中考压轴题_因动点产生的直角三角形问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因动点产生的直角三角形问题
一.解答题(共7小题)
1.如图所示,矩形ABCD中,AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、MN、FN,过△FMN三边的中点作△PQW.设动点M、N的速度都是1个单位/秒,M、N 运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4.试问x为何值时,△PQW为直角三角形?
(3)试用含的代数式表示MN2,并求当x为何值时,MN2最小?求此时MN2的
值.
2.已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t=_________(s)时,△PBC是直角三角形;
(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?
(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s 的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?
(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q 都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.
3.将一个直角三角形纸片OAB放置在平面直角坐标系中(如图),若斜边所在的直线为y=﹣2x+4.点B'是OA上
的动点,折叠直角三角形纸片OAB,使折叠后点B与点B'重合,折痕与边OB交于点C,与边AB交于点D.
(1)若B'与点O重合,直接写出点C、D的坐标;
(2)若B'与点A重合,求点C、D的坐标;
(3)若B'D∥OB,求点C、D的坐标.
4.如图,在平面直角坐标系中,A(﹣3,0),点C在y轴的正半轴上,BC∥x轴,且BC=5,AB交y轴于点D,
.
(1)求出C的坐标.
(2)过A,C,B三点的抛物线与x轴交于点E,连接BE,若动点M从点A出发沿x轴正方向运动,同时动点N 从点E出发,在直线EB上作匀速运动,运动速度为每秒1个单位长度,当运动时间t为多少时,△MON为直角三角形.
5.(2009•衡阳)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度.
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形.
6.如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行于⊙O的弦MB,连DM并延长交x轴于点C.
(1)判断直线DC与⊙O的位置关系,并给出证明;
(2)设点D的坐标为(﹣2,4),①求MC的长;②若动点P从点A出发向点D匀速运动,速度是每秒1个单位长;同时点Q从点D出发向点C匀速运动,速度是每秒2个单位长;其中一个点到达终点时运动即结束.连接PQ 交OD于点H,当△PDH为直角三角形时,求点P的坐标.
7.已知点M,N的坐标分别为(0,1),(0,﹣1),点P是抛物线y=上的
一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=﹣1的相切;
(2)设直线PM与抛物线的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM;
(3)是否存在这样的点P,使得△PMN为等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.
答案与评分标准
一.解答题(共7小题)
1.如图所示,矩形ABCD中,AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、MN、FN,过△FMN三边的中点作△PQW.设动点M、N的速度都是1个单位/秒,M、N 运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4.试问x为何值时,△PQW为直角三角形?
(3)试用含的代数式表示MN2,并求当x为何值时,MN2最小?求此时MN2的
值.
考点:相似三角形的判定与性质;二次函数的最值;勾股定理的逆定理;三角形中位线定理。
专题:计算题;证明题。
分析:(1)由根据题意可知P、W、Q分别是△FMN三边的中点,可得PW是△FMN的中位线,然后即可证明△FMN∽△QWP;
(2)由(1)得,△FMN∽△QWP,当△QWP为直角三角形时,△FMN为直角三角形,根据DM=BN=x,AN=6﹣x,AM=4﹣x,利用勾股定理求得FM2=4+x2,MN2=(4﹣x)2+(6﹣x)2,FN2=(4﹣x)2+16,然后分①当MN2=FM2+FN2时,②当FN2=FM2+MN2时,③FM2=MN2+FN2时三种情况讨论即可.
(3)根据①当0≤x≤4,即M从D到A运动时,MN≥AN,AN=6﹣x,故只有当x=4时,MN的值最小即可求得答案,②当4<x≤6时,MN2=AM2+AN2=(x﹣4)2+(6﹣x)2,解得x即可
解答:解:(1)由题意可知P、W、Q分别是△FMN三边的中点,
∴PW是△FMN的中位线,即PW∥MN,
∴===,
∴△FMN∽△QWP;
(2)由(1)得,△FMN∽△QWP,
∴当△QWP为直角三角形时,△FMN为直角三角形,反之亦然.
由题意可得DM=BN=x,AN=6﹣x,AM=4﹣x,
由勾股定理分别得FM2=4+x2,MN2=(4﹣x)2+(6﹣x)2,FN2=(4﹣x)2+16,
①当MN2=FM2+FN2时,(4﹣x)2+(6﹣x)2=4+x2+(4﹣x)2+16,
解得,
②当FN2=FM2+MN2时,(4﹣x)2+16=4+x2+(4﹣x)2+(6﹣x)2
此方程无实数根,
③FM2=MN2+FN2时,4+x2=(4﹣x)2+(6﹣x)2+(4﹣x)2+16,
解得x1=10(不合题意,舍去),x2=4,
综上,当或x=4时,△PQW为直角三角形.
(3)①当0≤x≤4,即M从D到A运动时,MN≥AN,AN=6﹣x,
故只有当x=4时,MN的值最小,MN2的值也最小,此时MN=2,MN2=4,(10分)
②当4<x≤6时,MN2=AM2+AN2=(x﹣4)2+(6﹣x)2,
=2(x﹣5)2+2,
当x=5时,MN2取得最小值2,