是表示几个相同因数相乘的运算。( Nhomakorabea)讲授新知
1.教学内容:讲解有理数乘方的定义、运算方法以及乘方的性质。
教学过程:
(1)教师讲解有理数乘方的定义,让学生明白乘方是指数运算的一种形式,表示几个相同因数相乘。
(2)教师举例说明有理数乘方的运算方法,如:2^3=2×2×2,(-3)^2=(-3)×(-3)。
(3)引导学生发现乘方的性质,如:负数的奇数次幂是负数,偶数次幂是正数;零的任何正整数次幂都是零。
(4)教师通过例题,演示乘方运算的步骤和注意事项,如符号的处理、计算的准确性等。
人教版数学七年级上1.5.1有理数的乘方(教案)
一、教学内容
本节课选自人教版数学七年级上册第1章《有理数》1.5节《有理数的乘方》,主要包括以下内容:
1.有理数的乘方的定义及意义;
2.正整数指数幂的性质;
3.负整数指数幂的性质;
4.有理数的乘方的运算方法;
5.乘方的实际应用。
二、核心素养目标
1.让学生掌握有理数乘方的概念和性质,培养他们的数学抽象和逻辑推理能力;
同时,关注学生的个体差异。在教学中,我发现部分学生对乘方的理解速度较慢,运算能力较弱。针对这一问题,我将在课后对这些学生进行个别辅导,提高他们的乘方运算能力。
此外,注重教学评价与反馈。在本次教学中,我及时给予了学生评价和反馈,但部分学生对此并不够重视。为了提高教学效果,我将在今后的教学中,更加注重评价与反馈的针对性和实效性,让学生能够真正认识到自己的不足,从而提高学习效果。
其次,注重乘方运算规律的讲解与练习。在讲授过程中,我发现学生对正整数指数幂的性质掌握较好,但对负整数指数幂的运算规律掌握不够熟练。因此,我将在今后的教学中,增加对负整数指数幂的讲解和练习,帮助学生巩固知识点。
此外,加强小组合作与讨论。在实践活动和小组讨论环节,学生们的参与度较高,能够积极发表自己的观点。但我也发现,部分学生在讨论过程中存在依赖心理,不够积极主动。因此,我将在今后的教学中,加强对学生的引导,鼓励他们独立思考,提高小组合作的效果。
2.培养学生运用有理数乘方解决实际问题的能力,提升数学建模和数学应用的核心素养;
3.引导学生通过探索有理数乘方的规律,培养数据分析与数学运算的核心素养;
4.通过小组合作交流,培养学生沟通与合作的能力,提高数学交流的核心素养。
三、教学难点与重点
七年级数学《有理数的乘方》教案设计优秀7篇
有理数的乘方教案篇一一、学什么1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。
二、怎样学归纳概念n个a相乘aaa= ,读作:。
其中n表示因数的个数。
求相同因数的积的运算叫作乘方。
乘方运算的结果叫幂。
例1:计算(1)26(2)73(3)(3)4(4)(4)3例2:(1)()5(2)()3(3)()4【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?2、负数的幂的符号如何确定?思考题:1、(a2)2+(b+3)2=0,求a和b的值。
2、计算(2)2009+(2)20某某3、在右边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三学怎样1、其中一种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()A8个B16个C4个D32个2、一根长1cm的绳子,第一次剪去一半。
第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( )A()3mB()5mC()6mD()12m3、(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。
4、计算(1)(3)3(2)(0.8)2(3)02004(4)12004(5)104(6)()5(7)-()3(8)43(9)32(3)3+(2)223(10)-18(3)25、已知(a2)2+,b5,=0,求(a)3(b)2.2.6有理数的乘方(第2课时)一、学什么会用科学计数法表示绝对值较大的数。
二、怎样学定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。
例题教学例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。
截至20某某年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。
用科学记数法表示这个距离。
例2:用科学记数法表示下列各数。
七年级数学2.7有理数的乘方知识点解读有理数的乘方
知识点解读:有理数的乘方同学们,一张普通白纸的厚度只有0.01厘米,但是当你把这一张普通的白纸连续对折30次后,你知道有多厚吗?它的厚度竟然超过珠穆朗玛峰!你相信吗?通过对有理数乘方的学习,我们就会知道其中的奥妙了。
知识点一:有理数乘方的意义一般地,n 个相同的因数a 相乘,即n a a a ⋅⋅⋅个,记作a n ,读作a 的n 次方.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n 中,a 叫做底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可读作a 的n 次幂。
知识点二:如何进行乘方运算1.乘方和加、减、乘、除一样,也是一种运算,是乘法运算的特殊情况。
a n 就是表示n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;2.幂的符号法则:负数的奇次幂是负的,负数的偶次幂是正的,即(-a )2n =a 2n ,(-a )2n+1=-a 2n+1(n 是正整数),a 2n ≥0,即任何有理数的偶次幂是非负数;正数的任何次幂是正的; 0的任何次幂都是0;3.一个数可以看作这个数本身的一次方,如5就是51,通常指数为1时可以省略不写。
4.有理数的混合运算时,应注意的运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.例1 计算:(1)(-3)4;(2)(-8)3;(3)(-13)4 分析:根据乘方的意义可直接用乘法来求出各乘方的值。
解:(1)(-3)4=(-3) (-3) (-3) (-3)=81.(2)(-8)3=(-8) (-8) (-8)=-512.(3)(-13)4=(-13)(-13)(-13)(-13)=181. 说明:这里应特别注意“-”号问题,计算时也可以先根据符号法则确定其结果的符号,然后直接计算正数的乘方。
例2 计算(-0.125)12×813的值.分析:直接计算(-0.125)12与813有一定的难度,但观察发现0.125×8=1,于是提醒我们利用乘方的意义和乘法的运算律就能比较容易地求值了。
初一数学 有理数的乘除法及乘方
有理数的乘除法及乘方【要点】1、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同0相乘都得0; (3)多个有理数相乘: a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由负数的个数决定,当负数的个数为奇数,则积为负,当负数的个数为偶数,则积为正。
2、乘法运算律:(1)乘法交换律:a b b a ⨯=⨯ (2)乘法结合律:)(c b a c b a ⨯⨯=⨯⨯ (3)乘法分配律:c a b a c b a ⨯+⨯=+⨯)( 3、有理数除法法则:(1)法则:除以一个数等于乘以这个数的倒数(2)符号确定:两数相除,同号得正,异号得负,并把绝对值相除。
(3)0除以任何一个非零数,等于0;0不能作除数! 二、有理数乘方:1、n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂;用字母表示an a a a a 个⋅⋅⋅⋅记作na ,其中a 叫做底数,n 叫做指数,n a 的结果叫做幂;读法:na 读作a 的n 次方。
2、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
a n 与-a n 的区别.(1)a n 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.(2)-a n 表示n 个a 乘积的相反数,底数是a ,指数是n ,读作:a 的n 次方的相反数. 如:(-2)3底数是-2,指数是3,读作(-2)的3次方,表示3个(-2)相乘.(-2)3=(-2)×(-2)×(-2)=-8.-23底数是2,指数是3,读作2的3次方的相反数.-23=-(2×2×2)=-8. 注:(-2)3与-23的结果虽然都是-8,但表示的含义并不同. 例题例1、(1))2.0()52(-⨯+;(2))213()311(+⨯-;(3)-⨯-()65.13(32) (4)(—24)×0例2、计算:(1)()()3275-⨯-⨯-⨯ (2)5411511654⎛⎫⎛⎫⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭例3、(1)5个数相乘积为负,则其中正因数有 个。
七年级数学《有理数的乘方》教案设计
七年级数学《有理数的乘方》教案设计有理数的乘法是继有理数的加减法之后的又一种基本运算。
有理数乘法既是有理数运算的深化,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。
接下来是我为大家整理的(七班级数学)《有理数的乘方》教案设计,盼望大家喜爱!七班级数学《有理数的乘方》教案设计一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.3.培育同学观看、归纳力量,以及思索问题、解决问题的力量,切实提高同学的运算力量.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.教学难点:精确理解底数、指数和幂三个概念,并能进行求幂的运算.教学过程设计:(一)创设情境,导入新课提问并引导同学回答:在学校里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a 记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a 的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作沟通,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94来说明概念及读法.(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.(3)由于an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.(4)乘方是一种运算,幂是乘方运算的结果.(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍旧是要先确定符号,再确定肯定值.(2)留意(-2)4与-24的区分.依据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)()3; (2)(-)3;(3)(-)4; (4)-;(5)-22×(-3)2; (6)-22+(-3)2.(四)(总结)(反思),拓展升华1.引导同学作学问小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.老师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘(方法)则进行符号的确定和幂的求值.乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.留意(-a)n与-an及()n与的区分和联系.(五)课堂跟踪反馈1.课本P42练习第1、2题.2.补充练习(1)在(-2)6中,指数为,底数为.?(2)在-26中,指数为,底数为.?(3)若a2=16,则a= .?(4)平方等于本身的数是,立方等于本身的数是.?(5)下列说法中正确的是( )A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数(6)下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.|2|3与|-23|(7)下列各式中计算不正确的是( )A.(-1)2021=-1B.-12021=1C.(-1)2n=1(n为正整数)D.(-1)2n+1=-1(n为正整数)(8)下列各数表示正数的是( )A.|a+1|B.(a-1)2C.-(-a)D.||第2课时有理数的混合运算教学目标:1.了解有理数混合运算的意义,把握有理数的混合运算法则及运算挨次.2.能够娴熟地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.教学重点:依据有理数的混合运算挨次,正确地进行有理数的混合运算.教学难点:有理数的混合运算.教学过程:一、有理数的混合运算挨次:1.先乘方,再乘除,最终加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的挨次进行运算,在每一步运算中,仍旧是要先确定结果的符号,再确定结果的肯定值.【例2】观看下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习1.计算:(1)|-|2+(-1)101-×(0.5-)÷;(2)1÷(1)×(-)÷(-12);(3)(-2)3+3×(-1)2-(-1)4;(4)[2-(-)3]-(-)+(-)×(-1)2;(5)5÷[-(2-2)]×6.2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a2+a3+…+a2021,若a=1,则A等于多少?若a=-1,则A 等于多少?三、课时小结1.留意有理数的混合运算挨次,要娴熟进行有理数混合运算.七班级数学《有理数的乘方》教案设计二【教学目标】(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.(3)培育探究精神,体验小组沟通、合作学习的重要性.【(教学方法)】讲授法、争论法。
七年级《有理数的乘方》教学设计
七年级《有理数的乘方》教学设计一、教学内容本节课的教学内容选自人教版七年级数学上册第六章第三节《有理数的乘方》。
该章节主要介绍了有理数的乘方概念、性质及运算法则,旨在让学生掌握有理数乘方的基本概念,理解乘方的性质,能够熟练运用乘方法则进行计算。
二、教学目标1. 理解有理数乘方的概念,掌握有理数乘方的性质。
2. 能够运用有理数乘方法则进行计算,解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题、解决问题的能力。
三、教学难点与重点重点:有理数乘方的概念、性质及运算法则。
难点:理解有理数乘方的性质,熟练运用乘方法则进行计算。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、文具。
五、教学过程1. 情景引入利用多媒体展示生活中的实际问题,如:“一个正方形的边长为2米,求它的面积。
”引导学生思考如何用数学知识解决此类问题。
2. 知识讲解(1)介绍有理数乘方的概念:求n个相同因数积的运算,称为乘方。
(2)讲解有理数乘方的性质:同号得正,异号得负;绝对值相等。
3. 例题讲解出示例题:计算(2)^3 + (3)^2 + 2^0。
引导学生按照乘方法则进行计算,解答过程中强调负数的奇数次幂为负数,偶数次幂为正数;任何非零数的零次幂为1。
4. 随堂练习出示随堂练习题:计算(5)^4 (2)^2 + 3^0。
学生独立完成,教师巡回指导,及时纠正错误。
5. 课堂小结六、板书设计板书内容:有理数乘方的概念:求n个相同因数积的运算。
有理数乘方的性质:同号得正,异号得负;绝对值相等。
乘方法则:负数的奇数次幂为负数,偶数次幂为正数;任何非零数的零次幂为1。
七、作业设计作业题目:1. 计算下列各题:(1)(3)^5 (2)^3 + 4^2(2)5^0 (1)^4 + 2^3答案:(1)243 (8) + 16 = 229(2)1 1 + 8 = 8八、课后反思及拓展延伸拓展延伸:引导学生思考有理数乘方在实际生活中的应用,如计算利息、折现等问题。
人教版七年级数学上册1.乘方——有理数的乘方运算
计算器显示的结果为-410 338 673. (4)按键顺序为 2 3 × 6 ÷ 5 = ,
计算器显示的结果为27.6.
总结
知3-讲
用计算器计算时,要弄清计算器的每个按键 的作用,结合有理数运算的顺序,进行计算.
A.1
B.-1
C.2 016
D.-2 016
知2-练
4 下列等式成立的是( B )
A.(-3)2=-32
B.-23=(-2)3
C.23=(-2)3
D.32=-32
5 计算: (1)(-4)3;
(2) (-2)4;
(3) (- 2 )3.
3
(1)-64;(2)16;(3) 8 .
27
知识点 3 利用计算器计算有理数的乘方
第一章 有理数
1.5 有理数的乘方
第1课时 乘方——有理数 的乘方运算
1 课堂讲授 有理数的乘方的意义
有理数的乘方运算
利用计算器计算有理数的乘方
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 1.如图,边长为a厘米的正方形的面积为_a_×__a_平方厘米. 2.如图,一正方体的棱长为a厘米, 则它的体积 为
(1)-(-3)3;
(2)
3 42 ;(3)源自2 33 ;
(4)
1
2 3
2
.
解:(1)-(-3)3=-(-33)=33=3×3×3=27.
(2)
3 4
2
3 4
3 4
9 16
.
(3)
2 3
3
2 3
七年级数学《有理数的乘方》教案
1.6有理数的乘方(一)一、教材分析“有理数的乘方”是七年级新教程第一章第6小节的内容。
它是前一部分加、减、乘、除运算知识的完结与提升,对后面学习科学记数法又具有一定的辅助意义。
特别是对于与乘方运算相关概念的理解,有利于拓宽学生的思路、锻炼学生观察、探索、总结的数学思想。
本节内容在教材中起着承上启下的作用,处于非常重要的地位。
二、学情分析七年级学生处在数学思维的一个转变期,对于有理数的相关问题,特别是符号问题是个难点。
在学习时要处理好已有知识与新知识之间的衔接。
根据初一学生好动、好问、好奇的心理特征,课堂上采取由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养了学生学习的积极性和主动性,使学习方式由“学会”变为“会学”。
三、教学目标知识与能力:(1)理解有理数乘方概念;(2)掌握育有理数乘方的运算法则。
过程与方法:(1)通过师生互动,学生观察、类比、联想、归纳等过程,让学生理解概念的形成过程;(2)经历知识的拓展过程,增强学生探究能力和动手操作的能力,体会与他人合作交流的重要性,培养合作精神。
情感态度价值观:(1)通过观察、推理,归纳出有理数乘方的符号法则,进而掌握运算法则,增进学生学好数学的自信心;(2)教师以热情、高涨的主导情绪感染学生,力求教学过程轻松愉快,使学生感受到学习数学的乐趣,感受到数学符号的简洁美,真正体会到学习数学的价值。
四、教学重难点重点:有理数的乘方的概念与运算;难点:有理数的乘方法则的归纳。
五、教与学互动过程(一)创设情景导入新课同学们,这节课我们先来做个热身活动:1.3+3=?2.3+3+3=?3.4. 5×5=?5. 5×5×5=?6.(板书课题) 设计意图:通过类比乘法定义的得来,得出乘方定义的思考。
(二)交流对话 探求新知 5×5=525×5×5=53板书:求几个相同因数的积的运算叫做乘方。
有理数的乘方(4种题型)-2023年新七年级数学(浙教版)(解析版)
有理数的乘方(4种题型)【知识梳理】一、有理数的乘方1、求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂。
a 叫底数,n 叫指数,na 读作:a 的n 次幂(a 的n 次方)。
2、乘方的意义:n a 表示n 个a 相乘。
n a n a a a a a =⨯⨯⨯⨯ 个 3、写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了.4、n a 与-na 的区别.(1)n a 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.如:3)2(−底数是2−,指数是3,读作(-2)的3次方,表示3个(-2)相乘. 3)2(−=(-2)×(-2)×(-2)=-8.32−底数是2,指数是3,读作2的3次方的相反数.32−=-(2×2×2)=-8. 注:3)2(−与32−的结果虽然都是-8,但表示的含义并不同。
5、乘方运算的符号规律. (1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.(3)负数的偶次幂是正数.(4)0的奇数次幂,偶次幂都是0.所以,任何数的偶次幂都是正数或0。
二、有理数的混合运算1、有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的,再算括号外面的。
2、括号前带负号,去掉括号后括号内各项要变号,即a+−b−)(a−=+bab(,ba−−)=−三.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.【考点剖析】一.有理数的乘方(共11小题)1.(2022秋•南浔区期末)下列各组数中,运算结果相等的是()A.(﹣5)3与﹣53B.23与32C.﹣22与(﹣2)2D.与【分析】利用乘方运算法则计算后判断即可.【解答】解:A、(﹣5)3=﹣125,﹣53=﹣125,故相等,符合题意;B、23=8,32=9,故不相等,不符合题意;C、﹣22=﹣4,(﹣2)2=4,故不相等,不符合题意;D、,,故不相等,不符合题意;故选:A.【点评】本题考查了有理数的乘方,关键是掌握有理数的乘方的意义.2.(2022秋•苍南县期中)把写成幂的形式是.【分析】根据有理数的乘方得出结论即可.【解答】解:=()5,故答案为:()5.【点评】本题主要考查有理数的乘方,熟练掌握有理数的乘方计算是解题的关键.3.(2022秋•柯桥区月考)如果a,b,c是整数,且a c=b,那么我们规定一种记号(a,b)=c,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣3,﹣27)=.【分析】利用规定记号的意义将式子表示出乘方的形式,利用有理数乘方的意义解答即可.【解答】解:设(﹣3,﹣27)=x,∵ac=b,那么我们规定一种记号(a,b)=c,∴(﹣3)x=﹣27.∵(﹣3)3=﹣27,∴x=3.故答案为:3.【点评】本题主要考查了有理数的乘方,本题是新定义型题目,理解题干中的新规定并列出算式是解题的关键.4.(2023•西湖区校级二模)﹣33=()A.﹣9B.9C.﹣27D.27【分析】运用乘方知识进行计算、求解.【解答】解:﹣33=﹣27,故选:C.【点评】此题考查了实数的立方运算能力,关键是能准确理解并运用该知识进行计算.5.(2022秋•青田县期末)一张纸的厚度为0.09mm,假设连续对折始终都是可能的,那么至少对折n次后,所得的厚度可以超过厚度为0.9cm的数学课本.则n的值为()A.5B.6C.7D.8【分析】一张纸的厚度为0.09mm,对折1次后纸的厚度为0.09×2mm;对折2次后纸的厚度为0.09×2×2=0.09×22mm;对折3次后纸的厚度为0.09×23mm;对折n次后纸的厚度为0.09×2nmm,据此列出不等式,求出n的取值范围即可.【解答】解:∵折一次厚度变成这张纸的2倍,折两次厚度变成这张纸的22倍,折三次厚度变成这张纸的23倍,折n次厚度变成这张纸的2n倍,设对折n次后纸的厚度超过9mm,则0.09×2n>9,解得2n>100.而26<100<27.∴n为7.故选:C.【点评】本题考查从实际中寻找规律的能力,乘方是乘法的特征,乘方的运算可以利用乘法的运算来进行,乘方的意义就是多少个某个数字的乘积.6.(2022秋•文成县期中)下面的计算错在哪里?指出错误步骤的序号,并给出正确的解答过程.﹣3=……①=9÷1……②=9……③错误步骤的序号:;正确解答:;【分析】根据有理的乘除法则及运算顺序进行判断,并计算便可.【解答】解:∵﹣32=﹣9,∴步骤①错误;正确的解答如下:﹣3=﹣9÷(﹣8)×=﹣9×=﹣.故答案为:①;﹣.【点评】本题考查了有理数的乘除法,关键是熟记运算法则与运算顺序.7.(2019秋•萧山区期中)计算:23=.【分析】根据有理数的乘方计算即可【解答】解:23=8.故答案为:8.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义.8.(2020秋•义乌市校级月考)定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=.(2)劳格数有如下运算性质:若m,n为正数,则d(mn)=d(m)+d(n);d()=d(m)﹣d(n).若d(3)=0.48,d(4)=0.6,根据运算性质,填空:d(12)=,d()=,d()=.【分析】(1)根据劳格数的定义,可知:d(103)求得是10b=103中的b值;(2)由劳格数的运算性质可知,两数积的劳格数等于这两个数的劳格数的和;两数商的劳格数等于这两个数的劳格数的差,据此可解.【解答】解:(1)根据劳格数的定义,可知:d(103)=3;故答案为:3.(2)由劳格数的运算性质:若d(3)=0.48,d(4)=0.6,则d(12)=d(3)+d(4)=0.48+0.6=1.08,则d()=d(3)﹣d(4)=0.48﹣0.6=﹣0.12,∵d(4)=d(2×2)=d(2)+d(2)=0.6,∴d(2)=0.3,d()=d(9)﹣d(2)=d(3×3)﹣d(2)=d(3)+d(3)﹣d(2)=0.48+0.48−0.3=0.66,故答案为:1.08,﹣0.12,0.66.【点评】本题考查了有理数的乘方,定义新运算,读懂题中的定义及运算法则是解题的关键.9.(2021秋•吴兴区期中)已知三个互不相等有理数a,b,c,既可以表示为1,a,a+b的形式,又可以表示为0,,b的形式,则a2020b2021值是.【分析】由有意义,则a≠0,则应有a+b=0,=﹣1,故只能b=1,a=﹣1了,再代入代数式求解.【解答】解:因为三个互不相等的有理数1,a,a+b分别与0,,b对应相等,为有理数,∴a≠0,a+b=0,∴=﹣1,b=1,∴a=﹣1,∴a2020b2021=(﹣1)2020×12021=1,故答案为:1.【点评】本题主要考查了实数的运算,属于探索性题目,关键是根据已知条件求出未知数的值再计算.10.(2020秋•吴兴区校级期中)请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3=(4)计算:113+123+133+…3的值.【分析】根据已知一系列等式,得出一般性规律,计算即可得到结果.【解答】解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+n3=;(4)113+123+133+…+203=44100﹣3025=41075.故答案为:(1)3025;(2)44100;(3);(4)41075.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.11.(2020秋•萧山区期中)阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4….回答下列三个问题:①验证:(2×)100=,2100×()100=;②通过上述验证,归纳得出:(a•b)n=;(a•b•c)n=;③请应用上述性质计算:(﹣0.125)2019×22018×42017.【分析】①根据有理数的乘法法则、有理数的乘方解决此题.②通过猜想归纳解决此题.③根据积的乘方、有理数的乘法法则、有理数的乘方解决此题.【解答】解:①=1100=1,==1.故答案为:1,1.②(a•b)n=anbn,(a•b•c)n=anbncn.故答案为:anbn,anbncn.③(﹣0.125)2019×22018×42017=×22018×42017====.【点评】本题主要考查有理数的乘法、积的乘方,熟练掌握有理数的乘法法则、积的乘方是解决本题的关键.二.非负数的性质:偶次方(共5小题)12.(2022秋•丽水期中)已知a,b满足|a+3|+(b﹣2)2=0,则a+b的值为()A.1B.5C.﹣1D.﹣5【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得:a=﹣3,b=2,故a+b=﹣3+2=﹣1.故选:C.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13.(2022秋•青田县期中)若|m+1|+(n﹣3)2=0,则m n的值为()A.1B.﹣1C.3D.﹣3【分析】利用非负数的性质求出m与n的值,代入所求式子计算即可得到结果.【解答】解:∵|m+1|+(n﹣3)2=0,|m+1|≥0,(n﹣3)2≥0,∴m+1=0,n﹣3=0,即m=﹣1,n=3,则mn=(﹣1)3=﹣1.故选:B.【点评】此题主要考查了非负数的性质,正确得出m,n的值是解题关键.14.(2021秋•兰山区校级月考)若|x﹣2|+(y+3)2=0,则y x=.【分析】根据非负数的性质可求出x、y的值,再将它们代入yx中求解即可.【解答】解:∵x、y满足|x﹣2|+(y+3)2=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则yx=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.15.(2022秋•兰溪市期中)已知(a﹣2)2与|b+1|互为相反数,求(a﹣b)a+b的值.【分析】根据偶次方的非负性、绝对值的非负性、有理数的乘方解决此题.【解答】解:由题意得:(a﹣2)2+|b+1|=0.∵(a﹣2)2≥0,|b+1|≥0,∴a﹣2=0,b+1=0.∴a=2,b=﹣1.∴(a﹣b)a+b=[2﹣(﹣1)]2+(﹣1)=31=3.【点评】本题主要考查偶次方的非负性、绝对值的非负性、有理数的乘方,熟练掌握偶次方的非负性、绝对值的非负性、有理数的乘方是解决本题的关键.16.(2022秋•衢州期中)已知,则(ab)2022=.【分析】根据绝对值和偶次方是非负数的性质列式求出a、b的值然后代入代数式计算即可.【解答】解:∵,∴,b+2=0,∴,b=﹣2,∴,故答案为:1.【点评】本题考查了非负数的性质:根据几个非负数的和等于零,则每一个算式都等于零求出a、b的值是解此类题的关键.三.科学记数法—表示较大的数(共9小题)17.(2022秋•临海市期末)我国倡议的“一带一路”惠及约为4400000000人,用科学记数法表示该数为.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:4400000000=4.4×109,故答案为:4.4×109.【点评】本题考查了科学记数法的表示方法,用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,解题的关键是要正确确定a和n的值.18.(2023•杭州)杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为()A.8.8×104B.8.08×104C.8.8×105D.8.08×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:80800=8.08×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.19.(2023•路桥区校级二模)2022年12月28日,台州市域铁路S1线开通运营,标志着台州城市发展迈入轨道时代台州市域铁路S1线全长约52.4公里,总投资约228.19亿元,是连接椒江区、路桥区及温岭市之间重要的城市快速通道.其中数据228.19亿用科学记数法表示为()A.0.22819×1010B.0.22819×1011C.2.2819×1010D.2.2819×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:228.19亿=22819000000=2.2819×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.20.(2023•郧阳区模拟)2022年5月10日凌晨,长征7号火箭托举着天舟四号货运飞船发射升空,在距地面390000米的高度,与空间站完成自主交会对接任务.390000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:390000=3.9×105.故答案为:3.9×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a n的值.21.(2022秋•拱墅区月考)北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术.可根据不同项目分区域、分标准制冰.将数据12000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12000=1.2×104.故答案为:1.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,正确确定a的值以及n的值是解决问题的关键.22.(2023•余姚市二模)中国空间站2022年建成,轨道高度为400~450千米.“450千米”用科学记数法表示是()A.4.5×105米B.0.45×107米C.45×105米D.4.5×107米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:“450千米”等于“450000米”,用科学记数法表示是4.5×105米.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.23.(2021秋•越城区校级月考)一次自然灾害导致大约20万人受困,急需准备一批帐篷和粮食进行援助.估计每顶帐篷可以住10人,平均每人每天需要粮食0.4千克,共维持15天,那么有关部门需要筹集多少顶帐篷?多少吨粮食?(结果用科学记数法表示)【分析】根据题意列式计算,并用科学记数法表示结果即可.【解答】解:根据题意得:20万=200000,所以有关部门需要筹集200000÷10=20000(顶)帐篷,即2×104顶帐篷;需要筹集200000×0.4×15=1200000(千克)粮食,1200000千克=1200吨即1200=1.2×103吨粮食.a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.24.(2022秋•慈溪市期中)在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3×108×3.6×103=3×3.6×108×103=10.8×1011=1.08×1012(m).答:行驶的路程为1.08×1012m.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.25.(2022秋•永嘉县校级月考)已知一个U盘的名义内存为10GB,平均每个视频的内存为512MB,平均每首音乐的内存为10.24MB,平均每篇文章的内存为10.24KB.现该U盘已存16个视频,50首音乐.若该U盘的内存的实际利用率为90%,求还可以存文章的最多篇数(用科学记数法表示).(注:已知1GB =1024MB,1MB=1024KB)【分析】根据题意列式求解,最后化成科学记数法.【解答】解:(10×1024×1024×0.9﹣512×1024×16﹣10.24×50×1024)÷10.24=5.12×104,答:还可以存文章的最多篇数是5.12×104.【点评】本题考查了科学记数法,掌握科学记数法的形式是解题的关键.四.科学记数法—原数(共1小题)26.(2021秋•平阳县期中)用科学记数法表示的数为4.315×103,这个数原来是()A.4315B.431.5C.43.15D.4.315【分析】将小数点向右移动3位即可得出原数.【解答】解:用科学记数法表示的数为4.315×103,这个数原来是4315,故选:A.【点评】本题主要考查科学记数法—原数,科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【过关检测】一、单选题1.(2023·浙江·七年级假期作业)()23−的相反数为()A.3−B.3C.9−D.9【答案】C【分析】根据乘方运算以及相反数的定义进行计算即可得到答案.【详解】解:()239−=,根据相反数的定义可知:9的相反数是9−.故选:C.【点睛】本题考查了乘方运算以及相反数的定义,一个数的相反数就是在这个数前面添上“-”号;正数的相反数是负数,负数的相反数是正数,0的相反数是0.2.(2022秋·浙江·七年级期末)32的意义是( ) A .2×3 B .2+3 C .2+2+2 D .2×2×2【答案】D【分析】根据幂的意义即可得出答案.【详解】解:,32222=⨯⨯故选:D .【点睛】本题考查了有理数的乘方,掌握na 表示n 个a 相乘是解题的关键. 3.(2023·浙江·七年级假期作业)代数式22222n ⨯⨯⨯⋅⋅⋅⨯个可以表示为( )A .2n +B .2nC .2nD .n2【答案】C【分析】根据有理数乘方的意义解答即可得.【详解】解:代数式22222n ⨯⨯⨯⋅⋅⋅⨯个可以表示为2n; 故选:C.【点睛】本题考查了有理数的乘方,理解乘方的意义是关键.【答案】C【分析】由相反数的定义和非负数的性质求出a 、b 的值,代入计算即可. 【详解】解:∵5a +与6b −互为相反数,560a b ∴++−=,50a ∴+=,60b −=,解得5a =−,6b =,202120212021()(56)11a b ∴+=−+==.故选C .【点睛】本题考查了相反数的定义和非负数的性质,解题的关键是求出a 、b 的值.5.(2022春·浙江金华·七年级统考期末)下列对于式子()23−的说法,错误的是( ) A .指数是2 B .底数是3− C .幂为3− D .表示2个3−相乘【答案】C【分析】根据乘方的定义解答即可. 【详解】A .指数是2,正确; B .底数是3−,正确; C .幂为9,故错误;D .表示2个3−相乘,正确;. 故选C .【点睛】此题考查了乘方的意义,熟练掌握乘方的意义是解本题的关键.乘方的定义为:求n 个相同因数a 的积的运算叫做乘方,乘方运算的结果叫做幂.在na 中,它表示n 个a 相乘,其中a 叫做底数,n 叫做指数.6.(2023·浙江·七年级假期作业)观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…,根据其中的规律可得30122027777++++的结果的个位数字是( )A .0B .1C .7D .8【答案】A【分析】由已知可得尾数1,7,9,3的规律是4个数一循环,则30122027777++++的结果的个位数字与01237777+++的个位数字相同,即可求解.【详解】解:∵071=,177=,2749=,37343=,472401=,5716807=,…,∴尾数1,7,9,3的规律是4个数一循环, ∵179320+++=,∴01237777+++的个位数字是0,又∵20244506÷=,∴30122027777++++的结果的个位数字与01237777+++的个位数字相同, ∴30122027777++++的结果的个位数字是0.故选:A .【点睛】本题考查数的尾数特征,能够通过所给数的特点,确定尾数的循环规律是解题的关键. 7.(2022秋·浙江绍兴·七年级校联考期中)某种细胞每过15秒便由1个分裂成2个.经过3分钟,这种细胞由2个分裂成( )个. A .102 B .112 C .122 D .132【答案】C【分析】根据题意可得3分钟有12个15秒,进而根据有理数乘方的意义即可求解. 【详解】解:∵3分钟3601215=⨯=⨯秒, ∴经过3分钟,这种细胞由2个分裂成122个, 故选:C .【点睛】本题考查了有理数乘方的应用,理解题意是解题的关键. 8.(2023·浙江·七年级假期作业)已知n 为正整数,计算()()22111nn +−−−的结果是( )A .1B .-1C .0D .2【答案】D【分析】根据有理数乘方运算法则进行计算即可.【详解】解:()()22111112nn +−−−=+=,故选:D .【点睛】本题考查了有理数的乘方,熟练掌握有理数的乘方运算法则以及乘方的符号规律是解本题的关键. 9.(2023·浙江·七年级假期作业)已知28.6274.3044=,若20.743044x =,则x 的值( ) A .86.2 B .0.862 C .0.862± D .86.2±【答案】C【分析】根据两式结果相差2位小数点,利用乘方的意义即可求出x 的值.【详解】解:∵28.6273.96=,20.7396x =,∴220.862x =,则0.862x =±. 故选C .【点睛】本题考查了有理数的乘方,熟练掌握乘方的意义是解题的关键.二、填空题10.(2022秋·浙江·七年级专题练习)计算:()3232−⨯−=_____. 【答案】72【分析】直接利用有理数的乘方运算法则计算得出答案. 【详解】解:()()32329872−⨯−=−⨯−=.故答案为:72.【点睛】此题主要考查了有理数的乘方运算,正确化简各数是解题关键.11.(2022秋·浙江绍兴·七年级校考期中)把22222⨯⨯⨯⨯写成幂的形式是____________. 【答案】52【分析】根据有理数的乘方的定义及幂的定义解答即可. 【详解】解:22222⨯⨯⨯⨯写成幂的形式为:52. 故答案为:52.【点睛】本题考查了有理数的乘方及幂的定义,是基础题,熟记概念是解题的关键.【分析】先根据()2320a b −++=求出a 和b 的值,再把a 和b 的值代入()2022a b +即可求解.【详解】解:∵()2320a b −++=,∴,a b −=+=3020,解得:3,2a b ==−,∴()()a b =−=+20222022132,故答案为:1.【点睛】本题主要考查了绝对值与偶次幂的非负性,幂的运算,熟练掌握绝对值与偶次幂的非负性是解题的关键.【答案】 34 3 ﹣2764【分析】根据有理数的乘方的定义和意义,在na 中,a 叫做底数,n 叫做指数;na 表示n 个a 相乘,即可.【详解】∵在na 中,a 叫做底数,n 叫做指数∴334⎛⎫− ⎪⎝⎭的底数是34,指数是3∵na 表示n 个a 相乘∴3332744464⎛⎫−⨯⨯=−⎪⎝⎭故答案为:34;3;﹣2764.【点睛】本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和意义. 14.(2023·浙江·七年级假期作业)已知24m =,则m =______________. 【答案】2【分析】把4写成22即可求出m 的值.【详解】解:∵24m =且24=2,∴222m =,∴2m =, 故答案为:2.【点睛】本题主要考查了乘方的意义,正确把4写成22是解答本题的关键.【答案】243【分析】根据题意可求出第一次截去全长的13,剩下213⨯米,第二次截去余下的13,剩下2123⨯,从而即可得出第五次截去余下的13,剩下532133224⨯=米.【详解】解:第一次截去全长的13,剩下1111332⎛⎫⨯−=⨯⎪⎝⎭米,第二次截去余下的13,剩下2911111133432⎛⎫⎛⎫⨯−⨯−=⨯=⎪ ⎪⎝⎭⎝⎭米,…第五次截去余下的13,剩下532133224⨯=米.故答案为:32 243.【点睛】本题考查有理数乘方的应用,数字类规律探索.理解乘方的定义是解题关键.三、解答题【答案】(1)正(2)负(3)负(4)负【分析】根据有理数乘方的符号规律解答即可.【详解】(1)解:∵12(6)−的指数是12,为偶数,负数的偶次幂是正数,∴12(6)−的结果为正;(2)解:∵9(0.0033)−的指数是9,为奇数,负数的奇次幂是负数,∴9(0.0033)−的结果为负;(3)解:∵85−表示的是85的相反数,正数的任何次幂都是正数, 85的结果为正,所以85−的结果为负;(4)解:∵1125⎛⎫− ⎪⎝⎭的指数是11,为奇数,负数的奇次幂是负数, ∴1125⎛⎫− ⎪⎝⎭的结果为负.【点睛】本题主要考查了有理数乘方的符号规律,掌握负数的偶次幂为正、奇次幂为负成为解答本题的关键.【答案】(1)625(2)85−(3)0.027【分析】(1)4(5)−表示4个5−相乘,即可得出答案;(2)先计算2的立方,即可得出答案;(3)根据在一个数的前面加上负号就是这个数的相反数,乘方是几个相同因数的简便运算,可得答案.【详解】(1)4(5)(5)(5)(5)(5)625−=−⨯−⨯−⨯−=;(2)322228555⨯⨯−=−=−; (3)[]3(0.3)(0.3)(0.3)(0.3)(0.027)0.027−−=−−⨯−⨯−=−−=.【点睛】本题考查了乘方的定义,理解乘方的意义是解题的关键. 18.(2023·浙江·七年级假期作业)(1)计算下面两组算式: ①2(35)⨯与2235⨯;②2[(2)3]−⨯与222)3⨯(-;(2)根据以上计算结果想开去:3()ab 等于什么?(直接写出结果)(3)猜想与验证:当n 为正整数时, ()n ab 等于什么? 请你利用乘方的意义说明理由. (4)利用上述结论,求20202021(4)0.25−⨯的值. 【答案】(1)①225,225,2(35)⨯=2235⨯;②36,36,2[(2)3]−⨯=222)3⨯(-,(2)33a b(3)见详解 (4)0.25.【分析】(1)①先算括号内的数,再算平方;先算平方,再计算乘法即可,比较计算结果, ②先算括号内的数,再算平方;先算平方,再计算乘法即可,比较计算结果, (2)直接按(1)写结果即可,(3)利用乘方()nab 的意义写成n 个数相乘,利用交换律转化为n a aa 个与n b bb个乘积即可.(4)利用积的乘方的逆运算把202120200.250.250.25=⨯,然后20202021(4)0.25−⨯=()202040.250.25−⨯⨯,再简便运算即可.【详解】(1)①2(35)⨯=152=225,2235⨯=9×25=225,2(35)⨯=2235⨯,②2[(2)3]−⨯=(-6)2=36,222)3⨯(-=4×9=36, 2[(2)3]−⨯=222)3⨯(-,(2)333()ab a b =(3)()()()()=n n n n n n ab ab ab ab a a a b b b a b ⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭个个个.(4)20202021(4)0.25−⨯=()202040.250.2510.250.25−⨯⨯=⨯=.【点睛】本题考查有理数乘法法则问题,先通过不同形式的计算,验证结果相同,达到初步认证,再次认证结果,通过证明先算计积再算乘法,与先算每个数的乘方再算积,验证结论成立,会逆用积的乘方运算来简便运算是解题关键.【答案】(1)1,1;(2)ab ,anbn ,abc ,anbncn ;(3)﹣0.125【分析】(1)先算括号内的,再算乘方;先乘方,再算乘法.(2)根据有理数乘方的定义求出即可;(3)根据根据阅读材料可得(﹣0.125×2×4)2014×(﹣0.125),再计算,即可得出答案.【详解】(1)解:(4×0.25)100=1100=1;4100×0.25100=1,故答案为:1,1. (2)解:(ab )n =anbn ,(abc )n =anbncn ,故答案为:ab ,anbn ,abc ,(3)解:原式=(﹣0.125)2014×22014×42014×(﹣0.125)=(﹣0.125×2×4)2014×(﹣0.125)=(﹣1)2014×(﹣0.125)=1×(﹣0.125)=﹣0.125【点睛】本题考查了有理数乘方的应用,主要考查学生的计算能力,理解阅读材料是解题的关键. 20.(2022秋·浙江·七年级专题练习)先阅读下列材料,再解答后面的问题材料:一般地,n 个相同的因数a 相乘n a a a ⋅个,记为an . 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8(即2log 83=).一般地,若n a b =(0a >且10a b ≠>,),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =). 如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814=).问题:(1)计算以下各对数的值:2log 4=_________,2log 16=_________,2log 64=_________.(2)通过观察(1),思考:2log 4、2log 16、2log 64之间满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?log log a a M N +=______(0a >且100a M N ≠>>,,).(4)利用(3)的结论计算44log 2log 32+=______.【答案】(1)2,4,6(2)222log 4log 16log 64+=(3)()log a MN(4)3【分析】(1)根据对数的定义求解;(2)认真观察,即可找到规律:41664⨯=,222log 4log 16log 64+=; (3)由特殊到一般,得出结论:()log log log a a a M N MN +=(4)根据(3【详解】(1)解:(1)∵24624216264===,, ∴222log 42log 164log 646===,,,故答案为:2,4,6;(2)∵41664⨯=,2log 42=,2log 164=,2log 646=, ∴222log 4log 16log 64+=, 故答案为:222log 4log 16log 64+=;(3)观察(2)的结果,我们发现,底数不变,后面两个数相乘.则()log log log a a a M N MN +=, 故答案为:()log a MN .(4)44log 2log 32+()4log 232=⨯4log 64=3=. 故答案为:3.【点睛】本题考查了有理数的乘方运算,对数,类比、归纳,推测出对数应有的性质是解题的关键.【答案】(1)710,8a(2)m n a +(3)2023x ,31n y +(4)18【分析】(1)根据题目中给出的信息进行运算即可;(2)总结题目信息得出同底数幂的运算法则;(3)根据同底数幂的运算法则进行运算即可;(4)逆用同底数的乘法公式进行运算即可.【详解】(1)257101010⨯=,358a a a ⨯=,故答案为710,8a ;(2)m n mn a a a ⨯=(m 、n 都是正整数),故答案为m n a +;(3)220201*********x x x x x ++=⋅=⋅,212131n n n n n y y y y ++++⋅==,故答案为2023x ,31n y +;(4)∵3,6a b x x ==,∴3618a b a b x x x +=⋅=⨯=,故答案为18.【点睛】本题主要考查了乘方的定义和意义,得到同底数幂的运算法则:同底数幂相乘,底数不变,指数相加,是解题的关键. ,一般地,把n a a a aa a ÷÷÷个(a ≠02⎝⎭深入思考【答案】(1)12,8− (2)213,415,82 (3)21n a −(4)1−【分析】(1)(2)根据新定义内容列出算式,然后将除法转化为乘法,再根据乘法和乘方的运算法则进行化简计算;(3)根据(1)(2)得出规律21n a a −=ⓝ;(4)根据(3)的规律求解即可.【详解】(1)解:122222=÷÷=③, 1111118222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−=−÷−÷−÷−÷−=− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤, 故答案为:12,8−;(2)解:(3)−=④21(3)(3)(3)(3)3−÷−÷−÷−=, 4155555555÷÷÷=÷÷=⑥, 1111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−−−−−−−−−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎝=÷⎭÷÷÷÷÷÷÷÷⎭⎝⎭⎭⎝⎝⎭⎝⎭⑩82=; 故答案为:213,415,82;(3)解:21n a a a a a a −=÷÷⋯⋯÷=ⓝ, 故答案为:21n a −;(4)解:3242(16)2÷+−⨯④21248(16)2=÷+−⨯ 13(16)4=+−⨯34=−1=−.【点睛】本题属于新定义题型,考查有理数乘除运算法则及对有理数乘方运算的理解,理解新定义内容,掌握有理数乘除法和有理数乘方的运算法则是解题关键.。
七年级数学有理数的乘方
例2:计算
( 1)
102
103 104
=100 =1000 =10000
想一想:
观察例2的结果,你又能
发现什么规律? 1、10的几次幂,1 的后面就有几个0。
(2)(-10)2 =100 (-10)3
2、互为相反数的相 =-1000 同偶次幂相等,相同 (-10)4 =10000 奇次幂互为相反数。
4
2
=
1 ________
1 = ________ 1 = ________
5
=
-1 ________
-1 =________
6
(-1)
2n+1
2n
1 = ________
练习三
计算:
1 = 1 ; 1、
10
3
2、 1 = -1
9
2
3
;
3 = -27 ; 4、 (5) = 25 ; 3、 1 1 3 = 8 0.1 = -0.001 ; 6、 5、 ; 2 2n 2n1 1 1 7、 = ; 8、1 = -1 .
议一议 !
3
2
与 (-3) 结果相等吗?
2
3 读作-3的 平方 所以
2
2
2 2 (- 3 ) 读作 3 的相反数,而
(-3) =9
-3 =-9
2
探究性问题 乘方的结果叫做幂,设n为正整数,
(-1) (-1) (-1)
1 3
= =
-1 ________ -1 ________
(-1) (-1) (-1) (-1)
正数的任何次幂都是正
1 (- ) 2
3
1 =- 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三十三课时
一、课题§有理数的乘方(1)
二、教学目标
1.理解有理数乘方的概念,掌握有理数乘方的运算;
2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3.渗透分类讨论思想.
三、教学重点和难点
重点:有理数乘方的运算.
难点:有理数乘方运算的符号法则.
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a
(n是正整数)呢
在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢请举例说明.
(二)、讲授新课
1.求n个相同因数的积的运算叫做乘方.
2.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数.
一般地,在a n中,a取任意有理数,n取正整数.
应当注意,乘方是一种运算,幂是乘方运算的结果.当a n看作a的n次方的结果时,也可以读作a的n次幂.
3.我们知道,乘方和加、减、乘、除一样,也是一种运算,a n就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.
例1 计算:
教师指出:2就是21,指数1通常不写.让三个学生在黑板上计算.
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系
(1)横向观察
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.
(2)纵向观察
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
(3)任何一个数的偶次幂是什么数
任何一个数的偶次幂都是非负数.
你能把上述的结论用数学符号语言表示吗
当a>0时,a n>0(n是正整数);
当a=0时,a n=0(n是正整数).
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
a2n-1=-(-a)2n-1(n是正整数);
a2n≥0(a是有理数,n是正整数).
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
让三个学生在黑板上计算.
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n 的底数是-a,表示n个(-a)相乘,-a n是a n的相反数,这是(-a)n与-a n的区别.教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了.
课堂练习
计算:
(2)(-1)2001,3×22,-42×(-4)2,-23÷(-2)3;
(3)(-1)n-1.
(三)、小结
让学生回忆,做出小结:
1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.
七、练习设计
3.当a=-3,b=-5,c=4时,求下列各代数式的值:
(1)(a+b)2; (2)a2-b2+c2;
(3)(-a+b-c)2; (4)a2+2ab+b2.
4.当a是负数时,判断下列各式是否成立.
(1)a2=(-a)2; (2)a3=(-a)3;
5*.平方得9的数有几个是什么有没有平方得-9的有理数为什么
6*.若(a+1)2+|b-2|=0,求a2000·b3的值.
八、板书设计
九、教学后记
1.数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力.教学中,既要注重逻辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养.因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标.
2.数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近.在引入新课时,要尽可能使学生的学习方式与数学家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,…,a n是学生通过类推得到的.
推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果.一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析.在a n 中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯.3.把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷.
我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学.始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.例如,通过实际计算,让学生自己体会到负数与分数的乘方要加括号.
4.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想.符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显.在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实.。