解一元二次方程说课稿
2.2一元二次方程的解法(1)说课稿 2022-2023学年浙教版数学八年级下册
一元二次方程的解法一、教材分析本节课是八年级下册数学中的第二章第二节,主要围绕一元二次方程的解法展开讲解。
通过本节课的学习,学生将掌握解一元二次方程的一般方法,强化对解方程的理解和应用能力。
二、教学目标本节课的教学目标主要包括以下几个方面:1.理解一元二次方程的定义,掌握一元二次方程的一般形式;2.掌握求解一元二次方程的常见方法,如因式分解法和配方法;3.能够运用所学方法解决实际问题。
三、教学重点1.掌握一元二次方程的定义和一般形式;2.掌握因式分解法和配方法求解一元二次方程。
四、教学难点1.运用所学方法解决实际问题。
五、教学过程1. 导入与承前启后(5分钟)首先,我将通过提问导入本节课的内容,引发学生对一元二次方程求解的思考,进而与上节课所学内容进行联系。
2. 理解一元二次方程的定义与一般形式(10分钟)接下来,我将通过课件展示一元二次方程的定义和一般形式,与学生进行互动讨论,确保学生对一元二次方程的基本概念有清晰的理解。
3. 学习因式分解法(15分钟)在本节课中,因式分解法是求解一元二次方程常用的方法之一。
我将结合具体的例子,讲解因式分解法的步骤和应用技巧,并通过小组合作的方式进行练习和巩固。
4. 学习配方法(15分钟)除了因式分解法外,配方法也是求解一元二次方程的重要方法之一。
我将通过课件展示配方法的步骤和实例,帮助学生理解并掌握配方法的运用。
5. 拓展与应用(15分钟)在本节课的最后部分,我将提供一些拓展题目和实际问题,引导学生运用所学方法解决更加复杂和实用的问题,提高他们的综合应用能力。
六、板书设计根据本节课的内容,我设计了以下板书:一元二次方程的解法一、定义与一般形式二、因式分解法三、配方法四、拓展与应用七、教学反思本节课通过活动导入、互动讨论和小组合作练习等多种教学方式,使学生主动参与到学习中,提高了教学的趣味性和互动性。
同时,在教学过程中注重理论与实践的结合,引导学生将所学的解方程的方法应用到实际问题中。
九年级上《解一元二次方程—公式法》说课稿
九年级上《解一元二次方程——公式法》说课稿一、教学目标•知识目标:掌握一元二次方程的基本概念和公式法解法的具体步骤。
•能力目标:培养学生运用公式法解一元二次方程的能力,培养学生运用解方程思维解决实际问题的能力。
•情感目标:激发学生学习数学的兴趣,培养学生的数学思维能力和逻辑推理能力,增强学生对数学的自信心。
二、教学内容本节课的教学内容是《解一元二次方程——公式法》。
- 了解一元二次方程的概念和基本形式。
- 掌握用公式法解一元二次方程的步骤。
- 运用公式法解决一元二次方程的实际问题。
三、教学重点•掌握一元二次方程的基本概念和公式法解法的步骤。
•运用公式法解决一元二次方程的实际问题。
四、教学难点•运用公式法解决一元二次方程的实际问题。
五、教学方法•教师讲授结合示范。
•学生合作探究。
•学生自主解决问题。
六、教学过程1. 导入与热身(5分钟)通过复习上节课的内容,引入本节课的新知识。
复习一元二次方程的基本概念,并提出公式法解一元二次方程的问题。
2. 新知呈现(15分钟)•引入公式法解一元二次方程的基本步骤:观察、计算、判断、解释。
•讲解一元二次方程的基本形式以及解一元二次方程的公式。
3. 教学示范(20分钟)•教师通过具体的例题,示范如何运用公式法解一元二次方程。
•教师指导学生观察方程中的系数,运用公式计算并判断方程是否有解。
4. 学生合作探究(15分钟)•学生分组合作,完成一组习题,互相讨论,解答问题。
•学生互相提问并解答疑惑,加深对公式法解一元二次方程的理解。
5. 实际问题解决(20分钟)•学生通过解决实际问题,应用公式法解决一元二次方程。
•学生分析问题,提取信息,建立方程,并解答问题。
6. 拓展与小结(10分钟)•教师提供拓展问题,引导学生运用公式法解决更复杂的问题。
•小结本节课的重点内容,梳理解题步骤并巩固学生对公式法解一元二次方程的掌握程度。
七、教学反思本节课采用了导入与热身、新知呈现、教学示范、学生合作探究、实际问题解决、拓展与小结的教学过程,为学生提供了多种角度的学习方式。
一元二次方程说课稿
一元二次方程说课稿(一)我说课的题目北师版九年级(上)第二章《一元二次方程》. 下面我就从以下几个方面对一元二次方程进行说课⑴说教材⑵说目标⑶说教学方法、学法⑷说教学程序⑸说评价一、说教材教材分析本节课介绍了一元二次方程的概念及一般形式.一元二次方程的学习是一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础。
本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及简单应用起到铺垫作用。
二、说目标⑴教学目标1.知识目标:使学生充分了解一元二次方程的概念;正确掌握一元二次方程的一般形式.2.能力目标:经历抽象一元二次方程的过程, 使学生体会出方程是刻画现实世界中数量关系的一个有效数学模型; 经历探索满足方程解的过程,发展估算的意识和能力.3.情感目标:培养学生主动探索、敢于实践、勇于发现、合作交流的精神.⑵教学重点建立一元二次方程的概念,认识一元二次方程的一般形式。
⑶教学难点由实际问题抽象出方程模型的能力三、说教学方法和学生的学法⑴教法分析本节课主要采用以类比发现法为主,以讨论法、练习法为辅的教学方法.⑵学法指导本节课的教学中,教会学生善于观察、分析讨论、类比归纳,最后抽象出有价值。
让时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。
⑶教学手段采用电脑多媒体辅助教学,利用实物投影进行集体交流,及时反馈相关信息四、说教学程序⑴知识回顾导入新课⑵自主探索归纳新知⑶巩固练习深化知识⑷归纳小结反思提高⑸布置作业分层落实⑴知识回顾导入新课什么是一元一次方程?(请学生举例)请同学们阅读教材的“问题1”和"问题2",进一步明确列方程解实际问题的思路和方法. (培养学生的自学能力)设计意图:方程模型的建立为下一环节的教学做好铺垫。
⑵自主探索归纳新知比较一:与一元一次方程作纵向比较得一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
《一元二次方程》(复习课)说课稿
《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊一、教材分析1.教材的地位和作用一元二次方程是中学数学的重要内容之一。
一方面,可以对以前学过的一元一次方程、因式分解等知识加以巩固,另一方面,又为以后学习二次函数等知识打下基础。
此外,一元二次方程对其它学科的学习也有重要意义。
因此,其地位可谓是“承上启下”,不可或缺。
2.教学目标分析知识与技能目标:1.理解一元二次方程的概念2.能灵活熟练的解一元二次方程3.会运用一元二次方程解决实际问题。
过程与方法目标:经历一元二次方程求解过程,提高观察分析能力,加深对转化等数学思想的认识。
情感态度与价值观目标:通过自主合作探究学习,养成独立思考的好习惯,培养团队合作意识。
3.教学重难点重点:构建一元二次方程知识体系,全面复习一元二次方程的解法及应用。
难点:利用根的判别式确定字母取值范围和运用一元二次方程解决实际问题。
二、教法与学法分析教法分析:叶圣陶先生主张:“教师务必启发学生的能动性,引导他们尽可能自己去探索。
”结合本节课的内容特点,我将采用启发式、讨论式以及探索式教学方法。
给学生留出足够的思考时间和空间,让学生自己去探索,归纳。
从真正意义上完成对知识的自我构建。
并用多媒体直观演示,最大限度地调动学生学习的积极性。
学法分析:人们常说:“现代文盲不是不识字的人,而是没有掌握学习方法的人”,因此教师要特别注重对学生学习方法的指导。
我贯彻的指导思想是把“学习的主动权还给学生”,倡导“合作交流、自主探究”的学习方式,具体的学法是利用学案导学,小组合作交流法,让学生养成自主学习的习惯,真正实现课堂的高效。
三、教学过程分析教学流程图:1.呈现诊断问题构建知识体系问题1:观察下列方程:⑴(x+3)²=2 ; ⑵x ²-8x+1=0 ; ⑶3x(x-1)=2(x-1);⑷x ²-4x-7=0 ; ⑸x ²+17=8x (无实数根)①这几个都是什么方程?诊断一: ②解这样的方程你有哪些方法? ③它们都有实数根吗?为什么?【教后反思】问题1出示了五个方程,目的是为了引出一元二次方程的概念、解法,以及根的判别式等知识点。
用因式分解法求解一元二次方程》说课稿
用因式分解法求解一元二次方程》说课稿
学法指导方面,鼓励学生在研究过程中积极思考、自主探究,注重合作研究和交流,提高学生的解题能力和思维能力。
同时,引导学生注重方法的灵活运用,培养学生的解题策略和技巧。
三、教学过程设计
1.导入环节
通过生活中的实际问题引入本节课的研究内容,如何用因式分解法解决问题,引起学生的兴趣和思考。
2.知识讲解
介绍因式分解法的基本概念和方法,以及如何将一元二次方程化为一般式进行因式分解。
3.案例分析
通过具体的例子,引导学生掌握因式分解法解一元二次方程的方法和技巧,培养学生的解题能力和思维能力。
4.练与巩固
设计一系列练题,巩固学生对因式分解法解一元二次方程的理解和掌握程度,提高学生的解题能力和思维能力。
5.拓展与应用
引导学生将所学知识应用到实际问题中,拓展学生的思维和解题能力,培养学生的创新精神和实践能力。
四、教学设计说明
本节课的教学设计注重以学生为中心,以问题为导向,以探究为主,通过实际问题引导学生掌握因式分解法解一元二次方程的方法和技巧,提高学生的解题能力和思维能力。
同时,注重学生的合作研究和交流,培养学生的团队合作精神和交流能力。
通过引导学生将所学知识应用到实际问题中,拓展学生的思维和解题能力,培养学生的创新精神和实践能力。
用配方法解一元二次方程说课稿
五 学法分析
1. 再现原有认知:因为配方法的推导过程是建 立在直接开平法的基础上的,因此有必要让 学生回忆完全平方公式。
❖ 作业是P-15的1、2、3题, 大家下去认真做一下这3道题,巩固和消化 一下本堂课学习的内容.
❖ 2.过程与方法:理解配方法,知道配方是一种常 用的数学方法;了解配方法解一元二次方程的基 本步骤。
❖ 3.情感、态度与价值观:通过创设情境,培养学 生主动探究的精神与积极参与数学活动的意识。
三、教学重点与难点
重点:运用配方法解一元二次方程。 难点:发现与理解配方法的思想方法。
四 学情与教学方法
一、教材分析。 二、教学目标分析。 三、教学重点、难点。 四、学情与教学方法分析。 五、学法分析。 六、教学过程 七、板书设计。 八、总结反思。
一、教材分析
1.配方法:是选自人民教育出版社义务教育课程标
准九年级上册第22章一元二次方程第二节课的内
容。在此之前,学生掌握了一元二次方程的概念,
及其一些简单特征,并且会用直接开平方法解形
七、板书设计
情境创设 总结归纳 例题讲解 回顾复习。配方法基 作业布置
本思想以 及求解一 元二次方 程的步骤。
八、总结反思
❖ 教师引导学生进行反思、归纳配方法解一元 二次方程的基本思路、步骤及注意事项。巩 固对课堂知识的理解和掌握,同时进一步体 会解一元二次方程时类比、转化及降次的基 本数学思想。
两边同时加上1: x2 2x 1 4
初中数学《用公式法解一元二次方程》说课稿说课稿及说课稿模板
初中数学《用公式法解一元二次方程》说课稿说课稿及说课稿模板一. 教材分析《用公式法解一元二次方程》是人教版初中数学九年级上册的教学内容。
这部分内容是整个初中数学的重要部分,也是学生首次接触公式法解方程。
在学习这部分内容之前,学生已经学习了代数运算和方程的解法,但对一元二次方程的解法还不太熟悉。
因此,本节课的教学目标是让学生掌握一元二次方程的公式法解法,并能够灵活运用。
二. 学情分析根据我对学生的了解,他们在学习代数运算和方程的解法时,对于概念的理解和运算的熟练程度参差不齐。
因此,在教学过程中,我需要关注那些基础薄弱的学生,确保他们能够跟上教学进度。
同时,我也会引导那些基础较好的学生进行深入思考,提高他们的解题能力。
三. 说教学目标根据教材内容和学情分析,我制定了以下教学目标:1.让学生掌握一元二次方程的公式法解法;2.培养学生运用公式法解一元二次方程的能力;3.引导学生理解公式法解方程的原理,提高他们的数学思维能力。
四. 说教学重难点本节课的教学重难点是让学生掌握一元二次方程的公式法解法,并能够灵活运用。
其中,公式法解法的步骤和原理是教学的重点,而如何将实际问题转化为方程是教学的难点。
五. 说教学方法与手段为了达到教学目标,我将以讲授法为主,结合问答法、讨论法和练习法进行教学。
在教学过程中,我会利用多媒体课件和教学道具,帮助学生直观地理解公式法解方程的原理和步骤。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何解决这类问题,从而引出一元二次方程的公式法解法。
2.讲解:讲解一元二次方程的公式法解法,包括公式推导、解题步骤和注意事项。
3.互动:邀请学生上台演示解题过程,其他学生进行评价和讨论,巩固所学知识。
4.练习:布置一些典型题目,让学生独立完成,检验他们对公式法解法的掌握程度。
5.总结:对本节课的内容进行总结,强调公式法解方程的步骤和原理。
七. 说板书设计板书设计如下:一元二次方程的公式法解法1.公式推导ax^2 + bx + c = 0x = (-b ± √(b^2 - 4ac)) / (2a)2.解题步骤(1)确定a、b、c的值;(2)计算判别式Δ = b^2 - 4ac;(3)判断Δ的符号;(4)根据公式求解x的值。
一元二次方程说课稿
一元二次方程说课稿一元二次方程是数学中的重要概念,它是形如ax^2+bx+c=0的方程,其中a、b、c是已知实数且a≠0。
该方程的解是指能够满足这个方程的x值。
在这篇文章中,我将从几个方面来介绍一元二次方程的相关概念和解法。
我们来了解一元二次方程的一些基本特征。
一元二次方程的最高次项是x的二次项,也就是x^2。
而且,方程中的系数a不能为0,否则该方程就不再是一元二次方程。
在解一元二次方程时,我们通常会使用求根公式或配方法。
接下来,我将介绍一元二次方程的求根公式。
对于一元二次方程ax^2+bx+c=0,它的两个解可以通过以下公式来求得:x = (-b ± √(b^2-4ac))/(2a)在这个公式中,±表示两个解,√表示平方根。
当b^2-4ac大于0时,方程有两个不相等的实数解;当b^2-4ac等于0时,方程有两个相等的实数解;当b^2-4ac小于0时,方程没有实数解,但可以有复数解。
除了求根公式,我们还可以使用配方法来解一元二次方程。
配方法的核心思想是通过将方程进行变形,使其可以被因式分解为两个一次因式的乘积。
具体步骤如下:1. 将方程的三项进行重新排列,使得二次项系数为1。
2. 将方程的常数项分解成两个数的乘积,这两个数的和等于一次项的系数。
3. 将方程进行因式分解。
4. 令两个一次因式分别等于0,解得方程的两个解。
需要注意的是,使用配方法解一元二次方程时,方程必须满足特定的条件,例如一次项系数为偶数,常数项为平方数等。
除了求解一元二次方程,我们还可以通过一些特殊情况来简化问题。
例如,当方程的二次项系数为1,一次项系数为0时,方程可以简化为x^2=c,其中c为常数。
这种情况下,方程的解可以通过对c 开方得到。
一元二次方程在实际问题中也有广泛的应用。
例如,在物理学中,一元二次方程可以用来描述抛体运动的轨迹;在经济学中,一元二次方程可以用来建立成本、收益等关系模型。
总结起来,一元二次方程是数学中的重要概念,它的解可以通过求根公式或配方法来求得。
一元二次方程说课稿
一元二次方程说课稿一、教材分析(一)、教材的地位和作用《一元二次方程》是人教版九年制义务教育课程标准实验教科书九年级上册第二十二章第(1)节内容。
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。
在此之前,学生已学习了一元一次方程,因式分解等知识,这为过渡到本节的学习起着铺垫作用。
同时为今后学习一元二次不等式及二次函数打下基础。
(二)、根据上述教材分析,考虑到学生已有的认知结构心理特征,特制定如下教学目标:①知识与技能目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
②过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。
③情感态度与价值观目标:通过对《一元二次方程》的教学,激发学生学习数学的兴趣,体会数学的快乐,形成主动学习的态度。
(三)、教学重难点及关键介于学生对知识理解和掌握程度的差异与不同,立足渗透类比这一重要思想方法,又根据大纲的要求,所以我确定教学重点为:由实际问题列出一元二次方程和一元二次方程的概念。
教学难点为:由实际问题列出一元二次方程及准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。
因此这节课的关键则为通过问题情景的设计,课堂实验的研讨,引导学生发现,分析和解决问题。
二、学生分析任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。
这就要求我们教师必须从学生的认知结构和心理特征出发。
九年级的学生较为活泼开朗,对新鲜事物的好奇心也较强。
使得他们很快就能融入课堂,接受知识也事半功倍。
当他们在解决实际问题时,发现列出的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想需要进一步研究和探索有关方程的问题。
从而激发学生学习的兴趣,促进学生个性的形成和发展。
要让学生成为课堂真正的主人,变厌学为乐学。
湘教版数学九年级上册2.2《一元二次方程的解法》说课稿1
湘教版数学九年级上册2.2《一元二次方程的解法》说课稿1一. 教材分析《一元二次方程的解法》是湘教版数学九年级上册第二章第二节的内容。
这一节主要介绍了一元二次方程的解法,包括因式分解法、公式法等。
通过本节课的学习,学生能够理解一元二次方程的解法,并能够灵活运用各种方法解决问题。
在教材中,首先通过引入一些实际问题,让学生感受一元二次方程的存在。
然后,通过探究一元二次方程的解法,引导学生发现并总结解题规律。
最后,通过巩固练习,让学生进一步掌握解法,并能够解决实际问题。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程的解法有一定的了解。
但一元二次方程的解法与一元一次方程的解法有很大的不同,需要学生能够理解和掌握。
在学习过程中,学生可能会对一元二次方程的解法产生困惑,特别是对于因式分解法和公式法的理解。
因此,教师需要引导学生通过实践探究,加深对解法的理解。
三. 说教学目标1.知识与技能目标:学生能够理解一元二次方程的解法,并能够灵活运用各种方法解决问题。
2.过程与方法目标:通过探究一元二次方程的解法,培养学生解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心。
四. 说教学重难点1.教学重点:一元二次方程的解法。
2.教学难点:因式分解法和公式法的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、讲解法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.引入新课:通过引入一些实际问题,让学生感受一元二次方程的存在,激发学生的学习兴趣。
2.探究解法:引导学生通过实践探究,发现并总结解题规律。
3.讲解解法:讲解因式分解法和公式法的具体步骤和应用。
4.巩固练习:让学生通过练习,进一步掌握解法,并能够解决实际问题。
5.总结提升:总结本节课的学习内容,强调解法的运用。
七. 说板书设计板书设计如下:一元二次方程的解法1.因式分解法–步骤一:将方程化为标准形式–步骤二:因式分解–步骤三:求解–步骤一:确定方程的系数–步骤二:应用求根公式–步骤三:求解八. 说教学评价教学评价主要通过学生的课堂表现、练习情况和作业完成情况进行评价。
湘教版数学九年级上册2.2《一元二次方程的解法》说课稿3
湘教版数学九年级上册2.2《一元二次方程的解法》说课稿3一. 教材分析湘教版数学九年级上册2.2《一元二次方程的解法》是本节课的主要内容。
这部分内容是在学生已经掌握了方程的解法、一元二次方程的基本概念等知识的基础上进行讲解的。
教材通过详细的讲解和丰富的例题,使学生掌握一元二次方程的解法,提高他们解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对方程的概念和解法有一定的了解。
但他们在解决实际问题时,还存在着对一元二次方程解法的理解不深、应用不熟练的问题。
因此,在教学过程中,我需要针对学生的实际情况,通过合理的教学方法,帮助他们深入理解一元二次方程的解法,提高他们的解题能力。
三. 说教学目标本节课的教学目标有三个:1.让学生掌握一元二次方程的解法,包括因式分解法、配方法、求根公式法等。
2.培养学生运用一元二次方程解决实际问题的能力。
3.培养学生合作交流、积极探究的精神。
四. 说教学重难点本节课的重难点是让学生掌握一元二次方程的解法,并能够灵活运用解决实际问题。
其中,解法的理解和运用是教学的重点,解决实际问题是教学的难点。
五. 说教学方法与手段为了达到本节课的教学目标,我采用了以下教学方法和手段:1.采用问题驱动的教学方法,引导学生主动探究一元二次方程的解法。
2.通过丰富的例题,让学生直观地了解一元二次方程的解法。
3.利用多媒体教学手段,展示一元二次方程的解法过程,提高学生的学习兴趣。
六. 说教学过程1.导入:通过一个实际问题,引出一元二次方程的解法。
2.新课讲解:讲解一元二次方程的解法,包括因式分解法、配方法、求根公式法等。
3.例题讲解:通过丰富的例题,让学生了解一元二次方程解法的应用。
4.练习巩固:让学生进行练习,巩固所学知识。
5.拓展提高:引导学生运用一元二次方程解决实际问题。
七. 说板书设计板书设计要清晰、简洁,能够突出一元二次方程的解法。
主要包括以下内容:1.一元二次方程的基本概念。
人教版数学九年级上册22.2.4《一元二次方程解法》(公式法1)说课稿
人教版数学九年级上册22.2.4《一元二次方程解法》(公式法1)说课稿一. 教材分析《一元二次方程解法》是人教版数学九年级上册第22.2.4节的内容,属于初中数学的代数部分。
本节内容是在学生已经掌握了方程的解法、一元二次方程的定义和性质等知识的基础上进行教学的。
本节课的主要内容是一元二次方程的公式法求解,是解决一元二次方程问题的重要方法之一。
教材通过具体的例子引导学生掌握公式法的步骤和应用,培养学生解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元二次方程的概念和性质有一定的了解。
但是,学生对于公式法的理解和运用可能还存在一些困难。
因此,在教学过程中,我需要关注学生的学习需求,针对学生的实际情况进行教学设计和调整。
三. 说教学目标1.知识与技能目标:使学生理解和掌握一元二次方程的公式法,能够熟练运用公式法求解一元二次方程。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探索一元二次方程的解法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 说教学重难点1.教学重点:一元二次方程的公式法及其应用。
2.教学难点:理解一元二次方程的公式法,能够灵活运用公式法解决实际问题。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动参与课堂,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,使教学内容更加直观和生动。
六.说教学过程1.导入新课:通过一个实际问题,引导学生思考如何解决一元二次方程,激发学生的学习兴趣。
2.讲解新课:介绍一元二次方程的公式法,通过具体的例子解释公式法的步骤和应用。
3.实践操作:学生分组进行练习,运用公式法求解一元二次方程,教师巡回指导。
4.总结提升:引导学生总结公式法的解题步骤和注意事项,归纳一元二次方程的解法。
一元二次方程(说课稿)
21.1 一元二次方程(说课稿)我说课的课题是人教版九年级数学(上)册第二十一章一元二次方程第一节《一元二次方程》.我主要从教材分析、教学目标分析、重难点分析、教法和学法分析、教学过程分析五个方面,谈谈我对本节教学内容的认识与处理.一、教材分析教材的地位和作用一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位.通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它方程、一元二次不等式、二次函数等知识的基础,也为进一步学习一元二次方程的解法及应用起铺垫作用.二、教学目标分析根据大纲的要求、本节教材的内容和学生已有的知识经验,我设置了三位一体的教学目标:知识与技能:了解一元二次方程的概念;理解二次项系数不为零这一条件;掌握一元二次方程的一般形式,能正确识别一般式中的“项”及“系数”.过程与方法:引导学生分析实际问题中的数量关系,体会方程与实际生活的联系,组织学生讨论,让学生自己抽象出一元二次方程的概念 .培养学生归纳、分析的能力. 情感态度与价值观:通过实际问题建立数学模型的分析、思考过程,激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识.三、重点、难点分析要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 .所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念.鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此本节课的难点是:通过提出问题,建立一元二次方程的数学模型,把实际问题转化成数学方程.四、教法和学法分析因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学.教学中力求体现“问题情景---数学模型-----概念归纳”的模式.但是由于学生将实践问题转化为数学方程的能力有限,所以,本节知识的主要学习方法是:动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力.此外,本节课是一元二次方程的概念课,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念.五、教学过程分析1、激疑课前回顾:什么是方程?我们学过的方程有哪些?【设计意图】复习方程的概念,元与次的概念,让学生整理已经学过的方程类型. 情境导入:教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:问题1.这个方程属于我们学过的某一类方程吗?师生活动:观察新方程,分析此方程的元与次,尝试为新方程命名.【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识体系中合理的构建一元二次方程这一新知识.问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.以课本上的第一页章前部分的问题作为引出一元二次方程的问题,在数量关系上具有典型性,比较容易理解,通过从数学的角度研究这类问题让学生思考,可以激发学生的探究热情. 学习目标:揭示目标.2、解惑指导自学1:结合学案自学课本第2页至第3页例题以上的内容,小组交流以下问题:给出课本问题1、问题2的两个实际问题,设未知数,建立方程.问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应邀请多少个队参赛?学生思考并回答以下几个问题:全部比赛共有______场.若设应邀请个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有_______场.由此,我们可以列出方程______________,化简得________________.问题3.问题1、问题2列出来的方程中,未知数的个数和最高次数各是多少?这些方程是几元几次方程?师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.问题4.这些方程是什么方程?师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.(1)一元二次方程的概念:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程.(2)一元二次方程的一般形式是.其中是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项.问题5.在一元二次方程的一般形式中,为什么规定a不等于0?【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比,概括一般形式是对一元二次方程另一个角度的理解,是对数学符号语言的应用能力的提升.另外就是一定要注意到a不等于0这个条件.问题6.请你说出一个一元二次方程,和一个不是一元二次方程的方程.师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛地参与.追问学生所举的反例为什么不是一元二次方程?是什么方程?【设计意图】学生自己举例,应用概念,从正反两个方向强化了对概念的理解,在追问的过程中,帮助学生将已有的方程梳理成比较清晰的知识体系,如下:开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.指导自学2:自学课本第3页例题,模仿例题完成课本第4页的练习.完成后小组交流核对答案.补充:下列方程哪些是一元二次方程?(1);(2);(3);(4);(5);(6).答案(2)(5)(6).师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.3、知道:小组展示交流成果,对有疑问的地方,其他小组起来补充,如果还有不完善的地方,由我来补充.4、践道完成学案上践道部分的练习题,小组核对答案,组内先自己解决出错的问题,组长把组内不能解决的问题汇总,提出来由其他小组解答,如果有不完整的我再做进一步补充.【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.达标测试设计:1.下列方程哪些是关于x的一元二次方程( ).(1);(2);(3);(4).【设计意图】考查对一元二次方程概念的理解.2.关于的方程是一元二次方程,则( ).A. B.C. D.【设计意图】考查的条件.3.将关于的一元二次方程化为一般形式,并指出二次项系数.【设计意图】考查化简方程的能力,及对一元二次方程一般式的掌握情况.4.已知关于x的方程是一元二次方程,则的取值范围是( ).A. B. C. D.【设计意图】考查一元二次方程一般式中的条件.5.已知关于的方程方程当m满足__________时,它是一元一次方程;当满足___________时,它是一元二次方程.【设计意图】考查一元二次方程的概念.6.是方程的一个根,那么=_________.【设计意图】方程的根的意义.7.根据题意,列出方程:有一面积为60m2的长方形,将它的一边剪去5m,另一边剪去2m,恰好变成正方形,试求正方形的边长.【设计意图】根据实际问题建立数学模型,抽象出一元二次方程.8.关于的一元二次方程的一个根是,求的值.【设计意图】根的意义,一元二次方程的条件.5、成道小结:(1)同桌两位同学互相叙述一元二次方程的概念,以及各字母的含义,确定一元二次方程的项及系数时要注意什么?并举例说明;(2)让学生把本节课所做的练习题通看一遍,然后与同学交流做这类题需要注意的地方,或者是还存在的疑问,以加深对一元二次方程的理解.布置作业.A组:课本第4页复习巩固1、2、3B组:综合运用4、5、6、7【设计意图】考虑到学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,以便同时兼顾到学有困难和学有余力的学生.板书设计:学评价:根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题.。
公式法解一元二次方程说课稿
汇报人:XX
目录
• 引言 • 一元二次方程的概念及性质 • 公式法解一元二次方程的原理 • 公式法解一元二次方程的具体步骤
目录
• 公式法解一元二次方程的实例分析 • 公式法解一元二次方程的优缺点及
注意事项 • 总结与回顾
01
引言
说课内容
一元二次方程的概念及标
01 准形式
05
2. 判断 $Delta$ 的值,若 $Delta geq 0$,则方程有实 数解。
03
解题步骤
06
3. 将 $a$、$b$、$c$ 的值代入求根公式进行计算,得到 方程的解。
实例三:含参数的一元二次方程
方程形式:形如 $ax^2 + bx + c = 0$ (其中 $a$、$b$、$c$ 中含有参
公式法的适用条件
判别式大于等于0
公式法适用于判别式大于等于0的一元二次方程。
特殊情况处理
当判别式小于0时,一元二次方程无实数根,此时公式法不适Hale Waihona Puke 。公式法解一元二次方程的具
04
体步骤
将一元二次方程化为一般形式
一元二次方程的一般形式为 $ax^2 + bx + c = 0$,其中 $a neq 0$。
根据Δ的值选择求解方法
01 当 $Delta > 0$ 时,方程有两个不相等的实数根 ,可以使用求根公式 $x = frac{-b pm sqrt{Delta}}{2a}$ 进行求解。
02 当 $Delta = 0$ 时,方程有两个相等的实数根( 即一个重根),可以使用求根公式 $x = frac{b}{2a}$ 进行求解。
公式法解一元二次方程的优
公式法解一元二次方程说课稿2
《公式法解一元二次方程》说课稿迳口中学黄桂英各位评委,各位老师:大家好!我是来自花东镇迳口中学的数学教师黄桂英,今天我说课的内容是人教版数学九年级上册第22章一元二次方程中《公式法解一元二次方程》。
一、教材分析1、教材的地位和作用用求根公式解一元二次方程是在学完直接开方法、配方法的基础上学习的又一种重要的解法,它不但方便于解较复杂的一元二次方程,而且适用于解所有的一元二次方程,因此学习用公式法解一元二次方程是很有必要的,是不可缺少的一个重要内容。
它为进一步学习一元二次方程的解法及简单应用、二次函数等知识起到铺垫作用。
本节课的学习培养了学生由特殊到一般的解题思想。
2、教学目标知识目标:理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练运用公式法解一元二次方程。
能力目标:在教师的指导下,经历观察、推导、交流归纳等活动导出一元二次方程的求根公式,培养学生的合情推理与归纳总结的能力,同时通过使用求根公式解一元二次方程的练习,培养学生准确快速的计算能力。
情感目标:通过求根公式的推导,培养了学生由特殊到一般的解题思想、探索精神、独立思考的习惯及合作交流的意识。
3、重点与难点重点:正确、熟练地用一元二次方程的求根公式法解一元二次方程。
难点:求根公式推导及b2-4ac对一元二次方程的影响。
二、教法分析教法上采用启发引导,讲练结合的授课方式。
充分体现了“类比——探究——归纳“的模式”。
在教学中我通过新旧知识的类比来启发诱导学生深入思考,并通过合作交流推导出求根公式,这种教学方式有利于培养学生由特殊到一般的解题思想,探索精神,也充分发挥教师的主导作用,体现了学生主体地位,三、学法分析学习本节课以前,学生已学过用开平方法、配方法解一元二次方程,对解方程的基本思路已经比较熟悉。
依照学生的认知规律引导学生从简单的问题中发现规律,突出本节课的重点。
在训练内容的选择上考虑到学生接受新旧知识结合的能力:一是采用层层递进的方式,二是以基本技能为主,而不追求繁难的一元二次方程的解题特殊技巧。
《一元二次方程》说课稿
《一元二次方程》说课稿《一元二次方程》说课稿1对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
本节课主要讲述的是一元二次方程的概念及其一般式。
在本节课之前学生已经掌握了一元一次方程的概念以及解法,所以,为本节课一元二次方程概念的学习打下基础。
另外,本节课是后续学习解一元二次方程的基础,它的学习起到了很好的铺垫作用。
故而,既锻炼了学生的类比推理能力,还能够完善学生在方程这一部分的知识,让学生在方程这一部分形成比较完善的体系。
二、说学情合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。
本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元二次方程的具体的事例,所以在生活上面有了很多的经验基础。
为本节课的顺利开展做好了充分准备。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:(一)知识与技能理解一元二次方程的概念及其一般式,了解一元二次方程根的概念。
(二)过程与方法通过解决问题的过程,逐渐形成数学建模的数学思想以及提高类比迁移的能力。
(三)情感态度价值观通过数学建模,提高对数学的学习兴趣。
四、说教学重难点本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:(一)教学重点理解一元二次方程的概念及其一般式。
(二)教学难点建立数学模型列方程。
五、说教法和学法古人云:教学有法,教无定法,贵在得法。
这句话说明教学是有一定的方法,但是却没有固定的方法,难能可贵的是选择适合自己以及自己学科的方法。
所以,我针对数学学科以及学生等特点,制定了如下的教学方法:讲授法、练习法、小组讨论法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《21.2解一元二次方程第一课时》说课稿各位评委、老师们大家好:我是北京市育英中学的数学教师张洁.育英中学是北京市海淀区的一所普通中学,作为一名青年教师,有机会参加这次教学研讨活动,向全国各省市的数学老师们学习,我深感荣幸.这次我说课的内容是人民教育出版社数学九年级上册第二十一章一元二次方程的第2节解一元二次方程的第1课时.下面,我将从教学内容分析、学生情况分析、教学计划设计、课时目标确立、教学过程设计与实施、教学特色与反思等方面加以说明.恳请专家、老师们对我说课的内容多提宝贵意见.一、教学内容分析1.知识框架结构概述一元二次方程是在一元一次方程基础上对“次”的推广,也是学习二次函数的基础.在高中的学习中也经常用到.与一元一次方程和二元一次方程组相比,一元二次方程由于三个待定系数的变化会产生较多的类型.需要根据方程的具体特点,选择相应的方法求解.该部分知识具有类型多、解法多、技巧高的特点,也是为学生营造“再发现、再创造”的数学学习活动的良好契机.2.课标大纲文献梳理一元二次方程及其解法部分知识在中学数学教学中源远流长.二、学生情况分析对于方程及其解法,学生小学就开始接触,进入初中后又学习了一元一次方程、二元一次方程组以及可化为一元一次方程的分式方程.因此,学生对解方程涉及的操作步骤及其数学原理都已比较熟悉.特别的,具有了通过开平方法解一元二次方程时用到的平方根定义、整式乘法和实数等相关知识的储备.因此,当面对某些特殊的一元二次方程时,学生具备“自主发现和创造”的可能.另一方面,从学生的心理年龄特点的角度,我所任教班级中的学生有较强的学习积极性,思维活跃,喜欢思辨,具备一定的自主探究意识.但是,学生的困难是,比起以往的经验,一元二次方程的系数多、变化多,解法选择相对复杂灵活,在对已经学过这一章的其他同学的测试中,我们发现很多同学面对一个一元二次方程时,会优先选择公式法,或者直接对方程进行配方.比如这几道题目一个班有将近三分之一的同学选择公式法或配方法.学生的这种表现,是否与方程解法的教学顺序有关呢?如何解决学生过于依赖某种解法的问题呢?经过长时间的思考,我们尝试调整教学内容,让学生在解决具体问题中逐渐感悟方程解法的变化.为此,我们做出了单元整合的设计.那么,如何能让学生面对具体的、新的方程时,运用自己已有的经验,将一个复杂的大问题分解为一个个简单的小问题呢?将问题特殊化、将问题分类,就是必要和必须的了。
这样,特殊化和一般化的过程不仅为学生搭建了“再发现、再创造”的平台,本身也是一种重要的方法和能力.三、教学计划设计基于以上思考,我们将一元二次方程解法探究部分的教学做出如下探索: 方案1:方案2:先由学生依据一元二次方程的概念,尽可能多的写出一些一元二次方程.观察到这些方程求解的复杂性后,由学生进行分类,从最有把握的类别入手,逐步探索每一个类型所对应的不同求解策略. 教师要引领学生重点分析,同学们挑选出来的这些特殊的一元二次方程具备什么样特殊的结构特征,使得我们能够通过一定的方法将它降次,从而得到方程的解.而这种特殊的结构特征,恰恰给我们接下来解决更加一般的一元二次方程提供了帮助. 也就是形成对一次项系数和常数项都不为零的一元二次方程的求解策略.在这一环节中,教师引导学生对运算对象的特征细致入微的进行观察,基于问题解决的需求对代数式进行变形,对运算途径做出正确的选择,使解决问题成为一项充满智慧的活动. 同时,这个环节也体现出了由简单到复杂,由特殊到一般的研究思路.另外,由于探索活动开展的多样性,我们也预设了另一套方案.方案3:四、课时目标确立本节课是解一元二次方程部分的第1课时,将以分类探究一元二次方程的解法作为核心任务,教学目标如下:1.初步建立对一元二次方程类别和解的情况的整体把握;2.会用直接开平方法求一元二次方程的解;3.在发现、提出、分析、解决数学问题的过程中,开展从特殊到一般,化繁为简的数学思维活动,体会数学学习中创造的乐趣.五、教学过程设计与实施为了达到以上教学目的,我把本节课分为三个阶段.“关注形式,建立分类”、“推陈出新,自主发现”、“总结归纳,形成结构”. 下面我将对每一个阶段教学中计划解决的问题和具体步骤作出说明.(一)关注形式,建立分类1.本阶段要解决几个的主要问题(1)在学习了一元二次方程的概念后应确定怎样的研究思路?(2)根据方程系数的特征如何实现将一元二次方程不重不漏的分类?(3)用何种方式呈现分类结果便于下一步展开解法研究?2.本阶段的教学安排(1)确定研究方向让学生能主动根据自己的学习经验,总结代数学中研究方程的一般顺序.自主提出研究的内容和方向. 学生根据已有的经验,发现一般是按照方程的概念、解法和应用的顺序展开研究,确定出下面应该研究的内容是一元二次方程的解法探究.(2)确定分类标准首先进行本节课学生的第一个活动:请每位同学都写出一些一元二次方程,请看视频.为了方便观察,统一要求都写成一元二次方程的一般形式.让学生自己写一元二次方程,是对定义的一次复习,同时也是展现学生思维的多样性,提高参与度和研究兴趣的一种策略.当同学们发现,尽管统一了形式,黑板上各式各样的一元二次方程还是显得纷繁复杂,很多方程看起来完全不知道如何求解,因此决定寻找最简单最特殊的方程作为突破口.在特殊化的过程中,学生自然生成了分类研究的策略,并与此同时,开始思考究竟应以什么标准进行分类,也就是本节课学生的第二个活动,请看视频.我们看到,同学们在非常短的时间内就有了自己的想法.在这个一次次细化分类的过程中,学生也一次次的体会着分类“不重不漏”的含义,感受着“分类”的必要和意义.然而在试讲中每次都会遇到一个相同的现象,就是当我们把方程分为3类或者4类时,都有同学积极主动的去摆黑板上那些纸条,但是细化到18类时,大部分同学却犹豫了.也许是犹豫老师真的要他们把纸条摆成18类那么多吗?也许在发愁黑板上总共也没有18个方程吧?也许还有什么我不敢肯定,但我可以肯定的是老师接下来提的这个问题一定能大受欢迎,因为那也是此刻萦绕在同学们脑海中的问题.那就是:我们这节课的核心任务是分类研究一元二次方程的解法,我们一定要分别去研究这么多类别吗?请看视频.我相信,同学们可以从这个细化、再细化、进而简化的分类过程中体会到一种科学研究的味道和乐趣,并同时丰富了学生对数学思维的感悟.(3)呈现分类结果本节课第三个学生活动是每组把本组写出的方程分到九个类别中,并选择适当的方式呈现在任务纸上.同学们用了多种方式呈现分类结果.通过比对,大家统一都认为表格的形式是最清晰明了的.其实“列表格”是数学中常用的分析问题的方法,能够让学生参与到表格的建立填写过程中,是对学生自主构建知识体系的有效训练. 请看视频通过填表加深学生对一元二次方程各项系数的关注,以及方程不同类型的理解,并为后续研究方程的解法做了铺垫.在这一环节,我们用了充分的时间,保证了同学们完成分类过程的探索,不让任何一个学生掉队.也正是从这个时刻开始,我们已经打破了传统的格局,把解法探究部分整合考虑了.在这个过程中,学生在分类活动中逐步认识一元二次方程的各种形式,探索不同形式方程的相应解法,也就自然而然的成为了下一个学习任务.至此,整合教学的关键就是使学生认识到此部分的学习是连贯的、系统的一个整体.(二)推陈出新,自主发现1.本阶段要解决的几个主要问题(1)能够通过开平方运算求解的一元二次方程应该具备什么特征?(2)会出现双实数解和无实数解的一元二次方程具备什么特征?(3)应该按照怎样的顺序展开和推进一元二次方程的解法研究?2.本阶段的教学安排本环节的设计从学生已有的知识储备和学习经验出发,让他们自己找到研究方向和研究途径,在学习活动中关注两个方面:一方面是使学习者明确知道自己正在干什么、干得怎样、进展如何;另一方面是使学习者能根据自己的操作和进展,作出调节、改进和完善,从而使探索活动能更好地向目标逼近.具体的教学安排为:(1)尝试解出一个一元二次方程.请同学观察表格中的各类方程,寻找最有把握求解的方程. 请看视频.(2)探索得出一类一元二次方程的解法.研究是不是这个方程所在类型的所有方程,都能用此方法求解?如果可以,即成功找到了解题方法,可让学生命名这种解法.学生在这个过程中,积累从具体到抽象的活动经验,更好地通过抽象、概括去认识、理解、把握对象的数学本质.体会到抽象的目的是为了分类解决问题.通过践行这种解决数学问题的方法,不断加深对数学形式化推演的体会.请看视频根据课堂的实际情况,本节课上学生只能研究部分类别的方程.同时也会在研究中不断遇到新的冲突.比如出现两个实数解和无实数解的情况.而学生会在这样的冲突中自发的展开讨论,甚至是争论,相互答疑,加深对开平方运算的理解,各个击破的突破难点,获得新知.(三)总结归纳,形成结构课堂小结中同学们除了总结了可以用直接开平方法解一元二次方程以外,还说了更多的收获和体会.请看视频我们看到为学生留下深刻印象的还有理解方程会出现双实数解和无实数解的情况;体会到表格法呈现九类一元二次方程即全面又便于找准突破口;还有经历对代数方程从概念,到分类,到解法,再到应用的研究顺序;先观察结构,再选择解法的解题策略;由特殊到一般的研究方法.以及在面对一个新问题时,可以如何选择研究方向,如何确定研究策略.六、教学特色与反思1.基于学生认知基础设计学习活动从学生已有的知识和能力出发,利用“编写方程、自定标准分类、自主探索解法、自成类型特征”这样的链式活动,为学生营造“再发现、再创造”的数学学习活动,有利于学生获得良好的数学学习经验.2.关注学生表现调整教学任务和进程在后测的数据中,我们看到绝大部分同学能够根据方程系数的特点选择最简便易行的解法.还有一个现象,监考老师发现,有些同学会把一些一次项系数为零或常数项为零的方程先行求解,然后再慢慢去解其余方程.这或许也能从某种角度说明我们这样的教学过程,会增强学生对特殊形式的方程采用特殊解法的意识,以及帮助他们对配方法的原理、公式法的推导留下相对深刻而长久的记忆.结束语课程理解是一名教师心底的智慧,努力提高对数学课程的理解,始终是我的追求.“教学有法、教无定法”,我的教学实践一定有许多不成熟之处,恳请各位专家、老师多多批评指正.。