初一数学上册科学计数法和近似数44

合集下载

数学人教版七年级上册科学记数法.5.2科学计数法和近似数

数学人教版七年级上册科学记数法.5.2科学计数法和近似数

用四舍五入法求下列各数的近似数: (1)95.418(精确到百分位); (2)0.86588(精确到千分位); (3)2.5671(精确到0.001); (4)2.715万(精确到百位) 解析: (1)95.418≈95.42; (2)0.86588≈0.866; (3)2.5671≈2.567; 点评: (1)题中要求精确到百分位,故应根据百分位后一位 数字8进行四舍五入;(2)题要求精确到千分位,故应根据千 分位后一位数字8进行四舍五入;(3)题要求精确到0.001, 故应根据千分位后一位数字1进行四舍五入;(4)题2.715万 =27150=2.715×104,要把2.715万精确到百位,故应根据百位 后一位数字5进行四舍五入.
合作探究,智慧碰撞(5分钟)
讨论内容: 1. 什么是科学计数法?怎样用科学计数法表示一个数? 怎样还原科学计数法表示的数? 2. 什么是近似数?怎样求一些数的近似数? 3.核对导学案答案。
讨论要求: 展示内容 展示小组 展示位置 1.组长负责协调好分层讨论,做到全员参与,高效讨论,克 上讨论内容 1课本45页例 7 前1 服假讨论和不用心讨论 .5 2.边讨论边做记录,注意总结本组好的答题方法,学科组长 上讨论内容 2课本46页例6 8 后1 反馈未解决问题. 3.组长宏观调控,做好展示、点评的准备. 4.讨论完毕整理完善导学案或按自己的计划学习.
总结归纳
像上面那样,把一个数表示成a×10 的形 式(其中1≤a<10,n是整数),既简单明了, 又便于比较大小和进行计算,这种记数法,习 惯上叫科学记数法。
n
1.用科学记数法表示下列各数: (1)1000 000, (2)57 000 000, (3) 123 000 000 000。 解: 1 000 000=106, 57 000 000= 5.7 ×10 000 000 =5.7×107, 1.23 ×100 000 000 000 =1.23×1011.

新人教版七年级数学(上)——科学计数法与近似数

新人教版七年级数学(上)——科学计数法与近似数

科学计数法与近似数第一部分:知识精讲知识点一、科学记数法10的形式,其中a 是整数数位只有一位的数(即1一般地,把一个绝对值大于10的数记成a×n≤a<10),n是正整数,这种记数法叫做科学记数法。

知识点二、近似数一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。

知识点三、有效数字一个数,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

第二部分:例题精讲例1.用科学记数法记出下列各数:(1)696 000; (2)1 000 000;(3)58 000; (4)―7 800 000例2.下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4; (2)0.0572; (3)2.40万例3.用四舍五入法,按括号中的要求把下列各数取近似数。

(1)0.34082(精确到千分位); (2)64.8 (精确到个位);(3)1.504 (精确到0.01); (4)0.0692 (保留2个有效数字);(5)30542 (保留3个有效数字)。

例4.比较8.76×1011与1.03×1012大小。

例5.已知5.13亿是由四舍五入取得的近似数,它精确到( )A.十分位B.千万位C.亿位D.十亿位第三部分:课堂同步A*夯实基础1.用科学记数法表示下列各数:(1)2730=_________; (2)7 531 000=__________;(3)-8300.12=__________; (4)17014=__________; (5)10 430 000=__________; (6)-3 870 000=__________;2.保留三个有效数字得到21.0的数是( )A.21.2B.21.05C.20.95D.20.943.用科学记数法表示0.0625,应记作( )A.110625.0-⨯B.21025.6-⨯C.3105.62-⨯D.410625-⨯4.“125•”汶川大地震后,世界各国人民为抗震救灾,积极捐款捐物,截止2008年5月27日12时,共捐款人民币327.22亿元,用科学记数法(保留两位有效数字)表示为( )A.101027.3⨯B.10102.3⨯C.10103.3⨯D.11103.3⨯5.地球的质量为13106⨯亿吨,太阳的质量为地球质量的5103.3⨯倍,则太阳的质量为( )亿吨.A.1.98×1018B.1.98×1019C.1.98×1020D.1.98×10656.科学记数法表示下列各数:(1)太阳约有一亿五千万千米; (2)地球上煤的储量估计为15万亿吨以上。

七上数学科学计数法

七上数学科学计数法

七上数学科学计数法
(原创版)
目录
1.科学计数法的概念
2.科学计数法的表示形式
3.科学计数法的应用
正文
1.科学计数法的概念
科学计数法,又称为标准形式,是一种表示非常大或非常小的数的简便方法。

它是一种以 10 的幂为基数的计数方法,可以表示为 a×10^n 的形式,其中 1≤|a|<10,n 为整数。

2.科学计数法的表示形式
在科学计数法中,数的表示形式分为两部分:尾数和指数。

尾数部分a 是一个位于 1 和 10 之间的实数,指数部分 n 是一个整数,它可以是正数、负数或零。

正指数表示大于 1 的数,负指数表示小于 1 的数,而零指数表示 1。

例如:光速的数值为 299,792,458 米/秒,用科学计数法表示为
2.99792458×10^8 米/秒。

在这个表示中,2.99792458 是尾数,10 的 8 次方是指数。

3.科学计数法的应用
科学计数法在科学、工程和日常生活中有着广泛的应用。

由于它具有简洁、易读和易于计算的特点,因此在表示宇宙中的星际距离、原子半径以及生物分子的体积等方面都非常方便。

此外,科学计数法还在计算机编程、数据处理和数值分析等领域发挥着重要作用。

总之,科学计数法是一种表示非常大或非常小的数的有效方法,具有
简洁、易读和易于计算的优势。

华东师大初中七年级上册数学科学记数法与近似数 知识讲解[精品]

华东师大初中七年级上册数学科学记数法与近似数  知识讲解[精品]

科学记数法与近似数 知识讲解【学习目标】1.理解科学记数法的意义,并会用科学记数法表示一个较大的数;2.了解近似数的概念,能按精确度的要求取近似数,能根据近似数的不同形式确定其精确度;3.体会近似数在生活中的实际应用.【要点梳理】要点一、科学记数法把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,l ≤|a |<10,n 是正整数),这种记数法叫做科学记数法,如42000000=74.210⨯. 要点诠释:(1)负数也可以用科学记数法表示,“-”照写,其它与正数一样,如-3000=3310-⨯;(2)把一个数写成10n a ⨯形式时,若这个数是大于10的数,则n 比这个数的整数位数少1.要点二、近似数及精确度1. 近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.2. 精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度一般用“精确到哪一位”的形式的来表示,一般来说精确到哪一位表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米.【典型例题】类型一、科学记数法1.(2016•山西)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A .5.5×106千米 B .5.5×107千米 C .55×106千米 D .0.55×108千米【思路点拨】科学记数法的表示形式为a ×10n 的形式.其中1≤|a|<10,n 为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【答案】B .【解析】解:5500万=5.5×107.故选:B .【总结升华】此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n 的值.举一反三:【变式】(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( )A .0.675×105B . 6.75×104C . 67.5×103D . 675×102【答案】B .2. 把下列用科学记数法表示的数转化成原数.(1)33.1410⨯; (2)71.73210-⨯; (3)61.39210⨯千米【答案与解析】此题是对科学记数法的逆用解:(1)33.14103140⨯=;(2)71.7321017320000-⨯=-;(3)61.39210⨯千米=1392000千米【总结升华】将科学记数法表示的数转化为原数,方法简单:n 是几就将10n a ⨯中a 的小数点向右移动几位.类型二、近似数及精确度3.(2015•深圳模拟)由四舍五入法得到的近似数6.8×103,下列说法中正确的是( )A . 精确到十分位,有2个有效数字B . 精确到个位,有2个有效数字C . 精确到百位,有2个有效数字D . 精确到千位,有4个有效数字【思路点拨】103代表1千,那是乘号前面个位的单位,那么小数点后一位是百.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n的有效数字只与前面的a 有关,与10的多少次方无关.【答案】C .【解析】解:个位代表千,那么十分位就代表百,乘号前面从左面第一个不是0的数字有2个数字,那么有效数字就是2个.【总结升华】本题考查了近似数与有效数字,较大的数用a×10n 表示,看精确到哪一位,需看个位代表什么;有效数字需看乘号前面的有效数字.举一反三:【变式】用四舍五入法,按括号中的要求把下列各数取近似数(1)27.15万(精确到千位);(2)12 341 000(精确到万位).【答案】解:(1)27.15万=2715005272000 2.7210≈=⨯或表示为27.2万;(2)12 341 00012340000≈=71.23410⨯.4.下列由四舍五入得到的近似数,它们精确到哪一位.(1)1.20 (2)1.49亿; (3)50.3010-⨯【答案与解析】解:(1) 1.20精确到百分位;(2)1.49亿精确到百万位;(3)50.3010-⨯精确到千位.【总结升华】一般的近似数,四舍五入到哪一位就说它精确到哪一位,例:1.20精确到百分位,则百分位就是精确度;若是汉字单位“万、千、百”类近似数,精确度是由其最后一位数所在的数位确定的,但必须先把该数写成单位为“个”位的数再确定其精确度;用形如10n a ⨯的数,其精确度看a 中最后一位数在原数中的数位.类型三、近似数与精确数【高清课堂:科学记数法、近似数 356850 典型例题4】5.测得某同学的身高约是 1.66米,那么意味着他身高的精确值x 所在范围是___________________.【答案】x ≤<1.655 1.665【解析】1.66是由四舍五入得到的数,若通过“入”得到1.66,则最小数应是1.655,若通过“舍”得到1.66,则最大数不存在,但能判断小于1.665,所以x ≤<1.655 1.665.【总结升华】本类型题目的答案一般形式为:12a a a ≤<, “精确度”是用来说明结果与实际数误差大小的,如精确到0.01表示结果与实际数字相差不大于0.005.举一反三:【变式】近似数2.0的准确数a 的取值范围是_________________.【答案】1.95 2.05a ≤<.。

数学人教版七年级上册科学计数法和近似数

数学人教版七年级上册科学计数法和近似数

第十节科学记数法与近似数一.知识要点:1.科学记数法(1)科学记数法定义:把一个大于10的数表示成的形式(其中a 是整数位只有位的数,n 是正整数),像这样的记数方法叫做科学记数法。

(2)把一个数写出科学记数法n a 10⨯的形式时,若这个数是大于10的数,则n 比这个数的整数位少,而a 的取值范围是。

2.近似数(1)近似数的定义:在实际问题中有的量不可能或者没必要用准确数表示,而用有理数近似地表示出来,这个数就是这个量的近似数,一般表示测量的数都是。

(2)近似数精确度:近似数和准确值的接近程度可以用精确度表示,一个近似数四舍五入到哪一位,就称这个数精确到哪一位。

精确度有两种形式:①精确到哪一位;②保留几位有效数字。

3.有效数字:从一个数的左边第一个数字起,到为止,所有的数字都是这个数的有效数字。

二.例题讲解:例1.光的速度大约是300000000m/s ,用科学记数法表示为()A .s m /1039⨯B .s m /1038⨯C .s m /10307⨯D .s m /103.09⨯例2.用科学记数法表示下列各数:(1)7230;(2)2100000;(3)-102600;(4)15亿例3.下列用科学记数法表示的数,原来分别是什么数?(1)710;(2)51014.3⨯-;(3)31021.9⨯;(4)41069.1⨯-;例4.把下列各数:109109101.1,109.9,1001.1,1099.9⨯⨯⨯⨯用“<”号连接起来。

例5.指出下列问题中出现的数,哪些是精确数,哪些是近似数?(1)某中学七年级有200名学生;(2)小兰的身高为1.6米;(3)数学课本共有178页;(4)某十字路口每天的车流量大约有10000辆;(5)我们居住的地球的平均半径约为6400千米。

例6.由四舍五入法得到的近似数3.05,它是精确到()A .十位B .个位C .十分位D .百分位例7.一根竹竿长约1.56m ,那么它实际长度的范围是多少?例8.下列说法正确的是()A .近似数25.0的精确度与近似数25的一样B .近似数0.230与近似数0.023的有效数字一样C .近似数505与近似数0.505的有效数字一样D .近似数4千万与近似数4000万的精确度一样例9.用四舍五入法,按括号里的要求对下列各数取近似数:(1)1.999(精确到0.01);(2)0.03049(保留2个有效数字);(3)67294(精确到万位);(4)5864(保留2个有效数字)。

七年级数学上《近似数》知识解析

七年级数学上《近似数》知识解析

《近似数》知识解析
课标要求
理解近似数的定义,会求一个数的近似数,理解有效数字的含义,会求一个数的有效数字的个数,会结合科学计数法表示一个较大的数字。

知识结构
①近似数的定义:只是接近实际数值,但与实际数值还有差别的数叫实际数值的近似值.
②有效数字的定义:一个近似数,从左边第一个不是零的数字起,到末位数字止,所有的数字都叫这个数的有效数字.
内容解析
一个近似数与实际数值的接近程度(精确度)有两种形式:精确数位;有效数字.他们
都是通过四舍五入得到的.在对一个位数较多的数值取近似值时,首先将其进行科学记数,
a ,a中的有效数字就是这个近似数的有然后再取近似值.对于用科学记数法表示的数10n
效数字.
重点难点
本节内容的重点是了解有效数字的意义.能掌握对一个数取近似值的方法.难点是对于用科学记数法表示的数,如何求出它的精确度.
教法导引
通过数学与现实世界中的数据引入,让学生体会到近似数的意义,然后尝试利用小学的知识对一些数取近似值.再介绍有效数字的意义,规定科学记数法的精确度,通过巩固练习,掌握所学内容.
学法建议
情境激趣——复习铺垫——接受新知——练习提升.。

七上数学科学计数法

七上数学科学计数法

七上数学科学计数法
科学计数法(Scientific Notation)是一种用于表示非常大或非常小的数字的方法,它由一个数乘以10的幂次方组成。

以下是七年级上册数学中关于科学计数法的一些概念和例子:
1. 科学计数法的表示形式为:a × 10ⁿ,其中a是1到10之间的数,n 是整数。

2. 科学计数法将一个较大的数转化为一个乘法表达式,其中基数是1到10之间的数,指数表示原数需要乘以10的多少次方。

3. 例子1:230,000,000可以写成2.3 × 10⁸,其中2.3是基数,8是指数。

4. 例子2:0.000032可以写成3.2 × 10⁻⁵,其中3.2是基数,-5是指数。

注意,指数为负数表示小于1的数。

5. 使用科学计数法可以简化大数和小数的表达,方便计算和比较。

6. 当进行科学计数法的加减乘除计算时,需要对基数和指数进行相应的运算。

7. 科学计数法也可用于表示物理学、化学等领域中出现的极大或极小的数值。

希望以上内容对你有所帮助!。

人教版初一数学上册 科学记数法与近似数 讲义

人教版初一数学上册 科学记数法与近似数 讲义

科学记数法与近似数知识点一:科学记数法解题技巧:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式叫做科学记数法写科学记数法的步骤①先把小数点移到原数第一个不为0的数字的右下角,省略末尾所有的零②从这个数变回原数,小数点要向右移动多少位,就乘以10的多少次方例1、地球和月球约为384000000米,用科学记数法可以写成____________米例2、中国约有1400000000人,1400000000可以写成_________人1、光的速度约为300000000米/秒,用科学记数法可以写成____________米/秒2、珠穆朗玛峰的高度约为8844.43米,用科学记数法可以写成____________米3、将下列的数字用科学记数法表示5201314= 666998= -25329= -1001000= 123.456= 101.001= -9394.555= -535488.6=4、将下列的数字用科学记数法表示3700000千米=___________米 2890000人=___________万人13409000立方米=___________立方分米 13500000毫升=___________升5、一个国家有13920万人,用科学记数法可以写成( )A 、人4101.392⨯B 、人6101.392⨯C 、人7101.392⨯D 、人8101.392⨯6、冥王星围绕太阳公转的轨道半径长度约为5900000000千米,这个数用科学记数法表示是()A 、5.9×109mB 、5.9×1012mC 、59×1013mD 、0.59×1012m7、如果每人给我1分钱,那么全国14亿人一共给了我( )A 、1.4×107元B 、14×107元C 、1.4×108元D 、1.4×105元8、国税系统完成税收收入人民币3.8723×1011元,也就是收入了( )A 、38.723亿元B 、387.23亿元C 、3872.3亿元D 、38723亿元9、若一个数等于2.3×1022,则这个数的整数位数是( )A 、20B 、21C 、22D 、2310、5200=5.2×10n ,则n 等于( )A 、2B 、3C 、4D 、511、还原534.221×107结果为()A、5342210B、53422100C、534221000D、5342210000知识点二:负指数的科学记数法写负指数科学记数法的步骤③先把小数点移到原数第一个不为0的数字的右下角,省略左边所有的零④从这个数变回原数,小数点要向左移动多少位,就乘以10的负多少次方例1、常温常压下,氢气的密度约为0.089克/升,可以写作____________克/升例2、世界上最小的开花植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g,这个数可以表示为_____________g1、将下列的数字用科学记数法表示0.000005=0.000803=-0.01001= -0.304005=2、自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”。

科学计数法近似数有效数字归纳

科学计数法近似数有效数字归纳

科学计数法、近似数、有效数字要点提示一、科学记数法的定义:把一个大于10的数记成a n⨯10的形式的方法叫科学记数法;1.其中a 满足条件1≤│a │<102.用科学记数法表示一个n 位整数,其中10的指数是n -1;3.负整数指数幂:当a n ≠0,是正整数时,a a n n -=1/4.我们把绝对值小于1的数写成a ×10n n 为负整数,1≤│a │<10形式也叫科学计数法;它与以前学过绝对值大于1的数用科学计数法表示为a ×10n n 为正整数形式有什么区别与联系绝对值大于10的数,n 为正整数;绝对值小于1时n 为负整数二、近似数:接近实际数目,但与实际数目还有差别的数叫做近似数;1.产生近似数的主要原因:a.“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;b.用测量工具测出的量一般都是近似数,如长度、重量、时间等等;c.不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;d.由于不必要知道准确数而产生近似数.2.精确度:一个近似数四舍五入到哪一位,就说精确到哪一位;三、有效数字:对于一个数来说:从左边起第一个非0数字起,到它的末位止,中间所有的数字都叫做这个数的有效数字;10,规定它的有效数字就是a中的1.对于用科学记数法表示的数a n有效数字;2.在使用和确定近似数时要特别注意:1一个近似数的位数与精确度有关,不能随意添上或去掉末位的零; 2确定有效数字时一定要弄清起始位置和终止位置,初学时可分别做上记号,以免出错;3求精确到某一位的近似值时,只需把下一位的数四舍五入,而不看后面各数位上的数的大小;典型例题例1:用科学记数法记出下列各数:11000000;;2;;;例2.以下问题中的近似数是哪些,准确数是哪些1某厂1994年产值约2000万元,约是1988年的6.8倍;2甲班有学生52人,平均身高约1.58米,平均体重约为52.4千克;3我国人口约有12亿;4π的近似值约为3.14例3.用四舍五入法按括号内要求对下列各数近似值10.85149精确到千分位,0.851247.6精确到个位4831.5972精确到0.01,1.6040.02067保留3个有效数字0.0208564340保留1个有效数字6×104660304保留2个有效数字40.6⨯10例4.下例四舍五入得到得近似数,各精确到哪一位,有哪几个有效数字143.820.0308632.4万42.5050.001065.2⨯3010例5.某城市有500万人口,若平均每人为一个家庭,平均每个家庭每周丢弃5个塑料袋,一年将丢弃多少个塑料袋若每1000个塑料袋污染1 m2土地,那么该城市一年被塑料袋污染的土地是多少保留两个有效数字经典练习科学记数法练习题一、选择题1、57000用科学记数法表示为A、57×103B、×104C、×105D、×1052、3400=×10n,则n等于A、2B、3C、4D、5a×1010,则a的值为A、7201B、-C、-D、4、若一个数等于×1021,则这个数的整数位数是A 、20B 、21C 、22D 、235、我国最长的河流长江全长约为6300千米,用科学记数法表示为A 、63×102千米B 、×102千米C 、×103千米D 、×104千米6、今年第一季度我国增值税、消费税比上年同期增收×1010元,也就是说增收了A 、亿元B 、307亿元C 、亿元D 、3070亿元 7.2003年5月19日,国家邮政局特别发行“万众一心、抗击‘非典’”邮票,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争,其邮票发行量为枚,用科学记数法表示正确的是.A .125105.⨯枚 B .125106.⨯枚 C .125107.⨯枚 D .125108.⨯枚 8.中新网2008年10月12日电由于全球信贷市场紧缩,加上投资者对金融体系的信心尽失,环球股市经历“黑色一周”,短短一周累跌两成,是自1970年有纪录以来的最大一周跌幅,全球股票市值一周蒸发超过50万亿人民币;50万亿用科学记数法表示为是121050⨯12105⨯13105⨯14105⨯据不完全统计,2004年F1上海分站赛给上海带来的经济收入将达到美元,用科学记数法可表示为A 、910672.2⨯B 、910267.0⨯C 、81067.2⨯D 、610267⨯二、填空题1、×10175是位数,×1010是位数;2、把3900000用科学记数法表示为,把1020000用科学记数法表示为;3、用科学记数法记出的数×104的原数是,×108的原数是;4、比较大小:×104×103;×104×104;5、地球的赤道半径是6371千米,用科学记数法记为千米;8、实施西部大开发战略是党中央的重大决策,我国国土面积约为960万平方千米,而我国西部地区占我国国土面积的,用科学记数法表示我国西部地区的面积约为;三、解答题1、用科学记数法表示下列各数190020023004-51000056782、已知下列用科学记数法表示的数,写出原来的数1×1042×10536×10541043、用科学记数法表示下列各小题中的量3地球离太阳大约有一亿五千万千米;4月球质量约为734万吨; 4.若|a+1|+b-22=0,求a+b 2016+a 2015和b 互为相反数,x 和y 互为倒数,m 的绝对值和倒数均是它本身,n 的相反数是它本身,求51a 2013+b 2013-9x y 12010+-m 2013-n 20146.若|a|=a+2,求2014a 2014+2a 2015+2的值近似数、有效数字一、选择题1.对取近似值,保留三个有效数字,其结果正确的是;A 、、4.598 C 、、2.对于近似数,下列说法正确的是A.有三个有效数字,精确到千分位B.有四个有效数字,精确到千分位C.有四个有效数字,精确到万分位D.有五个有效数字,精确到万分位3.北京市申办2008年奥运会,得到了全国人民的热情支持;据统计,某一日北京申奥网站的访问人次为201947,用四舍五入法保留两个有效数字的近似值是A.20105.⨯ 21105.⨯.22105.⨯ D.2105⨯ 4.近似数所表示的准确数a 的范围是A.11951205..≤<a B.115116..≤<a C.110130..≤<a D.12001205..≤<a5.近似数的有效数字的个数和精确度分别是A.两个,精确到万分位B.四个,精确到十万分位C.四个,精确到万分位D.四个,精确到千分位6.下列说法正确的是A 、有两个有效数字B 、万精确到个位C 、精确到千分位D 、3000有一个有效数字取近似值,保留三个有效数字,结果是×106×106×1068.下列说法正确的是A.近似数4000和4万的精确度一样B.将圆周率π精确到千分位后有四个有效数字3、1、4、2C.近似数与近似数的精确度一样D.354600精确到万位是3550009.若有一个数用四舍五入法得到m和n两个近似数,它们分别是和,则以下说法正确的是A.n的精确度高B.m的精确度高C.m与n的精确度相同D.m、n的精确度不能确定10.近似数5和的准确值的取值范围的大小关系是A.的取值范围大 B.5的取值范围大C.取值范围相同D.不能确定11.用四舍五入法得到a的近似数,其准确数a的范围是A.≤a<B.≤a<C.≤a<D.≤a≤12.下列说法中正确的是A.近似数与近似数的精确度相同B.近似数5百与近似数500的精确度相同C.近似数×104是精确到百位的数,它有三个有效数字是4、7,0D.近似数是精确到十分位的数,它有三个有效数字是2、4、313.沈阳市水质监测部门2006年全年共监测水量达万吨,水质达标率为100%,用科学记数法表示2006年全年共监测水量为________万吨保留三个有效数字A.×104B.×105 C.×104D.×105二、填空题1.将数375800精确到万位的近似数是__________;将近似数精确到时,有效数字分别是____________.2.近似数是由不小于________的数和小于________的数四舍五入得到的.3.已知=,则=________,4803=________.4.把12500取两个有效数字的近似数用科学记数法表示为________.7.人类遗传物质DNA是很长的链,最短的22号染色体含有3000000个核苷酸,这个数用科学记数法,保留2个有效数字记作________.8.我国国土面积为960万km 2,精确到________位;有效数字是________,用科学记数法表示为________km 2.9.近似数的准确值a 的取值范围是. 三、解答题1.下列由四舍五入法得到的近似数,各精确到哪一位各有哪几个有效数字1;2;3万;4×104;5 2.计算2003120041415131412131-++-+-+- 的值; 3.已知b a,互为相反数,d c,互为倒数,且3m =,求2m b a cd m +-+的值; 4.地球绕太阳转动即地球公转的速度是每小时×105千米,声音在空气中的传播速度是每小时×106米,试问地球公转的速度与声音的速度哪个快些。

科学计数法和近似数(知识点+练习)

科学计数法和近似数(知识点+练习)

科学记数法和近似数————小学知识回顾————四舍五入法求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。

这种求近似数的方法,叫做四舍五入法。

————初中知识链接————1.科学记数法:(1)把一个大于10的数表示成a×10n的形式(其中a是整数位只有一位的数,n 是正整数且比整数位数小1),使用这种表示数的方法就是科学记数法.(2)用科学记数表示时,n与数位的关系是:n=位数-1或数位=n+1.2.近似数:(1)与实际数很接近的数,我们称它为近似数,是由四舍五入得来的,与实际数很接近的数.(2)近似数的精确程度:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.3.有效数字这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字,象上面我们取3.142为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字3、1、4、2.【经典题型】小学经典题型1.把下面各数保留一位小数,取近似数:(1)3.877 (2)10.349 (3)0.98(4)3.446 (5)16.17(6)63.63632.把下面各数改写成以“亿”为单位的数。

3800000000= 20600000000= 51000000000= 70000000000= 430000000000= 600000000= 9000000000= 100000000000=3.计算:(1)1.2345678×9≈ (得数保留6位小数)(2)1.2345678×18≈ (得数保留5位小数)(3)1.2345678×45≈ (得数保留5位小数)初中经典题型1.企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为( )A .89310⨯元B .89.310⨯元C .79.310⨯元D .80.9310⨯元2.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( )A .48210⨯B .58210⨯C .58.210⨯D .68.210⨯3.2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为( )A .115.95210⨯B .1059.5210⨯C .125.95210⨯D .9595210⨯4.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( )A .62.2110⨯B .52.2110⨯C .322110⨯D .60.22110⨯5.2018年某州生产总值约为153300000000,用科学记数法表示数153300000000是( )A .91.53310⨯B .101.53310⨯C .111.53310⨯D .121.53310⨯6.用四舍五入法将130542精确到千位,正确的是( )A .131000B .60.13110⨯C .51.3110⨯D .413.110⨯7.近似数1.23×103精确到( )A .百分位B .十分位C .个位D .十位8.30269精确到百位的近似数是( )A.303 B.30300 C.33.0310⨯⨯D.430.2309.用四舍五入法对0.4249取近似数精确到百分位的结果是()A.0.42 B.0.43 C.0.425 D.0.42010.对数字1.8045进行四舍五入取近似数,精确到0.01的结果为()A.1.8 B.1.80 C.1.81 D.1.80511.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为 ( )A.6.75×103吨 B.6.75×104吨 C.6.75×105吨 D.6.75×10-4吨12.56.2万平方米用科学记数法表示正确的是()A.5.62×104m2 B.56.2×104m2 C.5.62×105m2D.0.562×103m213.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1) B.0.05(精确到千分位)C.0.05(精确到百分位) D.0.0502(精确到0.0001)14.下列说法错误的是()A.近似数2.50精确到百分位 B.1.45×105精确到千位C.近似数13.6亿精确到千万位 D.近似数7000万精确到个位15.我国的北斗卫星导航系统与美国的GPS和俄罗斯格洛纳斯系统并称世界三大卫星导航系统,北斗系统的卫星轨道高达36000公里,将36000用科学记数法表示为。

数学人教版七年级上册科学记数法和近似数在实际中的应用

数学人教版七年级上册科学记数法和近似数在实际中的应用

科学记数法和近似数在实际中的应用一、图片展示生活中的大数据。

二、科学计数法:概念:把一个大于10的数表示成a×10n的形式(其中a大于或等于1且小于10,n是正整数),对于小于﹣10的数也可以类似表示。

例如:-567 000 000=-5.67 ×108意义:生活中存在着许多庞大的数据,我们在书写和读的时候都会很麻烦,科学计数法使得这些大数据书写简短,同时便于读数。

1、用科学记数法表示一个大数时,应注意以下几点:(1)a应满足1≤a<10,即a是一个整数位数只有一位的数。

(2)10n中的n是正整数。

2、确定n值的办法:方法一:把原数的小数点向左移动,使a符合要求,小数点移动了几位,n便是几;方法二:n的值比原数的整数位少1。

3、将用科学记数法表示的数还原成原数的方法:方法一:把科学记数法 a ×10n中的指数n加上1就得到原数的整数位数,从而确定原数;方法二:科学记数法 a ×10n中的n是多少,就把a中的小数点向右移动多少位,不够的添0,从而确定原数。

三、上面这些数有什么特点?近似数:确切地反映了实际数量的数称为准确数,如果某个数只是接近实际数量,但与实际数量还有差别,那么它是一个近似数。

在许多情况下,很难取得准确数,或者不必使用准确数,而是使用一个接近的数表示。

精确度:近似数与准确数的接近程度。

1、在计算中,可根据需要按四舍五入法取近似数,具体的要求是保留整数、保留一位小数等,像这种取近似数的要求程度,就叫精确度。

2、一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。

取一个精确到某一位的近似数时,应对这一位后面的第一个数字进行四舍五入,再后面的数字不必考虑。

注意:在按照精确度而确定近似数时,如果末位数是0,不能随便去掉,否则会影响结果的准确性。

科学记数法在生活中的运用:例一、为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234760000元,用科学记数法可表示为()(结果保留三位有效数字)A.2.34 ×108元B.2.35 ×108元C.2.35 ×109元D.2.34 ×109元解析:当表示的数大于10时,底数10的指数n是正整数且等于所表示的数的整数位数减去1,因为234760000是一个大于10的整数位数为9的数,所以n=9-1=8.而有效数字是从左边第一个不为0的数算起,所以:234760000= 2.35 ×108。

第四讲:近似数、科学计数法精选全文

第四讲:近似数、科学计数法精选全文

可编辑修改精选全文完整版第四讲:近似数、科学计数法知识点回顾:1、一个数与相近(比准确数略多或者略少些),这一个数称之为近似数2、对近似数,人们需要知道它的精确度。

一个近似数的精确度通常有以下两种表述方式:①、用四舍五入法表述。

一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。

②进一和去尾法。

3、有四舍五入得到的近似数,从左边第一个的数字起,到末位数字为止的,都叫做这个数的有效数字。

4、科学计数法:①、一般地,一个绝对值大于10的数,可以表示成的形式,其中,1≤a <10 ,n为正整数且等于原减1。

②一般地,绝对值小于1的数,也可以表示成的形式,其中,1≤a<10 ,n为正整数且等于原数中第一个有效数字前面的的个数(包括小数点前面的一个零)。

例题讲解例1、用四舍五入法,按要求对下列各数取近似值.(1)0.00049(保留2个有效数字);(2)47600(精确到千位);(3)0.298(精确到0.01);(4)8903000(保留3个有效数字).分析:要求精确到哪一位,要看这位的后一位,然后四舍五入取值即可;从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字.解:(1)0.00049≈4.9×10-4;(2)47 600≈4.8×104;(3)0.298≈0.30;(4)8 903 000≈8.90×106.提示:熟练掌握按要求进行四舍五入取近似数以及有效数字的概念.思考:用四舍五入法,按要求对下列各数取近似值.(1)1102.5亿(精确到亿);(2)0.0000291(保留2个有效数字);(3)0.07902(保留3位有效数字)例2、1000米与1.0×103米有无区别?请说明理由.分析:应考虑两种情况:当这两个数作为准确值时没有区别;但如果是两个近似值时,精程度不同.解:当这两个数作为准确值时没有区别;当是两个近似值时有区别,1 000米精确到1米,而1.0×103米精确到100米.提示:本题应分情况讨论.主要考查的是近似数的精确度的概念.思考:用四舍五入法得到数x为3.80,精确地说,这个数的范围是()A、3.795≤x<3.805B、3.795<x<3.805C、3.75≤x<3.85D、3.75<x<3.85例3、据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,我国一年因土地沙漠化造成的经济损失为多少元(用科学记数法表示,且保留两个有效数字)?分析:先把1.5亿用科学记数法表示为1.5×108,再乘以365得1.5×108×365=1.5×365×108=547.5×108=5.475×1010元,保留2个有效数字后为5.5×1010元.绝对值>10时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:1.5×108×365=5.475×1010≈5.5×1010元.答:我国一年因土地沙漠化造成的经济损失大约为5.5×1010元.提示:本题考查用科学记数法表示较大的数并会保留有效数字.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.例4、由四舍五入法得到的近似数8.8×103,下列说法中正确的是()A、精确到十分位,有2个有效数字B、精确到个位,有2个有效数字C、精确到百位,有2个有效数字D、精确到千位,有4个有效数字分析:103代表1千,那是乘号前面个位的单位,那么小数点后一位是百.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n的有效数字只与前面的a有关,与10的多少次方无关.解:个位代表千,那么十分位就代表百,乘号前面从左面第一个不是0的数字有2个数字,那么有效数字就是2个.故选C.提示:较大的数用a×10n表示,看精确到哪一位,需看个位代表什么;有效数字需看乘号前面的有效数字.同步训练1、用四舍五入法按括号中的要求对下列各数取近似数:(1)0.057 1(精确到0.01)(2)5.456 9(精确到千分位)(3)9 840 080(保留两个有效数字)(4)3 849 600(精确到千位)2、用四舍五入法按括号中的要求对下列各数取近似数,并用科学技术法表示(1)2567000;(精确到万位)(2)-0.000153(精确到十万分位)(3)-267035(保留两个有效数字)(4)-0.00205(保留两个有效数字)3、下列由四舍五入法得到的近似数,各精确到哪一位?有几个有效数字?(1)-8.28×105 (2)1.52×10-4(3)13.25万4、我国宇航员杨利伟乘“神州五号”绕地球飞行了14周,飞行轨道近似看作圆,其半径约为6.71×103千米,求飞行的总航程约为多少千米(π取3.14,保留3个有效数字)?5、计算,并把结果用科学记数法表示(保留2位有效数字):(1)3.6×107-1.2×106;(2)36× ×100.。

数学人教版七年级上册科学记数法和近似数

数学人教版七年级上册科学记数法和近似数

10000 10
4
65000 6 . 5 10000 6 . 5 10
4
257 000 000= 2 .57 10 .57 100000000 =0的数表示成 a10 的形式(其 中a是整数数位只有一位的数,n是正整数),使用 的是科学记数法。
6 8 . 15 10 -8150000
• 1.科学计数法:把一个绝对值大于10的数记做a×10ⁿ 的形式,其中a是整数数位只有一位的数(即 1≦|a|﹤10). • 2.用科学计数法表示一个大数时,应注意以下几点: ①a应满足1≦a﹤10,即a是一个整数位只有一位的 数; ②10n 中的n是正整数。 • 3.确定n的值的方法: • 方法一:把要表示的数的小数点向左移动,使a符合 要求,小数点移动了几位,n便是几; • 方法二:n的值比原来的整数位数少1.
n
1 的数 a 10 10的指数(即n)比原数的整数位少1
例1 填空
• • • • • (1)下列的数用科学记数法表示的是(D) A.567 000 B. 567 1000 4 .7 10000 D. 5 C. 56 .67 10 (2)用科学记数法表示 7 9 . 18 10 91 800 000=
6

6 6 7 2 9 . 6 10 19 . 2 10 1 . 92 10 = 2 10 9 . 6

4 • -12345.67= 1 .234567 10
例1 填空
• (3)写出下列用科学记数法表示的数的原数
2 10
5
200 000
3
7 . 12 10 7120
( 1 ) 0 . 0158 0 . 016 ( 2 ) 304 .35 304

第3讲科学计数法、近似-华东师大版七年级数学上册讲义(机构专用)

第3讲科学计数法、近似-华东师大版七年级数学上册讲义(机构专用)

第 3 讲科学计数法、近似数知识点梳理1.科学计数法比方 100=1x10 2、70000=7x10 4,把一个大于 10 的数记成 a x 10 n的形式,其中 1≤ a<10, n 是正整数。

像这样的记数法叫做科学记数法。

2.近似数与实质的数特别凑近的数,称为近似数。

一般的,一个近似数四舍五入到某一位,就说这个近似数精确到那一位。

授课重难点掌握科学记数法,近似数特色真题讲解知识点 1:科学记数法1,以下各数的书写形式是不是科学记数法的形式?①1.5 ? 103 ② 29? 104 ③ 0.32 ? 103 ④2.58 ? 1002 ⑤1.5 ? 25答案:略2,用科学记数法表示以下的数:①40020000 ② 0.89 ? 104 ③ -10600答案:略。

3,写出以下用科学记数法表示的数①3.456 ? 10② 4.040 ? 104知识点 2:近似数1,以下由四舍五入法获取的近似数,各精确到哪一位?(1) 132.4(2)0.0572答案:精确到十分位(精确到0.1 ),精确到万分位(精确到0.0001 );2,用四舍五入法,按括号中的要求对以下各数取近似数:(1) 0.34082 (精确到千分位)(2) 64.8 (精确到个位)(3) 1.5046 (精确到 0.01 )(4) 130 542 (精确到千位)答案: 0.341 ; 65 ; 1.50; 1.31 ? 1053, 50 名学生和40 千克大米中,是正确数,是近似数。

答案: 50; 40 ;当堂练习A、基础练习1,用科学记数法表示以下的数:①2494 ② -123 ? 10答案:略。

本题观察科学记数法2,写出以下用科学记数法表示的数① -2.58 ? 103②1.00 ? 107答案:略本题观察科学记数法3,用四舍五入按要求对0.06048 分别取近似数,下面结果错误的选项是()A, 0.1 (精确到0.1 )B, 0.06( 精确到百分位)C, 0.06 (精确到千分位)D, 0.060 (精确到0.001 )答案:选 C本题观察近似数4,已知 13.5 亿是由四舍五入获取的近似数,它精确到()A,十分位B,千万位C,亿位D,十亿位答案:选 B本题观察近似数5,若是数 a 的近似数为 1.50 ,那么 a 的取值范围是()A, 1.495 <a< 1.505 B , 1.495 ≤ a< 1.505C, 1.45 < a< 1.55 D , 1.45 ≤ a< 1.55答案:选 B本题观察近似数B、提升练习1,用科学记数法表示以下各题中的数:(1)地球的体积约为 1 080 000 000 000立方千米(2)太平洋的面积约为17 970 万平方千米(3)银河系中约有恒星一千六百亿个(4)预计到二十一世纪中叶,世界人口总数将达到九十亿答案: 1, 1.08 ? 1012 2, 1.797 ? 1083, 1.6 ? 10114,9? 109 本题观察科学记数法2, 1.24 ? 103 的整数位数为,5.8 ? 107的整数位为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10000000 6000 39000000 -13900-8000000 30000000 460000 -639002、下列用科学记数法写出的数,原来分别是什么数?7×105-2×1088×107-7.22×104-3.3×103-5.42×1045×1048.94×1043、用四舍五入法对下列各数取近似数。

0.0000631(精确到万分位) 85458.3(精确到十分位) 7.09906(精确到0.1) 0.00714(精确到0.1)4、计算。

1(-—)2(-6)3(-2)4634-600 -40000 330000 -432001100000 -3700000 280000 -800002、下列用科学记数法写出的数,原来分别是什么数?-5×107-7×105-8.6×106 5.15×1077.9×1059.94×106 4.5×103-2.18×1043、用四舍五入法对下列各数取近似数。

0.000791(精确到万分位) 5476.67(精确到十位) 0.945245(精确到0.001) 0.0514(精确到0.001)4、计算。

1(-—)2(-4)3(-2)3322-70000 10000 35000000 -280001800000 -1800000 3100000 -63600002、下列用科学记数法写出的数,原来分别是什么数?-2×104-7×1089.6×107-8.02×1055.5×102-6.62×1029.6×105 3.88×1073、用四舍五入法对下列各数取近似数。

0.000617(精确到万分位) 6866.1(精确到十位) 4.12368(精确到0.01) 0.0895(精确到0.001)4、计算。

1(-—)3(-7)2(-3)2232-500000 3000 270000 -3400040000 -11000 2400 -7340002、下列用科学记数法写出的数,原来分别是什么数?-7×104-8×103-5.6×105 3.44×106-7.5×108 3.45×104 6.7×108-5.29×1023、用四舍五入法对下列各数取近似数。

0.00083(精确到万分位) 4572.11(精确到个位) 4.81859(精确到0.001) 0.0073(精确到0.1)4、计算。

1(-—)2(-3)3(-4)272319000000 -600000 30000 -214000000-170000 2100 97000 -5790000002、下列用科学记数法写出的数,原来分别是什么数?4×102-1×1079.9×104-9.38×108-9.5×102 5.2×105 6.5×107 6.65×1053、用四舍五入法对下列各数取近似数。

0.000768(精确到万分位) 932.024(精确到十位) 0.641112(精确到0.001) 0.00918(精确到0.01)4、计算。

5(-—)3(-6)2(-4)3224-300000 -9000 8600000 -781000000-9000000 -2500 410000 -17900002、下列用科学记数法写出的数,原来分别是什么数?6×1064×102 6.8×108-1.36×1039.3×106-4.15×106-1×102-3.88×1053、用四舍五入法对下列各数取近似数。

0.000989(精确到万分位) 76.2931(精确到个位)75.0237(精确到0.1) 0.00925(精确到0.001)4、计算。

5(-—)2(-9)3(-3)35341200 -70000 5200000 -904001000 430000000 9700 -19300000002、下列用科学记数法写出的数,原来分别是什么数?3×1041×104-8.8×105-7.94×107-5.4×107-7.44×1084×102-9.74×1033、用四舍五入法对下列各数取近似数。

0.0000721(精确到万分位) 24.1308(精确到个位) 11.2866(精确到0.001) 0.00888(精确到0.001)4、计算。

1(-—)2(-6)2(-3)3833-13000 -500000 600000 -8580000-15000 50000 220000 -243002、下列用科学记数法写出的数,原来分别是什么数?-7×1078×105 2.5×103 5.89×104-8.9×103-1.52×104-4.4×104-5.37×1083、用四舍五入法对下列各数取近似数。

0.000541(精确到万分位) 0.246216(精确到个位) 93.5957(精确到0.01) 0.00897(精确到0.1)4、计算。

3(-—)3(-10)3(-4)3922-600000 60000 600000 -9780000-17000 -1300 400000 -57100000002、下列用科学记数法写出的数,原来分别是什么数?-2×108-3×1038.5×102-1.69×1074.7×105 6.06×104-3.6×107-4.66×1073、用四舍五入法对下列各数取近似数。

0.0000731(精确到万分位) 595.322(精确到个位) 5.31129(精确到0.1) 0.0548(精确到0.001)4、计算。

4(-—)2(-8)2(-1)4435-1600000 80000 99000000 -1650000000-900 -1600 4400 -950000002、下列用科学记数法写出的数,原来分别是什么数?4×102-6×105 4.5×108 3.91×105-8.5×102-4.75×104 4.1×106-5.5×1083、用四舍五入法对下列各数取近似数。

0.000741(精确到万分位) 450.289(精确到十位) 5.21624(精确到0.001) 0.0052(精确到0.1)4、计算。

2(-—)2(-10)2(-4)3533900000 500000 6200 -908000-2000000 40000 40000000 -97500000002、下列用科学记数法写出的数,原来分别是什么数?-9×1073×1039.9×108-4.48×1077.3×104-6.73×106-2.1×106 4.75×1073、用四舍五入法对下列各数取近似数。

0.0000887(精确到万分位) 780.942(精确到十位) 7.06326(精确到0.01) 0.00977(精确到0.001)4、计算。

2(-—)2(-2)3(-4)41023200000 1000000 150000 -690000000-400000 -32000 2500 -5710000002、下列用科学记数法写出的数,原来分别是什么数?-3×105-9×102-9.5×106-9.05×108-9.9×102 2.5×107 6.4×104-1.05×1063、用四舍五入法对下列各数取近似数。

0.00095(精确到万分位) 966.189(精确到十分位) 4.8864(精确到0.01) 0.00986(精确到0.001)4、计算。

1(-—)3(-8)2(-3)44221100 -300000 50000 -145000001300000 4000000 2300000 -5710000002、下列用科学记数法写出的数,原来分别是什么数?3×102-9×1037.1×108 4.84×1049.1×108 3.6×105-6.1×106-3.24×1053、用四舍五入法对下列各数取近似数。

0.0000899(精确到万分位) 0.567689(精确到十分位) 49.5314(精确到0.01) 0.0777(精确到0.001)4、计算。

1(-—)2(-4)3(-4)2432-900 900000 500000 -27900011000 41000000 42000 -59400000002、下列用科学记数法写出的数,原来分别是什么数?8×1076×107-1.6×107-2.4×103-3.5×104-2.28×103-3×1079.15×1033、用四舍五入法对下列各数取近似数。

0.000802(精确到万分位) 53.2016(精确到个位)2.93087(精确到0.001) 0.00743(精确到0.01)4、计算。

6(-—)2(-6)3(-2)362510000 -90000000 78000 -10001500000 -20000000 90000000 -74900000002、下列用科学记数法写出的数,原来分别是什么数?-5×103-4×1078.9×107-3.42×1063×106-8.26×104-8.1×106-4.63×1083、用四舍五入法对下列各数取近似数。

0.000677(精确到万分位) 981.532(精确到十位)4.10007(精确到0.01) 0.0996(精确到0.001)4、计算。

1(-—)2(-4)2(-1)23341900000 -90000 67000000 -3580000000100 -180000 250000 -861000002、下列用科学记数法写出的数,原来分别是什么数?-3×104-7×1038.5×102-9.12×1021.1×105-9.22×1052×102-7.64×1053、用四舍五入法对下列各数取近似数。

相关文档
最新文档