最新2.3等差数列的前n项和第一课时教案
2.3 等差数列的前n项和(一)
教学目标
1.体会等差数列前n项和公式的推导过程. 2.掌握等差数列前n项和公式,并应用其解决实际问题. 3.熟练掌握等差数列五个量a1,d,n,an,Sn间的关系.
自学检测
1.若等差数列{an}前5项和S5=10,则a3=( )
A.2
B.4
C.6
D.8
【解析】选A.S5= 5a1 a5 =10,即a1+a5=4,
2.3 等差数列的前n项和(1)
复习引入
1.等差数列的定义:
an an1 d n 2
2.等差数列的通项公式:an a1 n 1d,可以变形为an am n md
或者an nd (a1 d ) (可以看成n的一次函
数)
3.下标和性质:
若m n p q, 则am an ap aq
作业布置
P46. 习题2.3 A组第4题或B组第2题
答案:①500; ②2550;
练习二
n s (2004.全国文)等差数列an的前 项
和记为 n .已知 a10 30 , a20 50 .
(1)求通项 an ;
(2)令 sn 242,求 n .
例1. 2000年11月14日教育部下发了《关于在 中小学实施“校校通”的工程通知》.某市据 此提出了实施“校校通”小学工程校园网.据 测算,2001年该市用于“校校通”的总目标:从 2001年起用10年的时间,在全市中小学建成不 同标准的校园网。据测算,2001年该市用于 “校校通”工程的经费为500万元.为了保证工 程的顺利实施,计划每年投入的资金都比上一 年增加 50万元.那么从2001年起的未来10年内,该市在 “校校通”工程中的总投入是多少?
公式1
2.3等差数列前n项和公式(1)
nm
(3)在等差数列{an}中,由 m+n=p+q
am+an=ap+aq
问题 1:
求和:1+2+3+4+‥ ‥ +99=?
问题2:
求和:1+2+3+4+…+n=?
记:Sn= 1 + 2 + 3 +…+(n-2)+(n-1)+n 2 +1 Sn = n+(n-1)+(n-2)+…+ 3 +
2Sn n(n 1)
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
二.等差数列an 的首项a1 0, 公差d 0时,前n项和S n 有最小值
2 d 1、利用S n:S n d n ( a 1 2 )n.借助二次函数最值问题 2
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
等差数列平均分组,各组之和仍为等差数列。
如果an 为等差数列 ,则S k , S 2k S k , S3k S 2k 也成等差数列。
新的等差数列首项为 Sk,公差为k d。
2
二、例题 例3.已知一个等差数列{an}的前10项的和是310,前20项 变式.在等差数列 an 中 ,已知第 1 项到第 10 项的和为 310 , 的和是1220,由这些条件能确定这个等差数列的前 n 项 第 11 项到第 20 项的和为 910 , 求第 21 项到第 30 项的和 . 和的公式吗? 解:依题意知,S10=310,S20=1220 得
《等差数列前n项和的公式》教案
《等差数列前n项和的公式》教案一、教学目标1、知识与技能目标学生能够理解并掌握等差数列前 n 项和的公式。
能够熟练运用公式解决与等差数列前 n 项和相关的问题。
2、过程与方法目标通过推导等差数列前 n 项和公式的过程,培养学生的逻辑推理能力和数学思维能力。
让学生经历从特殊到一般,再从一般到特殊的研究过程,体会数学中的转化思想。
3、情感态度与价值观目标激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的自信心。
二、教学重难点1、教学重点等差数列前 n 项和公式的推导和理解。
公式的熟练运用。
2、教学难点等差数列前 n 项和公式的推导过程中数学思想的渗透。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课回顾等差数列的定义和通项公式。
提出问题:如何求等差数列的前 n 项和?2、公式推导以等差数列:1,2,3,4,5,,n 为例,引导学生思考求和的方法。
方法一:依次相加。
方法二:倒序相加。
设等差数列\(a_n\)的首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\)。
\(S_n = a_1 + a_2 + a_3 ++ a_{n-1} + a_n\)①\(S_n = a_n + a_{n-1} + a_{n-2} ++ a_2 + a_1\)②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n-1})++(a_{n-1} + a_2) +(a_n + a_1)\\2S_n&=n(a_1 + a_n)\\S_n&=\frac{n(a_1 + a_n)}{2}\end{align}\又因为\(a_n = a_1 +(n 1)d\),所以\(S_n =\frac{n(a_1 +a_1 +(n 1)d)}{2} = na_1 +\frac{n(n 1)d}{2}\)3、公式理解分析公式中各项的含义。
等差数列的前n项和教案
等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。
2. 掌握等差数列的前n项和的计算公式。
3. 能够运用等差数列的前n项和公式解决实际问题。
二、教学重点1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
三、教学难点1. 等差数列的前n项和的公式的推导过程。
2. 运用等差数列的前n项和公式解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。
2. 通过实例分析,让学生掌握等差数列的前n项和的应用。
3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。
五、教学内容1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
3. 等差数列的前n项和的性质。
4. 运用等差数列的前n项和公式解决实际问题。
第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。
《等差数列前n项和公式》教案
《等差数列前n项和公式》微课教案----天津市木斋中学王珏教材选自:普通高中课程标准试验教材数学(人教A版)《必修5》“§2.3等差数列前n项和”第一课时。
一、教学目标设计《课程标准》指出本节课的学习目标是:探索并掌握等差数列前n项和公式;能在具体的问题情景中,发现数列的等差关系并能用相关知识解决相应的问题。
考虑到学生的接受能力和课容量,本节课只要求学生探索并掌握等差数列前n项和公式,并会对公式进行简单的应用。
故结合《课标》的要求,我将本节微课的教学目标确定为:知识与技能:探索并掌握等差数列前n项和公式,会用公式解决一些简单的问题;方法与过程:通过对等差数列前n项和公式的探索,体会“从特殊到一般”的数学研究方法和数形结合的数学思想方法,学会观察、归纳、反思;情感、态度与价值观:让学生亲身经历知识的建构过程,体验探索的乐趣,增强学习数学的兴趣。
二、教学重、难点:教学重点:能从具体实例中探索并掌握等差数列前n项和公式,并用其解决一些简单的问题。
教学难点:等差数列前n项和公式推导思路的获得。
三、课堂结构设计新课程提倡在教学过程中,学生是一个积极的探究者,教师的作用是创设问题情境,帮助学生在积极参与中遇水架桥、逢山开路。
因此,本节课设计了如下的课堂结构。
知三求二、渗透思想分析实例,感悟生活演练反馈、提升能力总结反思,深化认识布置作业,任务延伸四、教学过程设计结合本节课的特点,我主要安排了以下六个环节:(一)问题呈现阶段1、创设情境,提出问题——展示图片(印度的泰姬陵)泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰汗为纪念其爱妃所建,历时22年,它宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。
陵寝以宝石镶饰,图案之细致令人叫绝。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见上右图),奢靡之程度,可见一斑。
欣赏完如此美的故事及图案,请问:你知道这个图案一共花了多少宝石吗?设计意图:源于历史,富有人文气息;图中算数,激发学生学习兴趣和探究欲望;承上启下,探讨高斯算法.2、自主探究,合作交流此时,教师先不参与,给学生一定的思考时间和思考空间,让学生自主活动。
《2.3 等差数列的前n项和》教学设计
附件 1-4
第二届湘西州中小学青年教师教学竞赛
教学设计表
学段:高中科目:数学编号:(组委会填写)
设计意图:培养学生观察、比较、分析、归纳等能力.
问题4、从方程的角度来看,可以解决什么问题?
学情预设:知三求一的问题
设计意图:培养学生用方程(组)思想分析问题、解决问题的能力。
问题5、如何更好的记忆公式?跟以前学过的什么公式类似呢?
引导学生回忆梯形的面积公式,并作出以下的分析
设计意图:培养学生类比、反思等思维能力.
设计意图:这些问题串的设计,是为了达到:数学公式课的教学,不仅要知道公式的来龙去脉,还要知道公式是什么,记住公式且挖掘公式的内涵与外延.更重要的是公式有何用,怎样用?让学生对公式课的学习有个系统、全面的认识,形成一套科学而有效的探究公式的方法.力求体现“授之于鱼,不如授之于鱼渔”的教学价值.
(五)剖析例题,理解巩固
例1、众所周知,中国的著名运动员姚明在篮球领域中取得了巨大的成就,他是整个中国的骄傲,甚至是整个亚洲的骄傲.但是同学们了解姚明刚去NBA时的辛酸吗?初到NBA,姚明为了更快的适应NBA 的高强度对抗,给自己指定了为期10天的投篮训练计划,从第一天到第十天的投篮个数依次如下表:
600 650 700 750 800 850 900 950 1000 1050 请问:姚明这十天一共投了几个篮?
例2、求等差数列2、4、6、8、…、142的和.
设计意图:1、从数学知识角度出发:学生要达到会选用公式从。
等差数列的前n项和教学设计(金陵中学王友伟)
课题:2.2.3等差数列的前n项和授课教师:南京市金陵中学王友伟教材:苏教版必修5一.教学目标1.经历探索等差数列前n项和公式的过程,体会化归、分类讨论等数学思想,掌握倒序相加求和法,积累数学活动的经验;2.理解等差数列前n项和公式及不同形式,能够灵活选用恰当的形式解决问题;二.教学重难点重点:等差数列前n项和公式的推导难点:从图形直观的角度分析等差数列前n项和的公式.三.教学方法与教学手段启发式教学,探究式学习,多媒体辅助教学.四.教学过程1.创设情境,引入课题前面我们学习了数列,研究了一种特殊的数列——等差数列,与学生一起回顾等差数列中的相关知识.-a n=d(n∈N) (a1是首项,d是公差,n是项数) 等差数列的定义:a n+1等差数列的通项公式:a n=a1+(n-1)d(n∈N*,n≥2)[设计意图]通过复习,帮助学生梳理知识框架,教会学生掌握研究数学的一般方法,同时为接下来应用基本量分析具体的数列做铺垫.(播放阅兵视频)我们能否从数列的视角重新看我们的阅兵队列?[设计意图]紧贴时事与生活,在激发学生爱国热情的同时,让学生感受到数学来源于生活,教会学生用数学的眼光来重新观察世界,思考问题.给出视频中的几个队列变化的画面,抽象成点阵如下:以第三幅图中的蓝色区域为例,进行研究.问题1:对于这个方阵,你能用数列的观点发现问题、提出问题吗?[设计意图]让学生尝试着去寻找队列的人数与数列的关系,内化等差数列中的首项、项数、公差等概念,引导学生学会将实际问题中的数量用抽象的数学符号进行描述,进一步培养学生观察的能力,和从实际问题中抽象出数学知识的能力.同时,让学生自行提出问题进行研究,感受到研究等差数列的前n项和并不是“心血来潮”,而是有据可依.2.探索质询,追根溯源(1)构建研究方法问题2:如何求这个区域的总人数?(尝试用多种方法)(学生分组讨论,5分钟后小组汇报)S21=3+4+…+22+23(预设方案1)从数的角度:3+23=4+22+…=12+143+232×10+13=273(预设方案2)从数的角度:3+22=4+21=…12+133+222×10+23=273(预设方案3)从数的角度:S 21=3+4+…+22+23S 21=23+22+…+4+32 S 21=(3+23)+(4+22)+…+(22+4)+(23+3)S 21=3+232×21 [设计意图]因为很多学生在小学的奥数中已经“学习”了等差数列的前n 项和的公式,但是对公式背后的意义并不是非常理解,尤其是对配对的思想更是一知半解,所以这个问题中设定了奇数项的等差数列求和,引导学生发现配对时可能出现不是整数对的情形,也为接下来的奇偶项的讨论和“倒序相加法”做好铺垫.(预设方案4)几何角度:切掉左边的两列S 21=2×21+1+2+…+21=2×21+1+212×21(预设方案5)几何角度:切掉左边的三列S 21=3×21+1+2+…+20=3×21+ (1+20)×10[设计意图]左边设置的常数列,让学生感受到相同的数相加可以转化成乘法,呼应了前面“配对”的思想.在学生已经拥有了“补”的方法后再抛出这一问题,比较自然的引出了“割”这样的方法,培养学生学会从几何角度给出不同的解释,也为等差数列前n 项和的第二种形式的推导做铺垫.[设计意图]这一环节的设计,让学生充分感受到可以从数和形两个角度对一个等差数列进行求和,经历自行动手推导的过程,感受配对思想在计算中的带来的便捷,同时感受到可以使用“割”“补”方法对其进行分析计算,为接下来探求一般的等差数列{a n }的前n 项和奠定基础.(2)自主探究 汇报交流问题3:如何推导出等差数列{a n }的前n 项之和S n 的公式?追问:对于一个数列,已知哪些量可以求和?①已知a 1,a n ,n ;②已知a 1,d ,n .追问2:已知a 1,a n ,n ,如何推出?(小组讨论,5分钟后小组汇报)(预设方案1)S n =a 1+a 2 +…+a n -1+a n ,①S n =a n +a n -1+…+ a 2 +a 1,②①+②相加得: 2S n =(a 1+a n )+(a 2+a n -1)+…+(a n +a 1)=n (a 1+a n ),所以S n =n (a 1+a n )2.(预设方案2)S n =a 1+a 2+…+a n -1+a n(1)n 为偶数时,S n =(a 1+a n )+( a 2+a n -1)+…=( a 1+a n )n 2=n (a 1+a n )2 (2)n 为奇数时,S n =(a 1+a n )+( a 2+a n -1)+ …+an +12=( a 1+a n )n -12+(a 1+a n )2 =n (a 1+a n )2[阶段总结]我们运用倒序相加法得到了等差数列前n 项和的公式,其中的配对思想就是数学中的化归思想,将不同的数转化成相同的数相加,从而可以将加法转化为成为进行计算.[设计意图]研究完具体数列的求和后,让学生将掌握的方法迁移到一般的等差数列{a n }中,继续内化“倒序相加法”,并用最后两个追问让学生真正理解为何要配对,为何能配对(要证明). 追问4:已知a 1,d ,n ,如何推出?(预设方案3)S n =a 1+(a 1+d )+(a 1+2d )+ …+[a 1+(n -1)d ]=na 1+[1+2+…+(n -1)]d=na 1+n (n -1)2d追问:能否找到几何解释所对应的图形[阶段总结]我们运用“切割法”(分组求和)的方法得到了等差数列前n 项和的公式的另外一种形式,其中d +2d +3d +……+(n -1)d 还是化归成了1+2+……+(n -1)的问题.[设计意图]从“割”的角度给出了公式的形象化解释,也让学生感受到等差数列的求和问题其实就可以划归为“1+2+……+n ”的问题,体现出了化归的思想.追问:两个公式等价吗?[设计意图]通过这一问题,让学生观察两个公式的特点,进而发现两公式的区别,即公式①中出现a n ,而公式②中出现d ,为后面选择恰当的公式解决问题做好铺垫.同时,也让学生感受到公式①中的a n 是由a 1和d 决定的,体会a 1和d 两个基本量的地位与作用.追问:对比几种推导S n 的方法,你觉得哪种方法简洁?[设计意图]让学生重新回顾几种推导方法,经过对比发现,前几种配对的方法中,最简约的是倒序相加法,而已知a 1,d ,n 推导S n 的方法其实归根结底就是1+2+…+n 的问题,而1+2+…+n 问题最简约的解法还是倒序相加法.经过这样的分析,让学生明白,推导公式其实还是为了追求简约,追求简约是数学研究的一大基本原则.3.新知运用,巩固深化例1 在等差数列{a n }中,前n 项之和为S n .(1)已知a 1=2,a 30=90,求S 30;(2)已知a1=5,d=13,求S12.[设计意图]通过例题,让学生巩固公式,会根据题设条件合理地选用公式.通过追问,让学生体会n,a1,d,a n,S n这五个量,可以知三求二,从而加深学生对公式的理解与运用.同时,对于公式的选择,其原则还是追求简约.例2 求出下列各区域的总人数.重点讲最后的黑色区域(从不同的角度看不同的等差数列)[设计意图]让学生在具体的实例中使用刚才推导出的等差数列求和,熟悉公式,学以致用.4.概括知识,总结方法回顾与反思:这节课你学到了哪些知识,蕴含了哪些思想?5.分层作业,因材施教(1)巩固运用:P47 习题2.2(2):1,2,3,4,5.(2)拓展思考:等差数列的通项公式a n可以看成关于n的函数,你能从函数的角度研究S n吗?[设计意图]分层布置作业,“巩固运用”面向全体学生,旨在掌握等差数列前n项和公式的应用.“拓展思考”为学生提供运用函数思想研究S n的机会.五.教学设计说明等差数列的前n项和的研究是在学生已经学习了等差数列的概念、通项公式等知识的基础之上,对等差数列这一特殊数列更深层次的探索和研究.任何一章知识的学习都应符合学生的认知规律,尊重学生已有的知识储备,尤其对于等差数列的前n项和的公式而言,很多学生在小学就已经从课外得知了这一公式,所以在进行知识呈现时,教师不可完全照本宣科,而需要从全新的角度切入,引导学生重新审视原有知识架构中“冰冷”的公式,带领学生揭开公式的“神秘面纱”,剖析公式推导过程中每一步所暗含的数学思想,这样才能抓住学生,让学生参与到课堂中来.本节课从时事——今年是中华人民共和国成立70周年出发,从学生们喜爱的阅兵式入手,让学生探索队列人数与数列间的关系,感受到数学来源于生活,引导学生学会用数学的眼光看世界.整节课的设计将几何中的“割补”法作为背景,结合多媒体的使用,分别从对数的角度“配对”和从形的角度“割补”进行交叉对比,让学生学会将已有的知识和研究手段迁移到新知识的学习中,让学生经历了从数到形,再从形到数的渐进过程,找到前n项和公式的两种形式的几何支撑,加深对于抽象公式的形象化理解,在获得新知的过程中体会了数形结合、化归、分类讨论等基本思想方法.例题的设置呼应了公式的两种形式,让学生在解题时体会如何选择合适的公式,也让学生在选择中体会两种公式间的联系,而公式的选用也是为了追求简约。
等差数列前n项和公式教案
等差数列前n项和公式教案教学目标:1. 知识目标:让学生掌握等差数列前n项和公式的推导方法,并能够准确运用公式。
2. 能力目标:* 通过公式的探索、发现,培养学生的观察、联想、归纳、分析、综合和逻辑推理能力。
* 让学生学会利用以退求进的思维策略,遵循从特殊到一般的认知规律,通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生的类比思维能力。
* 通过对公式从不同角度、不同侧面的剖析,培养学生的思维灵活性,提高学生分析问题和解决问题的能力。
3. 情感目标:* 通过公式的发现,让学生感受到普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
* 通过公式的运用,帮助学生树立“大众教学”的思想意识。
* 通过生动具体的现实问题、令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
教学内容:1. 等差数列的前n项和定义:一般地,我们称a1 + a2 + a3 + ... + an为数列an的前n项和,用Sn表示。
记法:Sn = a1 + a2 + a3 + ... + an。
2. 等差数列的前n项和公式:Sn = n/2 * (a1 + an)。
3. 公式的推导方法:倒序相加法。
4. 公式的运用。
教学步骤:1. 导入:介绍等差数列的概念和前n项和的定义。
2. 探索与发现:通过倒序相加法,引导学生探索等差数列前n项和公式的推导过程。
3. 讲解公式:详细解释公式的意义、来源和应用方法。
4. 练习与巩固:给出一些例题,让学生运用公式进行求解,以加深对公式的理解和掌握。
5. 总结与反思:对本节课内容进行总结,并引导学生反思学习过程中的收获和不足之处。
等差数列前n项和教案
等差数列的前n项和(一)教学重点等差数列的前n项和公式的理解、推导及应用.教学难点灵活应用等差数列前n项和公式解决一些简单的有关问题.教具准备多媒体课件等教学过程导入新课教师出示投影胶片1:印度泰姬陵是世界七大建筑奇迹之一,陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层(如下图),奢华之程度,可见一斑.你知道这个图案中一共有多少颗宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高斯算法的阶段)生只要计算出1+2+3+…+100的结果就是这些宝石的总数.师对,问题转化为求这100个数的和.怎样求这100个数的和呢?教师出示投影胶片2:高斯是伟大的数学家,高斯十岁时,就解答出了这个难题.师高斯是采用了什么方法来巧妙地计算出来的呢?我们一起来看一下,高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有50个101,所以1+2+3+…+100=50×101=5050.师对,高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.师问:数列1,2,3,…,100是什么数列?而求这一百个数的和1+2+3+…+100相当于什么?生这个数列是等差数列,1+2+3+…+100这个式子实质上是求这数列的前100项的和.师对,这节课我们就来研究等差数列的前n项的和的问题.推进新课[合作探究]师我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第1层到第21层,得到右图,则图中第1层到第21层一共有多少颗宝石呢?生这是求“1+2+3+…+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求和就好首尾配成对了.师高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项,我们是否有简单的方法来解决这个问题呢?生有!我用几何的方法,将这个全等三角形倒置,与原图补成平行四边形.平行四边形中的每行宝石的个数均为22个,共21行.则三角形中的宝石个数就是221)211(⨯+.师妙得很!这种方法不需分奇、偶个项的情况就可以求和,真是太好了!我将他的几何法写成式子就是:1+2+3+ (21)21+20+19+ (1)对齐相加(其中下第二行的式子与第一行的式子恰好是倒序)这实质上就是我们数学中一种求和的重要方法——“倒序相加法”.现在我将求和问题一般化:(1)求1到n的正整数之和,即求1+2+3+…+(n-1)+n.(注:这问题在前面思路的引导下可由学生轻松解决)(2)如何求等差数列{a n}的前n项的和S n?生对于问题(2),我这样来求:因为S n=a1+a2+a3+…+a n,S n=a n+a n-1+…+a2+a1,再将两式相加,因为有等差数列的通项的性质:若m+n=p+q,则a m+a n=a p+a q,所以2)(1n n a a n S +=.(Ⅰ) 师 对于一般等差数列{an},首项为a 1公差为d,如何推导它的前n 项和公式Sn 呢? 生 ()12n n n a a S +=()11n a a n d =+-又 ()()111[1][21]22n n a a n d n a n d S ++-+-∴==()112n n n S na d -∴=+(Ⅱ) [教师精讲]我们得到了等差数列前n 项求和的两种不同的公式.这两种求和公式都很重要,都称为等差数列的前n 项和公式.其中公式(Ⅰ)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a 1,下底是第n 项a n ,高是项数n ,有利于我们的记忆. [方法引导]师 如果已知等差数列的首项a 1,项数为n ,第n 项为a n ,则求这数列的前n 项和用公式(Ⅰ)来进行,若已知首项a 1,项数为n ,公差d ,则求这数列的前n 项和用公式(Ⅱ)来进行.[知识应用]【例1】 根据下列各题中的条件,求相应的等差数列{a n }的S n :(1)a 1=5,a n =95,n=10 500(2)a 1=100,d=-2,n=50 2550师 上面这两个题目应该直接代公式就可求解,应当选用哪个公式求解?生 第1小问采用的是公式一求解,第2小问用公式二求解【例2】 计算:(1)1+3+5+…+(2n -1);(2)1-2+3-4+5-6+…+(2n -1)-2n .请同学们先完成(1)~(2),并请同学回答.生 (1)1+3+5+…+(2n -1)=2)11(-+n n =n 2; 师 第(2)小题数列共有几项?是否为等差数列?能否直接运用S n 公式求解?若不能,那应如何解答?(小组讨论后,让学生发言解答)生 (2)中的数列共有2n 项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式= [1+3+5+…+(2n -1)]-(2+4+6+…+2n )=n 2-n (n +1)=-n .生 上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=(-1)+(-1)+(-1)+…+(-1)=-n .师 很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法.注意在运用求和公式时,要看清等差数列的项数,否则会引起错解.【例3】 (课本第49页例1)分析:这是一道实际应用题目,同学们先认真阅读此题,理解题意.你能发现其中的一些有用信息吗?生 由题意我发现了等差数列的模型,这个等差数列的首项是500,记为a 1,公差为50,记为d ,而从2022年到2022年应为十年,所以这个等差数列的项数为10.再用公式就可以算出来了. 师 这位同学说得很对,下面我们来完成此题的解答.(按课本解答示范格式)课堂练习学生独立完成教师引导解题,并用课件展示详细步骤并校对答案课堂小结师 同学们,本节课我们学习了哪些数学内容?生 ①等差数列的前n 项和公式1:2)(1n n a a n S +=, ②等差数列的前n 项和公式2:2)1(1d n n na S n -+=. 师 通过等差数列的前n 项和公式内容的学习,我们从中体会到哪些数学的思想方法?生 ①通过等差数列的前n 项和公式的推导我们了解了数学中一种求和的重要方法——“倒序相加法”.布置作业课本第52页习题 A 组第2、3题 等差数列的前n 项和(一)公式:2)1(2)(11d n n na a a n S n n -+=+=。
[等差数列前n项和公式]等差数列前n项求和公式教案
[等差数列前n项和公式]等差数列前n项求和公式教案篇一: 等差数列前n项求和公式教案教学设计:§2.3 等差数列的前n项和学习目标1. 通过预习课本42页,小组讨论,能说出等差数列前n项和公式的获取思路;2. 通过同桌互相提问,会背等差数列前n项和公式3. 通过例题及巩固训练会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.学习重点:等差数列前项和公式的推导及简单应用;学习难点:等差数列前项和公式的推导思路的获得。
[]评价设计:通过观察、阅读教材在学习小组内同桌互相口述等差数列求和公式证明的思路,准确记忆等差数列的前n项和求和公式。
运用教师提供的选择性评价,请同伴评价自己的学习效果,并进行自我评价,从而调整自己的学习进程。
1、对于目标1,通过课堂提问,要求学生叙述的关键词准确。
达标率100%2、对于目标2,通过课堂提问,要求学生表达的数学式子完整准确。
达标率100%3、对于目标3,通过学生练习。
达标率80%学习过程一、知识准备等差数列的通项公式是什么?二、新课导学创设情景:如图,一个堆放钢管的V形架的最下面一层放一根钢管,往上每一层都比它下面一层多放一根钢管,最上面一层放100根,这个V形架上共放着多少根钢管?自主探究:特殊的等差数列前n项和公式预习课本42页回答以下问题1. 计算1+2+…+100=?2. 如何求1+2+…+n=?新知:数列{an}的前n项和:一般地,称为数列{an}的前n项的和,用Sn表示,即Sn?合作探究:一般的等差数列前n项和公式①如何求首项为a1,第n项为an的等差数列{an}的前n项的和?②如何求首项为a1,公差为d的等差数列{an}的前n项的和?小结:n,必须具备三个条件:. 2nd2. 用Sn?na1?,必须已知三个条件:21. 用Sn?完成目标1及目标2※典型例题例2. 等差数列?an?中,已知d?20,n?37,Sn?629,求a1和an24例3 已知等差数列5,4 ,3 , (77)求数列{an}的通项公式;125数列{an}的前几项和为?7Sn的最大值为多少?并求出此时相应的n的值小结:等差数列前n项和公式就是一个关于an、a1、n或者a1、n、d的方程,可以做到知三求一,另外体现函数与方程思想。
2.3等差数列的前n项和教学设计
2。
3等差数列前n项和教学设计石嘴山市第三中学刘金瑞一、指导思想与理论依据学习是学生积极主动地建构知识的过程,因此,应该让学生在具体问题情境中经历知识的形成和发展,让学生利用自己原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.基于数学学科自身抽象和严谨的特点,在数学教学活动中就要引导学生自主发现问题,解决问题,培养学生的动手、动脑能力。
本堂课以个性化的教学思想为指导进行设计。
采用探究活动为主的教学方法,借助教材和教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力.因此,我在此堂课的教学中借助梯形面积拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美.二、教材分析本节课的教学内容是人教版数学必修5第二章第三节列前n项和(第一课时),主要内容是等差数列前n项和的推导过程和简单应用。
本节对“等差数列前n项和"的推导,是在学生已掌握等差数列的通项性质以及高斯算法等相关知识的基础上进行。
对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加法,也为高三运用数学归纳法证明数列型的不等式奠定良好的基础,具有承上启下的重要作用。
等差数列在现实生活中比较常见,等差数列求和就成为我们在实际生活中经常遇到的一类问题.因此,等差数列求和公式的推导,是由现实情境引入数列求和的模型,再用模型解决一些实际问题,使学生能掌握“倒序相加"这一重要数学方法。
通过探索等差数列前n项和,培养学生观察、猜想、类比、归纳的学习思想,加强和提高学生解决问题的能力。
要求学生理解等差数列前n项和的求和过程,掌握公式并能用公式解决一些实际题。
三、学情分析本节课之前学生已经学习了等差数列的通项公式及基本性质,这为倒序相加法的教学提供了基础.学生已有了函数知识,因此在教学中渗透函数思想。
大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知.如何从首尾配对法引出倒序相加法,这是学生学习的障碍,同时,学生学习抽象理论知识存在为难的情绪.对学生学习的障碍和困难,本节采用情境导入、激发兴趣,由特殊到一般的推导方法,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。
《等差数列前n项和》教案
《等差数列前n项和》教案一、教学目标1. 让学生理解等差数列前n项和的定义及公式。
2. 培养学生运用等差数列前n项和公式解决实际问题的能力。
3. 引导学生通过探究等差数列前n项和的性质,提高其数学思维能力。
二、教学内容1. 等差数列前n项和的定义。
2. 等差数列前n项和的公式。
3. 等差数列前n项和的性质。
三、教学重点与难点1. 重点:等差数列前n项和的定义、公式及性质。
2. 难点:等差数列前n项和的公式的推导及应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列前n项和的定义及公式。
2. 利用案例分析法,让学生通过解决实际问题,掌握等差数列前n项和的性质。
3. 采用小组讨论法,培养学生的合作意识及数学交流能力。
五、教学过程1. 导入:回顾等差数列的基本概念,引导学生思考等差数列前n项和的定义。
2. 新课:讲解等差数列前n项和的定义,推导出等差数列前n项和的公式。
3. 案例分析:运用等差数列前n项和公式解决实际问题,引导学生发现等差数列前n项和的性质。
4. 课堂练习:布置练习题,让学生巩固等差数列前n项和的公式及性质。
5. 总结:对本节课的内容进行总结,强调等差数列前n项和的重要性质。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评估1. 课堂问答:通过提问等方式了解学生对等差数列前n项和定义及公式的理解程度。
2. 练习题:分析学生完成练习题的情况,评估学生对等差数列前n项和的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解学生对等差数列前n项和性质的理解。
七、教学拓展1. 等差数列前n项和的公式在实际问题中的应用,如计算工资、奖金等。
2. 引导学生探究等差数列前n项和的公式的推导过程,提高学生的数学思维能力。
八、教学反思1. 反思教学方法的有效性,根据学生的反馈调整教学策略。
2. 分析学生的学习情况,针对性地进行辅导,提高学生的学习效果。
九、课后作业1. 巩固等差数列前n项和的公式及性质。
优秀导学案_2.3等差数列的前项和(第一课时)
1. 应用公式(知三求二)
例1.已知等差数列 中,
(1) , , 求 ;
(2) , , ,求 ;
(3) , ,求 及 。
解:(1) (3)
(2)
2.变用公式
例2.等差数列-10,-6,-2,2,…的前多少项的和为54?
例3.已知一个等差数列的前10项和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n项和的公式吗?
思考:
(1)问题转化求什么?能用最短时间算出来吗?
(2)阅读课本后回答,高斯是如何快速求和的?他抓住了问题的什么特征?
(3)如果换成1+2+3+…+200=?我们能否快速求和?
(4) 根据高斯的启示,如何计算18+21+24+27+…+624=?
“合作互学——群凤和鸣”
问题二: (小组讨论,总结方法)
复习回顾
1.数列 的前 和的概念:
一般地,称为数列 的前 项的和,
用 表示,即
2. 与 的关系:
3.等差数列 中,若m+n=p+q,(m,n,p,q为常数)则有:;
一般地, =......
问题一:一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。这个V形架上共放着多少支铅笔?
☆创新题选做
2.对求和史的了解。
我国数列求和的概念起源很早,在北朝时,张丘建始创等差数列求和解法。他在《张丘建算经》中给出等差数列求和问题:今有女子不善织布,每天所织的布以同数递减,初日织五尺,末一日织一尺,共织三十日,问共织几何?
四、学习反思:
“提升引领——凤翔九天”
等差数列前n项和优秀教案
等差数列前n项和优秀教案一、教学目标:1. 知识与技能:使学生理解等差数列前n项和的定义,掌握等差数列前n项和的计算公式,能够运用等差数列前n项和的知识解决实际问题。
2. 过程与方法:通过探究等差数列前n项和的规律,培养学生逻辑思维能力和归纳总结能力。
3. 情感态度价值观:激发学生对数学知识的兴趣,培养学生的团队合作精神。
二、教学重点与难点:重点:等差数列前n项和的定义,计算公式。
难点:等差数列前n项和的灵活运用。
三、教学过程:1. 导入新课:回顾等差数列的基本概念,引导学生思考等差数列前n 项和的意义。
2. 探究等差数列前n项和的规律:引导学生分组讨论,总结等差数列前n项和的计算公式。
3. 讲解等差数列前n项和的计算公式:详细讲解等差数列前n项和的计算公式,并通过例题演示应用过程。
4. 练习与拓展:布置适量练习题,巩固等差数列前n项和的计算方法,并引导学生运用所学知识解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生主动探究等差数列前n项和的规律。
2. 利用多媒体辅助教学,生动展示等差数列前n项和的应用过程。
3. 采用分组讨论法,培养学生的团队合作精神和沟通能力。
4. 运用实例分析法,使学生更好地理解等差数列前n项和的实际意义。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况:检查学生练习题的完成质量,评估学生对等差数列前n项和的掌握程度。
3. 小组讨论:评价学生在分组讨论中的表现,包括逻辑思维、沟通能力等。
4. 课后反馈:收集学生对课堂内容的反馈意见,为后续教学提供改进方向。
六、教学内容与课时安排:第六章:等差数列前n项和的性质与应用课时安排:2课时本章主要内容有:1. 等差数列前n项和的性质;2. 等差数列前n项和在实际问题中的应用。
七、教学内容与课时安排:第七章:等差数列前n项和的计算公式推导课时安排:2课时本章主要内容有:1. 等差数列前n项和的计算公式的推导过程;2. 等差数列前n项和的计算公式的应用。
等差数列的前n项和公式(第一课时)(教案)高二数学(人教A版2019选择性必修第二册)
等差数列的前n项和公式第一课时1.课时教学内容等差数列前n项和公式2.课时学习目标(1)会推导等差数列前n项和公式;(2)会用等差数列的前n项和公式解决简单问题。
3.教学重点与难点重点∶等差数列的前n项和的应用。
难点∶等差数列前n项和公式的推导方法。
4.教学过程设计环节一情景引入200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?你准备怎么算呢?高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一。
他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献。
问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释。
高斯的算法:(1+100)+(2+99)+…+(50+51)=101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,…前100项的和问题。
等差数列中,下标和相等的两项和相等。
设a n=n,则a1=1,a2=2,a3=3,…如果数列{a n}是等差数列,p,q,s,t∈N∗且 p +q =s +t,则a p +a q =a s +a t可得:a 1+a 100=a 2+a 99=⋯=a 50+a 51问题2:你能用上述方法计算1+2+3+… +101吗? 解:原式=(1+101)+(2+100)+⋯+(50+52)+52 =102×50+51 =5151解法2:原式=(1+2+⋯+100)+101=[(1+100)+(2+99)+⋯+(50+51)]+101=101×50+101 =5151解法3:原式=0+1+2+⋯+100+101=(0+101)+(1+100)+⋯+(50+51)=101×51 =5151问题3:你能计算1+2+3+… +n 吗? 需要对项数的奇偶进行分类讨论.当n 为偶数时, S n =(1+n )+[(2+(n −1)]+⋯+[(n2+(n2−1)] =(1+n )+(1+n )…+(1+n ) =n2(1+n ) =n(1+n)2当n 为奇数数时, n -1为偶数S n =(1+n )+[(2+(n −1)]+⋯+[(n +12−1)+(n +12+1)]+ n +12=(1+n )+(1+n )…+(1+n )+ n+12=n−12(1+n )+n+12=n(1+n)2对于任意正整数n ,都有1+2+3+… +n =n(1+n)2问题4:不分类讨论能否得到最终的结论呢? S n = 1+ 2 + 3 +⋯+nS n = n +(n −1)+(n −2)+⋯+1 将上述两式相加,得2S n=(n+1)+[(n−1)2]+[(n−2)+3]+⋯+(1+n)=(1+n)+(1+n)+⋯+(1+n)=n(1+n)所以S n=1+2+3+⋯+n=n(1+n)2问题5:上述方法的妙处在哪里?倒序求和法S n=a1+a2+a3+⋯+a n−2+a n−1+a nS n=a n+a n−2+a n−1+⋯+a3+a2+a1 2S n=(a1+a n)+(a2+a n−1)+⋯+(a n+a1)因为:a1+a n=a2+a n−1=…=a n+a1所以:2S n=(a1+a n)+(a1+a n)+⋯+(a1+a n)=n(a1+a n)即:S n=n(1+n)2问题6:这种方法能够推广到求等差数列{a n}的前n项和吗?S n=a1+a2+a3+⋯+a n−2+a n−1+a n,S n=a n+a n−2+a n−1+⋯+a3+a2+a1.2S n=(a1+a n)+(a2+a n−1)+⋯+(a n+a1)因为:a1+a n=a2+a n−1=…=a n+a1所以:2S n=(a1+a n)+(a1+a n)+⋯+(a1+a n)=n(a1+a n)所以S n=n( a1+a n)2得到等差数列前n项和公式:S n=n( a1+a n)2追问1:你能用文字语言表达这个公式吗?首项加末项乘以项数除以2.追问2:这个公式还有什么含义?等式两边同除以n,S nn =(a1+a n)2,即a1+a2+a3+⋯+a nn =(a1+a n)2前n项平均数等于首项与第n项的平均数问题7:能不能用a1和d来表示S n呢?将a n=a1+(n−1)d代入公式整理得S n =na1+n(n−1)2d追问:如果不利用前面结论,你还有其他方法得到上述公式吗?S n=a1+a2+a3+⋯+a n,=a1+(a1+d)+(a1+2d)+⋯+[a1+(n−1)d]=na1+[1+2+3+(n−1)d]=na1+n(n−1)2d等差数列的前n项和公式公式S n=n(a1+a n)2功能1:已知a1,a n,n 求S n功能2:已知S n a1,a n,n中任意3个,求第4个。
等差数列的前n项和教案
等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。
2. 掌握等差数列的前n项和的计算方法。
3. 能够运用等差数列的前n项和解决实际问题。
二、教学重点1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算方法。
三、教学难点1. 等差数列的性质的理解与应用。
2. 等差数列的前n项和的计算方法的推导与理解。
四、教学准备1. 教师准备PPT或黑板,展示等差数列的定义、性质和前n项和的计算方法。
2. 教师准备一些实际问题,用于引导学生运用等差数列的前n项和解决实际问题。
五、教学过程1. 引入:教师通过PPT或黑板,展示一些数列的例子,引导学生思考数列的规律。
2. 讲解:教师讲解等差数列的定义、性质和前n项和的计算方法,通过示例进行解释和说明。
3. 练习:教师给出一些等差数列的问题,让学生独立解决,并给出答案和解析。
4. 应用:教师给出一些实际问题,引导学生运用等差数列的前n项和解决实际问题,并提供解答和解析。
5. 总结:教师对本节课的内容进行总结,强调等差数列的概念、性质和前n项和的计算方法的重要性和应用价值。
六、教学拓展1. 引导学生思考等差数列的前n项和的性质,如奇数项和偶数项的和是否相等。
2. 引导学生探索等差数列的前n项和的公式推导过程。
七、课堂小结1. 回顾本节课学习的等差数列的概念、性质和前n项和的计算方法。
2. 强调等差数列的前n项和在实际问题中的应用价值。
八、作业布置1. 完成教材或练习册上的相关习题,巩固等差数列的概念、性质和前n项和的计算方法。
2. 选取一道实际问题,运用等差数列的前n项和解决,并将解题过程和答案写下来。
九、课后反思1. 教师对本节课的教学效果进行反思,观察学生对等差数列的概念、性质和前n 项和的计算方法的掌握程度。
2. 针对学生的掌握情况,调整教学方法和解题策略,为下一节课的教学做好准备。
十、教学评价1. 学生完成作业的情况,判断学生对等差数列的概念、性质和前n项和的计算方法的掌握程度。
等差数列及其前n项和教案
等差数列及其前n项和教案一、教学目标:1. 理解等差数列的概念,能够识别等差数列的通项公式。
2. 掌握等差数列的前n项和的计算方法。
3. 能够运用等差数列的性质解决实际问题。
二、教学内容:1. 等差数列的概念:定义、通项公式。
2. 等差数列的前n项和的计算方法:公式、性质。
3. 等差数列的应用:解决实际问题。
三、教学重点与难点:1. 重点:等差数列的概念、通项公式;等差数列的前n项和的计算方法。
2. 难点:等差数列的应用。
四、教学方法:1. 讲授法:讲解等差数列的概念、通项公式、前n项和的计算方法。
2. 案例分析法:分析实际问题,引导学生运用等差数列的知识解决问题。
3. 互动教学法:提问、讨论,激发学生的学习兴趣和积极性。
五、教学过程:1. 引入:通过生活中的实例,引导学生思考等差数列的概念。
2. 讲解:讲解等差数列的概念、通项公式,引导学生理解等差数列的性质。
3. 练习:让学生自主完成等差数列的前n项和的计算,巩固所学知识。
4. 应用:分析实际问题,引导学生运用等差数列的知识解决问题。
5. 总结:对本节课的内容进行总结,强调等差数列的概念、通项公式和前n项和的计算方法。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学反思:在课后对教学效果进行反思,了解学生的掌握情况,对教学方法进行调整,以提高教学效果。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成情况,评估学生对等差数列概念和前n项和计算方法的掌握程度。
3. 测验评价:进行等差数列相关知识的测验,评估学生的学习效果。
七、教学拓展:1. 等差数列的进一步研究:引导学生探讨等差数列的性质,如项数与项的关系、项的取值范围等。
2. 等差数列与其他数列的关系:介绍等差数列与等比数列等其他数列的联系和区别。
3. 等差数列在实际问题中的应用:举例说明等差数列在生活中的应用,如统计数据处理、财务计算等。
等差数列的前n项和公式
课题: §2.3 等差数列的前n 项和(第一课时)一、教学目标(1)知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和相关的问题(2)过程与方法:通过公式的推导和公式的使用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成理解问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生实行思维灵活性与广阔性的训练,发展学生的思维水平.(3)情感态度与价值观:通过公式的推导过程,表达数学中的对称美。
二、教学重点、难点:重点:等差数列n 项和公式的理解、推导及应用;难点:灵活应用等差数列前n 项公式解决一些简单的相关问题三、教学过程Ⅰ.复习等差数列的性质:性质一、等差中项:若c b a ,,三个数成等差数列,则b 叫c a ,的等差中项,且c a b +=2 性质二、在等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+Ⅱ。
课题导入“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。
教师问:“你是如何算出答案的?高斯回答说:因为1+100=101;2+99=101;…50+51=101,所以101×50=5050”这个故事告诉我们:(1)作为数学王子的高斯从小就擅长观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西。
(2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“高斯算法”又叫“倒序相加法”。
下面我们用“倒序相加法”来求等差数列的前n 项和公式Ⅲ.讲授新课1.等差数列前n 项和公式的推导已知等差数列}{n a 的首项1a ,公差为d,我们称n a a a a ++++...321为数列}{n a 的前n 项和,用n s 表示,即n n a a a a s ++++= (321)由“高斯算法” n n n a a a a a S +++++=-1321 ①1221a a a a a S n n n n +++++=-- ②①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=--∵ =+=+=+--23121n n n a a a a a a∴)(21n n a a n S += 由此得:2)(1n n a a n S += 可见等差数列的前n 项和公式为:2)(1n n a a n S +=(公式一) 思考:假设代入等差数列的通项公式d n a a n )1(1-+= ,上面前n 项和公式变为什么了?(学生自己推导)2)1(1d n n na S n -+= (公式二) 思考;比较这两个公式,说说他们分别从哪些角度反映了等差数列的前n 项,公式 (生)公式一:要求n S 必须具备三个条件:n a a n ,,1公式二:要求n S 必须已知三个条件:d a n ,,12.[范例讲解] 课本P43-44的例1、例2、例3.例1: 2000年11月14日教育部颁发了《关于在中小学实施“校校通”工程的通知》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的费用为500万元,为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?(师):等差数列前n 项和公式的理解及简单应用,50,5001==d a 从2001--2010年(n=10)求10s 的值例2:在等差数列}{n a 中,已知215,23,21-===n n S a d 求1a 与d. 说明:在等差数列的通项公式与前n 项和公式中的n n S n a d a ,,,,1五个量中,只要已知其中的三个量就能求出剩余的三个量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.3 等差数列的前
n 项和 授课类型:新授课 (第1课时)
一、教学目标
知识与技能:掌握等差数列前n 项和公式;会用等差数列的前n 项和公式解决问题。
过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律;通过公式推导的过程教学,扩展学生思维。
情感态度与价值观:通过公式的推导过程,使学生体会数学中的对称美,促进学生的逻辑思维。
二、教学重点
等差数列n 项和公式的理解、推导及应用
三、教学难点
灵活应用等差数列前n 项公式解决一些简单的有关问题
四、教学过程
1、课题导入
“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家
出道题目:
1+2+…100=?”
过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:
“1+2+3+…+100=5050。
”
教师问:“你是如何算出答案的?
高斯回答说:因为1+100=101;
2+99=101;…50+51=101,所以
101×50=5050”
这个故事告诉我们:
(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规
律性的东西。
(2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。
2、讲授新课
(1)等差数列的前n 项和公式1:2
)(1n n a a n S += 证明: n n n a a a a a S +++++=-1321 ①
1221a a a a a S n n n n +++++=-- ②
①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=--
∵ =+=+=+--23121n n n a a a a a a
∴)(21n n a a n S += 由此得:2
)(1n n a a n S +=
从而我们可以验证高斯十岁时计算上述问题的正确性(2)等差数列的前n 项和公式2:2
)1(1d n n na S n -+= 用上述公式要求n S 必须具备三个条件:n a a n ,,1
但d n a a n )1(1-+= 代入公式1即得: 2)1(1d n n na S n -+
= 此公式要求n S 必须已知三个条件:d a n ,,1
3、例题讲解:
课本P43的例1
例2:已知一个等差数列{}n a 的前10项和是310,前20项和是1220,由这些条件能确定这个数列的前n 项和公式吗?
解:由题意知:1020310,1220S S == 将它们代入公式1(1)2
n n n S na d -=+ 得到方程组, 111045310201901220
a d a d +=⎧⎨+=⎩ 解这个方程组得到:14,6a d ==
所以 23n S n n =+
例3:已知数列{}n a 的前n 项和为212
n S n n =+,求这个数列的通项公式.这个数列是等差数列吗?如果是,写出它的首项和公差 解:根据12n n S a a a =+++与1121n n S a a a --=+++ 可知,当1n >时,221111(1)(1)2222n n n a S S n n n n n -=-=+
----=- 当1n =时,1132
a S ==, 所以{}n a 的通项公式为122n a n =-,首项为32,公差为2 由例3得与n a 之间的关系:
由n S 的定义可知,当n=1时,1S =1a ;当n ≥2时,n a =n S -1-n S ,
即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n
.
4、课堂练习
课本P45练习1、2、3
练习①:根据题中条件,求相应的等差数列的前n 项和表达式
184,18,8
a a n =-=-=
解:由于184,18a a =-=-, 所以8127
a a d -==- 代入前n 项和表达式中:
88(81)8(4)(2)882S -=⨯-+⨯-=-
练习②:已知数列{}n a 的前n 项和为212343n S n n =
++,求这个数列的通项公式. 解:根据12n n S a a a =+++与1121n n S a a a --=+++ 可知,当1n >时,2211212153(1)(1)34343212n n n a S S n n n n n -=-=
++-----=+ 当1n =时,111112
a S =
≠,所以 {}n a 的通项公式为47,11251,1122
n n a n n ⎧ =⎪⎪=⎨⎪+ >⎪⎩ 练习③:求集合{}
21,,60M m m n n m +==-∈N <且的元素个数,并求这些元素的和. 解:由题意知 216030.5
m n n =-<< 所以,元素个数为30个
3030(301)30129002S -=⨯+
⨯=
5、课时小结
本节课学习了以下内容:
1.等差数列的前n 项和公式1:2
)(1n n a a n S += 2.等差数列的前n 项和公式2:2
)1(1d n n na S n -+= Ⅴ.课后作业
课本P46习题[A 组]2、3题。