怎样理解充分条件、必要条件和充要条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样理解充分条件、必要条件和充要条件
张万库
充分条件、必要条件和充要条件是简易逻辑中的重要概念,准确理解、有意识地运用这几个概念思考问题和解决问题,可以使同学们养成严谨的思维品质,提高大家的逻辑思维能力。
怎样理解这三个概念呢?
1. 充分条件、必要条件和充要条件反映的是一个命题中条件和结论间的因果关系(条件关系),是条件对于结论成立的作用。谈一个命题的条件是否充分、必要、充要时,这个命题必须是确定的。
2. 充分条件的特征是“有之必然,无之未必不然”,即对于给定的命题“若A 则B ”,有了条件A ,结论B 一定成立(A B ⇒);没有条件A ,结论B 未必不成立,也有可能成立。这样的条件A 就是结论B 的充分条件。例如,在命题“若x>0,则x 20>”中,有了条件“x>0”,就一定有结论“x 20>”成立。把条件“x>0”换成“x <0”或“x ≠0”,仍有结论“x 20>”成立。因此条件“x >0”是结论“x 20>”的充分条件。教材中由“p q ⇒”定义“p 是q 的充分条件”,说的就是命题“若p 则q ”中条件p 对于结论q 成立的作用。
3. 必要条件的特征是“无之必不然,有之未必然”,即对于给定的命题“若A 则B ”,没有条件A ,结论B 一定不成立(⌝⇒⌝A B );但是有了条件A ,结论B 却未必一定成立。这样的条件A 就是结论B 的必要条件。例如,在命题“若x R x Q ∈∈,则”中,没有条件“x Q ∈”,就一定不会有结论“x Q ∈”。但是有了条件“x R ∈”,却未必有结论“x R ∈”,还有可能是x C Q R ∈。因此条件“x R ∈”是结论“x Q ∈”的必要条件。
利用“⌝⇒⌝A B ”判断条件A 是结论B 的必要条件,有时是很困难的。我们可以利用“⌝⇒⌝A B ”的等价命题“B A ⇒”来判断,但一定要注意A 还是条件,B 还是结论,即若由结论B 能推出条件A ,则条件A 对于结论B 的成立是必要的。教材中由“p q ⇒”定义“q 是p 的必要条件”,说的就是命题“若q 则p ”中条件q 对于结论p 成立的作用(⌝⇒⌝q p )。
4. 充要条件的特征是“有之必然,无之必不然”,即对于给定的命题“若A 则B ”,有了条件A ,结论B 一定成立(A B ⇒);没有条件A ,结论B 一定不成立(⌝⇒⌝A B 即B A ⇒)。这样的条件A 就是结论B 的充要条件。例如,在命题“△ABC 中,若∠∠∠A B C ==,则BC=CA=AB ”中,有了条件“∠A=∠B=∠C ”,就一定有结论“BC=CA=AB ”成立;反之没有条件“∠A=∠B=∠C ”,就一定没有结论“BC=CA=AB ”成立(即有了“BC=CA=AB ”,也一定有“∠A=∠B=∠C ”)。因此条件“∠A=∠B=∠C ”是结论“BC=CA=AB ”的充要条件。
弄懂了充分条件、必要条件的本质,教材中由“p q ⇔”定义“p 是q 的充要条件”则是不难理解的。
5. 在命题“若A 则B ”中,条件A 是结论B 的充分(必要、充要)条件,在逆命题“若B 则A ”中,条件B 就是结论A 的必要(充分、充要)条件。运用充分条件、必要条件、充要条件的概念和观点思考问题、解决问题时,一定要弄清问题中所涉及的命题是什么(即弄清谁是条件,谁是结论)。
点评:充分条件、必要条件和充要条件的学习与运用,是一个极好的思维训练资源。只要准确理解、有意识运用这几个概念思考问题和解决问题,同学们就可以少犯错误,变得聪
明起来。
练一练:
1. 已知a ,b ,c 是常数,则“a>0且b ac 240-<”是“对任意x R ax bx c ∈++>,20恒成立”的什么条件?
2. 我们知道a b a b ab ==⎧⎨⎩+==⎧⎨⎩1121,与是等价的,那么a b >>⎧⎨⎩11与a b ab +>>⎧⎨⎩
21是否也等价呢?
答案:
1. 充分不必要条件
2. 不等价(提示:在平面直角坐标系内画出两个不等式组所表示的区域A 和B 。从下图中可以直观地看出A 是B 的真子集,因此,不等价,是充分不必要条件。用图形判断条件的充分性、必要性、充要性,形象直观,一目了然)