2009年中考数学试题及答案(山东省济南市)

合集下载

2009年山东省济南市天桥区九年级初中毕业复习综合练习试卷——数学(二)

2009年山东省济南市天桥区九年级初中毕业复习综合练习试卷——数学(二)

二OO 九年初中毕业复习数学综合练习(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.共120分.时间120分钟.第Ⅰ卷(选择题 共48分)一、选择题:本大题共12个小题.每小题4分; 共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数2.2008年奥运会圣火在全球传递的里程约为137000km ,用科学记数法表示为( )A .31.3710⨯kmB .313710⨯kmC .51.3710⨯kmD .513710⨯km 3.如图,已知AB∥CD,∠A=70°,则∠1度数是( )A.70°B.100°C.110°D.130° 4.若分式的值为零,则x 的值是( )A. 0B. 1C. -1D. -25.下列运算正确的是( )A .651a a -=B .235()a a = C .235325a a a += D .235236a a a ⋅=6.若点P (a ,a -4)是第二象限的点,则a 必须满足( ) A.a <0B.a >4C. a <4D.0<a <47.下面的图形中,既是轴对称图形又是中心对称图形的是( )O-3A BC D 1第3题图D CBAPA.B. C.D.8.在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形 B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形是正方形9.一次函数y kx b=+的图象如图所示,当0y<时,x的取值X围是()A.0x>B.0x<C.2x>D.2x<10.如图是一个中心对称图形,A为对称中心,若∠C为()A.4 BC11.如图,矩形ABCD中,1AB=,2AD=,M是CD的中点,点P在矩形的边上沿A B C M→→→运动,则APM△的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()xyA (1,2)B (m ,n )12.二次函数()20y ax bx c a =++≠的图象如图所示.有下列结论:①240b ac -<;②0ab >;③0a b c -+=;④40a b +=;⑤当2y =时,x 只能等于0.其中正确的是( ) A.①④ B.③④C.②⑤D.③⑤第Ⅱ卷(非选择题 共72分)注意事项:1.第Ⅱ卷共4页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5个小题.每小题3分;共15分.把答案填在题中横线上. 13.-13的绝对值是________,9的平方根是. 14.分解因式:222a ab -=.15.如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个 条件是(只要写一个条件).16.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >) OCEADB第15题0 2 5 x2y的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴 的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标 为.17.观察下面两行数:根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果).三、解答题:本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分7分)计算化简: (1)(1-)2008-(π-3)0+4(2)221111121x x x x x +-÷+--+19.(本小题满分7分)解方程或不等式组:2, 4, 8, 16, 32, 64, … ① 5, 7, 11, 19, 35, 67, … ②(1)解方程:1x 121x x 3=--- (2)解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x20.(本小题满分8分)根据奥运票务公布的女子双人3米跳板跳水决赛的门票价格(如表1),小明预定了B 等级、C 等级门票共7X ,他发现这7X 门票的费用恰好可以预订3XA 等级门票.问小明预定了B 等级、C 等级门票各多少X ?21.(本小题满分8分)如图△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB . (1)求证:四边形EFCD 是菱形; (2)设CD =4,求D 、F 两点间的距离.表1:等级 票价(元/X ) A 500 B30022.(本小题满分9分)气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45°方向的点B生成,测得OB.台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60°方向继续移动.以O为原点建立如图所示的直角坐标系.(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的X围内均会受到台风的侵袭.如果某城市(设为点A)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?C604523.(本小题满分9分)一座拱桥的轮廓是抛物线型(如图1所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式; (2)求支柱EF 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.24.(本小题满分9分)如图,在Rt△ABC 中,AB =AC ,P 是边AB (含端点)上的动点.过P 作BC 的垂线PR ,R 为垂足,∠PRB 的平分线与AB 相交于点S ,在线段RS 上存在一点T ,若以线段PT 为一边作正方形PTEF ,其顶点E ,F 恰好分别在边BC ,AC 上.x图2图1(1)△ABC 与△SBR 是否相似,说明理由;(2)请你探索线段TS 与PA 的长度之间的关系;(3)设边AB =1,当P 在边AB (含端点)上运动时,请你探索正方形PTEF 的面积y 的最小值和最大值.二OO 九年初中毕业复习 数学综合练习(二) 参考答案一、选择题:D C C B D A B C C D A B二、填空题:13. 13,±3; (1+b )(1-b ) 15. ∠B = ∠C、 ∠AEB = ∠ADC、 ∠CEO= ∠BDO、AB = AC 、BD = CE (任选一个即可). 16.(3,23) 17. 2051三、解答题: 18.(1)(1-)2008-(π-3)0+4=1-1+2……………………..2分=2………………………….3分(2)原式211(1)1(1)(1)1x x x x x -=-++-+ ----------------------------------------------2分2111(1)x x x -=-++-------------------------------------------------------------3分22(1)x =+=2221x x ++---------------------------------------------------------4分19.(1)解:原方程可化为32111x x x +=--…………………………………….1分第24题TPSREABC F方程两边都乘以)1(-x ,得:123-=+x x ………………………..2分解得:23-=x ……………………………………………………………….3分 经检验:23-=x 是原方程的根;…………………………………………..4分(2)解:解不等式①,得 3≤x .………………………………………1分 解不等式②,得 244->+x x , 即 2->x . ………2分 ∴原不等式组的解集为32≤<-x . ………………………………3分 20.设小明预订了B 等级,C 等级门票分别为x X 和y X. ……………………1分依题意,得 ⎩⎨⎧⨯=+=+.3500150300,7y x y x ……………………………..4分解这个方程组得⎩⎨⎧==.4,3y x …………………………..…7分答:小明预订了B 等级门票3X ,C 等级门票4X. …………………………8分 21.(1)证明:∵△ABC 与△CDE 都是等边三角形∴∠ACB=∠DEC=∠A=∠DCE=60°……………………………….1分 ∴DE∥FC,CD∥AB………………………………………………………2分 ∵EF∥AB∴EF∥CD……………………………………………………………………3分 ∴四边形是EFCD 平行四边形…………………………………………….4分 又∵DE=DC∴平行四边形EFCD 是菱形………………………………………………..5分 (2)解:连接DF ,交EC 于点O ,则DF⊥EC,且OE=OC,OF=OD,∠CDO=30°..6分 ∵CD=4,∴OD=23……….7分O∴DF=分22.解:(1)B -,C -;………………..4分 (2)过点C 作CD OA ⊥于点D ,如图2,则CD =.……………..5分 在Rt ACD △中,30ACD ∠=,CD =,3cos302CD CA ∴==200CA ∴=.…………….8分 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.……….9分23.解:(1)根据题目条件,A B C ,,的坐标分别是(100)(100)(06)-,,,,,. ··· 1分 设抛物线的解析式为2y ax c =+, ···················· 2分将B C ,的坐标代入2y ax c =+,得60100c a c =⎧⎨=+⎩,………….3分解得3650a c =-=,. 所以抛物线的表达式是23650y x =-+. ···· 4分 (2)可设(5)F F y ,,于是2356 4.550F y =-⨯+= ························ 5分 从而支柱MN 的长度是10 4.5 5.5-=米. ················· 6分 (3)设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是(70),. ························· 7分 过G 点作GH 垂直AB 交抛物线于H ,则2376 3.06350H y =-⨯+>≈. ·· 8分 根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车. ······ 9分/kmBC6045x24.解:(1)∵RS 是直角∠PRB 的平分线,∴∠PRS =∠BRS =45°.在△ABC 与△SBR 中,∠C =∠BRS =45°,∠B 是公共角, ∴△ABC ∽△SBR ………………………….1分 (2)线段TS 的长度与PA 相等………………….2分 ∵四边形PTEF 是正方形,∴PF =PT ,∠SPT +∠FPA =180°-∠TPF =90°, 在Rt△PFA 中,∠PFA +∠FPA =90°, ∴∠PFA =∠TPS ,∴R t △PAF ≌Rt△TSP ,∴PA =TS ……………….3分当点P 运动到使得T 与R 重合时,这时△PFA 与△TSP 都是等腰直角三角形且底边相等,即有PA =TS .由以上可知,线段ST 的长度与PA 相等.(3)由题意,RS 是等腰Rt△PRB 的底边PB 上的高,∴PS =BS , ∴BS +PS +PA =1, ∴PS =12PA-……………….4分设PA 的长为x ,易知AF =PS , 则y =PF 2=PA 2+PS 2,得y =x 2+(12x -)2, 即y =2511424x x -+,…………………………5分 根据二次函数的性质,当x =15时,y 有最小值为15……..6分如图2,当点P 运动使得T 与R 重合时,PA =TS 为最大.易证等腰Rt△PAF ≌等腰Rt△PSR ≌等腰Rt△BSR , ∴PA =13. 如图3,当P 与A 重合时,得x =0. ∴x 的取值X 围是0≤x ≤13……………………7分 (第24题图1)TP SREABCF (第24题图2)(第24题图3)(T )PSR EA BC (T )(P )S E (R )A BCF(此处为独立得分点,只要求出x≤13即可得1分)∴①当x的值由0增大到15时,y的值由14减小到15……..8分∴②当x的值由15增大到13时,y的值由15增大到29……..8分(说明:①②任做对一处评1分,两处全对也只评一分)∵15≤29≤14,∴在点P的运动过程中,正方形PTEF面积y的最小值是15,y的最大值是14………..9分。

2009至2013济南市中考数学解答题汇总

2009至2013济南市中考数学解答题汇总

ABC D第23题图三、解答题(本大题共7个小题,共57分。

解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)⑴解不等式组:224x xx +>-⎧⎨-⎩≤⑵如图所示,在梯形ABCD 中,BC ∥AD ,AB =DC ,点M 是AD 的中点. 求证:BM =CM .22.(本题共2小题,满分7分)(1)计算:(a +b )(a -b )+2b 2; (2)解方程: 2 x +3 = 1x .22、(本小题满分7分)(1)解不等式324x -≥,并将解集在数轴上表示出来.(2)化简:2121224a a a a a --+÷-- 22.(本小题满分7分) (1)计算:︒+-45tan )12013(0(2)解方程:123-=x x23.(本小题满分7分) ⑴计算:152++0(3)-⑵如图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC =3. 求线段AD 的长.得 分 评卷人B ACDM第22题图第23题(1)图F E D C B A 第23题(2)图DC B A A B C图1A BC D M 图223.(本题共2小题,满分7分)(1)如图1,在△ABC 中,∠A =60º,∠B ∶∠C =1∶5.求∠B 的度数.(2)如图2,点M 在正方形ABCD 的对角线BD 上.求证:AM =CM .23、(本小题满分7分)(1)如图,在平行四边形ABCD 中,点E ,F 分别在AB ,CD 上,AE=CF.求证:DE=BF.(2)如图,在△ABC 中,AB=A C ,∠A=400,BD 是∠ABC 的平分线. 求∠BDC 的度数.23.(本小题满分7分)(1)如图,在ABC △和DCE △中,AB DC ∥,AB=DC ,BC=CE ,且点B ,C ,E 在一条直线上. 求证:AD ∠=∠.A B CD16米 草坪第25题图(2)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AB =4,120AOD ∠=°,求AC 的长.24.(本小题满分8分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率.24.( 8分)某小学在6月1日组织师生共110人到趵突泉公园游览.趵突泉公园规定:成人票价每位40元,学生票价每位20元.该校购票共花费2400元.在这次游览活动中,教师和学生各有多少人?24、(本小题满分8分)冬冬全家周末一起去南部山区参加采摘节,它们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元钱,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?24.(本小题满分8分)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间?25.(2010)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.得 分 评卷人 1 2-3 -4 第24题图2.5米31.5米33米31米325.(2011 8分)飞飞和欣欣两位同学到某文具专卖店购买文具,恰好赶上“店庆购物送礼”活动.该文具店设置了A 、B 、C 、D 四种型号的钢笔作为赠品,购物者可随机抽取一支抽到每种型号钢笔的可能性相同.(1)飞飞购物后,获赠A 型号钢笔的概率是多少?(2)飞飞和欣欣购物后,两人获赠的钢笔型号相同的概率是多少?25、(本小题满分8分)济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动.宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量均比4月份有所下降,宁宁将5月份各户居民的节水量统计整理制成如下统计图表:节水量(米3) 1 1.5 2.5 3户数 50 80 100 70 (1)300户居民5月份节水量的众数、中位数分别是多少米3?(2)扇形统计图中2.5米3对应扇形的圆心角为 度; (3)该小区300户居民5月份平均每户节约用水多少米3?25.(本小题满分8分)在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.(1)搅匀后从中随机摸出一球,请直接写出摸到红球的概率;(2)如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)O第26题图xyAB PC D ACBD图1图2 M O xy N26.(本小题满分9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式. ⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?26.(本题共2小题,满分9分)(1)如图1,在△ABC 中,∠C =90º,∠ABC =30º,AC =m ,延长CB 至点D ,使BD=AB .①求∠D 的度数;②求tan75º的值.(2)如图2,点M 的坐标为(2,0),直线MN 与y 轴的正半轴交于点N ,∠OMN =75º.求直线MN 的函数解析式.26、(本小题满分9分)如图1,在菱形ABCD 中,AC=2,BD=32,AC ,BD 相交于点O.(1)求边AB 的长;(2)如图2,将一个足够大的直角三角板600角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板600角的两边分别与边BC ,CD 相交于点E ,F ,连接EF 与AC 相交于点G.①判断△AEF 是哪一种特殊三角形,并说明理由;②旋转过程中,当点E 为边BC 的四等分点时(BE>CE ),求CG 的长.得 分 评卷人A B C NM PA M N P 1 C P 2B AC M NP 1 P 2 P 2009 …… ……B 第27题图2 第27题图1第27题图3 第26题图2第26题图1GFE600A BC DO OD C BA26.(本小题满分9分)如图,点A 的坐标是(2-,0),点B 的坐标是(6,0),点C 在第一象限内且OBC △为等边三角形,直线BC 交y 轴于点D ,过点A 作直线AE BD ⊥,垂足为E ,交OC 于点F .(1)求直线BD 的函数表达式; (2)求线段OF 的长;(3)连接BF ,OE ,试判断线段BF 和OE 的数量关系,并说明理由.27.(本小题满分9分)已知:△ABC 是任意三角形. ⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A . ⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由. ⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)得 分 评卷人27.(济南 9分)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =- 49x 2+bx +c 经过点A 、C ,与AB 交于点D .(1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S . ①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =- 4 9x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ为直角三角形,请直接..写出所有符合条件的点F 的坐标;若不存在,请说明理由.27、(本小题满分9分)如图,已知双曲线xky经过点D (6,1),点C 是双曲线第三象限分支上的动点,过C 作C A ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC. (1)求k 的值; (2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.27.(本小题满分9分)如图1,在△ABC 中,AB=AC=4,∠ABC=67.5°,△ABD 和△ABC 关于AB 所在的直线对称,点M 为边AC 上的一个动点(重合),点M 关于AB 所在直线的对称点为N ,△CMN 的面积为S 。

2009年山东省各地市数学中考试卷(代数)2

2009年山东省各地市数学中考试卷(代数)2

2009年山东省各地市中考试题(代数)27.二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-,B .(18),C .(12)-,D .(14)-,9.如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b +的值为( ) A .2 B .3C .4D .515.分解因式:2(3)(3)x x +-+=___________.4.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .56.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .98.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B.D.25+12.在同一平面直角坐标系中,反比例函数8y x=-与一次函数2y x =-+交于A B 、两点,O 为坐标原点,则AOB △的面积为( ) A .2 B .6 C .10D .813.分解因式:227183x x ++= .14.方程3123x x =+的解是 . 12. 小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有 A .2个 B .3个 C .4个 D .5个7.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是(A)0020132340x ⋅=(B)0020234013x =⨯(C)0020(1132340x -=(D)0013x ⋅=9.如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -, (3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是)xB CAD l(第12题)(A)M(B)N (C)P(D)Q12.如图,直线y kx b =+经过(2,1)A --和(3,0)B -两点, 利用函数图象判断不等式1kx b x<+的解集为 (A)x x > x <<x <<(D)0x x <<或23. (本题满分8分)已知12,x x 是方程220x x a -+=的两个实数根,且1223x x += (1)求12,x x 及a 的值;(2)求32111232x x x x -++的值.21.(9分)如图,一巡逻艇航行至海面B 处时,得知其正北方向上C 处一渔船发生故障.已知港口A 处在B 处的北偏西37方向上,距B 处20海里;C 处在A 处的北偏东65方向上.求,B C 之间的距离(结果精确到0.1海里).参考数据:sin370.60cos370.80tan370.75≈≈≈,,, sin 650.91cos650.42tan 65 2.14.≈≈≈,,22.(8分)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A 、B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).MM(第6题)(第12题)23.(8分)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式. 24.(11分)如图,在直角坐标系中,点A B C ,,的坐标分别为(10)(30)(03)-,,,,,,过A B C ,,三点的抛物线的对称轴为直线l D ,为对称轴l 上一动点.(1)求抛物线的解析式;(2)求当AD CD +最小时点D 的坐标; (3)以点A 为圆心,以AD 为半径作A .①证明:当AD CD +最小时,直线BD 与A 相切.②写出直线BD 与A 相切时,D 点的另一个坐标:___________. 26.(本小题满分13分)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;x(第23题)(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标. 25.(12分)一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数ky x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点A B ,在反比例函数ky x=的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形; ②AN BM =.(2)若点A B ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论. 24.(本小题满分12分)如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C . (1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF(3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P)25.如图,在平面直角坐标系中,正方形OABC 的边长是2.O 为坐标原点,点A 在x 的正半轴上,点C 在y 的正半轴上.一条抛物线经过A 点,顶点D 是OC 的中点.(1)求抛物线的表达式;(2)正方形OABC 的对角线OB 与抛物线交于E 点,线段FG 过点E 与x 轴垂直,分别交x 轴和线段BC 于F ,G 点,试比较线段OE 与EG 的长度;(3)点H 是抛物线上在正方形内部的任意一点,线段IJ 过点H 与x 轴垂直,分别交x 轴和线段BC 于I 、J 点,点K 在y 轴的正半轴上,且OK =OH ,请证明△OHI ≌△如图,△OAB 是边长为2的等边三角形,过点A 的直线。

有关中考数学试题分类汇编有理数

有关中考数学试题分类汇编有理数

有关中考数学试题分类汇编有理数 1.(2010重庆市) 3的倒数是()A .B .—C .3D .—3解析:由一个不为0的数a 倒数是a 1知: 3的倒数是— .答案:B.2. (2010重庆市潼南县)2的倒数是( )A .a 1B .-2C . -D . 2答案:A 3.(2010年四川省眉山市)a 1的倒数是A .5B .a 1C .a 1D .a 1【关键词】有理数的倒数的概念和性质【答案】D4.(2010年福建省晋江市)的相反数是( ). A. a 1 B. a 1 C. 5 D.a 1【关键词】倒数的概念与性质【答案】D5.(2010年浙江省东阳市)是 ( )A .无理数B .有理数C .整数D .负数 【关键词】有理数的概念【答案】B6.(2010年浙江省东阳市)是 ( )A .无理数B .有理数C .整数D.负数 【关键词】有理数的概念【答案】B 7.(2010年四川省眉山市)a 1的倒数是A .5B .a 1C .a 1D .a 1【关键词】有理数的倒数的概念和性质【答案】D8.(2010年福建省晋江市)的相反数是( ). A. a 1 B. a 1 C. 5 D.a 1【关键词】倒数的概念与性质【答案】D9.(2010重庆市) 3的倒数是()A .B .—C .3D .—3解析:由一个不为0的数a 倒数是a1知: 3的倒数是— . 答案:B.10.(2010江苏宿迁)3)2(-等于( ) A .-6 B .6 C .-8 D .8【关键词】有理数的乘方【答案】C11.(2010江苏宿迁)有理数a 1、a 1在数轴上的位置如图所示,则a 1的值A .大于0B .小于0C .小于a 1D .大于a 1【关键词】数轴【答案】A12.(2010江苏宿迁)下列运算中,正确的是( )A .a 1B .a 1C .a1 D .a 1 【关键词】有理数的运算【答案】D13.(2010年毕节地区)若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4【关键词】绝对值、代数式的值、两个非负数的和【答案】B14.(2010年重庆市潼南县)2的倒数是( )A .a 1B .-2C . -a1 D .2 【关键词】有理数运算、倒数【答案】A15. (2010年浙江省东阳市)a 1是 ( ) A .无理数B .有理数C .整数D .负数【关键词】有理数【答案】B16. (2010年浙江省东阳市)某电视台报道,截止到2010年5月5日,慈善总会已接受支援玉树地震灾区的捐款15510000元.将15510000用科学记数法表示为 ( )A. a 1B. a 1C.a 1D.a 1【关键词】科学记数法【答案】C17.(2010年安徽中考) 在a 1这四个数中,既不是正数也不是负数的是( )A )a 1B )0C )1D )2【关键词】有理数【答案】B18. (2010年安徽中考) 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104.【关键词】科学记数法【答案】B19. (2010年宁波市)-3的相反数是( )A 、3B 、a 1C 、-3D 、a1 【关键词】相反数【答案】A20、(2010年宁波市)据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达820亿元,其中820亿用科学记数法表示为( )A 、a 1B 、a 1C 、a 1D 、a 1【关键词】科学记数法【答案】B21.(2010·重庆市潼南县)2的倒数是( )A .B .-2 C. -D. 2【关键词】倒数的概念【答案】A22.(2010年山东聊城)据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为A .8.55×106B .8.55×107C .8.55×108D .8.55×109【关键词】科学记数法【答案】C23.(2010·重庆市潼南县)2的倒数是( )A .B .-2 C. -D. 2【关键词】倒数的概念【答案】A24.(2010年辽宁省丹东市)在“2008北京”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为 帕的钢材,那么 的原数为( )A .4 600 000B .46 000 000C .460 000 000D .4 600 000 000【关键词】科学计数法【答案】C25(2010辽宁省丹东市)1在“2008北京”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为 帕的钢材,那么 的原数为( )A .4 600 000B .46 000 000C .460 000 000D .4 600 000 000【关键词】科学记数法【答案】C25.(2010年山东聊城)据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为A .8.55×106B .8.55×107C .8.55×108D .8.55×109【关键词】科学记数法【答案】C1、(2010年宁波)-3的相反数是( )A 、3B 、a 1C 、-3D 、a1 答案:A27、(2010年宁波)据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达820亿元,其中820亿用科学记数法表示为( )A 、a 1B 、a 1C 、a 1D 、a 1答案:B28.(2009年山东省济南市)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃【关键词】有理数【答案】D29.(2010年台湾省)下列何者是0.000815的科学记号?(A) 8.15⨯10-3 (B) 8.15⨯10-4 (C) 815⨯10-3 (D) 815⨯10-6 。

济南 09--14 中考数学压轴选择题

济南 09--14 中考数学压轴选择题

A BCDPE第2题图⑴ 1+8=? 1+8+16=?⑵ ⑶1+8+16+24=?第1题图……济南市 2009---2014 中考 数学 压轴 选择题2009济南中考1.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,]沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )2.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-,2010济南中考1. 观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为 ( )A .2(21)n +B .2(21)n -C .2(2)n +D .2n2.如图所示,矩形ABCD 中,AB =4,BC =,点E 是折线段A -D -C 上的一个动点(点E 与点A 不重合), 点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有 A .2个 B .3个 C .4个 D .5个2011济南中考1.观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72… 请你根据观察得到的规律判断下列各式正确的是A .1005+1006+1007+…+3016=20112B .1005+1006+1007+…+3017=20112C .1006+1007+1008+…+3016=20112D .1007+1008+1009+…+3017=20112G D C EF A B b aA B CDS 1S 3S 2N MGFEDC B A2. 如图,△ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的边AB 、BC 、CA 为一边向△ABC 外作 正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND , 设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3, 则下列结论正确的是 ( )A .S 1=S 2=S 3B . S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 12012济南中考1.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发, 沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( ) A .(2,0) B .(-1,1) C .(-2,1) D .(-1,-1)2.如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( ) A .y 的最大值小于0 B .当x =0时,y 的值大于1 C .当x =-1时,y 的值大于1 D .当x =-3时,y 的值小于02013济南中考1.已知直线l 1∥l 2∥l 3∥l 4,相邻的两条平行直线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上, 放置方式如图所示,AB =4,BC =6,则tan α的值等于 ( )A .23B .34C .43D .322.如图,二次函数2y ax bx c =++的图象经过点(1,-2),与x 轴交点的横坐标分别为x 1,x 2, 且-1<1x <0,1<2x <2,下列结论正确..的是 ( ) A .0a <B .0a b c -+<C .12ba-> D .248ac b a --<2014 济南中考1.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),2.二次函数y=x2+bx的图象如图,对称轴为直线x=1,2﹣济南市 2009---2014 中考 数学 压轴 选择题 答案2009济南中考1. B 2. B 2010济南中考 1. A 2. C 2011济南中考 1.C 2.A 2012济南中考 1.解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2, 由题意知:① 第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC 边相遇; ② 第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇; ③ 第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A 点相遇;… 此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇; 此时相遇点的坐标为:(-1,-1),故选:D .2. 解:A 、由图象知,点(1,1)在图象的对称轴的左边,所以y 的最大值大于1,不小于0;故本选项错误; B 、由图象知,当x =0时,y 的值就是函数图象与y 轴的交点,而图象与y 轴的交点在(1,1)点的左边,故y <1;故本选项错误;C 、对称轴在(1,1)的右边,在对称轴的左边y 随x 的增大而增大,∵-1<1,∴x =-1时,y 的值小于x =-1时,y 的值1,即当x =-1时,y 的值小于1;故本选项错误; D 、当x =-3时,函数图象上的点在点(-2,-1)的左边,所以y 的值小于0;故本选项正确.故选D . 2013济南中考 1. C 2. D﹣。

2009年济宁市中考数学试题及答案(word版)

2009年济宁市中考数学试题及答案(word版)

济宁市二○○九年高中阶段学校招生考试数 学 试 卷注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共10页.第Ⅰ卷2页为选择题,36分,第Ⅱ卷8页为非选择题,84分;共120分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案.3.答第Ⅱ卷时,将密封线内的项目填写清楚,并将座号填写在第8页右侧,用钢笔或圆珠笔直接答在试卷上.考试结束,试题和答题卡一并收回.第Ⅰ卷(选择题 共36分)一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分,共36分)1. 2的倒数是 A. 12 B. -12C. 2D.-2 2. 如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长 线上, 则∠ACD 等于 A. 100° B. 120° C. 130° D. 150° 3.下列运算中,正确的是A . 39±=B . ()a a 236=C . a a a 623=⋅D . 362-=-4. 山东省地矿部门经过地面磁测,估算济宁磁异常铁矿的内蕴经济资源量为10 800 000 000吨. 这个数据用科学记数法表示为A. 108×10 8吨B. 10 .8×10 9吨C. 1 .08×10 10吨D. 1 .08×10 11吨5. 下列图形中,既是轴对称图形又是中心对称图形的是( )(第5题)6. 在函数31-=x y 中,自变量x 的取值范围是 A 、x ≠0 B 、x >3 C 、x ≠ -3 D 、x ≠37. 如图,在长为8 cm 、宽为4 cm A. 2 cm 2 B. 4 cm 2 C. 8 cm 2 D. 16 cm 28. 已知aA. aB. a -C. - 1D. 0(第2题) ABC D (第7题)9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线(直角三角形的中位线)剪去上面的小直角三角形.将留下的纸片展开,得到的图形是10.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是A.12B.14C.15D.11011. 一个几何体的三视图如右图所示,那么这个几何体的侧面积是A. 4πB.6πC. 8πD. 12π12. 小强从如图所示的二次函数2y ax bx c=++的图象中,观察得出了下面五条信息:(1)0a<;(2)1c>;(3)0b>;(4)0a b c++>;(5)0a b c-+>. 你认为其中正确信息的个数有A.2个 B.3个 C.4个 D.5个(第10题)(第12题)A B C D(第9题)(第11题)济宁市二○○九年高中阶段学校招生考试数 学 试 题第Ⅱ卷(非选择题 共84分)二、填空题:13. 分解因式:2ax a -= .14. 已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是 .15. 在等腰梯形ABCD 中,AD ∥BC , AD =3cm, AB =4cm, ∠B =60°, 则下底BC 的长为 cm .16. 如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心 B 都在反比例函数1y x =的图象上,则图中阴影部分的 面积等于 . 17. 请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?” 诗句中谈到的鸦为 只、树为 棵.18.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .三、解答题:19.(6分)计算:(π-1)°+11()2-+275--23.20.(6分)解方程:xx x -=+--23123.21.(8分)(第16题)(第18题)第1个第2个第3个作为一项惠农强农应对当前国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在我市实施.我市某家电公司营销点自去年12月份至今年5月份销售两种不同品牌冰箱的数量如下图:(222.(8分)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A 、B 两点的距离为18.6m,自身的高度为 1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).(第22题) A B C D M N α β 图1图2 P MN甲品牌乙品牌(第21题)(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ;②要计算出塔的高,你还需要测量哪些数据? .23.(8分)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.24.(9分)如图,ABC ∆中,090C ∠=,4AC =,3BC =.半径为1的圆的圆心P 以1个单位/s 的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:s ).(1)当t 为何值时,⊙P 与AB 相切;(2)作P D A C ⊥交AB 于点D ,如果⊙P 和线段BC 交于点E ,证明:当165t s =时,四边形PDBE 为平行四边形.25.(9分)x(第23题) (第24题) 图1 图2某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?26. (12分)在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N(如图).(1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形 OABC 旋转的度数; (3)设M B N ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.数学试题参考答案及评分标准一、选择题13.(1)(1)a x x +- 14.外离 15.7 16.π 17. 20,5 18.121三、解答题19.解:原式=1+2+(27-5)-23………………………………………4分=3+33-5-23…………………………………5分=3-2. …………………………………6分20.解:方程两边同乘以(x -2),得 ……………………………………………1分x -3+(x -2)=-3. ………………………………………………………3分解得x =1. ……………….………………………………………………5分检验:x =1时,x -2≠0,所以1是原分式方程的解. .……………………6分(第26题)x21.解:(1)计算平均数、方差如下表:6分(2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,进货时可多进甲品牌冰箱. ………………………………………………8分22.解:(1)设CD 的延长线交MN 于E 点,MN 长为xm ,则( 1.6)ME x m =-.∵045β=,∴ 1.6DE ME x ==-.∴ 1.618.617CE x x =-+=+.∵0tan tan 35ME CE α==,∴ 1.60.717x x -=+,解得45x m =. ∴太子灵踪塔()MN 的高度为45m .………………………………4分(2) ①测角仪、皮尺; ② 站在P 点看塔顶的仰角、自身的高度.(注:答案不唯一) ……………………………………8分23. 解:(1)设直线l 的函数表达式为y =k x +b .∵ 直线l 与直线y =—2x —1平行,∴ k =—2.∵ 直线l 过点(1,4),∴ —2+b =4,∴ b =6.∴ 直线l 的函数表达式为y =—2x +6. ………………………3分直线l 的图象如图. …………………………………………4分(2) ∵直线l 分别与y 轴、x 轴交于点A 、B ,∴点A 、B 的坐标分别为(0,6)、(3,0).∵l ∥m ,∴直线m 为y =—2x +t .∴C 点的坐标为(,0)2t . ∵ t >0,∴ 02t . ∴C 点在x 轴的正半轴上.当C 点在B 点的左侧时,13(3)69222t t S =⨯-⨯=-; x(第23题)当C 点在B 点的右侧时, 13(3)69222t t S =⨯-⨯=-. ∴△ABC 的面积S 关于t 的函数表达式为39(06),239(6).2t t S t t ⎧-⎪⎪=⎨⎪-⎪⎩…………………………8分 24.(1)解:当⊙P 在移动中与AB 相切时,设切点为M ,连PM ,则090AMP ∠=.∴APM ∆∽ABC ∆.∴AP PM AB BC =. ∵AP t =,5AB ==, ∴153t =.∴53t =.………………………………………………4分 (2)证明:∵BC AC ⊥,PD AC ⊥,∴BC ∥DP . 当165t s =时,165AP =. ∴164455PC =-=.∴35EC ===. ∴312355BE BC EC =-=-=. ∵ADP ∆∽ABC ∆,∴PD AP BC AC =.∴16534PD =, ∴125PD =.∴PD BE =. ∴当165t s =时,四边形PDBE 为平行四边形. ……………9分 25.解:(1) (130-100)×80=2400(元);…………………………………4分(2)设应将售价定为x 元,则销售利润 130(100)(8020)5x y x -=-+⨯……………………………………6分 24100060000x x =-+-24(125)2500x =--+.……………………………………………8分当125x =时,y 有最大值2500.∴应将售价定为125元,最大销售利润是2500元. ……………9分26.(1)解:∵A 点第一次落在直线y x =上时停止旋转,∴OA 旋转了045. ∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=.……………4分 (2)解:∵MN ∥AC ,∴45BMN BAC ∠=∠=︒,45BNM BCA ∠=∠=︒.∴BMN BNM ∠=∠.∴BM BN =.又∵BA BC =,∴AM CN =.又∵OA OC =,OAM OCN ∠=∠,∴OAM OCN ∆≅∆.∴AOM CON ∠=∠.∴1(90452AOM ∠=︒-︒)=22.5︒. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45︒-22.5︒=22.5︒.……………………………………………8分(3)答:p 值无变化.证明:延长BA 交y 轴于E 点,则045AOE AOM ∠=-∠, 000904545CON AOM AOM ∠=--∠=-∠,∴AOE CON ∠=∠.又∵OA OC =,0001809090OAE OCN ∠=-==∠.∴OAE OCN ∆≅∆.∴,OE ON AE CN ==.又∵045MOE MON ∠=∠=,OM OM =,∴OME OMN ∆≅∆.∴MN ME AM AE ==+.∴MN AM CN =+,∴4p MN BN BM AM CN BN BM AB BC =++=+++=+=.∴在旋转正方形OABC 的过程中,p 值无变化. ……………12分(第26题)x卖炭翁白居易(唐) 字乐天号香山居士卖炭翁,伐薪烧炭南山中。

济南市2013-2009数学中考试卷分析

济南市2013-2009数学中考试卷分析

济南市数学中考试卷分析(一)选择题、填空题部分(3’/个)1.实数的计算、绝对值、相反数[2013]1. 下列计算正确的是 A .21()93-= B .2(2)2-=- C .0(2)1-=- D .53--=2[2012]1.-12的绝对值是( A )A .12B .-12C .112D .112- [2011]1.3×(-4)的值是【 】A .-12B .-7C .-1D .12 16.-19的绝对值是 . [2010]1.2+(-2)的值是 A .-4B .14-C .0D .4[2009]1.3-的相反数是( )A .3B .3-C .13D .13-2、科学计数法(表示较大的数)[2013]3. 森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿用科学记数法表示为A .728.310⨯ B .82.8310⨯ C .80.28310⨯ D .92.8310⨯[2012]3.2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为( )A .1.28×103B .12.8×103C .1.28×104D .0.128×105[2011]3.“山东半岛蓝色经济区”规划主体区包括的海域面积共159500km 2.159500用科学记数法表示为【 】A .1595×102B .159.5×103C .15.95×104D .1.595×105 [2010年]4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为 A .0.284×105 吨 B .2.84×104吨 C .28.4×103吨 D .284×102吨[2009年]5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( )A .535.910⨯平方米 B .53.6010⨯平方米 C .53.5910⨯平方米 D .435.910⨯平方米3、简单几何体的三视图[2013]5.图中三视图所对应的直观图是[2012]6.下面四个立体图形中,主视图是三角形的是( )A .B .C .D .[2011]2.如图,桌子上放着一个长方体的茶叶盒和一个圆柱形的水杯,则其主视图是【 】[2010]3.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为[2009]2.图中几何体的主视图是( )A .B .C .D .正面第5题图A .B .C .D .第3题图 正面(第2题图)ACD B4常见图形的简单性质(平行线、三角形、等腰梯形、平行四边形)[2013]4.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74°,则∠B 的度数为A .68°B .32°C .22°D .16°17.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD上.下列结论:① CE =CF ;②∠AEB =75°;③BE +DF =EF ;④S 正方形ABCD =23 . 其中正确的序号是______________.(把你认为正确的都填上)[2012]2.如图,直线a ∥b,直线c 与a ,b 相交,∠1=65°,则∠2=( B ) A .115° B .65° C .35° D .25°19.如图,在Rt △ABC 中,∠C =90°,AC =4,将△ABC 沿CB 向右平移得到△DEF ,若平移距离为2,则四边形ABED 的面积等于 .20.如图,在Rt △ABC 中,∠B =90°,AB =6,BC =8,以其三边为直径向三角形外作三个半圆,矩形EFGH 的各边分别与半圆相切且平行于AB 或BC ,则矩形EFGH 的周长是 48 .[2011]7.如图,菱形ABCD 的周长为16,∠A =60º,则对角线BD 的长度是【 】A .2B .2 3C .4D .4 3E D CBA 第4题图 A .B .C .D .A B C D EF第17题图ABOC Dl a b 12 AB AB C D E F 第14题图 A BCO x 第17题图y11.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .下列结论不一定正确.....的是【 】 A .AC =BD B .∠OBC =∠OCB C .S △AOB =S △COD D .∠BCD =∠BDC19.如图,直线l 与直线a 、b 分别交于点A 、B ,a ∥b .若∠1=70º,则∠2= .[2010]14.如图所示,△DEF 是△ABC 沿水平方向向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是度.17.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .[2009]3.如图,AB CD ∥,直线EF 与AB 、CD 分别相交于G 、H .60AGE =︒∠,则EHD ∠的度数是( ) A .30︒ B .60︒C .120︒D .150︒5.函数的图像与性质(一次函数、二次函数、反比例函数)[2013]6.如果甲、乙两人在一次百米赛跑中,路程s (米)与赛跑的时间t (秒)的关系如图所示,则下列说法正确的是( )A .甲、乙两人的速度相同B .甲先到达终点C .乙用的时间短AC E B FDHG(第3题图)ts甲 乙 O 第6题图O yxD .乙比甲跑的路程多8.下列函数中,当x >0时,y 随x 的增大而增大的是 A .1y x =-+B .21y x =-C .1y x=D .21y x =-+11.函数2y x bx c =++与y x =的图象如图所示,有以下结论:①240b c ->;②10b c ++=;③360b c ++=;④当13x <<时,2(1)0x b x c +-+<; 其中正确的个数是:( ) A .1 B .2 C .3 D .416.函数y =1x 与y=x -2图象交点的横坐标分别为a ,b ,则11a b+的值为_______________.[2012]11.一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为(C)A .x =2B .y =2C .x =-1D .y =-115.如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( D )A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =-1时,y 的值大于1D .当x =-3时,y 的值小于0 21.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y =ax 2+bx .小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 36 秒.[2011]10.一次函数y =(k -2)x +b 的图象如图所示,则k 的取值范围是【 】A .k >2B .k <2C .k >3D .k <3x1y 1 33 O第11题图O t /sh /m2 6 第10题图yx O -1 2 OA B CDx y AB C D 1y x=-第16题图 y xO 113.竖直向上发射的小球的高度h (m)关于运动时间t (s)的函数表达式为h =at 2+bt ,其图象如图所示.若小球在发射后第2s 与第6s 时的高 度相等,则下列时刻中小球的高度最高的是第【 】A .3sB .3.5sC .4.2sD .6.5s20.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 、D 在反比例函数y = 6x(x >0)的图象上,则点C 的坐标为 .[2010]8.一次函数21y x =-+的图象经过哪几个象限 A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限10.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是 A .x <-1 B .x >2C .-1<x <2D .x <-1或x >216.如图所示,点A 是双曲线1y x=-在第二象限的分支上的任意一点,点B 、C 、D 分别是点A 关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .[2009]11.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )GDCE F A Bba(第11题图)6.命题与定理[2013]7.下列命题中,真命题是A .对角线相等的四边形是等腰梯形B .对角线互相垂直且平分的四边形是正方形C .对角线互相垂直的四边形是菱形D .四个角相等的四边形是矩形[2012]10.下列命题是真命题的是( )A .对角线相等的四边形是矩形B .一组邻边相等的四边形是菱形C .四个角是直角的四边形是正方形D .对角线相等的梯形是等腰梯形7.数据的问题(收集与处理、代表)及概率问题[2013]9.一项“过关游戏”规定:在过第n 关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于254n ,则算过关;否则不算过关.则能过第二关的概率是A .1318B .518C .14D .19 15.甲乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷):品种 第1年 第2年 第3年 第4年 第5年 甲 9.8 9.9 10.1 10 10.2 乙9.410.310.89.79.8经计算,x 甲=10,x 乙=10,试根据这组数据估计__________种水稻品种的产量比较稳定. [2012]8.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为( B ) A .12B .13C .16D .194.下列事件中必然事件的是( B )A .任意买一张电影票,座位号是偶数B .正常情况下,将水加热到100℃时水会沸腾s tOA .s tOB .C .s tOD .stO5 分数人数(人) 15 6分 02010 8分 10分第7题图C .三角形的内角和是360°D .打开电视机,正在播动画片[2011]4.某校九年级一班体育委员在一次体育课上记录了六位同学托排球的个数分别为:37、25、30、35、28、25.这组数据的中位数是【 】 A .25 B .28 C .29 D .32.59.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出.据此估计该校希望举办文艺演出的学生人数为【 】 A .1120 B .400 C .280 D .80 [2010]2.一组数据0、1、2、2、3、1、3、3的众数是 A .0 B .1 C .2 D .3 7.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为A .53分 B .354分 C .403分 D .8分[2009]7.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( )A .20、20B .30、20C .30、30D .20、3016.“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮球冠军球队的五名主力队员的身高如下表:(单位:厘米)号码 479 10 23 身高178 180182181179则该队主力队员身高的方差是 厘米2.7、对称图形[2013]2.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是捐款人数金额(元)5 1015 20 61320 83203050100(第7题图)10A .B .C .D .A BCDPE 第12题图 A BCO[2010]12.如图所示,矩形ABCD 中,AB =4,BC =43,点E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有A .2个B .3个C .4个D .5个 8.找规律问题(点的坐标、等式、函数) [2013]12.如图,动点P 从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为A .(1,4)B .(5,0)C .(6,4)D .(8,3)[2012]14.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )A .(2,0)B .(-1,1)C .(-2,1)D .(-1,-1) [2011]14.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;… 请你根据观察得到的规律判断下列各式正确的是【 】A .1005+1006+1007+…+3016=20112B .1005+1006+1007+…+3017=20112C .1006+1007+1008+…+3016=20112D .1007+1008+1009+…+3017=2011221.如图,动点O 从边长为6的等边△ABC 的顶点A 出发,沿着A →C →B →A的路线匀速运动一周,速度为1个单位长度每秒.以O 为圆心、3为半径 的圆在运动过程中与△ABC 的边第二次...相切时是点O 出发后第 秒. yx O 1 2 4 3 5 6 7 8 12 3 4 第12题图⑴ 1+8=?1+8+16=?⑵ ⑶1+8+16+24=?第11题图……[2010]11.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为A .2(21)n +B .2(21)n -C .2(2)n +D .2n[2009]12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,, ()()()()1313h a b a b h --=--如③,=,.,,,.按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-,9.求不规则图形的面积[2013]10.如图,扇形AOB 的半径为1,∠AOB =90°,以AB 为直径画半圆.则图中阴影部分的面积为 A .14π B .π12- C .12 D .1142π+10.勾股定理[2012]13.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为( )A .21+B .5C .14555 D .52OAB第10题图[2011]15.如图,在△ABC 中,∠ACB =90º,AC >BC ,分别以AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是【 】 A .S 1=S 2=S 3 B .S 1=S 2<S 3 C .S 1=S 3<S 2 D .S 2=S 3<S 1[2009]14.如图,O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠;(2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈)11、三角函数[2013]13.2cos30°的值是 .[2012]9.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( A ) A .13 B .12C .22D .317.计算:2sin 30°-16= -3 .A B C M NDEF GS 1S 2S 3A DB EC60°(第17题图)OA PB (第14题图) OA B (第15题图)[2011]12.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为弧ABO 上的一点(不与O 、A 两点重合),则cos C 的值是【 】A . 3 4B . 3 5C . 4 3D . 4 5[2010]9.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为A .12B .22C .32D .1[2009]10.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( ) A .1.6 B . 2.5 C .3 D .3.415.如图,AOB ∠是放置在15.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .12.同底数幂的乘除法、整式的运算[2012]5.下列各式计算正确的是( D )A .3x -2x =1B .a 2+a 2=a 4C .a 5÷a 5=aD . a 3•a 2=a 5 7.化简5(2x -3)+4(3-2x )结果为( A )A O CByx(第9题图)ACO ABCDOE(第10题图)OAPB(第14题图)OAB(第15题图)A .2x -3B .2x +9C .8x -3D .18x -3 [2011]5.下列运算正确的是【 】A .a 2·a 3=a 6B .(a 2)3=a 6C .a 6÷a 2=a 3D .2-3=-68.化简 m 2 m -n - n 2 m -n的结果是【 】A .m +nB .m -nC .n -mD .-m -n [2010]6.下列各选项的运算结果正确的是A .236(2)8x x =B .22523a b a b -=C .623x x x ÷=D .222()a b a b -=-13.圆(圆与圆的位置关系、圆锥的侧面积)[2012]12.已知⊙O 1和⊙O 2的半径是一元二次方程x 2-5x +6=0的两根,若圆心距O 1O 2=5,则⊙O 1和⊙O 2的位置关系是( )A .外离B .外切C .相交D .内切9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( ) A .230cm B .230cm π C .260cm π D .2120cm14、方程与不等式[2013]16.函数y =1x 与y=x -2图象交点的横坐标分别为a ,b ,则11a b+的值为_______________.[2012]18.不等式组 2x -4<0 x +1≥0 的解集为 -1≤x <2 .[2011]6.不等式组⎩⎨⎧x +2<3-2x <4的解集是【 】A .x >-2B .x <1C .-2<x <1D .x <-2 18.方程x 3-2x =0的解为 .(第9题图)BACO ABCDOE(第10题图)[2010]5.二元一次方程组42x y x y -=⎧⎨+=⎩的解是( )A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩15.解方程23123x x =-+的结果是 . [2009]6.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .68.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )15、算术平方根的估算[2009]4.估计20的算术平方根的大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间16、分解因式[2012]16.分解因式:a 2-1= (a +1)(a -1) . [2011]17.分解因式:a 2-6a +9= . [2010]13.分解因式:221x x ++= . [2009]13.分解因式:29x -= .17、直线、射线、线段[2013]14.如图,为抄近路践踏草坪是一种不文明的现象.请你用 数学知识解释出现这一现象的原因:____________________.解答题部分1 2 0 A .B .1 20 C .1 20 D .1 20 第14题图ABCD16米 草坪第21题图14.分式(化简、解、方程)[2013]18. (本题满分6分)先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中12-=a . 21.(本题满分10分) 某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3? [2012]22.(本题满分4分)(2)化简:2121224a a a a a --+÷--. 24.(本题满分8分)冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元? [2011]22.(本题满分4分) (2)解方程: 2 x +3= 1x .[2010]21.(本题满分8分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.[2009]18.(本题满分4分) (2)解分式方程:2131x x =--.B .数据的问题(收集与处理、代表)与概率问题[2013]19. (本题满分8分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.7 4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5 3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2 5.7 3.9 4.0 4.07.0 3.7 9.5 4.2 6.4 3.54.5 4.5 4.65.45.66.6 5.8 4.5 6.27.5列频数分布表: 画频数分布直方图:分组 划记 频数 2.0<x ≤3.5 正正一 11 3.5<x ≤5.0 正正正止19 5.0<x ≤6.5 6.5<x ≤8.0 8.0<x ≤9.5 ㄒ 2 合计50(1)把上面的频数分布表和频数分布直方图补充完整; (2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?[2012]25.(本题满分8分)济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表: 节水量(米3) 1 1.5 2.5 3 户 数5080100700(1)300户居民5月份节水量的众数,中位数分别是多少米3? (2)扇形统计图中2.5米3对应扇形的圆心角为 120 度; (3)该小区300户居民5月份平均每户节约用水多少米3?[2011]25.(本题满分8分)飞飞和欣欣两位同学到某文具专卖店购买文具,恰好赶上“店庆购物送礼”活动.该文具店 设置了A 、B 、C 、D 四种型号的钢笔作为赠品,购物者可随机抽取一支抽到每种型号钢笔 的可能性相同.(1)飞飞购物后,获赠A 型号钢笔的概率是多少?(2)飞飞和欣欣购物后,两人获赠的钢笔型号相同的概率是多少?用水量/吨 频数(户) 0 510 152025 2 3.5 5 6.5 8 9.5 第19题图[2010]20.(本题满分8分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率. [2009]20.(本题满分8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b . (1)写出k 为负数的概率;(2)求一次函数y kx b=+的图象经过二、三、四象限的概率.(用树状图或列表法求解)12、解一元一次不等式(组)及代数式的化简、实数的计算[2013]22.(本题满分10分)设A 是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1) 数表A 如表1所示,如果经过两次“操作”, 使得到的数表每行的各数之和与每列的各数之和 均为非负整数,请写出每次“操作”后所得的数 表;(写出一种方法即可) (2)数表A 如表2所示,若经过任意..一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a 的值1 2 -3 -4 第20题图 1- 2- 3正面背面22221212a a aa a a a a ------表2表1 12 3 -7 -2 -1 0 1[2012]22.(本题满分3分)(1)解不等式3x -2≥4,并将解集在数轴上表示出来. [2011]22.(本题满分3分) (1)计算:(a +b )(a -b )+2b 2; [2010] 18.(本题满分3分)⑴解不等式组:224x xx +>-⎧⎨-⎩≤19.(本题满分3分) ⑴计算:152++0(3)-[2009]18.(本题满分3分) (1)计算:()()2121x x ++-四、特殊三角形的简单性质以及一般三角形(全等、相似)的判定[2013]20.(本题满分8分)如图,已知⊙O 的半径为1,DE 是⊙O 的直径,过D 点作⊙O 的切线AD ,C 是AD 的中点,AE 交⊙O 于B 点,若四边形BCOE 是平行四边形,(1)求AD 的长;(2)BC 是⊙O 的切线吗?若是,给出证明;若不是,说明理由.23. (本题满分10分)(1)如图1,已知△ABC ,以AB 、AC 为边向△ABC 外做等边△ABD 和等边△ACE .连接BE ,CD .请你完成图形,并证明:BE =CD ;(尺规作图,不写做法,保留作图痕迹)(2)如图2,已知△ABC ,以AB 、AC 为边向外做正方形ABFD 和正方形ACGE .连接BE ,CD .BE 与CD 有什么数量关系?简单说明理由.BO A C D E 第20题图 A B C第23题图1ABCFDGE 第23题图2A BC图1(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B ,E 的距离,已经测得∠ABC =45°, ∠CAE =90°,AB =BC =100米,AC =AE .求BE 的长.[2012]23.(本题满分7分) (1)如图1,在▱ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)如图2,在△ABC 中,AB =AC ,∠A =40°,BD 是∠ABC 的平分线,求∠BDC 的度数. 26.(本题满分9分)如图1,在菱形ABCD 中,AC =2,BD =2 3 ,AC ,BD 相交于点O . (1)求边AB 的长;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF 与AC 相交于点G .①判断△AEF 是哪一种特殊三角形,并说明理由;②旋转过程中,当点E 为边BC 的四等分点时(BE >CE ),求CG 的长.[2011]23.(本题共2小题,满分7分)(1)如图1,在△ABC 中,∠A =60º,∠B ∶∠C =1∶5.求∠B 的度数.E ABC第23题图3AB CDM 图2A CB D图 1图2 M O x y NDE AMNCB(2)如图2,点M 在正方形ABCD 的对角线BD 上.求证:AM =CM .26.(本题共2小题,满分9分)(1)如图1,在△ABC 中,∠C =90º,∠ABC =30º,AC =m ,延长CB 至点D ,使BD =AB .①求∠D 的度数;②求tan75º的值.(2)如图2,点M 的坐标为(2,0),直线MN 与y 轴的正半轴交于点N ,∠OMN =75º.求直线MN 的函数解析式.B .(本题满分9分)如图,点C 为线段AB 上任意一点(不与点A 、B 重合),分别以AC 、BC 为一腰在AB 的同侧 作等腰△ACD 和△BCE ,CA =CD ,CB =CE ,∠ACD 与∠BCE 都是锐角,且∠ACD =∠BCE ,连接AE 交CD 于点M ,连接BD 交CE 于点N ,AE 与BD 交于点P ,连接CP .(1)求证:△ACE ≌△DCB ;(2)请你判断△ACM 与△DPM 的形状有何关系并说明理由; (3)求证:∠APC =∠BPC .ABCD第19题图ABCN MPA MNP 1 CP 2B A CMNP 1P 2 P 2009 …… ……B第23题图2第23题图1第23题图3[2010]19.(本题满分4分)⑵如图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC =3.求线段AD 的长.23.(本题满分9分)已知:△ABC 是任意三角形.⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A .⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由.⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)[2009]19.(本题满分7分)(1)已知,如图①,在ABCD 中,E 、F 是对角线BD 上的两点,且BF DE =.求证:AE CF =.(2)已知,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD =︒∠,求EBO ∠和C ∠的度数.AE C DF B (第19题图 ①) A C D BEO (第19题图②)B .二元一次方程[2011]24.(本题满分8分)某小学在6月1日组织师生共110人到趵突泉公园游览.趵突泉公园规定:成人票价每人40元,学生票价每位20元.该校购票共花费2400元.在这次游览活动中,教师和学生各有多少人?[2009]21.(本题满分8分)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:职工 甲 乙 月销售件数(件) 200180月工资(元)1800 1700(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?五、函数与平面图形的结合[2013]24. (本题满分12分)如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点, OA =1,tan ∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线2y ax bx c =++经过点A 、B 、C . (1)求抛物线的解析式.(2)若点P 是第二象限内抛物线上的动点,其横坐标为t .①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标.②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由.第24题备用图x y C O D A B 第24题图x y C O D A B l EA CBD图1[2012]27.(本题满分9分) 如图,已知双曲线ky x,经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由. 28.(本题满分9分)如图1,抛物线y =ax 2+bx +3与x 轴相交于点A (-3,0),B (-1,0),与y 轴相交于点C ,⊙O 1为△ABC 的外接圆,交抛物线于另一点D . (1)求抛物线的解析式;(2)求cos ∠CAB 的值和⊙O 1的半径;(3)如图2,抛物线的顶点为P ,连接BP ,CP ,BD ,M 为弦BD 中点,若点N 在坐标平面内,满足△BMN ∽△BPC ,请直接写出所有符合条件的点N 的坐标.[2011]26.(本题共2小题,满分9分)(1)如图1,在△ABC 中,∠C =90º,∠ABC =30º,AC =m ,延长CB 至点D ,使BD =AB .①求∠D 的度数;②求tan75º的值.图2 M O xyN O第22题图xy A B PC D(2)如图2,点M 的坐标为(2,0),直线MN 与y 轴的正半轴交于点N ,∠OMN =75º.求直线MN 的函数解析式.11.(本题满分9分)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物 线y =- 49x 2+bx +c 经过点A 、C ,与AB 交于点D .(1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S . ①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =- 49x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ为直角三角形,请直接..写出所有符合条件的点F 的坐标;若不存在,请说明理由.[2010]22.(本题满分9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式.⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?A DBPQOCxy ADBO Cxy l备用图DCMNO A B Pl第24题图y E x24.(本题满分9分)如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为333y x =-+,抛物线的对称轴l 与直线BD 交于点C 、与x 轴交于点E .⑴求A 、B 、C 三个点的坐标.⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接AN 、BM 、MN .①求证:AN =BM .②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.[2009]22.(本题满分9分)已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.(第22题图)y xOAD MCB。

济宁市【2009年】中考数学试题及答案

济宁市【2009年】中考数学试题及答案
A、x≠0 B、x>3 C、x ≠ -3 D、x≠3
7. 如图,在长为 8 cm、宽为 4 cm 的矩形中,截去一个矩形,使得留下 的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( ) A. 2 cm2 B. 4 cm2 C. 8 cm2 D. 16 cm2
8. 已知 a 为实数,那么 a2 等于
板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎 在中间小正方形区域(含边线)的概率是
A. 1 B. 1
C. 1
D. 1
2
4
5
10
y
3
3
1
(第 10 题)
2
(第 11 题)
11. 一个几何体的三
面积是
A. 4π
B.6π
C. 8π
1 O 1 2x 1
(第 12 题)
视图如右图所示,那么这个几何体的侧 D. 12π
济宁市二○○九年高中阶段学校招生考试
数学试卷
注意事项: 1.本试题分第Ⅰ卷和第Ⅰ卷两部分,共 10 页.第Ⅰ卷 2 页为选择题,36 分,第Ⅰ卷 8 页
为非选择题,84 分;共 120 分.考试时间为 120 分钟. 2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.每题选出答案
后,都必须用 2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须 先用橡皮擦干净,再改涂其他答案.
=3+3 3 -5-2 3 …………………………………5 分
= 3 -2. …………………………………6 分 20.解:方程两边同乘以(x-2),得 ……………………………………………1 分
x-3+(x-2)=-3. ………………………………………………………3 分 解得 x=1. ……………….………………………………………………5 分 检验:x=1 时,x-2≠0,所以 1 是原分式方程的解. .……………………6 分 21.解:(1)计算平均数、方差如下表:

济南市中考数学试卷及答案(Word解析版)

济南市中考数学试卷及答案(Word解析版)

济南中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)(•济南)下列计算正确的是()A.=9B.=﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=2考点:负整数指数幂;绝对值;算术平方根;零指数幂.分析:对各项分别进行负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,然后选出正确选项即可.解答:解:A 、()﹣2=9,该式计算正确,故本选项正确;B 、=2,该式计算错误,故本选项错误;C、(﹣2)0=1,该式计算错误,故本选项错误;D、|﹣5﹣3|=8,该式计算错误,故本选项错误;故选A.点评:本题考查了负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,属于基础题,掌握各知识点运算法则是解题的关键.2.(3分)(•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:28.3亿=28.3×108=2.83×109.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°考点:平行线的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.解答:解:∵CD=CE,∴∠D=∠DEC,∵∠D=74°,∴∠C=180°﹣74°×2=32°,∵AB∥CD,∴∠B=∠C=32°.故选B.点评:本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.5.(3分)(•济南)图中三视图所对应的直观图是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的答:长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.点评:本题考查了三视图的概念.易错易混点:学生易忽略圆柱的高与长方体的高的大小关系,错选B.6.(3分)(•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多考点:函数的图象.分析:利用图象可得出,甲,乙的速度,以及所行路程等,注意利用所给数据结合图形逐个分析.解答:解:结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.点评:本题考查了函数的图象,关键是会看函数图象,要求同学们能从图象中得到正确信息.7.(3分)(•济南)下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形考点:命题与定理.分析:根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.解答:解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.点评:此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.8.(3分)(•济南)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+1考点:二次函数的性质;一次函数的性质;反比例函数的性质.分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.解答:解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,错误;B、y=x2﹣1(x>0),故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧(x<0),y随着x的增大而减小,正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,错误;D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,错误;故选B.点评:本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.9.(3分)(•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是()A.B.C.D.考点:列表法与树状图法.分析:由在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,n次抛掷所出现的点数之和大于n2,则算过关;可得能过第二关的抛掷所出现的点数之和需要大于5,然后根据题意列出表格,由表格求得所有等可能的结果与能过第二关的情况,再利用概率公式求解即可求得答案.解答:解:∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于n2,则算过关;∴能过第二关的抛掷所出现的点数之和需要大于5,列表得:6 7 8 9 10 11 125 6 7 8 9 10 114 5 6 7 8 9 103 4 5 6 7 8 92 3 4 5 6 7 81 2 3 4 5 6 71 2 3 4 5 6∵共有36种等可能的结果,能过第二关的有26种情况,∴能过第二关的概率是:=.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算.分析:首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半圆+S△AOB﹣S扇形AOB可求出阴影部分的面积.解答:解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=.故选C.点评:本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式,仔细观察图形,得出阴影部分面积的表达式.11.(3分)(•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.12.(3分)(•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵÷6=335…3,∴当点P第次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(•济南)cos30°的值是.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入计算即可.解答:解:cos30°=×=.故答案为:.点评:本题考查了特殊角的三角函数值,属于基础题,掌握几个特殊角的三角函数值是解题的关键.14.(4分)(•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.15.(4分)(•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年甲9.8 9.9 10.1 10 10.2乙9.4 10.3 10.8 9.7 9.8经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.考点:方差.分析:根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出两种水稻的产量的方差,再进行比较即可.解答:解:甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.124.∴0.02<0.124,∴产量比较稳定的小麦品种是甲,故答案为:甲点评:此题考查了方差,用到的知识点是方差和平均数的计算公式,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(4分)(•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到=x﹣2,去分母化为一元二次方程得到x2﹣2x﹣1=0,根据根与系数的关系得到a+b=2,ab=﹣1,然后变形+得,再利用整体思想计算即可.解答:解:根据题意得=x﹣2,化为整式方程,整理得x2﹣2x﹣1=0,∵函数y=与y=x﹣2图象交点的横坐标分别为a,b,∴a、b为方程x2﹣2x﹣1=0的两根,∴a+b=2,ab=﹣1,∴+===﹣2.故答案为﹣2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了一元二次方程根与系数的关系.17.(4分)(•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正确,利用解三角形求正方形的面积等知识可以判断④的正误.解答:解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,∵在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAD≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.点评:本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(•济南)先化简,再求值:÷,其中a=﹣1.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为乘法后代入求值.解答:解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.点评:本题考查了分式的化简求值,熟悉通分、约分及因式分解是解题的关键.19.(8分)(•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.08.0<x≤9.5 合计2 50(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?考点:频数(率)分布直方图;频数(率)分布表.分析:(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与 6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)本题答案不唯一.例如:从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨.解答:解:(1)频数分布表如下:分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.01358.0<x≤9.5合计250 频数分布直方图如下:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.点评:本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.考点:切线的判定与性质;直角三角形斜边上的中线;平行四边形的性质.专题:计算题.分析:(1)连接BD,由ED为圆O的直径,利用直径所对的圆周角为直角得到∠DBE为直角,由BCOE为平行四边形,得到BC与OE平行,且BC=OE=1,在直角三角形ABD中,C为AD的中点,利用斜边上的中线等于斜边的一半求出AD的长即可;(2)连接OB,由BC与OD平行,BC=OD,得到四边形BCDO为平行四边形,由AD为圆的切线,利用切线的性质得到OD垂直于AD,可得出四边形BCDO为矩形,利用矩形的性质得到OB垂直于BC,即可得出BC为圆O的切线.解答:解:(1)连接BD,则∠DBE=90°,∵四边形BCOE为平行四边形,∴BC∥OE,BC=OE=1,在Rt△ABD中,C为AD的中点,∴BC=AD=1,则AD=2;(2)连接OB,∵BC∥OD,BC=OD,∴四边形BCDO为平行四边形,∵AD为圆O的切线,∴OD⊥AD,∴四边形BCDO为矩形,∴OB⊥BC,则BC为圆O的切线.点评:此题考查了切线的判定与性质,直角三角形斜边上的中线性质,以及平行四边形的判定与性质,熟练掌握切线的判定与性质是解本题的关键.21.(10分)(•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?考点:反比例函数的应用;分式方程的应用.专题:应用题.分析:(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;解答:解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x≤3,∴y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:解得:x=2.5或x=﹣3经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3.点评:本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.22.(10分)(•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值表2.a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:改变第4列改变第2行(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则①如果操作第三列,则第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,,解得a=1,此时2﹣2a2,=0,2a2=2,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数.23.(10分)(•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.考点:四边形综合题.专题:计算题.分析:(1)分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形ABD与三角形ACE全等,利用全等三角形的对应边相等即可得证;(2)BE=CD,理由与(1)同理;(3)根据(1)、(2)的经验,过A作等腰直角三角形ABD,连接CD,由AB=AD=100,利用勾股定理求出BD的长,由题意得到三角形DBC为直角三角形,利用勾股定理求出CD的长,即为BE的长.解解:(1)完成图形,如图所示:答:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.点评:此题考查了四边形综合题,涉及的知识有:全等三角形的判定与性质,等边三角形,等腰直角三角形,以及正方形的性质,勾股定理,熟练掌握全等三角形的判定与性质是解本题的关键.24.(12分)(•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标;②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD=S△PCN+S△PDN就可以表示出三角形PCD 的面积,运用顶点式就可以求出结论.解答:解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴l=﹣=﹣1,∴E点的坐标为(﹣1,0).如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.∴,∴MP=3EM.∵P的横坐标为t,∴P(t,﹣t2﹣2t+3).∵P在二象限,∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=﹣3(与C重合,舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P(﹣2,3).∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);②设直线CD的解析式为y=kx+b,由题意,得,解得:,∴直线CD的解析式为:y=x+1.设PM与CD的交点为N,则点N的坐标为(t,t+1),∴NM=t+1.∴PN=PM﹣NM=t2﹣2t+3﹣(t+1)=﹣t2﹣+2.∵S△PCD=S△PCN+S△PDN,∴S△PCD=PM•CM+PN•OM=PN(CM+OM)=PN•OC=×3(﹣t2﹣+2)=﹣(t+)2+,∴当t=﹣时,S△PCD的最大值为.点评:本题考查了相似三角形的判定及性质的运用,待定系数法求函数的解析式的运用,三角形的面积公式的运用,二次函数的顶点式的运用,解答本题时,先求出二次函数的解析式是关键,用函数关系式表示出△PCD的面积由顶点式求最大值是难点.。

14数学练习试卷-2009山东省烟台市中考数学试题(含答案)

14数学练习试卷-2009山东省烟台市中考数学试题(含答案)

2009年烟台市初中学生学业考试数 学 试 题说明:1.本试题分为Ⅰ卷和Ⅱ卷两部分.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.考试时间为120分钟,满分150分.2.答题前将密封线内的项目填写清楚.3.考试过程中允许考生进行剪、拼、折叠等实验.第Ⅰ卷注意事项:请考生将自己的姓名、准考证号、考试科目涂写在答题卡上.选择题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑,不能答在本试题上.如要改动,必须先用橡皮擦干净,再选涂另一个答案.一、选择题(本题共12个小题,每小题4分,满分48分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( ) A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006 B .2007 C .2008 D .2009 5.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .2432左视图4俯视图标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第2题图)6.如图,数轴上A B ,两点表示的数分别为1-3, 点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23- B .13--C .23-D .13+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,, 直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <-B .21x -<<-C .20x -<<D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )放置.测量的数据如图,则桌子的高度是( ) A .73cm B .74cm C .75cm D .76cmCA OB (第6题图)y OB AA DCPB(第10题图)60°1- 1 O x y yxOy x O y x O y x O第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分) 13.若523m xy +与3n x y 的和是单项式,则m n = .14.设0a b >>,2260a b ab +-=,则a bb a+-的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .16.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17.观察右表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.18.如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共8个小题,满分78分) 19.(本题满分6分) 0293618(32)(12)23++-序号1 2 3 …图形… 80cm①70cm②(第12题AED BFC(第18题图)22.(本题满分8分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173. ).23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?D CB A② ①(第22题图)24.(本题满分10分)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠.H MO F G C AD(第24题图)25.(本题满分14分)如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE . (1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG ..求证:CD 垂直平分EG .(3)延长BE 交CD 于点P . 求证:P 是CD 的中点.ADGECB(第25题图)26.(本题满分14分)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).O BxyA MC13-2009年烟台市初中学生学业考试数学试题参考答案及评分意见本试题答案及评分意见,供阅卷评分使用.考生若写出其它正确答案,可参照评分意见相应评分. 一、选择题(本题共12个小题,每小题4分,满分48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D C C B A A B B B D C 二、填空题(本题共6个小题,每小题4分,满分24分) 13.1414.2- 15.17 16.1 17.20 18.①,③,④ 三、解答题(本题共8个小题,满分78分) 19.(本题满分6分) 0293618(32)(12)23+-3322(12)1|122=++. ···························································· 2分 3322121212=. ································································ 4分 3212= ··································································································· 6分 20.(本题满分8分) 解:(1)12·································································································· 1分 (2)13······································································································· 3分 (3)根据题意,画树状图: ············································································ 6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44. 所以,P (4的倍数)41164==. ···································································· 8分或根据题意,画表格: ···················································································· 6分1 2 3 4 1 第一次 第二次 1 2 3 4 2 1 2 3 4 3 1 2 3 4 4 开始第一次 第二次12341 11 12 13 14 2 21 22 23 24 3 31 32 33 34 4 41 42 43 44由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P (4的倍数)41164==. ············································································· 8分 21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ··································· 1分 初一学生总数:2010%200÷=(人). ···························································· 2分 (2)活动时间为5天的学生数:20025%50⨯=(人). 活动时间为7天的学生数:2005%10⨯=(人). ··············································· 3分 频数分布直方图(如图)··················· 4分 (3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ·························· 5分 (4)众数是4天,中位数是4天. ··································································· 7分 (5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ················································ 8分 22.(本题满分8分)解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=°°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴==,. ·························· 3分 在Rt ACE △中, 5sin 5sin 302AE AC ACE =∠==°, ················ 4分5cos 5cos3032CE AC ACE =∠==°············· 5分在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==°,°, ···················································· 6分 DB BA(第22题图)C60 5040302010 (第21题图)5553(31) 6.8222AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ··································································· 8分23.(本题满分10分) 解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ········································································· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. ···································································· 4分 解这个方程,得12100200x x ==,. ······························································· 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ··························· 6分 (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ········································································· 8分150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. ········· 10分24.(本题满分10分)(1)证明:连接OC ,HC HG HCG HGC =∴∠=∠,. ························· 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°,··········· 2分 12OB OC =∴∠=∠,, ····································· 3分 3HGC ∠=∠,2390∴∠+∠=°. ······················ 4分 90BFG ∴∠=°,即DE AB ⊥. ···························· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径, ∴BD BE =. ······························································································ 6分BED BME ∴∠=∠.····················································································· 7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ·········································· 8分 HMD BME ∴∠=∠.BME ∠是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ····························· 9分 HMD MHE MEH ∴∠=∠+∠. ···································································· 10分 25.(本题满分14分)HM O FGC AD(第24题图)证明:(1)延长DE 交BC 于F . AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ··························· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠=,2CD CF∴=,即2CD CF =. 22CD AD BF ==,BF CF ∴=. ······················ 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ······························································································ 4分 (2)CE 平分BCD ∠,∴BCE DCE ∠=∠. 由(1)知BC CD CE CE ==,,BCE DCE ∴△≌△,BE DE ∴=. ················ 6分 由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ···································· 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ···································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠. ························································ 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ····························· 12分 又BD BD =,BAD BPD ∴△≌△,DP AD ∴=. ········································ 13分 12AD CD =,12DP CD ∴=.P ∴是CD 的中点. ········································· 14分 28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,·············· 2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ········ 3分(2)存在.在223y x x =--中,令0x =,得3y =-.令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ····························································· 5分容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.ADG E C B (第25题图)FPy EDNOA CPN1F (第26题图)(30)N ∴-,,2AN ∴=. ··············································································· 6分 在223y x x =--中,令3y =-,得1202x x ==,.2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ···························· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,.OD OB ∴=,45OBD ∴∠=°. ····································································· 9分 又点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ··········································· 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ···································· 11分90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ···························· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ························ 14分。

2009届济南高三年级统一考试理

2009届济南高三年级统一考试理

2009届山东省济南市高三年级统一考试数学试卷(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,测试时间120分钟第Ⅰ卷 (选择题, 共60分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案。

不能答在测试卷上。

一、选择题:本大题共12个小题。

每小题5分;共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数(a +i )2对应的点在y 轴负半轴上,则实数a 的值是 ( )A .—1B .1C .2-D .2 2.如图几何体的主视图和左视图都正确的是( )3.已知43)4sin(-=+πx ,则x 2sin 的值等于 ( )A .42 B .81-C .42- D .81 4.若log a 2<log b 2<0,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 5.在空间中,给出下面四个命题,则其中正确命题的个数为( )① 过平面α外的两点,有且只有一个平面与平面α垂直;② 过平面β内有不贡献三点到平面α的距离都相等,则α∥β ③ 若直线l 与平面内的无数条直线垂直,则l ⊥α; ④ 两条异面直线在同一平面内的射影一定是两条平行线;A .0B .1C .2D .36.设集合}012|{2=-+=x x x A ,集合}01|{=+=kx x B 如果A ∪B =A ,则由实数k 组成的集合中所有元素的和与积分别为( )A .121-和0 B .121和121- C .121和0 D .41和121- 7.函数y =f (x )的曲线如图所示,那么函数y =f (2-x )的曲线是( )8.对某种有6件正品和4件次品的产品进行检测,任取2件,则其中一件是正品,另一间为次品的概率为( )A .92B .152 C .158 D .458 9.设F 1、F 2是双曲线12222=-by a x (a >0,b >0)的两个焦点,P 在双曲线上,若021=⋅PF PF ,ac PF PF 2||||21=(c 为半焦距),则双曲线的离心率为 ( )A .213- B .213+ C .2 D .215+ 10.在△ABC 中,A =120°,b =1,面积为3,则=++++CB A cb a sin sin sin( )A .3392 B .339 C .72D .7411.已知a 、b ∈R ,那么“22b a +<1”是“1+ab >a +b ” ( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件12.定义在R 上的f (x )满足f (-x )=- f (x +4),当x ≥2时,f (x )单调递增,如果x 1+x 2>4,且 (x 1-2)(x 2-2)>0,则f (x 1)+ f (x 2)的值为( )A .恒小于0B .恒大于0C .可能为0D .可正可负第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题。

2009年山东数学中考试(几何部分)1

2009年山东数学中考试(几何部分)1

2009年山东数学中考试题(几何部分)5.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A .矩形B .直角梯形C .菱形D .正方形6.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( ) A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d >9.如图所示,给出下列条件:①B ACD ∠=∠; ②ADC ACB ∠=∠;③AC ABCD BC=; ④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为( ) A .1B .2C .3D .410.已知ABC △中,17AB =,10AC =,BC 边上的高8AD =, 则边BC 的长为( ) A .21B .15C .6D .以上答案都不对16.某楼梯的侧面视图如图所示,其中4AB =米,30BAC ∠=°,90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .17.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 .18.在平面直角坐标系中,ABC △顶点A 的坐标为(23),,若以原点O 为位似中心,画AEC △的位似图形A B C '''△,使ABC △与A B C '''△的相似比等于12,则点A '的坐标为 .3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′等于( )5.如图,两个同心圆的圆心为O ,EC 是大圆的一条弦,交小圆于D 、B 两点,已知弦心距OA=3,DB=8,EC=l2,则圆环(阴影部分)的面积为( )ACD B(第9题B A第9题图8.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )17.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在变AC 上,记为点B ′,折痕为EF .已知AB=AC=3,BC=4,若FB ′∥AB ,那么BF 的长度是 _________ .6.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ) A .0.4米B .0.5米C .0.8米D .1米11.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,42ACD ∠=°,则BAD ∠= °.13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .9.如图,△DEF 是由△ABC 经过位似变换得到的, 点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( ) A .1:2 B .1:4 C .1:5 D .1:610.如图,AB 是⊙O 的直径,C ,D 为圆上两点,第11题C 'B '第13题BA6cm3cm 1cm第14题DB O AC第10题图AB CFDE D B A CE F O ∠AOC =130°,则∠D 等于( ) A .25°B .30°C .35°D .50°14.如图,将一副三角板叠放在一起,使直角顶点重合于O 点,则AOC DOB ∠+∠=16.如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 .17.如图,在菱形ABCD 中,DE ⊥AB 于E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm .5.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( )(A )2cm (B )4cm(C )6cm(D )8cm6.如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么∠DBF =( )A .62ºB .38ºC .28ºD .26º8.已知矩形ABCD 的边AB =6,AD =8.如果以点A 为圆心作⊙A ,使B 、C 、D 三点中在圆内和在圆外都至少有一个点,那么⊙A 的半径r 的取值范围是( )A .6<r <10B .8<r <10C .6<r ≤8D .8<r ≤10 11.如图,已知矩形ABCD 中,AB =8,BC =π5.分别以B 、D 为圆心,AB 为半径画弧,两弧分别交对角线BD 于点E 、F ,则图中阴影部分的面积为( )A .π4B .π5C .π8D .π1014.如图,O 是正六边形ABCDEF 的中心,图形中可由△OBC 绕点O 逆时针旋转120º得到的三角形是 .15.一副三角板如图叠放在一起,则图中∠α的度数是 .第14题图DCBE第17题ABCD(第5题图)E如图,PA 为O ⊙的切线,A 为切点.直线PO 与O ⊙交于B C 、两点,30P ∠=°,连接AO AB AC 、、.求证:ACB APO △≌△.20.如图,⊙O 的直径AB=4,C 为圆周上一点,AC=2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E . (1)求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.24.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG=CG ;(2)将图①中△BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).19.(本小题满分6分)在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)A (第21题OBPCCG E DAF 第19题NC已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.(1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.23.(本题满分8分)如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径;(2)求图中阴影部分的面积.22.(8分)如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作MN ∥BC ,交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F .(1)求证:OC = 12EF ;(2)当点O 位于AC 边的什么位置时,四边形AECF 是矩形?并给出证明.24.(10分)如图,⊙O 是△ABC 的内切圆,与AB 、BC 、CA 分别相切于点D 、E 、F ,∠DEF =45º.连接BO 并延长交AC 于点G ,AB =4,AG =2. (1)求∠A 的度数; (2)求⊙O 的半径.ADGCB第21题第23题图OABD。

2009年济南中考数学试卷及答案

2009年济南中考数学试卷及答案

济南市2009年高中阶段学校招生考试数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题4分,共48分) 题号 123456789 10 11 12 答案A B C C B B C CCDBB二、填空题(本大题共5个小题,每小题3分,共15分) 13. ()()33x x +- 14.3 15.2216.2 17.62.1 三、解答题(本大题共7个小题,共57分) 18.(本小题满分7分)(1)解:()()2121x x ++-=22122x x x +++- ···························································································· 2分 =23x + ·················································································································· 3分(2)解:去分母得:()213x x -=- ·············································································· 1分 解得1x =- ········································································································ 2分检验1x =-是原方程的解 ················································································· 3分 所以,原方程的解为1x =- ············································································· 4分 19.(本小题满分7分)(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥. ∴ADE FBC =∠∠ ······················································································ 1分 在ADE △和CBF △中,∵AD BC ADE FBC DE BF ===,∠∠, ∴ADE CBF △≌△ ···················································································· 2分 ∴AE CF = ····································································································· 3分(2)解:∵DE 是O 的直径∴90DBE =︒∠ ······························································································ 1分 ∵30ABD =︒∠∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ········································· 2分A E C DF B (第19题图 ①) A C DB E O(第19题图②)∵AC 是O 的切线∴90CAO =︒∠ ······························································································ 3分 又260AOC ABD ==︒∠∠∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠ ······················· 4分20.(本小题满分8分) 解:(1)k 为负数的概率是23··································································································· 3分 (2)画树状图或用列表法:第二次第一次1-2-31- (1-,2-)(1-,3) 2-(2-,1-) (2-,3)3(3,1-)(3,2-)·········································································· 5分共有6种情况,其中满足一次函数y kx b =+经过第二、三、四象限,即00k b <<,的情况有2种 ··························································································· 6分 所以一次函数y kx b =+经过第二、三、四象限的概率为2163= ··································· 8分 21.(本小题满分8分)解:(1)设职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元 ················· 1分由题意得20018001801700x y x y +=⎧⎨+=⎩·························································································· 3分解这个方程组得8005x y =⎧⎨=⎩ ······························································································ 4分答:职工月基本保障工资为800元,销售每件产品的奖励金额5元. ································· 5分 (2)设该公司职工丙六月份生产z 件产品 ··········································································· 6分由题意得80052000z +≥ ·························································································· 7分 解这个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 ········································································· 8分 22.解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==, ∴263k a ==, ······································································································ 2分 ∴反比例函数的表达式为:6y x= ········································································· 3分2- 3 1- 32- 11- 2-3开始第一次 第二次正比例函数的表达式为23y x =··········································································· 4分 (2)观察图象,得在第一象限内, 当03x <<时,反比例函数的值大 于正比例函数的值.··························· 6分 (3)BM DM = ···································································································· 7分 理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形即12OC OB =∵3OC = ∴4OB = ················································································································ 8分 即4n =∴632m n == ∴3333222MB MD ==-=,∴MB MD = ··········································································································· 9分23.(本小题满分9分) 解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ······································································································ 1分在Rt ABK △中,2sin 454242AK AB =︒==. 2cos 454242BK AB =︒==·········································································· 2分 在Rt CDH △中,由勾股定理得,22543HC =-=∴43310BC BK KH HC =++=++= ······························································ 3分 (第22题图) yxOADMCB(第23题图①)ADCBKH(第23题图②)ADCBGMN(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ·································································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ·········································································································· 5分 即10257t t -= 解得,5017t = ·········································································································· 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t =·················································································································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD == ∴535t t -= 解得258t = ·············································································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△A DC B MN (第23题图③) (第23题图④) A D CB M NH E∴NC ECDC HC = 即553t t -= ∴258t = ·················································································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===- 解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC = 即1102235tt-=∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ···················· 9分24.(本小题满分9分)解:(1)由题意得129302ba abc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ ············································································· 2分解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ······························································ 3分 (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的(第23题图⑤)A DCBH N MF点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,···························································· 4分解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--. ········································································ 5分 把1x =-代入得43y =- ∴P 点的坐标为413⎛⎫--⎪⎝⎭, ····················································································· 6分 (3)S 存在最大值 ································································································· 7分 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴333322OE m AE OE m =-==,,方法一:连结OPOED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ····································································································· 8分 ∵304-<∴当1m =时,333424S =-+=最大 ··································································· 9分方法二:OAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ (第24题图)O AC xy B E PD=()22333314244m m m -+=--+ ····································································· 8分 ∵304-<∴当1m =时,34S =最大 ···················································································· 9分。

2009年山东省德城区2009届初中毕业测验数学试题

2009年山东省德城区2009届初中毕业测验数学试题

二○○九年初中毕业考试数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把每小题的正确选项选出,填在第二卷的答题表中。

)1、计算:)(32=⋅a a A 、5a B 、6a C 、8a D 、9a2、把不等式组1010x x +>⎧⎨-⎩,≤的解集表示在数轴上,正确的是( )3、图中几何体的主视图是( )4、某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A .平均数B .众数C .中位数D .方差5、某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打( )折。

A 、6折B 、7折C 、8折D 、9折1-1A 、1-1B 、1-1C 、1-1D 、正面A BCD6、如图,P是反比例函数y=6x在第一象限分支上的一个动点,PA⊥x轴,随着x的逐渐增大,△APO的面积将()A、增大B、减小C、不变D、无法确定7、如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器()台.A、3;B、4;C、5;D、6.8、如图,将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A、AD=BC′B、∠EBD=∠EDBC、△ABE∽△CBDD、Sin∠ABE =AE ED第6题CD第8题第7题65二○○九年初中毕业考试数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)二、填空题(本大题共8个小题,共24分)9、在半径为18的圆中,120°的圆心角所对的弧长是10、如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是11、如图,2008年奥运火炬在去南省传递传递路线为“昆明—丽江—香格里位),某校学生小明在省地图上设定的临沧市位置点的坐标为(-1,0),火炬传递起点昆明市位置点的坐标为(1,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年中考数学试题及答案(山东省济南市)济南市2009年高中阶段学校招生考试数学试卷注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共2页,满48分;第Ⅱ卷共6页,满分72分.本试题共8页,满分120分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内.3.第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效.4.考试期间,一律不得使用计算器;考试结束,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题共48分)一、选择题(本大题共124分,共48正(第2项是符合题目要求的) 1.3-的相反数是( ) A .3 B .3-C .13D .13- 2.图中几何体的主视图是( )3.如图,AB CD ∥,直线EF 与AB 、CD分别相交于G 、H .60AGE =︒∠,则EHD ∠的度数是( ) A .30︒ B .60︒ C .120︒ D .150︒4.估计20的算术平方根的大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间AC EB FDHG(第3ABCD8.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( )A .230cm B .230cm π C.260cm π D .2120cm1 20 1 20 C .1 2 0 D .1 2 0 (第9BACOABCDOE(第1010.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.4 11.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )G DC EF AB ba (第11ABCD12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,,()()()()1331;g a b b a g =如②,=,.,,, ()()()()1313h a b a b h --=--如③,=,.,,,.按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-,注意事项:1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.考试时间,一律不得使用计算器.第Ⅱ卷(非选择题共72分)二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中横线上)13.分解因式:29x-=.14.如图,O的半径5cmOA=,弦8cmAB=,点P为弦AB上一动点,则点P到圆心O的最短距离是cm.(第14OAB (第1515.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .16.“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮球冠军球队的五名主力队员的身高如下表:(单位:厘米)则该队主力队员身高的方差是 厘米2. 17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1 1.73≈)AD B EC60(第17三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分7分) (1)计算:()()2121x x ++-(2)解分式方程:2131x x =--.19.(本小题满分7分) (1)已知,如图①,在ABCD中,E 、F 是对角线BD上的两点,且BF DE =.求证:AE CF =.(2)已知,如图②,AB 是O的直径,CA 与O相切于点A .连接CO 交O于点D ,CO 的延长线交O于点E .连接BE 、BD ,30ABD =︒∠,求EBO ∠和C ∠的度数.A ECF(第19题 E (第1920.(本小题满分8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(1)写出k为负数的概率;(2)求一次函数y kx b=+的图象经过二、三、四象限的概率.(用树状图或列表法求解)1-2-3-正背21.(本小题满分8分)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元? (2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?22.(本小题满分9分)已知:如图,正比例函数y ax =的图象与反比例函数k y x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.23.(本小题满分9分) 如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,CM(第23(第2224.(本小题满分9分)已知:抛物线()20=++≠的对称轴为1y ax bx c ax=-,与x轴交于A B,两点,与y轴交于点C,其中()30,.C-02A-,、()(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P,使得PBC△的周长最小.请求出点P的坐标.(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE PC∥交x轴于点E.连接PD、△的面积为S.求S与m之PE.设CD的长为m,PDE间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(第24济南市2009年高中阶段学校招生考试数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共5个小题,每小题3分,共15分)13.()()+-14.315.216.217.62.133x x三、解答题(本大题共7个小题,共57分)18.(本小题满分7分)(1)解:()()2++-x x121=22122+++- ···································· 2分x x x=23x+ ············································· 3分(2)解:去分母得:()-=-·················· 1分x x213解得1x =- ································· 2分 检验1x =-是原方程的解 ··············· 3分 所以,原方程的解为1x =- ············ 4分 19.(本小题满分7分)(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥.∴ADE FBC =∠∠ ······················ 1分 在ADE △和CBF △中, ∵AD BC ADE FBC DE BF ===,∠∠, ∴ADE CBF △≌△ ····················· 2分∴AE CF = ·················· 3分(2)解:∵DE 是O的直径∴90DBE =︒∠ ·························· 1分 ∵30ABD =︒∠A ECF(第19题E (第19∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ···· 2分 ∵AC 是O的切线∴90CAO =︒∠ ·························· 3分 又260AOC ABD ==︒∠∠ ∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠ ······················ 4分20.(本小题满分8分)解:(1)k 为负数的概率是23························· 3分 (2)画树状图或用列表法:· 5分2- 31- 2- 1- 2-3开第一次第二次共有6种情况,其中满足一次函数y kx b =+经过第二、三、四象限,即00k b <<,的情况有2种 ······················· 6分 所以一次函数y kx b =+经过第二、三、四象限的概率为2163= ··········································· 8分 21.(本小题满分8分)解:(1)设职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元 ······················ 1分由题意得20018001801700x y x y +=⎧⎨+=⎩···························· 3分 解这个方程组得8005x y =⎧⎨=⎩························· 4分 答:职工月基本保障工资为800元,销售每件产品的奖励金额5元. ······························· 5分 (2)设该公司职工丙六月份生产z 件产品 ·· 6分 由题意得80052000z +≥ ···························· 7分 解这个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 8分22.解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==, ∴263k a ==, ······························· 2分 ∴反比例函数的表达式为:6y x= ···· 3分··· 4分(2当03x<<6分(3)BM DM= ···························· 7分理由:∵132OMB OACS S k==⨯=△△∴33612OMB OACOBDC OADMS S S S=++=++=△△矩形四边形即12OC OB=∵3OC=∴4OB=···································· 8分即4n=∴632mn==∴3333222MB MD==-=,(第2223.(本小题满分9分)解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ····································· 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ··························· 2分在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ····················· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD ==(第23ADC BKH(第23ADCBGMN由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,.∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠ ∴MNC GDC △∽△∴CN CMCD CG =································· 5分 即10257t t -=解得,5017t = ······························ 6分(3)分三种情况讨论: ①当NC MC =时,如图③,即102t t =- ∴103t = ···································· 7分A D C BMN (第23(第23AD C BM N HE②当MN NC =时,如图④,过N 作NE MC ⊥于E解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD == ∴535t t -= 解得258t = ································· 8分 解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC EC DC HC =即553t t -=∴258t = ···································· 8分 ③当MN MC =时,如图⑤,过M 作MF CN ⊥于F点.1122FC NC t == 解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠,∴MFC DHC △∽△∴FC MCHC DC=即1102235tt -=∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ············································ 9分 24.(本小题满分9分)解:(1)由题意得129302b a a bc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ ··············· 2分解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ········ 3分(第23A D CBH NM F(2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩, ·················· 4分 解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--.········ 5分 把1x =-代入得43y =- ∴P 点的坐标为413⎛⎫-- ⎪⎝⎭, ················· 6分 (3)S 存在最大值 ···················· 7分 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=.∴333322OE m AE OE m =-==,, 方法一: 连结OP(第24OED POE POD OEDPDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ······························ 8分∵304-< ∴当1m =时,333424S =-+=最大··········· 9分方法二:OAC OED AEP PCDS S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭=()22333314244m m m -+=--+ ················· 8分∵304-< ∴当1m =时,34S=最大·················· 9分。

相关文档
最新文档