2018-2019学年湖北省武汉市东湖八年级下期末数学试卷(含答案解析)
(完整word版)湖北省武汉市东湖高新区2017-2018学年度上学期八年级期末考试数学试卷(无答案
东湖高新区2017~2018学年度上学期八年级期末考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列四个图案是四届冬季奥林匹克运动会会徽图案上的一部分图形,其中不是轴对称图形的是( )2.若分式51+x 有意义,则x 的取值范围是( )A .x >-5B .x <-5C .x ≠5D .x ≠-5 3.下列运算中正确的是( )A .x 2÷x 8=x-4B .a ·a 2=a 2C .(a 3)2=a 6D .(3a )3=9a 34.石墨烯(Graphene )是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂,其中0.000001用科学记数法表示为( ) A .1×10-6B .10×10-7C .0.1×10-5D .1×1065.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB 的边OA 、OB 上分别取OM =ON ,移动角尺,使角尺的两边相同的刻度分别与M 、N 重合,得到∠AOB 的平分线OP ,做法中用到三角形全等的判定方法是( ) A .SSS B .SAS C .ASAD .AAS6.在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值( ) A .-1B .1C .6D .-67.下列各式中,计算正确的是( ) A .x (2x -1)=2x 2-1 B .31932-=-+x x x C .(a +2)2=a 2+4D .(x +2)(x -3)=x 2+x -68.已知x +y =4,xy =3,则x 2+y 2的值为( )A .22B .16C .10D .49.在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:① 在直角边BC 上;② 在∠CAB 的角平分线上;③ 在斜边AB 的垂直平分线上,那么∠B 等于( ) A .60°B .45°C .30°D .15°10.如图,在平面直角坐标系xOy 中,点A (2,0)、B (0,2),若点C 在x 轴上方,CO =CB ,且△AOC 为等腰三角形,则满足条件的点C 的个数为( ) A .4 B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分) 11.化简:①16=___________;②2)5(-=___________;③105⨯=___________12.分解因式:x 2y -4y =___________13.计算:22)32(cb a -=___________14.阅读理解:若a 3=2,b 5=3,试比较a 、b 的大小关系小童同学是通过下列方式来解答问题的: 因为a 15=(a 3)5=25=32,b 15=(b 5)3=33=27 而32>27 ∴a 15>b 15 ∴a >b解答上述问题逆用了幂的乘方,请你类比以上做法,解决下面的问题:若x 5=2,y 7=3,试比较x 与y 的大小关系为x ___________y (填“>”或“<”)15.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F .若BF =AC ,BD =5,CD =3,则AF 的大小是___________16.如图,等腰三角形ABC 的底边BC 长为6,面积是18,腰AB 的垂直平分线EF 分别交AC 、AB 边于E 、F 点.若点O 为BC 边的中点,点M 为线段EF 上的一动点,则△BOM 周长的最小值为___________三、解答题(共8题,共72分)17.(本题8分)(1) 计算:(y -1)(y +5) (2) 因式分解:-x 2+4xy -4y 218.(本题8分)解分式方程:22231--=-x x x19.(本题8分)先化简,再求值:322444222++-÷-+-xx x x x x ,其中x =-3.220.(本题8分)已知:如图,C是AB上一点,点D、E分别在AB两侧,AD∥BE,且AD=BC,BE=AC(1) 求证:CD=CE(2) 连接DE,交AB于点F,猜想△BEF的形状,并给予证明21.(本题8分)列分式方程解应用题“互联网+”已经成为我们生活中不可或缺的一部分,例如OFO、摩拜等互联网共享单车就为城市短距离出行难提供了解决方案.小童每天乘坐公交汽车上班,他家与公交站台相距1.2 km,现在每天租用共享单车到公交站台所花时间比过去步行少12 min.已知小童骑自行车的平均速度是步行平均速度的2.5倍,求小童步行的平均速度是多少km/h?22.(本题10分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1)(1) 求证:∠BAD=∠EDC(2) 点E关于直线BC的对称点为M,连接DM、AM①依题意将图2补全②小童通过观察、实验提出猜想:在点D运动的过程中,始终有DA=AM,小童把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形想法2:连接CM,只需证明△ABD≌△ACM即可请你参考上面的想法,帮助小红证明DA=AM(一种方法即可)23.(本题10分)【问题情景】已知:如图1,在△ABC 中,∠A 是锐角,AB =AC ,点D 、E 分别在AC 、AB 上,BD 与CE 相交于点O ,且∠DBC =∠ECB =21∠A 请问:① 图1中有哪些与∠A 相等的角 ② BE 与CD 之间满足什么数量关系? 【探究发现】(1) 填空:与∠A 相等的角有___________________ (2) 我发现:BE _________CD ,证明如下: 【类比探究】如图2,在△ABC 中,∠A 是锐角,AB ≠AC ,点D 、E 分别在AC 、AB 上,BD 与CE 相交于点O ,且∠DBC =∠ECB =21∠A (3) 直接写出图2中与∠A 相等的角(4) 请你写出BE 和CD 之间满足的数量关系,并证明24.(本题12分)在平面直角坐标系xOy 中,点A 的坐标为(-4,0),点B 的坐标为(0,b ).当点B 在y 轴上运动时始终满足为等腰直角三角形,且点C 同时在直线AB 和x 轴的上方,其中∠ACB =90°(1) 如图1,当b =-2时,求此时C 点的坐标(2) 如图2,当点B 在y 轴的正半轴上运动时,求点C 的坐标(用含b 的式子表示)(3) 点B 运动时,相应的点C 也随之运动,动点C 在y 轴上的位置我们记为P 点,请问:随着点B 的运动,线段CP 与y 轴所夹的锐角是否发生变化?若不变,求出该锐角的度数;若变化,求出该锐角的范围。
2018-2019学年上学期武汉市江岸区八年级期中数学试卷附答案详析
2018-2019学年上学期武汉市江岸区八年级期中数学试卷一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.86.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=cm.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为.12.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则AE = .13.如图,在△ABC 中,∠C =90°,AB 的垂直平分线分别交AB 、AC 于点D 、E ,AE =5,AD =4,线段CE 的长为 .14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程. 已知:直线l 和l 外一点P .求作:直线l 的垂线,使它经过点P作法:如图,(1)在直线l 上任意两点A 、B ; (2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ; (3)作直线PQ ,所以直线PQ 就是所求作的垂线.该作图的依据是 .16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、有四条对称轴,B、有六条对称轴,C、有四条对称轴,D、有二条对称轴,综上所述,对称轴最少的是D选项.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,7【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、52+62≠72,不能组成直角三角形,故此选项错误;故选:C.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【分析】根据全等三角形的判定方法可知只有C能画出唯一三角形.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定方法;一般三角形全等的判定方法有SSS、SAS、ASA、AAS,熟练掌握全等三角形的判定方法是解题的关键.4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.8【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:D.【点评】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4【分析】根据条件能证明△ABC≌△A1B1C1,和△AC D≌△A1B1C1,的条件.【解答】解:有一组邻边和三个角对应相等的两个四边形全等,故①②③正确.故选:C.【点评】本题考查了三角形全等的判定与性质,解题的关键是注意:多边形的全等可以通过作辅助线转化为证明三角形全等的问题.二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为5.【分析】根据勾股定理求CD,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=5,即点D到AB的距离为5,故答案为:5.【点评】本题考查了角平分线性质和勾股定理,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,角平分线上的点到角两边的距离相等.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=3cm.【分析】只要证明MN=BM+CN即可解决问题;【解答】解:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON,即MN=BM+CN,∵MN=5cm,CN=2cm,∴BM=5﹣2=3cm,故答案为3cm.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO,△CNO是等腰三角形.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.【分析】由△ABC的三边长,可证明△ABC为直角三角形,作DH⊥AC于H,利用角平分线的性质得DH=DE,根据三角形的面积公式得×DE•AB+×DH•AC=AB•AC,于是可求出DE的值.【解答】解:作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB于点E,∴DH=DE,∵AB=4,AC=3,BC=5,∴△ABC为直角三角形,∴DE•AB+DH•AC=AB•AC,∴DH=DE=,故答案为:【点评】本题考查了勾股定理的逆定理运用以及角平分线的性质,能够证明ABC为直角三角形,得到DE•AB+ DH•AC=AB•AC是解题的关键.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.【分析】延长BC交HG于点M,延长HG交DE于点N,先计算出不规则铁皮的面积,再计算面积相等的正方形的面积.【解答】解:如图所示,延长BC交HG于点M,延长HG交DE于点N,则四边形ABMH、CDNM为矩形,四边形GFEN为正方形.所以“Z”字形的铁皮的面积=S矩形ABMH+S矩形CDNM+S正方形GFEN=AH•AB+CD•DN+GF•EF=3×1+3×2+1×1=10.∴正方形的边长=故答案为:.【点评】本题考查了矩形、正方形的判定和面积及算术平方根.解决本题的关键是利用割补的办法计算出不规则铁皮的面积.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为2.【分析】根据等腰直角三角形的性质和等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵△ABC,△ADE均是等腰直角三角形,∴∠B=∠D=45°,∠BEF=∠DCF=90°,∴△BEF,△DCF均是等腰直角三角形,∴BE=EF=CF=CD,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC,∵AC=AE=1,∴AB=AD=,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC=2,故答案为:2.【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的判定与性质是解题的关键.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=2.【分析】在Rt△BED中,求出BE即可解决问题;【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为2【点评】本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE 的长为 1.4.【分析】由AB的垂直平分线DE交AC于点D,垂足为E,根据线段垂直平分线的性质,求得AB,根据相似三角形的性质得到结论.【解答】解:∵DE是AB的垂直平分线,∴AB=2AD=8,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,∴AC=6.4,∴CE=1.4,故答案为:1.4.【点评】此题考查了线段垂直平分线的性质、相似三角形的判定和性质,熟练掌握的线段垂直平分线性质是解决问题的关键.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P作法:如图,(1)在直线l上任意两点A、B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ,所以直线PQ就是所求作的垂线.该作图的依据是到线段两端点距离相等的点在线段的垂直平分线上.【分析】由AP=AQ、BP=BQ,依据到线段两端点距离相等的点在线段的垂直平分线上知点A、B在线段PQ 的中垂线上,据此可得PQ⊥l.【解答】解:由作图可知AP=AQ、BP=BQ,所以点A、B在线段PQ的中垂线上(到线段两端点距离相等的点在线段的垂直平分线上),所以PQ⊥l,故答案为:到线段两端点距离相等的点在线段的垂直平分线上.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的性质及过直线外一点作已知直线的垂线的尺规作图.16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=22°.【分析】根据折叠的性质即可得到AD=PD=BD,可得CD=AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD=112°,即可得出∠ACP=112°﹣90°=22°.【解答】解:由折叠可得,AD=PD=BD,∴D是AB的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.【点评】本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【分析】(1)根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可;(2)根据直角三角形的全等判定证明即可.【解答】解:(1)如图所示:(2)证明:∵AC⊥BC,BD⊥AD,在Rt△ADB与Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴BC=AD.【点评】此题考查了等腰三角形的性质,全等三角形的判定和性质,关键是根据直角三角形的全等判定即可.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.【解答】解:根据题意知∠AOB=90°,OB=2×15=30海里,AB=50海里,由勾股定理得,OA====40海里,则甲轮船每小时航行=20海里.答:甲轮船每小时航行20海里.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.【分析】由折叠的性质可知BE=EF,设BE=EF=x,然后再依据勾股定理的逆定理可证明△ADF为直角三角形,则E、D、F在一条直线上,最后,在Rt△CED中,依据勾股定理列方程求解即可.【解答】解:∵将△ABE沿AE折叠,使点B落在长方形内点F处,∴∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵AF2+DF2=62+82=100=102=AD2,∴△ADF是直角三角形,∠AFD=90°.∴D,F,E在一条直线上.设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,∠C=90°,∴CE2+CD2=DE2,即(10﹣x)2+82=(6+x)2.∴x=4.∴BE=4.【点评】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x的方程是解题的关键.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.【分析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+42°=x,解得,x=74°,∴∠ACD=180°﹣2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【点评】本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.- 21 -。
八年级下期末考试数学试卷四套试卷(含答案)
017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。
2019-2020学年湖北省武汉市东湖高新区八年级(上)期末数学试卷
2019-2020学年湖北省武汉市东湖高新区八年级(上)期末数学试卷一、选择题(共10题,每题3分,共30分) 1.(3分)下列各式中是分式的是( ) A .3bB .1x -C .3()4x y + D .m nm n+- 2.(3分)(6,1)P -关于x 轴的对称点坐标为( ) A .(6,1)B .(6,1)--C .(6,1)-D .(1,6)-3.(3分)下列交通标志是轴对称图形的是( )A .B .C .D .4.(3分)分式1xx -中的字母满足下列哪个条件时分式有意义( ) A .1x =B .1x ≠C .0x =D .0x ≠5.(3分)下列各式正确的是( ) A .2235x x x +=B .3332b b b =C .441622x x x =D .5210()a a =6.(3分)如图,要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD BC =,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明EDC ABC ∆≅∆,得到ED AB =,因此测得ED 的长就是AB 的长(如图),判定EDC ABC ∆≅∆的理由是( )A .SASB .ASAC .SSSD .HL7.(3分)把26c a b ,23cab 通分,下列计算正确是( ) A .22266c bc a b a b =,22233c acab a b =B .2226183c bc a b a b =,22233c acab a b =C .226183c bc a b a b =,22233c acab a b = D .226183c bc a b a b =,2233c cab ab =8.(3分)如图,它由两块相同的直角梯形拼成,由此可以验证的算式为( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(1)(1)a b -=+9.(3分)如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若3CD =,12AB =,则ABD ∆的面积是( )A .15B .18C .36D .7210.(3分)ABC ∆中,260C B ∠=∠=︒,AE 是中线,AD 是角平分线,AF 是高,则下列4个结论中正确是( ) ①ABE ACE S S ∆∆= ②15EAD FAD ∠=∠=︒ ③AE BE CE AC ===④:::ABD ACD S S BD DC AB AC ∆∆==A .①②③B .①②④C .①②③④D .②③④二、填空题[共6题,每题3分,共18分)11.(3分)0.0000000257用科学记数法表示为 . 12.(3分)计算:233()x y --= .13.(3分)已知5a b +=,3ab =.则2()a b -的值为 .14.(3分)如图,等腰三角形ABC 中,AB AC =,MN 是AB 的垂直平分线,MN 交AC 于D ,BD 恰好也是ABC ∠的平分线,则A ∠= .15.(3分)我国南宋数学家杨辉用如图的三角形解释二项和的乘方规律,我们称这个三角形为“杨辉三角”,观察左边()n a b +展开的系数与右边杨辉三角对应的数,则()?a b +展开后最大的系数为 .16.(3分)如图,等腰直角ABC ∆中,AC BC =,90ACB ∠=︒,D 为BC 中点,4AD =,P 为AB 上一个动点,当P 点运动时,PC PD +的最小值为 .三、解答(共8大题,共72分) 17.(8分)(1)因式分解:39x x -; (2)整式计算:2(23)(2)(2)x y x y x y +-+-. 18.(8分)分式计算2221a ab a b--+,其中3a =,0b π=. 19.(8分)如图,AB DE =,AC DF =,BE CF =,求证://AB DE ,//AC DF .20.(8分)如图是108⨯的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长都是1个单位,线段AB 的端点均在格点上,且A 点的坐标为(2,5)-,按下列要求用没有刻度的直尺画出图形.(1)请在图中找到原点O 的位置,并建立平面直角坐标系;(2)将线段AB 平移到CD 位置,使A 与C 重合,画出线段CD ,然后再作线段AB 关于直线3x =对称线段EF ,使A 的对应点为E ,画出线段EF ;(3)在图中找到一个格点G ,使EG AD ⊥,画线段EG 并写出G 点坐标.21.(8分)已知ABC ∆是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在射线BA 上,120PDQ ∠=︒.(1)如图1,若点Q 与B 点重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,点Q 在线段AB 上,8AC =,求BP BQ +的值.22.(10分)一辆汽车开往距离出发地180km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min 到达目的地,设前一小时行驶的速度为/xkm h .(1)直接用x 的式子表示提速后走完剩余路程的时间为 h . (2)求汽车实际走完全程所花的时间;(3)若汽车按原路返回,司机准备一半路程以/mkm h 的速度行驶,另一半路程以/nkm h 的速度行驶()m n ≠,朋友提醒他一半时间以/mkm h 的速度行驶,另一半时间以/nkm h 的速度行驶更快,你觉得谁的方案更快?请说明理由.23.(10分)(1)如图1,AB AD =,AE AC =,BAD EAC ∠=∠,求证;BE CD =. (2)如图2,ACE ∆是等边三角形,P 为三角形外一点,120APC ∠=︒,求证:PA PC PE +=. (3)如图3,若45ACE AEC ADC ∠=∠=∠=︒,60ACD AED ∠-∠=︒,3DC =,求DE 长.24.(12分)如图,(0,2)A ,(,0)B m 为x 轴上一个动点,AB BC =,90ABC ∠=︒. (1)如图1,当1m =,且A 、B 、C 按逆时针方向排列,求C 点坐标;(2)如图2,若A 、B 、C 按顺时针方向排列,(2,0)E -,连CE 交y 轴于F ,求证:OE OF =. (3)如图3,若D 、B 两点是关于直线AC 的对称点,画出图形并用含m 的式子表示OBD ∆的面积OBD S ∆.2019-2020学年湖北省武汉市东湖高新区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10题,每题3分,共30分) 1.(3分)下列各式中是分式的是( ) A .3bB .1x -C .3()4x y + D .m nm n+- 【解答】解:3b ,1x -,3()4x y +的分母中不含有字母,属于整式,m n m n+-的分母中含有字母,是分式. 故选:D .2.(3分)(6,1)P -关于x 轴的对称点坐标为( ) A .(6,1)B .(6,1)--C .(6,1)-D .(1,6)-【解答】解:(6,1)P -关于x 轴的对称点坐标为:(6,1). 故选:A .3.(3分)下列交通标志是轴对称图形的是( )A .B .C .D .【解答】解:A 、不是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项符合题意;D 、不是轴对称图形,故本选项不符合题意.故选:C . 4.(3分)分式1xx -中的字母满足下列哪个条件时分式有意义( ) A .1x =B .1x ≠C .0x =D .0x ≠【解答】解:由题意得:10x -≠, 解得:1x ≠, 故选:B .5.(3分)下列各式正确的是( )A .2235x x x +=B .3332b b b =C .441622x x x =D .5210()a a =【解答】解:A 、235x x x +=,故此选项错误;B 、336b b b =,故此选项错误;C 、44822x x x =,故此选项错误;D 、5210()a a =,正确.故选:D .6.(3分)如图,要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD BC =,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明EDC ABC ∆≅∆,得到ED AB =,因此测得ED 的长就是AB 的长(如图),判定EDC ABC ∆≅∆的理由是( )A .SASB .ASAC .SSSD .HL【解答】解:因为证明在ABC EDC ∆≅∆用到的条件是:CD BC =,ABC EDC ∠=∠,ACB ECD ∠=∠,所以用到的是两角及这两角的夹边对应相等即ASA 这一方法. 故选:B . 7.(3分)把26c a b ,23cab 通分,下列计算正确是( ) A .22266c bc a b a b =,22233c acab a b =B .2226183c bc a b a b =,22233c acab a b = C .226183c bc a b a b =,22233c acab a b =D .226183c bc a b a b =,2233c cab ab =【解答】解:两分式的最简公分母为223a b ,A 、通分后分母不相同,不符合题意;B 、2226183c bc a b a b =,22233c acab a b =,符合题意;C、通分后分母不相同,不符合题意;D、通分后分母不相同,不符合题意,故选:B.8.(3分)如图,它由两块相同的直角梯形拼成,由此可以验证的算式为() A.22()()a b a b a b-=+-B.222()2a b a ab b+=++ C.222()2a b a ab b-=-+D.22(1)(1)a b-=+【解答】解:图形的面积2212()()()() 2a b a b a b a b a b=-=⨯+-=-+.故选:A.9.(3分)如图,在Rt ABC∆中,90C∠=︒,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若3CD=,12AB=,则ABD∆的面积是()A.15B.18C.36D.72【解答】解:如图,作DE AB⊥于E,由尺规作图可知,AD是ABC∆的角平分线,90C∠=︒,DE AB⊥,3DE DC∴==,ABD∴∆的面积1112318 22AB DE=⨯⨯=⨯⨯=,故选:B.10.(3分)ABC ∆中,260C B ∠=∠=︒,AE 是中线,AD 是角平分线,AF 是高,则下列4个结论中正确是( ) ①ABE ACE S S ∆∆= ②15EAD FAD ∠=∠=︒ ③AE BE CE AC ===④:::ABD ACD S S BD DC AB AC ∆∆==A .①②③B .①②④C .①②③④D .②③④【解答】解:AE 是中线,ABE ACE S S ∆∆∴=,故①正确;260C B ∠=∠=︒, 30B ∴∠=︒, 90BAC ∴∠=︒,AE 是中线,AD 是角平分线,AF 是高,45DAC DAB ∴∠=∠=︒,AE BE CE ==, 30BAE B ∴∠=∠=︒,60C EAC ∠=∠=︒, 15EAD FAD ∴∠=∠=︒,故②正确, 60C EAC ∠=∠=︒, AEC ∴∆是等边三角形, AE AC CE ∴==,AE BE CE AC ∴===,故③正确,过点D 作DM AB ⊥于M ,DN AC ⊥于N ,又AD 平分BAC ∠,DM DN ∴=,1122ABD S BD AF AB DM ∆=⨯⨯=⨯⨯,1122ADC S CD AF AC DN ∆=⨯⨯=⨯,:::ABD ACD S S BD DC AB AC ∆∆∴==,故④正确,故选:C .二、填空题[共6题,每题3分,共18分)11.(3分)0.0000000257用科学记数法表示为 82.5710-⨯ . 【解答】解:0.0000000257用科学记数法表示为82.5710-⨯. 故答案为:82.5710-⨯.12.(3分)计算:233()x y --= 69x y.【解答】解:233()x y --, 2(3)3(3)x y -⨯-⨯-=, 69x y -=,69x y=. 故答案为:69x y.13.(3分)已知5a b +=,3ab =.则2()a b -的值为 13 . 【解答】解:5a b +=,3ab =, 222()()454313a b a b ab ∴-=+-=-⨯=.故答案为:13.14.(3分)如图,等腰三角形ABC 中,AB AC =,MN 是AB 的垂直平分线,MN 交AC 于D ,BD 恰好也是ABC ∠的平分线,则A ∠= 36︒ .【解答】解:设A x ∠=︒,MN 是AB 的垂直平分线,DB DA ∴=,DBA DAB x ∴∠=∠=︒, BD 是ABC ∠的平分线,22ABC ABD x ∴∠=∠=︒,AB AC =,2ABC ACB x ∴∠=∠=︒,根据三角形内角和定理得:22180x x x ++=,解得:36x =,故答案为:36︒.15.(3分)我国南宋数学家杨辉用如图的三角形解释二项和的乘方规律,我们称这个三角形为“杨辉三角”,观察左边()n a b +展开的系数与右边杨辉三角对应的数,则()?a b +展开后最大的系数为 20 .【解答】解:66542332456()61520156a b a a b a b a b a b ab b +=++++++.所以6()a b +展开后最大的系数为20,故答案为:20.16.(3分)如图,等腰直角ABC ∆中,AC BC =,90ACB ∠=︒,D 为BC 中点,4AD =,P 为AB 上一个动点,当P 点运动时,PC PD +的最小值为 4 .【解答】解:设CD x =,AC BC =,90ACB ∠=︒,D 为BC 中点,2AC BC x ∴==,4AD =,455x ∴=(负值舍去), 455CD ∴=, 855AC BC ∴==, 作点C 关于AB 对称点C ',则OC OC '=,连接DC ',交AB 于P ,连接BC '.此时DP CP DP PC DC +=+'='的值最小.455BD CD ==, 由对称性可知45C BA CBA ∠'=∠=︒,90CBC ∴∠'=︒,BC BC ∴'⊥,45BCC BC C ∠'=∠'=︒,855BC BC ∴='=, 根据勾股定理可得224DC BC BD '='+=.故答案为:4.三、解答(共8大题,共72分)17.(8分)(1)因式分解:39x x -;(2)整式计算:2(23)(2)(2)x y x y x y +-+-.【解答】解:(1)329(9)x x x x -=-(3)(3)x x x =-+;(2)2(23)(2)(2)x y x y x y +-+-222249(4)x y x y =+--210y =.18.(8分)分式计算2221a a b a b--+,其中3a =,0b π=. 【解答】解:原式2()()()()a a b a b a b a b a b -=-+-+- 2()()a ab a b a b -+=+- 1a b=-, 当3a =,01b π==,原式11312==-. 19.(8分)如图,AB DE =,AC DF =,BE CF =,求证://AB DE ,//AC DF .【解答】证明:BE CF =,BE EC CF EC ∴+=+,即CB FE =,在ABC ∆和DEF ∆中,AB DE CB FE AC DF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,B DEF ∴∠=∠,ACB F ∠=∠,//AB DE ∴,//AC DF .20.(8分)如图是108⨯的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长都是1个单位,线段AB 的端点均在格点上,且A 点的坐标为(2,5)-,按下列要求用没有刻度的直尺画出图形.(1)请在图中找到原点O 的位置,并建立平面直角坐标系;(2)将线段AB 平移到CD 位置,使A 与C 重合,画出线段CD ,然后再作线段AB 关于直线3x =对称线段EF ,使A 的对应点为E ,画出线段EF ;(3)在图中找到一个格点G ,使EG AD ⊥,画线段EG 并写出G 点坐标.【解答】解:(1)如图,平面直角坐标系如图所示.(2)如图,线段CD ,线段EF 即为所求.(3)如图,线段EG 即为所求.由题意(2,5)A -,(3,2)D ,(8,5)E ,∴直线AD 的解析式为31955y x =-+, EG AD ⊥,∴直线EG 的解析式为52533y x =-, 由3195552533y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩, 解得91171017x x y ⎧=⎪⎪=⎨⎪=⎪⎩, 91(17G ∴,10)1721.(8分)已知ABC ∆是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在射线BA 上,120PDQ ∠=︒.(1)如图1,若点Q 与B 点重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,点Q 在线段AB 上,8AC =,求BP BQ +的值.【解答】证明:(1)ABC ∆ 为等边三角形, BA BC ∴=,60ABC ∠=︒, D 为AC 的中点,DB ∴平分ABC ∠,30DBC ∴∠=︒,120EDB ∠=︒1801203030P ∴∠=︒-︒-︒=︒DBC P ∴∠=∠,DB DP ∴=;(2)如图2,过点D 作//DH BC 交AB 于H ,ABC ∆是等边三角形,8AC =,点D 是AC 的中点,4AD CD ∴==,60ABC ACB A ∠=∠=∠=︒,8BC AC ==,//DH BC ,60ADH AHD ∴∠=∠=︒,ADH ∴∆是等边三角形,120HDC ∠=︒,4AD HD AH ∴===,4HD CD BH ∴===,120QDP HDP ∠=∠=︒,QDH PDC ∴∠=∠,且HD CD =,60AHD C ∠=∠=︒,()QDH PDC ASA ∴∆≅∆HQ PC ∴=,412BQ BP BH HQ BP BP PC ∴+=++=++=.22.(10分)一辆汽车开往距离出发地180km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min 到达目的地,设前一小时行驶的速度为/xkm h .(1)直接用x 的式子表示提速后走完剩余路程的时间为1801.5x x - h . (2)求汽车实际走完全程所花的时间;(3)若汽车按原路返回,司机准备一半路程以/mkm h 的速度行驶,另一半路程以/nkm h 的速度行驶()m n ≠,朋友提醒他一半时间以/mkm h 的速度行驶,另一半时间以/nkm h 的速度行驶更快,你觉得谁的方案更快?请说明理由.【解答】解:(1)设前一小时行驶的速度为/xkm h ,且提速后的速度为原来速度的1.5倍, ∴提速后走完剩余路程的时间为1801.5x h x-. 故答案为:1801.5x x-. (2)依题意,得:180180401.560x x x x ---=, 解得:60x =,经检验,60x =是原方程的解,且符合题意, ∴180407603x -=. 答:汽车实际走完全程所花的时间为73h . (3)朋友的方案更快,理由如下: 按照司机的方案所需时间为1118018090()22m n h m n mn ⨯⨯++=; 按照朋友的方案所需时间为1803601()2h m nm n =++. 90()360m n mn m n+-+ 290()360()m n mn mn m n +-=+229018090()m mn n mn m n -+=+ 290()()m n mn m n -=+. m ,n 均为正数,且m n ≠,2()0m n ∴->,()0mn m n +>,∴290()0()m n mn m n ->+,即90()3600m n mn m n+->+, ∴朋友的方案更快.23.(10分)(1)如图1,AB AD =,AE AC =,BAD EAC ∠=∠,求证;BE CD =.(2)如图2,ACE ∆是等边三角形,P 为三角形外一点,120APC ∠=︒,求证:PA PC PE +=. (3)如图3,若45ACE AEC ADC ∠=∠=∠=︒,60ACD AED ∠-∠=︒,3DC =,求DE 长.【解答】证明:(1)BAD EAC ∠=∠,BAE DAC ∴∠=∠,又AB AD =,AE AC =,()ADC ABE SAS ∴∆≅∆BE CD ∴=;(2)如图2,延长CP 至G ,使PG PA =,连接AG ,120APC ∠=︒,60APG ∴∠=︒,且AP GP =,AGP ∴∆是等边三角形,AP AG GP ∴==,60PAG AGP ∠=∠=︒,ACE ∆是等边三角形,AE AC CE ∴==,60CAE ∠=︒,CAE PAG ∴∠=∠,GAC PAE ∴∠=∠,且AG AP =,AC AE =,()AGC APE SAS ∴∆≅∆PE GC ∴=,PE GC GP PC AP PC ∴==+=+;(3)45ACE AEC ∠=∠=︒,AC AE ∴=,90CAE ∠=︒,如图3,将AED ∆绕点A 顺时针旋转90︒得到ACH ∆,连接DH ,CH ,AED ACH ∴∆≅∆,AD AH ∴=,90DAH ∠=︒,CH DE =,AED ACH ∠=∠,45ADH ∴∠=︒,45ADC ∠=︒,90HDC ∴∠=︒,60ACD AED ∠-∠=︒,60ACD ACH DCH ∴∠-∠=︒=∠,30DHC ∴∠=︒,且90CDH ∠=︒,26HC CD ∴==,6DE CH ∴==.24.(12分)如图,(0,2)A ,(,0)B m 为x 轴上一个动点,AB BC =,90ABC ∠=︒.(1)如图1,当1m =,且A 、B 、C 按逆时针方向排列,求C 点坐标;(2)如图2,若A 、B 、C 按顺时针方向排列,(2,0)E -,连CE 交y 轴于F ,求证:OE OF =. (3)如图3,若D 、B 两点是关于直线AC 的对称点,画出图形并用含m 的式子表示OBD ∆的面积OBD S ∆.【解答】解:(1)如图1中,作CH x ⊥轴于H .(0,2)A ,(1,0)B ,2OA ∴=,1OB =,90AOB ABC BHC ∠=∠=∠=︒,90ABO CBH ∴∠+∠=︒,90CBH BCH ∠+∠=︒, ABO BCH ∴∠=∠,AB BC =,()ABO BCH AAS ∴∆≅∆,2BH OA ∴==,1CH OB ==,3OH OB BH ∴=+=,(3,1)C ∴.(2)如图2中,作CH x ⊥轴于H .90AOB ABC BHC ∠=∠=∠=︒,90ABO CBH ∴∠+∠=︒,90CBH BCH ∠+∠=︒, ABO BCH ∴∠=∠,AB BC =,()ABO BCH AAS ∴∆≅∆,2BH OA ∴==,CH OB =,(2,0)E -,2OE BH ∴==,OB EH ∴=,EH CH ∴=,90EHC ∠=︒,45CEH ∴∠=︒,90EOF ∠=︒,45OEF OFE ∴∠=∠=︒,OE OF ∴=.(3)如图31-中,当A 、B 、C 按逆时针方向排列,由题意(2,)C m m +,当0m >时,点D 的纵坐标为2222m m +⨯=+, 1(2)(2)22OBD m m S m m ∆+∴=+=. 当20m -<<时,(2)2OBD m m S ∆+=-, 当2m <-时,1(2)2OBD S m m ∆=+.第21页(共21页)如图32-中,A 、B 、C 按顺时针方向排列.同法可得(2,)C m m --,当2m >时,点D 的纵坐标2222m m -=⨯=-, 11(2)(2)22OBD S m m m m ∆∴=-=-. 当02m <<时,1(2)2OBD S m m ∆=-, 当0m <时,1(2)2OBD S m m ∆=-。
2018-2019学年湖北省武汉市黄陂区八年级(上)期末数学试卷解析版
2018-2019学年湖北省武汉市黄陂区八年级(上)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)1.(3分)下列手机APP图案中,属于轴对称的是()A.B.C.D.2.(3分)若分式有意义,则x应满足的条件是()A.x≠0B.x≠﹣1C.x≠1D.x≥13.(3分)如图,在△ABC中,BD⊥AC交AC的延长线于点D,则AC边上的高是()A.CD B.AD C.BC D.BD4.(3分)下列计算正确的是()A.b3•b3=2b3B.(a5)2=a7C.x7÷x5=x2D.(﹣2a)2=﹣4a25.(3分)如图,五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,还需要知道∠ABC的度数,∠ABC的度数为()A.36°B.72°C.100°D.108°6.(3分)工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,则过角尺顶点C的射线OC便是∠AOB角平分线.在证明△MOC≌△NOC时运用的判定定理是()A.SSS B.SAS C.ASA D.AAS7.(3分)下列因式分解错误的是()A.2ax﹣a=a(2x﹣1)B.x2﹣2x+1=(x﹣1)2C.4ax2﹣a=a(2x﹣1)2D.ax2+2ax﹣3a=a(x﹣1)(x+3)8.(3分)如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,则剩余阴影部分面积为()A.B.C.D.9.(3分)我们在过去的学习中已经发现了如下的运算规律:(1)15×15=1×2×100+25=225;(2)25×25=2×3×100+25=625;(3)35×35=3×4×100+25=1225;……按照这种规律,第n个式子可以表示为()A.n×n=×(+1)×100+25=n2B.n×n=×(+1)×100+25=n2C.(n+5)×(n+5)=n×(n+1)×100+25=n2+10n+25D.(10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+2510.(3分)如图,四边形ABCD中,AB=AD,BC=BD,若∠ABD=∠BAC=α,则∠BDC的度数为()A.2αB.45°+αC.90°﹣αD.180°﹣3α二、填空题:(共6小题,每小题3分,共18分)11.(3分)计算:2x2•3xy=.12.(3分)在平面直角坐标系内,点(﹣2,1)关于x轴对称的点的坐标是.13.(3分)用科学记数法表示:0.0012=.14.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x个零件,依题意列方程为.15.(3分)在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线CP,点A关于直线CP的对称点为D,连接AD.若∠ACP=15°,则∠BAD的度数为.16.(3分)如图,在△ABC中,AB=AC,BD⊥AC于D,E为BD延长线上一点,∠E=∠C,∠BAC的平分线交BD于F.若=,则的值为.三、解答题:(共8小题,72分)17.(8分)解方程(1)=(2)﹣=118.(8分)如图,已知△ABC≌△A'B'C',AD,A'D'分别是△ABC,△A'B'C'的对应边上的高.求证:AD=A'D'.19.(8分)因式分解(1)ax2﹣4a(2)(p﹣3)(p﹣1)+1.20.(8分)计算(1)(2)(﹣)÷21.(8分)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(l,0)作x轴的垂线l.(1)作出△ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在△ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).22.(10分)某工地有72m2的墙面需要粉刷.若安排4名一级技工粉刷一天,结果还剩12m2墙面未能刷完;同样时间内安排6名二级技工去粉刷,则刚好全部刷完.已知每名一级技工比二级技工一天多粉刷3m2墙面.设每一名一级技工一天粉刷墙面xm2.(1)每名二级技工一天粉刷墙面m2(用含x的式子表示);(2)求每名一级技工、二级技工一天分别能粉刷多少m2墙面?(3)每名一级技工一天的施工费是300元,每名二级技工一天的施工费是200元.若另一工地有540m2的墙面需要粉刷,要求一天完工且施工总费用不超过10600元,则至少需要名二级技工(直接写出结果).23.(10分)如图,在△ABC中,∠BAC=60°,D为AB上一点,连接CD.(1)如图1,若∠BCA=90°,CD⊥AB,则=(直接写出结果).(2)如图2,若BD=AC,E为CD的中点,AE与BC存在怎样的数量关系,判断并说明理由;(3)如图3,CD平分∠ACB,BF平分∠ABC,交CD于F.若BF=AC,求∠ACD的度数.24.(12分)在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足a2﹣2ab+b2+(b﹣4)2=0,点C为线段AB上一点,连接OC.(1)直接写出a=,b=;(2)如图1,P为OC上一点,连接P A,PB,若P A=BO,∠BPC=30°,求点P的纵坐标;(3)如图2,在(2)的条件下,点M是AB上一动点,以OM为边在OM的右侧作等边△OMN,连接CN.若OC=t,求ON+CN的最小值(结果用含t的式子表示)2018-2019学年湖北省武汉市黄陂区八年级(上)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)1.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意.故选:B.2.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义;故选:C.3.【解答】解:如图,∵在△ABC中,BD⊥AC交AC的延长线于点D,∴AC边上的高是BD.故选:D.4.【解答】解:b3•b3=b6,故选项A不合题意;(a5)2=a10,故选项B不合题意;x7÷x5=x2,正确,故选项C符合题意;(﹣2a)2=4a2,故选项D不合题意.故选:C.5.【解答】解:∵∠A=36°,∠ADB=∠ABD,∴∠ADB=∠ABD==72°,∴∠ABC=180°﹣72°=108°.故选:D.6.【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.7.【解答】解:A、原式=a(2x﹣1),不符合题意;B、原式=(x﹣1)2,不符合题意;C、原式=a(4x2﹣1)=a(2x+1)(2x﹣1),符合题意;D、原式=a(x2+2x﹣3)=a(x﹣1)(x+3),不符合题意,故选:C.8.【解答】解:根据题意得:S阴影=()2π﹣()2π﹣()2π=.故选:C.9.【解答】解:由上面的计算可发现:个位数是5的两个两位数相乘,所得的积等于把十位数乘以比它大1的数扩大100倍后加上25.所以(10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+25.故选:D.10.【解答】解:作∠MBA=∠DBA,交CA延长线于M.如图所示:∵AB=AD,∠ABD=∠BAC=α,∴∠ABD=∠ADB=α,∠BAC=2α,∴∠CAD=180°﹣4α,∴∠BAM=180°﹣2α,∠BAD=180°﹣2α,∴∠BAM=∠BAD,在△BAM和△BAD中,,∴△BAM≌△BAD(ASA),∴∠M=∠ADB=α,BM=BD=BC,∴AB=AM,∠ACB=∠M=α,∴∠ABM=∠M=α,∵BC=BD,∴∠BCD=∠BDC,设∠ACD=x,则∠BDC=x+α,由八字形得:∠ACD+∠BDC=∠M+∠DBM,即x+(x+α)=α+α+α,∴x=α,∴∠BDC=2α;故选:A.二、填空题:(共6小题,每小题3分,共18分)11.【解答】解:2x2•3xy=2×3x2•x•y=6x3y.12.【解答】解:点(﹣2,1)关于x轴对称的点的坐标是(﹣2,﹣1).13.【解答】解:0.0012=1.2×10﹣3.故答案为:1.2×10﹣3.14.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,依题意,得:=.故答案为:=.15.【解答】解:如图1中,当射线CP在∠ACB内部时,∵A,D关于CP对称,∴∠ACP=∠DCP=15°,∴∠ACD=30°,∵CA=CD,∴∠CAD=∠ADC=(180°﹣30°)=75°,∵CA=CB,∠ACB=90°,∴∠CAB=45°,∴∠BAD=∠CAD﹣∠CAB=75°﹣45°=30°.如图2中,当射线CP在∠ACB外部时,同法可得∠CAD=75°,∠BAD=∠CAB+∠CAD=45°+75°=120°.故答案为30°或120°16.【解答】解:延长AF交BC于M,过F作FN⊥AB,由∠F AD+∠C=∠EAD+∠E=90°,∴∠F AD=∠EAD,∴DF=DE,设DE=4x,则DF=4x,BF=5x,∴==,∴=,∴==,∵AB=AC,∴=4.故答案为:4.三、解答题:(共8小题,72分)17.【解答】解:(1)去分母,得x﹣3=2x,解得x=﹣3,经检验x=﹣3是原方程的解;(2)去分母,得x(x+1)﹣3(x﹣1)=x2﹣1,解得x=2,经检验x=2是原方程的解.18.【解答】证明:依题意∠ADB=∠A'D'B'=90°,∵△ABC≌△A'B'C',∴AB=A'B',∠B=∠B',在△ABD和△A'D'B'中,∴△ABD≌△A'D'B'(AAS),∴AD=A'D'.19.【解答】解:(1)原式=a(x2﹣4)=a(x+2)(x﹣2);(2)原式=p2﹣4p+4=(p﹣2)2.20.【解答】解:(1)原式=4ab;(2)原式=•﹣•=﹣=.21.【解答】解:(1)如图,△A1B1C1为所作;(2)A(4,1),B,(5,4),G(3,3);(3)点P关于直线l的对称点P1的坐标为(2﹣m,n).故答案为4,1;5,4;3,3;﹣m+2,n.22.【解答】解:(1)由题意得,每名二级技工一天粉刷墙面(x﹣3)m2;故答案为:(x﹣3)(2)依题意列方程:=;解得x=15,经检验x=15是原方程的解,即每名一级技工和二级技工一天分别能粉刷15m2、12m2墙面;(3)设需要m名一级技工,需要n名二级技工,根据题意得,,解得:,答:至少需要5名二级技工,故答案为:5.23.【解答】解:(1)如图1中,设AD=x.∵CD⊥AB,∴∠ADC=90°,∵∠BAC=60°,∴∠ACD=30°,∴AC=2AD=2x,∵∠ACB=90°,∴∠B=30°,∴AB=2AC=4x,∴BD=AB﹣AD=3x,∴=,故答案为.(2)如图2中,结论:BC=2AE.理由:延长AE至F,使EF=AE,连接BF,CF,DF,∵AE=EF,∠AEC=∠DEF,DE=CE,∴△AEC≌△FED(SAS),∴DF=AC=BD,∠EAC=∠EFD,∴DF∥AC,∴∠BDF=∠BAC=60°,△BDF为等边三角形,∴∠DBF=∠BAC=60°,∵AB=BA,AC=BF,∴△ABF≌△BAC(SAS),∴AF=BC,∴BC=2AE.(3)如图3中,在AB上取点G,使AG=AC,连接CG.∵AG=AC,∠A=60°,∴△ACG为等边三角形,∴GC=AC=BF,∠AGC=60°,∴∠BFD=∠AGC=60°,∵∠CDG=∠BDF,∴△DGC≌△DFB(AAS),∴DB=DC,∴∠DBC=∠DCB=∠ACD,∴∠ACD==40°.24.【解答】解:(1)∵a2﹣2ab+b2+(b﹣4)2=0,∴(a﹣b)2+(b﹣4)2=0,∵(a﹣b)2≥0,(b﹣4)2≥0,∴a=b.b﹣4=0,∴a=4,b=4,故答案为4,4.(2)如图1中,分别过A,B作OC的垂线,垂足分别为D,E.∵∠BEO=∠ADO=∠AOB=90°,∴∠BOE+∠OBE=90°,∠BOE+∠AOD=90°,∴∠AOD=∠OBE,∵BO=AO,∴△ADO≌△OEB(AAS),∴OD=BE,∵∠BPC=30°,∴PB=2BE=2OD,∵AP=BO=AO,AD⊥OP,∴OD=DP,∴PB=PO,过P作PF⊥OB,∴OF=OB=2,即点P的纵坐标的为2.(3)如图2中,以OA为边在x轴下方作等边△OAG,连接GN.∵∠MON=∠AOG=60°,∴∠MOA=∠NOG,∵OM=ON,OA=OG,∴△OMA≌△ONG(SAS),∴∠OGN=∠OAM=45°,即点N在y轴与OG夹角为45°的直线GN上运动,作点C关于GN的对称点H,连接OH,NH,CH.则ON+CN的最小值即为OH的长.由(2)PB=PO,∠BPC=30°,∴∠ACO=60°,在四边形ACOG中,∠COG=360°﹣60°﹣60°﹣45°﹣60°=135°,∴OC∥NG,∵CH⊥GN,∴OC⊥CH,∴∠OCH=90°,∴∠OHC=∠ACH=30°,∴OH=2OC=2t,即ON+CN的最小值为2t.。
数学八年级下册期中试卷和答案详解(PDF可打印)
2021-2022学年湖北省武汉市东湖高新区八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑。
1.(3分)要使式子有意义,a的取值范围是()A.a<﹣2B.a>﹣2C.a≤﹣2D.a≥﹣2 2.(3分)下列计算正确的是()A.=±2B.3﹣=3C.=﹣5D.=3.(3分)下列二次根式中,可以与合并的二次根式是()A.B.C.D.4.(3分)下面命题都是正确的,它们的逆命题也正确的个数是()①平行四边形的两组对角相等.②矩形的四个角都相等.③如果两个角是直角,那么它们相等.④两直线平行,同旁内角互补.A.1个B.2个C.3个D.4个5.(3分)如图,在▱ABCD中,AB=8,AC=10,BD=14,则△COD的周长为()A.16B.20C.21D.236.(3分)如图,在△ABC中,若D,E分别为AB,AC的中点,若DE=2,CE=3,则AB 的取值范围()A.1<AB<5B.1<AB<7C.2<AB<8D.2<AB<107.(3分)如图,四边形ABCD是正方形,G是BC上的一点,DE⊥AG于点E,BF∥DE,且交AG于点F,若AB=4cm,CG=1cm,则EF的长为()A.cm B.cm C.1cm D.cm8.(3分)观察下列式子=2,=3,=4…,找出其中规律,用字母n表示第n个式子正确的是()A.=nB.=(n+1)C.=nD.=(n+1)9.(3分)如图,在△ABC中,∠ACB=90°,AB=2,F为AB中点,D为AB上一点,连CD,CF,DE⊥BC于点E.若∠CDE+3∠A=180°,ED=1,则CE的长是()A.B.C.2D.210.(3分)如图,在矩形ABCD中,AB=6,AD=8,E为BC的中点,将△ABE沿着AE 对折后得到△AGE,延长AG交CD于点F,连接CG并延长交AD于点H,连接EF,若∠AEF=90°,则下列说法:①AB+CF=AF;②四边形AECH是平行四边形;③AG:GF=9:4,其中正确的是()A.①B.①②C.②③D.①②③二、填空题(共6小题,每题3分,共18分)11.(3分)计算(﹣)2=;=;=.12.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB=度.13.(3分)如图,该图形是由直角三角形和正方形构成,其中最大正方形的边长为7,则正方形A、B、C、D的面积之和为.14.(3分)如图,在菱形OABC中,∠A=60°,B的坐标是(2,2),则A,C两点间的距离是.15.(3分)如图,圆柱形玻璃杯高为7cm,底面周长为20cm,在杯顶部C处有一滴蜂蜜离杯项B点的曲线长度为2cm,此时一只蚂蚁正好也在杯外壁,离杯底2cm点A处,则蚂蚁从外壁A处到C处的最短距离为cm.(杯壁厚度不计)16.(3分)如图,把一个矩形ABCD剪成①②③④四个部分能够重新拼成个正方形,已知DF=1,CD=2,则AD的长为.三、解答题(共8题,共72分)17.(8分)计算:(1)+();(2)(+3)(﹣5).18.(8分)如图,四边形ABCD是平行四边形,E,F分别是AB,CD边上的点,AE=AB,CF=CD.求证:四边形EBFD是平行四边形.19.(8分)如图,货船和快艇分别从码头A同时出发.其中,货船沿着北偏西54°方向以15海里/小时的速度匀速航行,快艇沿着北偏东36°方向以36海里/小时的速度航行.1小时后,两船分别到达B、C点,求B、C两点之间的距离.20.(8分)[问题背景]若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,则利用求根公式得x1=,x2=,其中b2﹣4ac≥0.根据问题背景回答下列问题:(1)直接写出一元二次方程x2﹣4x+1=0的两个根x1=,x2=.(2)在(1)的条件下,写出x1+x2=,x1•x2=.(3)在(2)的条件下,求出下列式子的值.①x12+2x1x2+x22;②+.21.(8分)如图,每个小正方形的边长都为1.(1)如图1,△ABC顶点均在格点上,请直接写出△ABC的面积;(2)在图1中,找一格点P,使得CP⊥AC;(3)如图1,在BC下方找格一点D,用无刻度直尺画出∠BDC=90°且△BDC的面积等于5;(4)若△ABC有两条边分别为,,面积为3.5,请直接写出第三边的长度.22.(10分)如图所示,在菱形ABCD中,∠BAD=120°,△EAF是等边三角形.(1)如图1,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合,求证:BE=CF;(2)如图2,点E是CB延长线上一点,连BF.①求证:AD+BE=BF:②若AD=4,BE=1,求EF的长.23.(10分)如图,四边形ABCD是正方形,点E是直线BC边上一点,∠AEF=90°,且EF交正方形外角的平分线所在直线于点F.(1)如图1,若点E是BC边上一点,求证:AE=EF;(2)如图2,若点E为CB延长线上一点,EF交正方形外角的平分线CH所在直线于点F,请问(1)中的结论是否仍然成立,说明理由;(3)如图3,P为对角线AC上一点,E为BC的中点,连EP,若EP平分∠AEF,AB =4,直接写出EP的长度.24.(12分)在平面直角坐标系中,点A在x轴上,点B在y轴上,已知A(6,0),B(0,8).(1)如图1,点M是y轴上一点,将△AOM沿着AM折叠,使点O落在AB上的N处,求M点的坐标;(2)如图2,四边形AOBC是矩形,D是AC边上一点(不与点A、C重合),将△BCD 沿直线BD翻折,使点C落在点E处.当以O、E、B三点为顶点的三角形是等腰三角形时,求E点的坐标;(3)如图3,在OA上一点G坐标为(2,0),连BG,点F与点O关于直线BG对称,在(2)的条件下,当B,E,F三点共线时,求DG的长度.2021-2022学年湖北省武汉市东湖高新区八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑。
2018-2019学年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)(解析版)
2018-2019学年二中广雅中学八年级(下)段测数学试卷(六)一.选择题(共10小题)1.下列各图象不能表示y是x的函数的是()A.B.C.D.2.若函数y=(3﹣m)是正比例函数,则m的值是()A.﹣3B.3C.±3D.﹣13.下列计算,正确的是()A.(﹣1)=1B.=C.﹣=1D.=3 4.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直5.已知A(﹣,y1),B(﹣,y2)是一次函数y=﹣x+b的图象上的点.y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.以上结论都有可能6.如图,在▱ABCD中,AC、BD相交于点O,若BD=10,AC=6,则AB的取值范围为()A.4<AB<16B.4<AB<10C.2<AB<8D.3<AB<57.已知一次函数y=(m﹣4)x+2m+1的图象过一、二、四象限,则m的取值范围是()A.m<4B.m<﹣C.﹣<m<4D.无解8.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个9.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.10.正方形ABCD中,E、F分别是AB、CB上的点,且AE=CF,CE交AF于M,∠CMF=45°,则的值为()A.B.C.D.二.填空题(共6小题)11.化简:=.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为.14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为.15.如图,将边长为8的正方形纸片ABCD折叠,使点D落在BC边的点E处,点A落在点F处,折痕为MN,若MN=4,则线段CN的长是.16.在同一平面直角坐标系中,直线y=kx﹣k与函数y=的图象恰好有三个不同的交点,则k的取值范围是.三.解答题(共8小题)17.计算:(1)(2)18.已知一次函数的图象过M(3,5),N(﹣4,﹣9).(1)求这个一次函数的解析式;(2)将直线MN向上平移1个单位,得直线l,l的解析式为(填空).19.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.20.已知点A(8,0)及在第四象限的动点P(x,y),且x+y=10.设△OP A的面积为S.(1)求S关于x的解析式,并直接写出x的取值范围;(2)画出函数S的图象.21.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)求证:四边形DEBF是菱形;(2)若AB=8,AD=4,求四边形BEDF的面积.22.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.(1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.23.如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.(1)求证:∠E=2∠CDF;(2)若F是BC中点,求证:AE+DE=2AD;(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.24.已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.(1)过点O作OC⊥AB于点C,求OC的长;(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP =3OQ,求正比例函数的解析式.参考答案与试题解析一.选择题(共10小题)1.下列各图象不能表示y是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案,即对于每个自变量x的值,函数y都有唯一确定的值与其对应.函数的意义反映在图象上简单的判断方法是:作垂直于x轴的直线,在左右平移的过程中与函数图象只会有一个交点.【解答】解:C图象作垂直于x轴的直线,在左右平移的过程中与函数图象会有无数个交点.故选:C.2.若函数y=(3﹣m)是正比例函数,则m的值是()A.﹣3B.3C.±3D.﹣1【分析】根据正比例函数的定义解答.【解答】解:∵函数y=(3﹣m)是正比例函数,∴m2﹣8=1,解得:mm1=3,m2=﹣3;且3﹣m≠0,∴m=﹣3.故选:A.3.下列计算,正确的是()A.(﹣1)=1B.=C.﹣=1D.=3【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【解答】解:A.(﹣1)=2﹣,此选项错误;B.==,此选项错误;C.与不是同类二次根式,不能合并,此选项错误;D.=|﹣3|=3,此选项正确;故选:D.4.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直【分析】根据矩形、菱形的性质逐个判断即可.【解答】解:菱形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线互相垂直,矩形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线相等;即菱形具有而矩形不一定具有的特征是对角线互相垂直,故选:D.5.已知A(﹣,y1),B(﹣,y2)是一次函数y=﹣x+b的图象上的点.y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.以上结论都有可能【分析】先根据一次函数y=﹣x+b中k=﹣1判断出函数的增减性,再根据﹣<﹣进行解答即可.【解答】解:∵一次函数y=﹣x+b中k=﹣1<0,∴y随x的增大而减小,∵﹣<﹣,∴y1>y2.故选:B.6.如图,在▱ABCD中,AC、BD相交于点O,若BD=10,AC=6,则AB的取值范围为()A.4<AB<16B.4<AB<10C.2<AB<8D.3<AB<5【分析】由在▱ABCD中,对角线AC与BD相交于点O,若BD=10,AC=6,根据平行四边形的对角线互相平分,可求得OA与OB的长,然后由三角形三边关系,求得答案.【解答】解:∵在▱ABCD中,对角线AC与BD相交于点O,BD=10,AC=6,∴OA=AC=3,OB=BD=5,∴边长AB的取值范围是:2<AB<8.故选:C.7.已知一次函数y=(m﹣4)x+2m+1的图象过一、二、四象限,则m的取值范围是()A.m<4B.m<﹣C.﹣<m<4D.无解【分析】若函数y=kx+b的图象过一、二、四象限,则此函数的k<0,b>0,据此求解.【解答】解:∵函数y=(m﹣4)x+2m+1的图象过一、二、四象限,∴m﹣4<0,2m+1>0解得﹣<m<4.故选:C.8.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选:C.9.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.10.正方形ABCD中,E、F分别是AB、CB上的点,且AE=CF,CE交AF于M,∠CMF=45°,则的值为()A.B.C.D.【分析】根据正方形的性质得到AB=BC,等量代换得到BE=BF,根据全等三角形的性质得到AM=CM,EM=FM,推出点M在点A和点C的对称轴上,连接BD,过M作MG⊥BC于G,则点M在BD上,根据等腰三角形的判定得到BE=BM,设BG=GM=x,得到BE=BM=x,根据相似三角形的性质即可得到结论.【解答】解:∵在正方形ABCD中,∴AB=BC,∵AE=CF,∴BE=BF,在△ABF与△CBE中,,∴△ABF≌△CBE(SAS),∴∠BAF=∠BCE,在△AEM与△CFM中,,∴△AEM≌△CFM(AAS),∴AM=CM,EM=FM,∴点M在点A和点C的对称轴上,连接BD,过M作MG⊥BC于G,则点M在BD上,∴∠ABM=∠CBM=45°,∵∠AME=∠CMF=45°,∴∠AME=∠CBM,∴∠BEM=∠BAM+∠AME=∠BME=∠CBM+∠BCM,∴BE=BM,∵MG⊥BC,∴BG=GM,设BG=GM=x,∴BE=BM=x,∵MG∥BE,∴△CMG∽△CEB,∴==,∴==+1,故选:A.二.填空题(共6小题)11.化简:=.【分析】原式被开方数变形后,开方即可得到结果.【解答】解:原式===.故答案为:.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是(﹣2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0).13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为105°.【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案为:105°.14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为﹣2<x<﹣1.【分析】解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分的自变量的取值范围.【解答】解:根据题意得到y=kx+b与y=2x交点为A(﹣1,﹣2),解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分,又B(﹣2,0),此时自变量x的取值范围,是﹣2<x<﹣1.即不等式2x<kx+b<0的解集为:﹣2<x<﹣1.故答案为:﹣2<x<﹣1.15.如图,将边长为8的正方形纸片ABCD折叠,使点D落在BC边的点E处,点A落在点F处,折痕为MN,若MN=4,则线段CN的长是3.【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,设DN=EN =x,则CN=8﹣x,在Rt△ENC中,EN2=CN2+EC2,根据勾股定理就可以列出方程,从而解出CN的长.【解答】解:过点M作MH⊥CD于点H.连接DE.根据题意可知MN垂直平分DE,易证∠EDC=∠MHN,MH=AD,∵四边形ABCD是正方形,∴MH=AD=CD,∵∠MHN=∠C=90°,∴△MHN≌△DCE(ASA),∴DE=MN=4,在Rt△DEC中,CE===4,设DN=EN=x,则CN=8﹣x,在Rt△ENC中,EN2=CN2+EC2,∴x2=(8﹣x)2+42,解得x=5,∴CN=8﹣x=3.故答案为3.16.在同一平面直角坐标系中,直线y=kx﹣k与函数y=的图象恰好有三个不同的交点,则k的取值范围是﹣2<k<﹣.【分析】根据题意把y=kx﹣k分别代入各个分段函数解析式,用k表示出x的值,再根据x的取值范围确定k的范围.【解答】解:直线y=kx﹣k与函数y=﹣2x﹣6在x<﹣4时有交点,则x=<﹣4,解得﹣2<k<﹣;直线y=kx﹣k与函数y=2在﹣4≤x<1时有交点,则k≤﹣;直线y=kx﹣k与函数y=﹣2x+4在x≥1时有交点,则x=<﹣4,解得k>﹣2.因此k的取值范围是﹣2<k<﹣.故答案为:﹣2<k<﹣.三.解答题(共8小题)17.计算:(1)(2)【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)原式=4﹣2+12=14(2)原式=2﹣18.已知一次函数的图象过M(3,5),N(﹣4,﹣9).(1)求这个一次函数的解析式;(2)将直线MN向上平移1个单位,得直线l,l的解析式为y=2x(填空).【分析】(1)利用待定系数法求一次函数解析式;(2)根据直线平移的规律在解析式y=2x﹣1的右边加上1即可.【解答】解:(1)设一次函数解析式为y=kx+b,把M(3,5),N(﹣4,﹣9)代入得,解得,所以一次函数解析式为y=2x﹣1;(2)将直线MN向上平移1个单位,得直线l,则l的解析式为y=2x﹣1+1=2x.故答案为y=2x.19.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【分析】(1)设购买B种树苗x棵,则购买A种树苗(21﹣x)棵,根据“总费用=A种树苗的单价×购买A种树苗棵树+B种树苗的单价×购买B种树苗棵树”即可得出y关于x的函数关系式;(2)根据购买B种树苗的数量少于A种树苗的数量可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再结合一次函数的性质即可得出结论.【解答】解:(1)设购买B种树苗x棵,则购买A种树苗(21﹣x)棵,由已知得:y=70x+90(21﹣x)=﹣20x+1890(x为整数且0≤x≤21).(2)由已知得:x<21﹣x,解得:x<.∵y=﹣20x+1890中﹣20<0,∴当x=10时,y取最小值,最小值为1690.答:费用最省的方案为购买A种树苗11棵,B种树苗10棵,此时所需费用为1690元.20.已知点A(8,0)及在第四象限的动点P(x,y),且x+y=10.设△OP A的面积为S.(1)求S关于x的解析式,并直接写出x的取值范围;(2)画出函数S的图象.【分析】(1)首先把x+y=10,变形成y=10﹣x,再利用三角形的面积求法:底×高÷2=S,可以得到S关于x的函数表达式;P在第四象限,故x>0,y>0,可得到x的取值范围;(2)利用描点法画出函数图象即可.【解答】解:(1)∵x+y=10,∴y=﹣x+10,∴S=×8×|y|=4(x﹣10)=4x﹣40,∵第四象限的动点P(x,y),∴x>0,y<0,∴,∴x>10,即S=4x﹣40(x>10);(2)∵解析式为S=4x﹣40(x>10),∴函数图象经过点(10,0)(15,20)(但不包括(10,0)的射线).图象如图所示21.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)求证:四边形DEBF是菱形;(2)若AB=8,AD=4,求四边形BEDF的面积.【分析】(1)根据邻边相等的平行四边形为菱形进行证明;(2)根据菱形面积公式底×高进行计算.【解答】解:(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC,根据题意可知△BCD≌△BDG,∴∠DBG=∠DBC,∴∠EDB=∠EBD,∴DE=BE,∵AD∥BC,DF∥BE,∴四边形BEDF为平行四边形,又∵DE=BE,∴四边形BEDF为菱形;(2)设菱形BEDF的边长为x,则AE=DE﹣AD=x﹣4,在Rt△AEB中,BE2=AE2+AB2,即x2=(x﹣4)2+82,解得x=10,∴菱形BEDF的面积=DE•AB=10×8=80.22.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.(1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.【分析】(1)解析式联立得到2x+4=﹣x+m,解得x=(m﹣4),根据题意得到(m ﹣4)<0,解得即可;(2)分三种情况讨论,根据正方形的性质三角形全等的性质,三角形相似的性质即可求得M,N两点的坐标.【解答】解:(1)联立y=2x+4与y=﹣x+m,得2x+4=﹣x+m,解得x=(m﹣4),∵交点在第二象限,∴(m﹣4)<0,∴m<4;(2)当x=0时,y=2x+4=4,∴A(0,4),当y=0时,0=2x+4,x=﹣2,∴B(﹣2,0),∴OA=4,OB=2.如图1,过点Q作QH⊥x轴于H,∵MN∥AB,∴△NMO∽△BAO,∴==,设ON=a,则OM=2a,∵∠MNQ=90°,∴∠QNH+∠MNO=∠MNO+∠NMO=90°,∴∠QNH=∠NMO,在△QNH和△NMO中∴△QNH≌△NMO(AAS),∴QH=ON=a,HN=OM=2a,又∵△BQH∽△BAO,∴==,∴BH=a,∵OB=BH+HN+ON,∴2=a+2a+a,解得a=,∴M(0,),N(﹣,0);如图2,过点P作PH⊥x轴于H,易证△PNH∽△BAO,∴==,设PH=b,则NH=2b,同理证得△PNH≌△NMO,∴PH=ON=b,HN=OM=2b,∴OH=HN﹣OH=b,又∵△BPH∽△BAO,∴==,∴BH=b,∵OB=BH+OH,∴2=b+b,解得b=,∴M(0,﹣),N(,0);如图3,过点P作PH⊥x轴于H,PE⊥y轴于E,QF⊥y轴于F,易证△P AE∽△BAO,∴==,设PE=c,则AE=2c,同理证得△PNH≌△PME,∴PH=PE=OE=c,则AE=2c,∵OA=AE+OE,∴4=2c+c,解得c=,∵△MQF≌△PME,∴MF=PE=OE,EM=FQ,∴EM=OF=FQ,设EM=OF=FQ=m,则Q(﹣m,﹣m),代入y=2x+4中,得﹣m =﹣2m+4,解得m=4,∴NO=NH+OH=,∴N(﹣,0),∵OF=m=4,∴M(0,﹣4).综上所述M(0,),N(﹣,0)或M(0,﹣),N(,0)或M(0,﹣4),N(﹣,0);.23.如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.(1)求证:∠E=2∠CDF;(2)若F是BC中点,求证:AE+DE=2AD;(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.【分析】(1)将△ADE绕点D逆时针旋转90°得△CDM,证得∠CDE=∠ADM,得出∠E=∠M=180°﹣2∠DFM,可得出∠CDF=90°﹣∠DFM,则结论得证;(2)将△ADE绕点D逆时针旋转90°得△CDM,过点M作MH⊥DF于H.设BF=FC =x,则CD=2x,求出DF=x,证明△DFC∽△MFH,得出FM,AE=4x,则结论得证;(3)如图3﹣1中,取AD的中点N,连接GK,CK,当C、G、N三点共线时,CG最小.在图3﹣2中,证得四边形NCMD为平行四边形,得出CM=DN=AD,则答案可求出.【解答】(1)证明:如图1,将△ADE绕点D逆时针旋转90°得△CDM,∵∠DCB=∠DCM=90°,∴F、C、M三点共线,∵将△ADE绕点D逆时针旋转90°得△CDM,∴△ADE≌△CDM,∴∠E=∠M,∠EDA=∠CDM,∴∠CDE=∠ADM,∵∠CDE=2∠ADF,∴∠ADM=2∠ADF,∴∠FDM=∠ADF,∵正方形ABCD中AD∥BC,∴∠ADF=∠DFM=∠FDM,∴∠E=∠M=180°﹣2∠DFM,∵∠DCB=90°,∴∠CDF=90°﹣∠DFM,∴∠E=2∠CDF.(2)证明:如图2,将△ADE绕点D逆时针旋转90°得△CDM,作MH⊥DF于H.∵∠DCF=∠DCM=90°,∴F、C、M三点共线,过点M作MH⊥DF于H.∵若F是BC中点,设BF=FC=x,则CD=2x,在Rt△FDC中,DF==x,由(1)得,∠DFM=∠FDM,∴DM=FM,又∵HM⊥DF,∴FH=DF=x,∵∠DFC=∠MFH,∠DCB=∠MHF=90°,∴△DFC∽△MFH,∴,∴FM=x,∴CM=AE=FM﹣FC=x,∵DE=DM=FM=x,∴AE+DE=x+x=4x,∵CD=AD=2x,∴AE+DE=2AD=4x.(3)解:如图3﹣1中,取AD的中点K.∵AG⊥DF于点G,∴∠AGD=90°,∵AK=DK,∴GK=AD,∵CG≥CK﹣GK,∴当C、G、N三点共线时,CG最小.如图3﹣2中,当C、G、N共线时,将△ADE绕点D逆时针旋转90°得△CDM,∵∠DCF=∠DCM=90°,∴F、C、M三点共线,∵∠AGD=90°,N为AD中点,∴AN=NG=ND,∴∠NGD=∠ADF,由(1)∠ADF=∠FDM,∴∠NGD=∠FDM,∴DM∥NC,∵正方形ABCD中AD∥BC,∴四边形NCMD为平行四边形,∴CM=DN=AD,∵CM=AE,∴AE=AD=AB,∴AE:AB=1:2.24.已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.(1)过点O作OC⊥AB于点C,求OC的长;(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP =3OQ,求正比例函数的解析式.【分析】(1)分别求出点A、B的坐标,进而得出AB的长,再根据三角形的面积公式解答即可;(2)连接OD,过点D作DH⊥x轴于H,易证△AOB∽△OHD,根据相似三角形的性质求出点D的坐标,再利用待定系数法求解即可;(3)过点P作PM⊥x轴于M,点Q作QN⊥x轴于N,用k的代数式分别表示出OM、ON;由OP=3OQ可得ON=3OM,进而得出关于k的一元一次方程,求出k的值,问题得以解决.【解答】解:(1)∵直线AB解析式为y=﹣3x+3,∴A(0,3),B(1,0),∴OA=3,OB=1,∴AB=,∵S△AOB=OA•OB=AB•OC,∴OC==;(2)连接OD,过点D作DH⊥x轴于H,∵点O与点D关于AB对称,∴AB垂直平分OD,由(1)OC=,∴OD=2OC=,∵△AOB∽△OCB,△OCB∽△OHD,∴△AOB∽△OHD,∴,∴DH=,OH=,∴D(,).设直线BD解析式为y=kx+b,∵B(1,0),D(,),∴,解得,∴直线BD解析式为y=3x﹣3.(3)如图,过点P作PM⊥x轴于M,点Q作QN⊥x轴于N.∵正比例函数y=kx与直线BD交于P,∴kx=3x﹣3,解得x=,∴OM=.∵正比例函数y=kx与直线AB交于Q,∴kx=﹣3x+3,解得x=,∴ON=.∵OP=3OQ,∴ON=3OM,∴=3×,解得k=.∴正比例函数的解析式为.。
冀教版2018-2019学年八年级第二学期期末数学试卷含答案解析
冀教版2018-2019学年八年级第二学期期末数学试卷一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。
请把最符合题意的选项序号填在题后的括号内)1.(2分)函数y=中,自变量x的取值范围是()A.x>2 B.x≥2C.x>﹣3 D.x≥﹣32.(2分)如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于()A.15°B.30°C.45°D.60°3.(2分)下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个4.(2分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)5.(2分)菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角6.(2分)如图,一次函数y=(m﹣1)x﹣3+m的图象分别于x轴、y轴的负半轴相交于点A、B,则m的取值范围是()A.m>3 B.m<3 C.m>1 D.m<17.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.88.(2分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>39.(2分)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A. B. C. D.10.(2分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.10911.(2分)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.9612.(2分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资w(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4.5小时B.4.75小时C.5小时D.5小时二、认真填一填(每空3分,共30分,请把正确答案填在题后的横线上)13.(3分)如图是一次函数y=kx+b的图象,则方程kx+b=0的解为.14.(3分)如果点P1(﹣3,y1)、P2(﹣2,y2)在一次函数y=2x+b的图象上,则y1y2.(填“>”,“<”或“=”)15.(3分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=.16.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.17.(3分)如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费元.18.(3分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)19.(3分)如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.20.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.21.(3分)在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是.22.(3分)如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.三、解答题(本大题共66分)23.(9分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?24.(10分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?25.(11分)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF 交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC 就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FEC∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC 上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.26.(12分)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?27.(12分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB 外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.28.(12分)在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用A、B两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.(1)设A型货车安排x辆,总运费为y万元,写出y与x的函数关系式;(2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排A、B两种型号货车一次性运完这批茶叶,共有哪几种运输方案?(3)说明哪种方案运费最少?最少运费是多少万元?参考答案与试题解析一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。
湖北省武汉市武昌区2018-2019学年八年级第二学期期末数学试卷解析版
湖北省武汉市武昌区2018-2019学年八年级第二学期期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.若在实数范围内有意义,则x的取值范围()A.x≥2B.x≤2C.x>2D.x<22.下列二次根式是最简二次根式的是()A.B.C.D.3.点A(1,3)在一次函数y=2x+m的图象上,则m等于()A.﹣5B.5C.﹣1D.14.下表是校女子排球队12名队员的年龄分布:则关于这12名队员的年龄的说法正确的是()A.中位数是14B.中位数是14.5C.众数是15D.众数是55.下列计算正确的是()A.B.3C.D.=6.已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4或7.学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是()A.甲B.乙C.丙D.丁8.已知一次函数y=kx+b的图象与x轴交于点(2,0),且y随自变量x的增大而减小,则关于x的不等式kx+b≥0的解集是()A.x≥2B.x≤2C.x>2D.x<29.如图,在平面直角坐标系xOy中,一次函数y=﹣的图象与x轴、y轴分别相交于点A,B,点P的坐标为(m+1,m﹣1),且点P在△ABO的内部,则m的取值范围是()A.1<m<3B.1<m<5C.1≤m≤5D.m>1或m<310.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB =4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.计算:=.12.直线y=﹣3x+1与x轴的交点坐标为.13.函数y=kx与y=6﹣x的图象如图所示,则k=.14.某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为分.15.将菱形ABCD以点E为中心,按顺时针方向分别旋转90°,180°,270°后形成如图所示的图形,若∠BCD=120°,AB=2,则图中阴影部分的面积为.16.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,则线段BC的长为.三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)计算:(1);(2)(2﹣3)().18.(8分)如图,在▱ABCD中,点E,F分别在AB,CD上,且AE=CF,求证:四边形AECF 是平行四边形.19.(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t(小时)分成A,B,C,D四组,并绘制了统计图(部分).A组:t<0.5B组:0.5≤t<1C组:1≤t<1.5D组:t≥1.5请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.20.(8分)如图,在四边形ABCD中,∠B=∠C=90°,点E在BC上,AB=BE=1,ED=2,AD=.(1)求∠BED的度数;(2)直接写出四边形ABCD的面积为.21.(8分)如图,直线y=﹣x+b与x轴,y轴分别交于点A,点B,与函数y=kx的图象交于点M(1,2).(1)直接写出k,b的值和不等式0的解集;(2)在x轴上有一点P,过点P作x轴的垂线,分别交函数y=﹣x+b和y=kx的图象于点C,点D.若2CD=OB,求点P的坐标.22.(10分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为元/件,乙种服装进价为元/件;(2)若购进这100件服装的费用不得超过7500元.①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价a(0<a<20)元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?23.(10分)在矩形ABCD中,AB=6,AD=8,E是边BC上一点,以点E为直角顶点,在AE的右侧作等腰直角△AEF.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF⊥DF,求BE的长;(3)如图3,若动点E从点B出发,沿边BC向右运动,运动到点C停止,直接写出线段AF的中点Q的运动路径长.24.(12分)如图,在平面直角坐标系xoy中,直线y=﹣2x+4交y轴于点A,交x轴于点B.点C 在y轴的负半轴上,且△ABC的面积为8,直线y=x和直线BC相交于点D.(1)求直线BC的解析式;(2)在线段OA上找一点F,使得∠AFD=∠ABO,线段DF与AB相交于点E.①求点E的坐标;②点P在y轴上,且∠PDF=45°,直接写出OP的长为.参考答案一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.解:∵在实数范围内有意义,∴x﹣2≥0,解得x≥2.故选:A.2.解:不是最简二次根式;=2不是最简二次根式;是最简二次根式;不是最简二次根式;故选:C.3.解:∵一次函数y=2x+m的图象经过点A(1,3)∴3=2+m,解得:m=1,故选:D.4.解:观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.共12人,中位数是第6,7个人平均年龄,因而中位数是15.故选:C.5.解:A、原式=+3,所以A选项错误;B、原式=2,所以B选项正确;C、原式=2,所以C选项错误;D、原式=1,所以D选项错误.故选:B.6.解:∵个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选:D.7.解:∵乙、丙同学的平均数比甲、丁同学的平均数大,∴应从乙和丙同学中选,∵丙同学的方差比乙同学的小,∴丙同学的成绩较好且状态稳定,应选的是丙同学;故选:C.8.解:∵y随自变量x的增大而减小,∴当x≤2时,y≥0,即关于x的不等式kx+b≥0的解集是x≤2.故选:B.9.解:∵函数y=﹣,∴A(8,0),B(0,4),∵点P在△AOB的内部,∴0<m+1<8,0<m﹣1<4,m﹣1<﹣(m+1)+4∴1<m<3.故选:A.10.解:取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.在Rt△DAE中,利用勾股定理可得DE=2.在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.故选:B.二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.解:∵52=25,∴=5.故答案为:5. 12.解:∵y =﹣3x +1,∴当y =0时,0=﹣3x +1,得x =,即直线y =﹣3x +1与x 轴的交点坐标为:(,0),故答案为:(,0)13.解:∵一次函数y =6﹣x 与y =kx 图象的交点横坐标为2, ∴4=6﹣2, 解得:y =4,∴交点坐标为(2,4), 代入y =kx ,2k =4,解得k =2. 故答案为:214.解:∵面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,∴甲的平均成绩为:86×+90×=87.6(分).故答案为:87.6.15.解:连接BD ,AC 交于点O ,BE ,DE∵四边形ABCD 是菱形,∠BCD =120°∴BO =DO ,AO =CO ,AC ⊥BD ,∠CAD =∠BCD =60°,且AB =AD =2∴AO =CO =1,DO =BO =AO =∴BD =2∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形 ∴∠BED =90°,BE =DE∴BE =DE =∵S 四边形DABE =S △DBE ﹣S △ABD=﹣×1=3﹣∴S四边形DABE=4(3﹣)=12﹣4∴∴S阴影部分故答案为:12﹣416.解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=5,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,即,解得,x=2,∴BC=2x=4.故答案为:4.三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.解:(1)原式=2﹣+2=+2;(2)原式=4+10﹣3﹣15=﹣11+7.18.证明:∵四边形ABCD是平行四边形,∴AD∥BC∴AF∥CE.又∵AF=CE,∴四边形AECF是平行四边形.19.解:(1)C组人数为321﹣(20+100+60)=141(人),故答案为:141;(2)本次调查数据的中位数是第161个数据,而第161个数据落在C组,所以本次调查数据的中位数落在C组内,故答案为:C.(3)估算其中达到国家规定体育活动时间的人数大约有12840×=8040(人).20.解:(1)连接AE,如图所示:∵∠B=90°,AB=BC=1,∴∠AEB=45°,AE=AB=,在△ADE中,AE2+DE2=()2+(2)2=10,AD2=10,∴AE2+DE2=AD2,∴∠AED=90°,∴∠BED=∠AEB+∠AED=135°;(2)∵∠CED=180°﹣∠BED=45°,∠C=90°,∴△CDE是等腰直角三角形,∴CE=CD=ED=2,∴BC=BE+CE=3,∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,∴四边形ABCD是直角梯形,∴四边形ABCD的面积=(AB+CD)×BC=×3×3=;故答案为:.21.解:(1)把M(1,2)代入y=kx得k=2;把M(1,2)代入y=﹣x+b得1=﹣+b,解得b=;当y=时,﹣x+=0,解得x=5,则A(5,0),所以不等式0的解集为1≤x≤5;(2)当y=0时,y=﹣x+=,则B(0,),∴OB=,设P(m,0),则C(m,﹣m+),D(m,2m),∵2CD=OB,∴2|﹣m+﹣2m|=,解得m=或,∴点P的坐标为P(,0)或(,0).22.解:(1)设乙服装的进价x元/件,则甲种服装进价为(x+20)元/件,根据题意得:3(x+20)=4x,解得x=60,即甲种服装进价为80元/件,乙种服装进价为60元/件;故答案为:80;60;(2)①设计划购买x件甲种服装,则购买(100﹣x)件乙种服装,根据题意得,解得65≤x≤75,∴甲种服装最多购进75件;②设总利润为w元,购进甲种服装x件.则w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,且65≤x≤75,当0<a<10时,10﹣a>0,w随x的增大而增大,故当x=75时,w有最大值,即购进甲种服装75件,乙种服装25件;当a=10时,所有进货方案获利相同;当10<a<20时,10﹣a<0,w随x的增大而减少,故当x=65时,w有最大值,即购进甲种服装65件,乙种服装35件.23.解:(1)如图1中,∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥AE,∠AEF=90°,∴∠AEB=∠EFC,∵EF=AE,∴△ABE≌△ECF(AAS),∴CE=AB=6,∴BE=BC﹣CE=2.(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.同理可证△ABE≌△EMF,设BE=x,则EM=AB=6,FM=BE=xEC=8﹣x,∵EF⊥DF,∴∠DFE=∠DCB=90°,∴∠FEC=∠CDF,CD=AB=EM∴△EFM≌△DNC(AAS),∴NC=FM=x,EN=EC+NC=8,NM=EN﹣EM=2,即在Rt△FMN中,FN2=x2+22,在Rt△EFM中,EF2=x2+62,在Rt△EFN中,FN2+EF2=EN2,即x2+22+x2+62=82,解得x=2或﹣2(舍弃),即BE=2,(3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.∵∠BAM=∠EAF=45°,∴∠BAE=∠MAF,∵==,∴△ABE∽△AMF,∴∠AMF=∠ABE=90°,==,∵AQ=FQ,AH=MH,∴HQ=FM,HQ∥FM,∴∠AHQ=90°,∴点Q的运动轨迹是线段HQ,当点E从点B运动到点C时,BE=8,∴MF=8,∴HQ=MF=4,∴线段AF的中点Q的运动路径长为4.24.解:(1)∵直线y=﹣2x+4交y轴于点A,交x轴于点B,∴A(0,4),B(2,0),∵点C在y轴的负半轴上,且△ABC的面积为8,∴×AC×OB=8,∴AC=8,则C(0,﹣4),设直线BC的解析式为y=kx+b即,解得,故直线BC的解析式为y=2x﹣4.(2)①连接AD.∵点D是直线BC和直线y=x的交点,故联立,解得,即D(4,4).∵A(0,4),故AD=AO,且∠DAO=90°,∴∠DAO=∠AOB=90°,∠AFD=∠ABO,∴△DAF≌△AOB(AAS),∴AF=OB=2,OF=2,即F(0,2),可求直线DF的解析式为y=x+2,∵点E是直线AB和直线DF的交点,故联立,解得,即E(,).②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.则△DEF≌△FGH(AAS),∴EF=GH=2,DE=FH=4,∴G(2,﹣2),∵D(4,4),∴直线DG的解析式为y=3x﹣8,设直线DG交y轴于P,则∠PDF=45°,∴P(0,﹣8),∴OP=8.作DP′⊥DP,则∠P′DF=45°,可得直线P′D的解析式为y=﹣x+,∴P′(0,),∴OP′=,综上所述,满足条件的OP的值为8或.。
2018-2019学年湖北省武汉市九年级(上)期末数学试卷(解析版)
2018-2019学年湖北省武汉市部分学校九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是﹣6,常数项是1的方程是()A.3x2+1=6x B.3x2﹣1=6x C.3x2+6x=1 D.3x2﹣6x=1 2.(3分)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2 4.(3分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125.(3分)已知⊙O的半径等于8cm,圆心O到直线l的距离为9cm,则直线l与⊙O的公共点的个数为()A.0 B.1 C.2 D.无法确定6.(3分)如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD 的长为()A.12.5寸B.13寸C.25寸D.26寸7.(3分)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A.B.C.D.8.(3分)如图,将半径为1,圆心角为120°的扇形OAB绕点A逆时针旋转一个角度,使点O的对应点D落在弧AB上,点B的对应点为C,连接BC,则图中CD、BC和弧BD围成的封闭图形面积是()A.﹣B.﹣C.﹣D.﹣9.(3分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.(3分)已知抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1,与x轴的一个交点为(2,0).若于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知3是一元二次方程x2=p的一个根,则另一根是.12.(3分)在平面直角坐标系中,点P(﹣1,﹣2)关于原点对称点的坐标是.13.(3分)一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.14.(3分)第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29cm、宽为20cm,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的.为求镜框的宽度,他设镜框的宽度为xcm,依题意列方程,化成一般式为.15.(3分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加m.16.(3分)如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,则AF的最大值是.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣3x﹣1=0.18.(8分)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.19.(8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A、B、C、D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A、B、E、F)这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C、D、G、H)这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(8分)如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1)求出y与x的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3)直接写出商家销售该商品每天获得的最大利润.23.(10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE=2,连接BE,P为BE的中点,连接PD、AD(1)为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若∠ACD=45°,求△PAD的面积.24.(12分)如图,在平面直角坐标系中,抛物线y=x2+(1﹣m)x﹣m交x轴于A、B 两点(点A在点B的左边),交y轴负半轴于点C(1)如图1,m=3.①直接写出A、B、C三点的坐标.②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2)如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM•ON是一个定值.2018-2019学年湖北省武汉市部分学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3x2﹣6x+1=0,其二次项系数是3,一次项系数是﹣6,常数项是1,故选:A.2.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.3.【解答】解:将抛物线y=x2向右平移1个单位长度,再向上平移+2个单位长度所得的抛物线解析式为y=(x﹣1)2+2.故选:A.4.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.5.【解答】解:∵⊙O的半径等于8cm,圆心O到直线l的距离为9cm,即圆心O到直线l的距离大于圆的半径,∴直线l和⊙O相离,∴直线l与⊙O没有公共点.故选:A.6.【解答】解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.7.【解答】解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雌鸟的情况数有3种,则P=.故选:B.8.【解答】解:如图,连接OD.由题意:OA=OD=AD,∴△AOD是等边三角形,∴∠ADO=∠AOD=60°,∵∠ADC=∠AOB=120°,∴∠ADO+∠ADC=180°,∴O,D,C共线,∴图中CD、BC和弧BD围成的封闭图形面积=S△OBC﹣S扇形ODB=×1×﹣=﹣,故选:B.9.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.10.【解答】解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1 ∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1 ∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:把x=3代入x2=p,得p=32=9.则原方程为x2=9,即x2﹣9=0.设方程的另一根为x,则3x=﹣9.所以x=﹣3.故答案是:﹣3.12.【解答】解:点(﹣1,﹣2)关于原点对称的点的坐标是(1,2).故答案为:(1,2).13.【解答】解:3÷=12(个).故答案为:12.14.【解答】解:根据题意可得:2(29+2x)•x+20x•2=20×29×,整理得:4x2+98x﹣145=0.故答案是:4x2+98x﹣145=0.15.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,所以水面宽度增加到6米,比原先的宽度当然是增加了6﹣4=2米,故答案为:2.16.【解答】解:以AB为直径作圆,因为∠AGB=90°,所以G点在圆上.当CF与圆相切时,AF最大.此时FA=FG,BC=CG.设AF=x,则DF=4﹣x,FC=4+x,在Rt△DFC中,利用勾股定理可得:42+(4﹣x)2=(4+x)2,解得x=1.故答案为1.三、解答题(共8题,共72分)17.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1=,x2=.18.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.19.【解答】解:根据题意画树状图如下:由树状图可知,所有可能出现的结果共有16种,并且这些结果出现的可能性相等,小童和小郑同时选择的美食都会甲类食品的结果共有4种,则小童和小郑同时选择的美食都会甲类食品的概率是=.20.【解答】解:(1)点A运动的路径如图所示,出点A运动的路径长为=;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).21.【解答】(1)证明:如图1,连接OA,OB,OC.在△OAC和△OAB中,,∴△OAC≌△OAB(SSS),∴∠OAC=∠OAB,∴AO平分∠BAC,∴AO⊥BC.又∵AD∥BC,∴AD⊥AO,∴AD是⊙O的切线.(2)①证明:如图2,连接AE.∵∠BCE=90°,∴∠BAE=90°.又∵AF⊥BE,∴∠AFB=90°.∵∠BAG+∠EAF=∠AEB+∠EAF=90°,∴∠BAG=∠AEB.∵∠ABC=∠ACB=∠AEB,∴∠BAG=∠ABC,∴AG=BG.②解:在△ADC和△AFB中,,∴△ADC≌△AFB(AAS),∴AF=AD=2,BF=CD=3.设FG=x,在Rt△BFG中,FG=x,BF=3,BG=AG=x+2,∴FG2+BF2=BG2,即x2+32=(x+2)2,∴x=,∴FG=.22.【解答】解:(1)设y=kx+b,根据题意可得,解得:,则y=﹣10x+800;(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过48元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元;(3)利润w=(x﹣20)(﹣10x+800)=﹣10(x﹣80)(x﹣20),∵﹣10<0,故w有最大值,当x=50时,w最大值为9000.23.【解答】解:(1)如图2中,由题意:在Rt△APD中,∠APD=90°,∠PAD=30°,∴AD=2PD.(2)结论成立.理由:如图1中,延长ED到F,使得DF=DE,连接BF,CF.∵BP=EP,DE=DF,∴BF=2PD,BF∥PD,∵∠EDC=120°,∴∠FDC=60°,∵DF=DE=DC,∴△DFC是等边三角形,∵CB=CA,∠BCA=∠DCF=60°,∴∠BCF=∠ACD,∵CF=CD,∴△BCF≌△ACD(SAS),∴BF=AD,∴AD=2PD.(3)如图1中,延长BF交AD于G,由(2)得到∠FBC=∠DAC,∴∠AGB=∠ACB=60°,∵DP∥BG,∴∠ADP=∠AGB=60°,如图3中,作DM⊥AC于M,PN∠AD于N.在等腰△CDE中,∵CE=2,∠CDE=120°,∴CD=DE=2,∵∠ACD=45°,∴CM=DM=2.AM=2﹣2,在Rt△ADM中,AD2=(2﹣2)2+22=32﹣8.在Rt△PAD中,S△PAD=•AD•PN=AD2=4﹣3.24.【解答】解:(1)①当m=3时,y=x2﹣2x﹣3,当x=0时,y=﹣3,当y=0时,x2﹣2x﹣3=0,解得:x=﹣1或x=3,∴A(﹣1,0),B(3,0),C(0,﹣3)②如图1,过A作AK⊥AC交CD于点K,作KH⊥x轴于点H,∵∠ACD=45°,∴AC=AK,∵∠AOC=∠KHA=90°,∠ACO=90°﹣∠OAC=∠KAH,∴△OAC≌△HKA(AAS),∴AH=CO=3,KH=OA=1,∴K(2,1),设直线CD的解析式为y=kx﹣3∴2k﹣3=1,∴k=2,∴设直线CD的解析式为y=2x﹣3,联立,解得x=0(舍去),或x=4,∴D(4,5)(2)∵y=x2+(1﹣m)x﹣m,当y=0时,x2+(1﹣m)x﹣m=0,解得x=﹣1或x=m,∴A(﹣1,0),B(m,0),∵过点E(m,2)作一直线交抛物线于P、Q两点,设直线PQ的解析式为y=ax+b,P(x1,y1),Q(x2,y2),∴2=am+b,b=2﹣am,∴直线PQ的解析式为y=ax+2﹣am,联立,消去y,得:x2+(1﹣m﹣a)x+am﹣m+2=0,∴x1+x2=a+m﹣1,x1•x2=am﹣m﹣2,如图2,作PS⊥x轴于点S,作QT⊥x轴于点T,则△AMO∽△APS,∴,即∴OM=x1﹣m,同理,ON=﹣(x2﹣m),∴OM•ON=﹣(x1﹣m)(x2﹣m)==﹣[am﹣m﹣2﹣m(a+m ﹣1)+m2]=2,为定值.。
2018-2019学年湖北省武汉市东湖高新区八年级(上)期中数学试卷
2018-2019学年湖北省武汉市东湖高新区八年级(上)期中数学试卷一、选择题(每小题3分,共30分,下列四个答案中,只有一个是正确的)1.(3分)如下字体的四个汉字中, 是轴对称图形的是( )A .B .C .D .2.(3分)下列线段长能构成三角形的是( )A . 3 、 4 、 8B . 2 、 3 、 6C . 5 、 6 、 11D . 5 、 6 、 103.(3分)在平面直角坐标系中, 点(4,1)A -与点B 关于x 轴对称, 则点B 的坐标是( )A .(4,1)B .(4,1)--C .(1,4)D .(4,1)-4.(3分)下列图形中具有稳定性的是( )A .B .C .D .5.(3分)若一个多边形的内角和等于1440︒,则这个多边形是( )A . 四边形B . 六边形C . 八边形D . 十边形6.(3分)如图,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 交于O ,OB OC =,则图中全等三角形共有( )A . 2 对B . 3 对C . 4 对D . 5 对7.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,则1∠等于()A .60︒B .54︒C .56︒D .66︒8.(3分)如图的三角形纸片中,8AB =,6BC =,5AC =,沿过点B 的直线折叠这个三角形, 使点C 落在AB 边上的点E 处, 折痕为BD ,则AED ∆的周长是( )A . 7B . 8C . 11D . 149.(3分)如图,ABC ∆中,BO 平分ABC ∠,CO 平分ACB ∠,MN 经过点O ,与AB 、AC 相交于点M 、N ,且//MN BC ,那么下列说法中:①MOB MBO ∠=∠;②AMN ∆的周长等于AB AC +;③2180A BOC ∠=∠-︒;④连接AO ,则::::AOB AOC BOC S S S AB AC BC ∆∆∆=;正确的有( )A .①②④B .①②③C .①③④D .①②③④10.(3分)已知(0,2)A 、(4,0)B ,点C 在x 轴上, 若ABC ∆是等腰三角形, 则满足这样条件的C 有( )个 .A . 3B . 4C . 5D . 6二、填空题(每小题3分,共18分)11.(3分)已知一个三角形有两条边长度分别是 4 、 9 ,则第三边x 的范围是 .12.(3分)若一个多边形的内角和等于其外角和的2倍,则它是 边形.13.(3分)如图, 锐角三角形ABC 和锐角三角形A B C '''中,AD 、A D ''分别是边BC 、B C ''上的高, 且AB A B ''=,AD A D ''=. 要使ABC ∆≅△A B C ''',则应补充条件: (填 写一个即可)14.(3分)如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限内交于点(,)P a b ,则a 与b 的数量关系是 .15.(3分)如图,Rt ABC ∆中,90C ∠=︒,5AB =,4BC =,3AC =,点I 为Rt ABC ∆三条角平分线的交点, 则点I 到边AB 的距离为 .16.(3分)如图,CA AB ⊥,垂足为A ,24AB =,12AC =,射线BM AB ⊥,垂足为B ,一动点E 从A 点出发以 3 厘米/秒沿射线AN 运动, 点D 为射线BM 上一动点, 随着E 点运动而运动, 且始终保持ED CB =,当点E 经过 秒时,DEB ∆与BCA ∆全等 .。
2018-2019学年湖北省武汉市八年级下期末数学试卷(含答案解析)
2018-2019学年湖北省武汉市硚口区(经开区)八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分) 1.(3分)实数的值在( )A .整数0和1之间B .整数1和2之间C .整数2和3之间D .整数3和4之间2.(3分)下列计算正确篚是( )A .+=B .2+=C .2×=D .2﹣=3.(3分)下列各曲线中表示y 是x 的函数的是( )A .B .C .D .4.(3分)一次函数y =﹣2x +1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限5.(3分)关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是( ) A .对角线互相平分 B .对角线互相垂C .对角线相等D .对角线平分一组对角6.(3分)△ABC 的三边分别为a ,b ,c ,下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③a :b :c =3:4:5.其中能判断△ABC 是直角三角形的条件个数有( ) A .0个B .1个C .2个D .3个7.(3分)某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:这批灯泡的平均使用寿命是()A.112h B.124h C.136h D.148h8.(3分)如图,已知直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,﹣8),则关于x的不等式3x+1<mx+n的解集为()A.x>﹣3B.x<﹣3C.x<﹣8D.x>﹣89.(3分)如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A.B.C.D.10.(3分)如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A.B.C.2D.3二、填空题共6个小题,每小题3分,共18分)11.(3分)二次根式有意义,则x的取值范围是.12.(3分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是.13.(3分)如图,购买“黄金1号”王米种子,所付款金额y元与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则购买1千克“黄金1号”玉米种子需付款元,购买4千克“黄金1号”玉米种子需元.14.(3分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E为AD的中点,则OE的长为.15.(3分)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t <1),则当t=时,△PQF为等腰三角形.16.(3分)在平面直角坐标系中,已知点P(x,0),A(a,0),设线段PA的长为y,写出y关于x的函数的解析式为,若其函数的图象与直线y=2相交,交点的横坐标m满足﹣5≤m≤3,则a的取值范围是.三、解答题(共8小题,共72分)17.(8分)已知一次函数的图象经过点(1,3)与(﹣1,﹣1)(1)求这个一次函数的解析式;(2)试判断这个一次函数的图象是否经过点(﹣,0)18.(8分)如图,在▱ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形19.(8分)考虑下面两种移动电话计费方式(1)直接写出两种计费方式的费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式.(2)求出两种计费方式费用相等的本地通话时间是多少分钟.20.(8分)为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的形统计图和不完整的条形统计图:请根据以上统计图中的信息解答下列问题.(1)植树3株的人数为;(2)扇形统计图中植树为1株的扇形圆心角的度数为;(3)该班同学植树株数的中位数是(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果21.(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?22.(10分)如图1,直线y=kx﹣2k(k<0),与y轴交于点A,与x轴交于点B,AB=2.(1)直接写出点A,点B的坐标;(2)如图2,以AB为边,在第一象限内画出正方形ABCD,求直线DC的解析式;(3)如图3,(2)中正方形ABCD的对角线AC、BD即交于点G,函数y=mx和y=(x≠0)的图象均经过点G,请利用这两个函数的图象,当mx>时,直接写出x的取值范围.23.(10分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;(3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.24.(12分)如图1,直线y=﹣x+6与y轴于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.(1)求点B的坐标;(2)如图2,直线AB上的两点F、G,△DFG是以FG为斜边的等腰直角三角形,求点G 的坐标;(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P、Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.2017-2018学年湖北省武汉市硚口区(经开区)八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.整数0和1之间B.整数1和2之间C.整数2和3之间D.整数3和4之间【解答】解:∵1<<2,∴实数的值在整数1和2之间.故选:B.2.(3分)下列计算正确篚是()A.+=B.2+=C.2×=D.2﹣=【解答】解:∵不能合并,故选项A错误,∵2+不能合并,故选项B错误,∵2×=2,故选项C错误,∵,故选项D正确,故选:D.3.(3分)下列各曲线中表示y是x的函数的是()A.B.C.D.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选:D.4.(3分)一次函数y=﹣2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选:C.5.(3分)关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角【解答】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,∴矩形具备而平行四边形不一定具备的是矩形的对角线相等,故选:C.6.(3分)△ABC的三边分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b﹣c);③a:b:c=3:4:5.其中能判断△ABC是直角三角形的条件个数有()A.0个B.1个C.2个D.3个【解答】解:①∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠B+∠C=180°,∴2∠B=180°,∴∠B=90°,∴△ABC是直角三角形,∴①正确;②a2=(b+c)(b﹣c),∴a2=b2﹣c2,∴a2+c2=b2,∴△BAC是直角三角形,∴②正确;③∵a:b:c=3:4:5,∴设a=3k,b=4k,c=5k,∵a2+b2=25k2,c2=25k2,∴a2+b2=c2,∴△ABC是直角三角形,∴③正确;故选:D.7.(3分)某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:这批灯泡的平均使用寿命是()A.112h B.124h C.136h D.148h【解答】解:这批灯泡的平均使用寿命是=124(h),故选:B.8.(3分)如图,已知直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,﹣8),则关于x的不等式3x+1<mx+n的解集为()A.x>﹣3B.x<﹣3C.x<﹣8D.x>﹣8【解答】解:∵直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,﹣8),∴3a+1=﹣8,解得:a=﹣3,观察图象知:关于x的不等式3x+1<mx+n的解集为x<﹣3,故选:B.9.(3分)如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A.B.C.D.【解答】解:∵∠OAA1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长=,故选:B.10.(3分)如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A.B.C.2D.3【解答】解:如图,作EH⊥x轴于H,连接CE.∵∠AOD=∠ADE=∠EHD=90°,∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,∴∠ADO=∠DEH,∵AD=DE,∴△ADO≌△DEH(AAS),∴OA=DH=OC,OD=EH,∴OD=CH=EH,∴∠ECH=45°,∴点E在直线y=x﹣3上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,∵OC=3,∴OE′=,∴OE的最小值为.故选:A.二、填空题共6个小题,每小题3分,共18分)11.(3分)二次根式有意义,则x的取值范围是x≥5.【解答】解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.12.(3分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是26.【解答】解:数据26出现了3次,次数最多,所以这组数据的众数是26.故答案为:26.13.(3分)如图,购买“黄金1号”王米种子,所付款金额y元与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则购买1千克“黄金1号”玉米种子需付款5元,购买4千克“黄金1号”玉米种子需18元.【解答】解:当0≤x≤2时,设y与x的函数关系式为y=kx,2k=10,得k=5,∴当0≤x≤2时,y与x的函数关系式为y=5x,当x=1时,y=5×1=5,当x>2时,设y与x的函数关系式为y=ax+b,,得,即当x>2时,y与x的函数关系式为y=4x+2,当x=4时,y=4×4+2=18,故答案为:5,18.14.(3分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E为AD的中点,则OE的长为.【解答】解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=4,菱形ABCD的面积为4,∴AO=2,DO=,∠AOD=90°,∵E为AD的中点,∴OE的长为:AD=.故答案为:15.(3分)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=2﹣或时,△PQF为等腰三角形.【解答】解:∵∠ABC=90°,∠ACB=30°,AB=2cm,∴AC=2AB=4cm,BC==2,∵E、F分别是AB、AC的中点,∴EF=BC=cm,BF=AC=2cm,由题意得:EP=t,BQ=2t,∴PF=﹣t,FQ=2﹣2t,分三种情况:①当PF=FQ时,如图1,△PQF为等腰三角形.则﹣t=2﹣2t,t=2﹣;②如图2,当PQ=FQ时,△PQF为等腰三角形,过Q作QD⊥EF于D,∴PF=2DF,∵BF=CF,∴∠FBC=∠C=30°,∵E、F分别是AB、AC的中点,∴∠PFQ=∠FBC=30°,∵FQ=2﹣2t,∴DQ=FQ=1﹣t,∴DF=(1﹣t),∴PF=2DF=2(1﹣t),∵EF=EP+PF=,∴t+2(1﹣t)=,t=;③因为当PF=PQ时,∠PFQ=∠PQF=30°,∴∠FPQ=120°,而在P、Q运动过程中,∠FPQ最大为90°,所以此种情况不成立;综上,当t=2﹣或时,△PQF为等腰三角形.故答案为:2﹣或.16.(3分)在平面直角坐标系中,已知点P(x,0),A(a,0),设线段PA的长为y,写出y关于x的函数的解析式为y=|x﹣a|,若其函数的图象与直线y=2相交,交点的横坐标m满足﹣5≤m≤3,则a的取值范围是﹣3≤a≤1.【解答】解:∵点P(x,0),A(a,0),∴PA=|x﹣a|∴y关于x的函数的解析式为y=|x﹣a|∵y=|x﹣a|的图象与直线y=2相交∴|x﹣a|=2∴x=2+a,x=﹣2+a∵交点的横坐标m满足﹣5≤m≤3∴2+a≤3,﹣2+a≥﹣5∴﹣3≤a≤1故答案为y=|x﹣a|,﹣3≤a≤1三、解答题(共8小题,共72分)17.(8分)已知一次函数的图象经过点(1,3)与(﹣1,﹣1)(1)求这个一次函数的解析式;(2)试判断这个一次函数的图象是否经过点(﹣,0)【解答】解:(1)设一次函数的解析式为:y=kx+b,把点(1,3)与(﹣1,﹣1)代入解析式可得:,解得:k=2,b=1,所以直线的解析式为:y=2x+1;(2)因为在y=2x+1中,当x=﹣时,y=0,所以一次函数的图象经过点(﹣,0).18.(8分)如图,在▱ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠CBF=∠ADE,∵AE⊥BD,CF⊥BD,∴∠CFB=∠AED=90°,∴△AED≌△CFB(AAS).(2)证明:∵△AED≌△CFB,∴AE=CF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∴四边形AFCE是平行四边形.19.(8分)考虑下面两种移动电话计费方式(1)直接写出两种计费方式的费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式.(2)求出两种计费方式费用相等的本地通话时间是多少分钟.【解答】解:(1)由题意可得,方式一:y=30+0.3x=0.3x+30,方式二:y=0.4x,即方式一中费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式是y=0.3x+30,方式二中费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式是y=0.4x;(2)令0.3x+30=0.4x,解得,x=300,答:两种计费方式费用相等的本地通话时间是300分钟.20.(8分)为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的形统计图和不完整的条形统计图:请根据以上统计图中的信息解答下列问题.(1)植树3株的人数为12;(2)扇形统计图中植树为1株的扇形圆心角的度数为72°;(3)该班同学植树株数的中位数是2(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果【解答】解:(1)植树3株的人数为:20÷40%﹣10﹣20﹣6﹣2=12,故答案为:12;(2)扇形统计图中植树为1株的扇形圆心角的度数为:360°×=72°,故答案为:72°;(3)植树的总人数为:20÷40%=50,∴该班同学植树株数的中位数是2,故答案为:2;(4)小明的计算不正确,正确的计算为:=2.4.21.(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?【解答】解:(1)∵80x+60(100﹣x)≤7500,解得:x≤75,∴y=40x+30(100﹣x)+300(65≤x≤75);(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,y随x的增大而增大,所以当x=75时,y有最大值,则购进A种服装75件,B种服装25件;方案2:当a=10时,所以方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,y随x的增大而减小,所以当x=65时,y有最大值,则购进A种服装65件,B种服装35件.22.(10分)如图1,直线y=kx﹣2k(k<0),与y轴交于点A,与x轴交于点B,AB=2.(1)直接写出点A,点B的坐标;(2)如图2,以AB为边,在第一象限内画出正方形ABCD,求直线DC的解析式;(3)如图3,(2)中正方形ABCD的对角线AC、BD即交于点G,函数y=mx和y=(x≠0)的图象均经过点G,请利用这两个函数的图象,当mx>时,直接写出x的取值范围.【解答】解:(1)∵直线y=kx﹣2k(k<0),与y轴交于点A,与x轴交于点B,∴A(0,﹣2k),B(2,0),∵AB=2,∴4+4k2=20,∴k2=4,∵k<0,∴k=﹣2,∴A(0,4),B(2,0).(2)如图2中,作CH⊥x轴于H.∵四边形ABCD是正方形,∴AB=BC,∠AOB=∠ABC=∠BHC=90°,∴∠ABO+∠CBH=90°,∠CBH+∠BCH=90°,∴∠ABO=∠BCH,∴△AOB≌△BHC,∴CH=OB=2,BH=OA=4,∴C(6,2),∵CD∥AB,∴可以假设直线CD的解析式为y=﹣2x+b,把C(6,2)代入得到b=14,∴直线CD的解析式为y=﹣2x+14.(3)观察图象可知直线y=mx与y=的交点坐标为(3,3)或(﹣3,﹣3),∴mx>时,x的取值范围为﹣3<x<0或x>3.23.(10分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;(3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.【解答】解:(1)BE=AF,BE⊥AF,理由:四边形ABCD是正方形,∴BA=AD=CD,∠BAE=∠D=90°,∵DE=CF,∴AE=DE,∴△BAE≌△ADF(SAS),∴BE=AF,∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAE+∠AEB=90°,∴∠BGA=90°,∴BE⊥AF,(2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,在Rt△ADF中,根据勾股定理得,AF=,∵S△ADF=AD×FD=AD×DN,∴DN=,∵△BAE≌△ADF,∴S△BAE =S△ADF,∵BE=AF,∴AG=DN,易证,△AEG≌△DEM(AAS),∴AG=DM,∴DN=DM,∵DM⊥BE,DN⊥AF,∴GD平分∠MGN,∴∠DGN=∠MGN=45°,∴△DGN是等腰直角三角形,∴GD=DN=;(3)如图3,由(2)知,GD=,AF=,AG=DN=,∴FG=AF﹣AG=过点G作GH∥AQ交FQ于H,∴GH∥DF,∵FQ∥DG,∴四边形DFHG是平行四边形,∴FH=DG=,∵GH∥AQ,∴△FGH∽△FAQ,∴,∴,∴FQ=24.(12分)如图1,直线y=﹣x+6与y轴于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.(1)求点B的坐标;(2)如图2,直线AB上的两点F、G,△DFG是以FG为斜边的等腰直角三角形,求点G 的坐标;(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P、Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.【解答】解:(1)对于直线y=﹣x+6,令x=0,得到y=6,可得A(0,6),令y=0,得到x=8,可得D(8,0),∴AC=AO=6,OD=8,AD==10,∴CD=AD﹣AC=4,设BC=OB=x,则BD=8﹣x,在Rt△BCD中,∵BC2+CD2=BD2,∴x2+42=(8﹣x)2,∴x=3,∴B(3,0).(2)设直线AB的解析式为y=kx+6,∵B(3,0),∴3k+6=0,∴k=﹣2,∴直线AB的解析式为y=﹣2x+6,作GM⊥x轴于M,FN⊥x轴于N,∵△DFG是等腰直角三角形,∴DG=FD,∠1=∠2,∠DMG=∠FND=90°,∴△DMG≌△FND(AAS),∴GM=DN,DM=FN,设GM=DM=m,DM=FN=n,∵G、F在直线AB上,∴,解得,∴G(2,2).(3)如图,设Q(a,﹣a+6),∵PQ∥x轴,且点P在直线y=﹣2x+6上,∴P(a,﹣a+6),∴PQ=a,作QH⊥x轴于H.∴DH=a﹣8,QH=a﹣6,∴=,由勾股定理可知:QH:DH:DQ=3:4:5,∴QH=DQ=a,∴a=a﹣6,∴a=16,∴Q(16,﹣6),P(6,﹣6),∵ED∥PQ,ED=PQ,D(8,0),∴E(﹣2,0).。
2018-2019学年八年级(下)期中数学试卷1 解析版
2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。
2018-2019学年湖北省武汉市洪山区八年级(下)期末数学试卷解析版
2018-2019学年湖北省武汉市洪山区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)使二次根式有意义的a的取值范围是()A.a≥﹣2B.a≥2C.a≤2D.a≤﹣22.(3分)下列各式中,化简后能与合并的是()A.B.C.D.3.(3分)一组数据2、3、4、6、6、7的众数是()A.3B.4C.5D.64.(3分)已知一次函数y=(k﹣1)x.若y随x的增大而增大,则k的取值范围是()A.k<1B.k>1C.k<0D.k>05.(3分)在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2B.3C.D.56.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A.M B.N C.P D.Q7.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8 8.(3分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,AC=6,则菱形ABCD的面积为()A.6B.12C.15D.109.(3分)如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为(a、b为正整数),则a+b的值为()A.10B.11C.12D.1310.(3分)如图,已知平行四边形ABCD,AB=6,BC=9,∠A=120°,点P是边AB 上一动点,作PE⊥BC于点E,作∠EPF=120°(PF在PE右边)且始终保持PE+PF =3,连接CF、DF,设m=CF+DF,则m满足()A.m≥3B.m≥6C.3≤m<9+3D.3<m<3+9二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若正比例函数y=kx的图象经过点(1,2),则k=.12.(3分)已知y=,则x+y的值为.13.(3分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差S2甲乙丙丁(秒)30302828S2 1.21 1.05 1.21 1.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择.14.(3分)小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时,他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了2分钟后沿原路按原速返回.设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象小明从家出发,经过分钟在返回途中追上爸爸.15.(3分)如图,已知△ABC是等边三角形,点D在边BC上,以AD为边向左作等边△ADE,连结BE,作BF∥AE交AC于点F,若AF=2,CF=4,则AE=.16.(3分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线时,若AD=4,DG=2,则CE =.三、解答题(共8题,共72分)17.(8分)计算:18.(8分)如图,已知正方形ABCD,点E、F分别在边BC、CD上,若BE=CF,判断AE、BF的关系并证明.19.(8分)为弘扬中华传统文化,了解学生整体数学阅读能力,某校组次阅读理解大赛的初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图分组/分频数频率A组50≤x<6060.12B组60≤x<70a0.28C组70≤x<80160.32D组80≤x<90100.20E组90≤x≤10040.08(1)表中的a=;抽取部分学生的成绩的中位数在组;(2)把上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,那么请你估计该校进入决赛的学生大约有多少人.20.(8分)如图在平面直角坐标系中直线AB:y=kx+b经过A(,﹣1),分别交x轴、直线y=x、y轴于点B、P、C,已知B(2,0)(1)求直线AB的解析式;(2)直线y=m分别交直线AB于点E、交直线y=x于点F,若点F在点E的右边,说明m满足的条件.21.(8分)如图,在8×8的网格中,网格线的公共点称为格点已知格点A(1,1)、B(6,1),如图所示线段AC上存在另外一个格点(1)建立平面直角坐标系,并标注x轴、y轴、原点;(2)直接写出线段AC经过的另外一个格点的坐标:;(3)用无刻度的直尺画图,运用所学的三角形全等的知识画出经过格点D的射线BD,使BD⊥AC(保留画图痕迹),并直接写出点D的坐标:.22.(10分)武汉某文化旅游公司为了在军运会期间更好地宣传武汉,在工厂定制了一批具有浓郁的武汉特色的商品.为了了解市场情况,该公司向市场投放A、B型商品共250件进行试销,A型商品成本价160元/件,B商品成本价150元/件,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设投放A型商品x件,该公司销售这批商品的利润y元.(1)直接写出y与x之间的函数关系式:.(2)为了使这批商品的利润最大,该公司应该向市场投放多少件A型商品?最大利润是多少?(3)该公司决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,当该公司售完这250件商品并捐献资金后获得的最大收益为18000元时,求a的值23.(10分)已知正方形ABCD,直线l垂直平分线段BC,点M是直线l上一动点,连结BM,将线段BM绕点M顺时针旋转90°得到线段MN,连接BN.(1)如图1,点M在正方形内部,连接NC,求∠BCN的度数;(2)如图2,点M在正方形内部,连接ND,若ND⊥MN,求的值;(3)连结DM,若DM⊥BN,直接写出=.24.(12分)已知直线l1:y=kx+2k与函数y=|x﹣a|+a(1)直线l1经过定点P,直接写出点P的坐标;(2)当a=1时,直线与函数y=|x﹣a|+a的图象存在唯一的公共点,在图1中画出y=|x ﹣a|+a的函数图象并直接写出k满足的条件;(3)如图2,在平面直角坐标系中存在正方形ABCD,已知A(2,2)、C(﹣2,﹣2).请认真思考函数y=|x﹣a|+a的图象的特征,解决下列问题:①当a=﹣1时,请直接写出函数y=|x﹣a|+a的图象与正方形ABCD的边的交点坐标;②设正方形ABCD在函数y=|x﹣a|+a的图象上方的部分的面积为S,求出S与a的函数关系式.2018-2019学年湖北省武汉市洪山区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)使二次根式有意义的a的取值范围是()A.a≥﹣2B.a≥2C.a≤2D.a≤﹣2【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【解答】解:根据题意得:2﹣a≥0,解得a≤2.故选:C.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(3分)下列各式中,化简后能与合并的是()A.B.C.D.【分析】先化成最简二次根式,再根据同类二次根式的定义判断即可.【解答】解:A、=2,不能与合并;B、=2,能与合并;C、=,不能与合并;D、=,不能与合并;故选:B.【点评】本题考查了同类二次根式的应用,注意:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式.3.(3分)一组数据2、3、4、6、6、7的众数是()A.3B.4C.5D.6【分析】众数是一组数据中出现次数最多的数据,根据众数的定义求出这组数的众数即可.【解答】解:数据6出现了两次最多为众数.故选:D.【点评】本题属于基础题,考查了确定一组数据的众数的能力.4.(3分)已知一次函数y=(k﹣1)x.若y随x的增大而增大,则k的取值范围是()A.k<1B.k>1C.k<0D.k>0【分析】根据图象的增减性来确定(k﹣1)的取值范围,从而求解.【解答】解:∵一次函数y=(k﹣1)x,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选:B.【点评】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.5.(3分)在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2B.3C.D.5【分析】根据勾股定理列式求出AB的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵AC=4cm,BC=3,∴AB==5,∵D为斜边AB的中点,∴CD=AB=×5=.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A.M B.N C.P D.Q【分析】由条件可判断出直线所经过的象限,再进行判断即可.【解答】解:∵在y=kx+2(k<0)中,令x=0可得y=2,∴一次函数图象一定经过第一、二象限,∵k<0,∴y随x的增大而减小,∴一次函数不经过第三象限,∴其图象不可能经过Q点,故选:D.【点评】本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b <0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.7.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8【分析】由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.【解答】解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其斜率不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=8 ③把③代入②,解得y=﹣2x+8,即直线AB的解析式为y=﹣2x+8.故选:B.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.8.(3分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,AC=6,则菱形ABCD的面积为()A.6B.12C.15D.10【分析】由菱形的性质和等腰三角形的性质可得AF=FC=3,BF⊥AC,由三角形中位线定理可求BC=4,由勾股定理可求BF的长,即可求解.【解答】解:如图,连接BF∵四边形ABCD是菱形∴AB=BC,且点F是AC中点∴AF=FC=3,BF⊥AC∵E,F分别是AB,AC的中点∴BC=2EF=4∴BF==∴S=×AC×BF=3△ABC=6∴菱形ABCD的面积=2S△ABC故选:A.【点评】本题考查了菱形的性质,三角形中位线定理,等腰三角形的性质,勾股定理,求FB的长是本题的关键.9.(3分)如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为(a、b为正整数),则a+b的值为()A.10B.11C.12D.13【分析】连接MN,FH,由勾股定理可求FH的长,由三角形中位线定理可求MN的长,由题意列出等式可求a,b的值,即可求解.【解答】解:如图,连接MN,FH,∵正方形EFGH的边长为∴FH=∵M,N是EF,EH的中点∴MN=∵AD=1∴2×+=1∴4a﹣2﹣2b+a﹣4=0,且a、b为正整数∴a=4,b=7∴a+b=11故选:B.【点评】本题考查了中点四边形,正方形的性质,勾股定理,三角形中位线定理,求出MN的长是本题的关键.10.(3分)如图,已知平行四边形ABCD,AB=6,BC=9,∠A=120°,点P是边AB 上一动点,作PE⊥BC于点E,作∠EPF=120°(PF在PE右边)且始终保持PE+PF =3,连接CF、DF,设m=CF+DF,则m满足()A.m≥3B.m≥6C.3≤m<9+3D.3<m<3+9【分析】根据平行四边形性质及动点P的运动规律可判断出:当点P与A重合时,CF+DF 的值最大;当点P与点B重合时,CF+DF的值最小;再分两种情形分别求出CF+DF的最大值和最小值即可.【解答】解:如图1,∵平行四边形ABCD,∴AD∥BC,AD=BC=9,∵∠A=120°,AB=6,∴∠B=60°,∵PE⊥BC,∴∠PEB=90°,∴∠BPE=30°,∵∠EPF=120°,∴∠APF=30°,∴当点P与A重合时,CF+DF的值最大;当点P与点B重合时,CF+DF的值最小;如图2,当点P与A重合时,作AE⊥BC于E,此时,点F与A重合,CF+DF的值最大;∵平行四边形ABCD,∴AD∥BC,AD=BC=9,∵AE⊥BC,∴∠AEB=∠AEC=90°,∵∠A=120°,AB=6,∴∠B=60°,∴AE=AB•sin∠B=6sin60°=3,BE=AB•cos∠B=6cos60°=3,∴CE=BC﹣BE=6﹣3=6,在Rt△ACE中,AC===3,∴CA+DA=3+9,∴m<3+9,如图3,当点P与点B重合时,此时CF+DF的值最小,作AG⊥BC于G,过F作TH⊥BC于H交AD于T,∵平行四边形ABCD,∴AD∥BC,AD=BC=9,∵AG⊥BC,∴AG⊥AD,∴∠AGB=∠AGC=∠DAG=90°,∵TH⊥BC,∴∠GHT=90°,∴AGHT是矩形,∴TH=AG=3,∵BF=PE+PF=3,∠ABF=30°,∴∠FBH=30°,∴FH=BF•sin∠FBH=3sin30°=,BH=BF•cos∠FBH=3cos30°=,∴CH=BC﹣BH=9﹣=,TF=TH﹣FH=3﹣=,DT=∴CF===3,DF===3,∴CF+DF的最小值=3+3,∵PF在PE右边,即点P不与点A、B重合,∴3+3<CF+DF<3+9,即3+3<m<3+9,故选:D.【点评】本题考查了平行四边形性质,直角三角形性质,勾股定理,特殊角三角函数值等知识点,解题时要分析出CF+DF的最大值和最小值.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若正比例函数y=kx的图象经过点(1,2),则k=2.【分析】由点(1,2)在正比例函数图象上,根据一次函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.【解答】解:∵正比例函数y=kx的图象经过点(1,2),∴2=k×1,即k=2.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×1.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.12.(3分)已知y=,则x+y的值为1.【分析】根据二次根式有意义的条件即可求出x与y的值.【解答】解:由题意可知:x﹣1≥0且1﹣x≥0,∴x=1,∴y=0,∴x+y=1+0=1,故答案为:1【点评】本题考查二次根式,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.13.(3分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差S2甲乙丙丁(秒)30302828S2 1.21 1.05 1.21 1.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择丁.【分析】根据平均数与方差的意义,选择平均值较小且方差较小的同学参加比赛即可.【解答】解:∵丙、丁还原魔方用时比甲、乙用时少,又丁的方差小于丙的方差,∴还原魔方用时少又发挥稳定的同学是丁.故答案为丁.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.也考查了平均数.14.(3分)小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时,他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了2分钟后沿原路按原速返回.设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象小明从家出发,经过20分钟在返回途中追上爸爸.【分析】由题意得点B的坐标为(12,2400),小明骑车返回用时也是10分钟,因此点D的坐标为(22,0),小明的爸爸返回的时间为2400÷96=25分,点F的坐标(25,0)因此可以求出BD、EF的函数关系式,由关系式求出交点的横坐标即可【解答】解:由题意得:B(12,2400),D(22,0),F(25,0),E(0,2400)设直线BD、EF的关系式分别为s1=k1t+b1,s2=k2t+b2,把B(12,2400),D(22,0),F(25,0),E(0,2400)代入相应的关系式得:,,解得:,,直线BD、EF的关系式分别为s1=﹣240t+5280,s2=﹣96t+2400,当s1=s2时,即:﹣240t+5280=﹣96t+2400,解得:t=20,故答案为:20.【点评】考查一次函数的图象和性质、二元一次方程组的应用等知识,正确的识图,得出点的坐标求出直线的关系式是解决问题的首要问题.15.(3分)如图,已知△ABC是等边三角形,点D在边BC上,以AD为边向左作等边△ADE,连结BE,作BF∥AE交AC于点F,若AF=2,CF=4,则AE=2.【分析】证明△ADC≌△BFA全等,即可得到BF=AD,可证明四边形AEBF为平行四边形,求得BF的长即可得到AE的长度.【解答】解:∵△ABC和△ADE是等边三角形∴∠EAD=∠EAB+∠BAD=60°∠BAC=∠DAC+∠BAD=60°∴∠EAB=∠DAC∵AE∥BF∴∠EAB=∠ABF∴∠ABF=∠CAD∴在△ADC和△BFA中,,∴△ADC≌△BFA(ASA)∴BF=AD=AE∵AE∥BF且AE=BF∴四边形AEBF为平行四边形∴2(52﹣BF2)=48,解得BF=2∴BF=AE=2故答案为2【点评】本题主要考查三角形全等知识点,熟练掌握三角形全等条件是解答本题的关键.16.(3分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线时,若AD=4,DG=2,则CE=2或2.【分析】分两种情况,①当点G在线段BD的延长线上时和②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.【解答】解:①当点G在线段BD的延长线上时,如图所示.过G作GM⊥AD于M.∵BD是正方形ABCD的对角线,∴∠ADB=∠GDM=45°.∵GM⊥AD,DG=2,∴MD=MG=2,∴AM=AD+DM=6在Rt△AMG中,由勾股定理,得AG==2,∴CE=AG=2;②当点G在线段BD上时,如图2所示,过G作GM⊥AD于M.∵BD是正方形ABCD的对角线,∴∠ADG=45°∵GM⊥AD,DG=2,∴MD=MG=2,∴AM=AD﹣MG=2在Rt△AMG中,由勾股定理,得AG==2,∴CE=AG=2,故CE的长为2或2.故答案为:2或2【点评】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的性质和判定,勾股定理,判定三角形全等是解本题的关键.三、解答题(共8题,共72分)17.(8分)计算:【分析】可运用平方差公式,直接计算出结果.【解答】解:原式==12﹣2=10.【点评】本题考查了乘法的平方差公式.掌握平方差公式的结构特点是解决本题的关键.18.(8分)如图,已知正方形ABCD,点E、F分别在边BC、CD上,若BE=CF,判断AE、BF的关系并证明.【分析】根据正方形的性质可以证明△ABE≌△BCF,可以得出AE=BF,∠BAE=∠CBF,再由直角三角形的性质就可以得出∠BGE=90°,从而得出结论.【解答】解:AE=BF且AE⊥BF.理由是:∵四边形ABCD是正方形,∴AB=BC=CD,∠ABC=∠BCD=90°.在△ABE与△BCF中,∴△ABE≌△BCF(SAS)∴AE=BF,∠BAE=∠CBF.∵∠ABE=90°∴∠BAE+∠AEB=90°∴∠CBF+∠AEB=90°∴∠BGE=90°∴AE⊥BF.∴AE=BF且AE⊥BF.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,直角三角形的性质的运用.在解答时求出△ABE≌△BCF是关键.19.(8分)为弘扬中华传统文化,了解学生整体数学阅读能力,某校组次阅读理解大赛的初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图分组/分频数频率A组50≤x<6060.12B组60≤x<70a0.28C组70≤x<80160.32D组80≤x<90100.20E组90≤x≤10040.08(1)表中的a=14;抽取部分学生的成绩的中位数在C组;(2)把上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,那么请你估计该校进入决赛的学生大约有多少人.【分析】(1)由A组频数及其频率可得总人数,总人数乘以B组频率可得a的值,根据中位数的定义可得答案;(2)根据以上所求数据可补全图形;(3)利用样本估计总体思想求解可得.【解答】解:(1)∵样本容量为6÷0.12=50,∴a=50×0.28=14,∵被调查的总人数为50,其中位数为第25、26个数据的平均数,而第25、26个数据均落在C组,∴这组数据的中位数落在C组,故答案为:14、C;(2)补全频数分布直方图如下:(3)估计该校进入决赛的学生大约有1000×=80(人).【点评】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.20.(8分)如图在平面直角坐标系中直线AB:y=kx+b经过A(,﹣1),分别交x轴、直线y=x、y轴于点B、P、C,已知B(2,0)(1)求直线AB的解析式;(2)直线y=m分别交直线AB于点E、交直线y=x于点F,若点F在点E的右边,说明m满足的条件.【分析】(1)将A、B两点的坐标代入y=kx+b,利用待定系数法即可求出直线AB的解析式;(2)设点E(x E,m),点F(x F,m),将E点坐标代入直线AB的解析式,F点坐标代入直线线y=x,得出E、F两点横坐标的不等式,再根据点F在点E的右边,列出不等式,求解即可.【解答】解:(1)∵直线AB:y=kx+b经过A(,﹣1),B(2,0),∴,解得,∴直线AB的解析式为y=﹣2x+4;(2)如图,设点E(x E,m),点F(x F,m),则m=﹣2x E+4,m=x F,∴x E=﹣m+2,x F=m.∵点F在点E的右边,∴m>﹣m+2,解得m>,即m满足的条件是m>.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了待定系数法求一次函数的解析式.21.(8分)如图,在8×8的网格中,网格线的公共点称为格点已知格点A(1,1)、B(6,1),如图所示线段AC上存在另外一个格点(1)建立平面直角坐标系,并标注x轴、y轴、原点;(2)直接写出线段AC经过的另外一个格点的坐标:(5,4);(3)用无刻度的直尺画图,运用所学的三角形全等的知识画出经过格点D的射线BD,使BD⊥AC(保留画图痕迹),并直接写出点D的坐标:(3,5).【分析】(1)根据要求作出平面直角坐标系即可.(2)观察图形即可找到点E,写出点E坐标即可.(3)构造全等三角形,利用全等三角形的性质解决问题即可.【解答】解:(1)平面直角坐标系如图所示.(2)符合条件的点E坐标为(5,4).故答案为(5,4).(3)射线BD如图所示,D(3,5).故答案为(3,5).【点评】本题考查作图﹣应用与设计,解题的关键是灵活运用所学知识解决问题,学会构造全等三角形,利用全等三角形的性质解决直角问题,属于中考常考题型.22.(10分)武汉某文化旅游公司为了在军运会期间更好地宣传武汉,在工厂定制了一批具有浓郁的武汉特色的商品.为了了解市场情况,该公司向市场投放A、B型商品共250件进行试销,A型商品成本价160元/件,B商品成本价150元/件,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设投放A型商品x件,该公司销售这批商品的利润y元.(1)直接写出y与x之间的函数关系式:y=10x+17500.(2)为了使这批商品的利润最大,该公司应该向市场投放多少件A型商品?最大利润是多少?(3)该公司决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,当该公司售完这250件商品并捐献资金后获得的最大收益为18000元时,求a的值【分析】(1)根据题意即可得出y与x之间的函数关系式;(2)根据题意得出x的取值范围,再根据一次函数的性质解答即可;(3)根据题意得y=10x+17500﹣ax=(10﹣a)x+17500,再根据一次函数的性质解答即可.【解答】解:(1)根据题意得,y=(240﹣160)x+(220﹣150)×(250﹣x),即y=10x+17500.故答案为:y=10x+17500;(2)由题意可知80≤x≤250﹣x,即80≤x≤125,由(1)的结论可知y随x的增大而增大,当x=125时,y=1250+17500=18750,∴该公司应该向市场投放125件A型商品,最大利润,18750元;(3)根据题意可知一共捐出ax元,∴y=10x+17500﹣ax=(10﹣a)x+17500,当10﹣a<0时,y=(10﹣a)x+17500的最大值小于17500,当10﹣a>0时,x=125时,y有最大值,即125(10﹣a)=18000﹣17500,∴a=6,即满足条件时a的值为6.【点评】本题考查了一次函数的应用识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.23.(10分)已知正方形ABCD,直线l垂直平分线段BC,点M是直线l上一动点,连结BM,将线段BM绕点M顺时针旋转90°得到线段MN,连接BN.(1)如图1,点M在正方形内部,连接NC,求∠BCN的度数;(2)如图2,点M在正方形内部,连接ND,若ND⊥MN,求的值;(3)连结DM,若DM⊥BN,直接写出=或.【分析】(1)如图1中,设直线l交BC于K.在直线l上取一点O,使得KO=BK.连接OB,OC,ON.证明△KBM∽△OBN,推出∠BKM=∠BON=90°,可得C,O,N 共线,即可解决问题.(2)如图2中,作CK⊥DN于K,在KC上取一点J,使得KJ=DK,连接DJ.首先证明CN=CD,设DK=NK=a,则DJ=a,利用勾股定理求出CD2,即可解决问题.(3)分两种情形:如图3﹣1中,当点M在BC的下方时,设DM交BN于K.如图3﹣2中,当点M在正方形内部时,同法可证△BDN是等边三角形.证明△BDN是等边三角形即可解决问题.【解答】解:(1)如图1中,设直线l交BC于K.在直线l上取一点O,使得KO=BK.连接OB,OC,ON.∵△BMN,△BOK都是等腰直角三角形,∴∠OBK=∠MBN=45°,OB=BK,BN=BM,∴∠KBN=∠OBB,==,∴△KBM∽△OBN,∴∠BKM=∠BON=90°,∵OK=BK=CK,∴∠BOC=90°,∴∠CON=180°,∴C,O,N共线,∴∠NCB=45°.(2)如图2中,作CK⊥DN于K,在KC上取一点J,使得KJ=DK,连接DJ.∵BC=CD,∠NCB=∠NCD,CN=CN,∴△NCB≌△NCD,∴∠CNB=∠CND,∵DN⊥MN,∴∠DNM=90°,∵∠BNM=45°,∴∠BND=135°,∴∠CND=∠CNB=67.5°,∴∠CDN=67.5°,∴∠CND=∠CDN,∵CK⊥DN,∴DK=NK,设DK=NK=a,则DJ=a,∵∠DJK=∠JCD+∠CDJ=45°,∠JCD=22.5°,∴∠JCD=∠JDC,∴DJ=JC=a,∴CD2=DK2+CK2=a2+(a+a)2=(4+2)a2,∵DN2=4a2,∴==2﹣.(3)如图3﹣1中,当点M在BC的下方时,设DM交BN于K.∵MB=MN.DM⊥BM,∴BK=KN,∴DB=DN,∵NC⊥BD,平分BD,∴ND=NB,∴DB=DN=BN,∴△DBN是等边三角形,设MK=BK=KN=a,则DK=BK=a,∴==.如图3﹣2中,当点M在正方形内部时,同法可证△BDN是等边三角形.设设MK=BK=KN=a,则DK=BK=a,∴==.综上所述,的值为或.故答案为或.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形或全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.24.(12分)已知直线l1:y=kx+2k与函数y=|x﹣a|+a(1)直线l1经过定点P,直接写出点P的坐标;(2)当a=1时,直线与函数y=|x﹣a|+a的图象存在唯一的公共点,在图1中画出y=|x ﹣a|+a的函数图象并直接写出k满足的条件;(3)如图2,在平面直角坐标系中存在正方形ABCD,已知A(2,2)、C(﹣2,﹣2).请认真思考函数y=|x﹣a|+a的图象的特征,解决下列问题:①当a=﹣1时,请直接写出函数y=|x﹣a|+a的图象与正方形ABCD的边的交点坐标;②设正方形ABCD在函数y=|x﹣a|+a的图象上方的部分的面积为S,求出S与a的函数关系式.【分析】(1)y=kx+2k=k(x+2),即可求解;(2)临界点有以下三种情况:直线过点A(1,1)、直线与图象右侧直线平行、直线与图象左侧直线平行,分别求解即可;(3)分当图象与函数无交点、点T在AD上、点T在边CD上、点T与点C重合三种情况,分别求解即可.【解答】解:(1)y=kx+2k=k(x+2),∴直线经过定点(﹣2,0),∴P(﹣2,0);(2)当a=1时,y=|x﹣1|+1,函数图象如下:直线与函数y=|x﹣a|+a的图象存在唯一的公共点,有以下三种情况:①当直线过点A(1,1)时,将点A的坐标代入y=kx+2k得:1=3k,解得:k=;②k=1直线和函数恰好有一个交点,且直线与图象右侧直线平行,故当k≥1时,直线和函数恰好有一个交点;③k=﹣1直线与图象左侧直线平行,直线和函数恰好没有交点,且故当k<﹣1时,直线和函数恰好没有交点;综上,k=或k≥1或k<﹣1;(3)如下图,图象的顶点为H (a ,a ),函数与正方形的交点为点T 、点A ,①当图象与函数无交点时,S =0,a >2;②当点T 在AD 上时,如图2(左),此时0<a ≤2,过点H 作HM ⊥AD 于点M ,则S =×MH ×AD =(2﹣a )×2×(2﹣a )=a 2﹣4a +4;③当点T 在边CD 上时,此时﹣2<a ≤0,连接HC ,S =S △ACD ﹣S △THC =8﹣×(2﹣a )(2﹣a )=﹣a 2﹣4a +4;④当点T 与点C 重合时,S =8;综上,S =.【点评】本题考查的是一次函数综合运用,涉及到函数平移、正方形性质、图形的面积计算等,正确理解题意,分情况作图,是本题解题的关键.。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
湖北省武汉二中广雅中学2018-2019学年八年级(下)段测数学试卷(五) 解析版
2018-2019学年湖北省武汉二中广雅中学八年级(下)段测数学试卷(五)一.选择题(共10小题)1.二次根式中,字母a的取值范围是()A.a<1B.a≤1C.a≥1D.a>12.下列运算正确的是()A.+=B.﹣=C.×=3D.÷=4 3.下列二次根式,最简二次根式是()A.B.C.D.4.四边形ABCD对角线互相垂直,顺次连接四边形ABCD四边中点所得到的四边形是()A.一般的平行四边形B.矩形C.菱形D.正方形5.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:16.正方形和矩形都具有而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直7.如图,等腰Rt△ACD,斜边AD=4,分别以的边AD、AC、CD为直径画半圆,所得两个月形图案AGCE和DHCF的面积之和是()A.4B.4πC.2πD.8.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE =CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.79.如图,已知△ABC中,AC=BC,∠ACB=90°.直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC、BC于点D,E两点.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),给出以下个结论:①CD=BE;②AD2+BE2=DE2;③四边形CDFE 不可能是正方形;④△DFE是等腰直角三角形;⑤S四边形CDEF=S△ABC,上述结论正确的个数为()A.2B.3C.4D.510.在面积为6的平行四边形ABCD中,过点A作AE⊥BC于点E,作AF⊥CD于F,若AB=3,BC=2,则CE+CF的值为()A.10+5B.2+C.10+5或2+D.10+5或5﹣10二.填空题(共6小题)11.(2)2=,=,()﹣1=.12.当x=﹣1,代数式x2+2x+3的值是.13.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=.14.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式.15.如图,正方形ABCD中,E是AD上一点,F是AB延长线上一点,DE=BF.点G,H分别在边AB、CD上,且GH=,GH交EF于M.若∠EMH=45°,则EF的长为16.如图,∠ABC=90°,AB=BC,点P在BC边上,CP>BP,点D为AC中点,AB边上有一点N,使△BPN的周长等于BC的长,若DP=2,DN=3,则AN2+CP2的值为.三.解答题(共8小题)17.计算:(1)﹣+;(2)2.18.如图,在▱ABCD中,AH⊥BD于H,CG⊥BD于G,连接CH和AG,求证:∠1=∠2.19.如图1,每个小正方形的边长都为1,点A、B、C在正方形网格的格点上,AB=5,AC =2,BC=.(1)请在网格中画出△ABC.(2)如图2,直接写出:①AC=,BC=.②△ABC的面积为.③AB边上的高为.20.已知三角形三边为a、b、c,其中a、b两边满足a2﹣12a+36+=0.(1)求这个三角形的最大边c的取值范围.(2)已知三角形三边为a、b、c,且满足,求这个三角形的周长.21.如图,在▱ABCD中,AB=6,BC=4,∠B=60°.点E、F分别是AB、CD上的点,将▱ABCD沿EF折叠,得到四边形EFGC,点A、D的对应点分别为C、G.(1)求证:CE=CF.(2)求S△CEF.22.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE 和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.23.如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交BE,BF于M,N,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE=,正方形ABCD的边长=;(2)如图2,将∠AED绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.参考答案与试题解析一.选择题(共10小题)1.二次根式中,字母a的取值范围是()A.a<1B.a≤1C.a≥1D.a>1【分析】根据二次根式的性质,被开方数大于或等于0,即可求a的取值范围.【解答】解:根据题意得:a﹣1≥0,解得a≥1.故选C.2.下列运算正确的是()A.+=B.﹣=C.×=3D.÷=4【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法对C进行判断;根据二次根式的除法对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2﹣=,所以B选项正确;C、原式==,所以C选项错误;D、原式==2,所以D选项错误.故选:B.3.下列二次根式,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=,故B不是最简二次根式;(D)原式=2,故D不是最简二次根式;故选:C.4.四边形ABCD对角线互相垂直,顺次连接四边形ABCD四边中点所得到的四边形是()A.一般的平行四边形B.矩形C.菱形D.正方形【分析】根据四边形对角线互相垂直,运用三角形中位线平行于第三边证明四个角都是直角,判断是矩形.【解答】解:如图,∵E、F、G、H分别为各边中点,∴EF∥GH∥AC,EF=GH=AC,EH=FG=BD,EH∥FG∥BD,∵DB⊥AC,∴EF⊥EH,∴四边形EFGH是矩形.故选:B.5.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:1【分析】根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.【解答】解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选:C.6.正方形和矩形都具有而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直【分析】分别根据正方形、矩形、菱形的性质进行判断即可.【解答】解:正方形的对角线互相垂直、平分、相等且平分一组对角,矩形的对角线相等且平分,菱形的对角线互相垂直平分且平分每一组对角,∴正方形和矩形都具有而菱形不一定具有的是对角线相等,故选:B.7.如图,等腰Rt△ACD,斜边AD=4,分别以的边AD、AC、CD为直径画半圆,所得两个月形图案AGCE和DHCF的面积之和是()A.4B.4πC.2πD.【分析】由勾股定理可得AC2+CD2=AD2,然后确定出S半圆ACD=S半圆AEC+S半圆CFD,从而得证.【解答】解:∵△ACD是直角三角形,∴AC2+CD2=AD2,∵以等腰Rt△ACD的边AD、AC、CD为直径画半圆,∴S半圆ACD=•AD2,S半圆AEC=•AC2,S半圆CFD=•CD2,∴S半圆ACD=S半圆AEC+S半圆CFD,∴所得两个月型图案AGCE和DHCF的面积之和=Rt△ACD的面积=×2×4=4.故选:A.8.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE =CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.7【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD =AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF =∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF =BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.9.如图,已知△ABC中,AC=BC,∠ACB=90°.直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC、BC于点D,E两点.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),给出以下个结论:①CD=BE;②AD2+BE2=DE2;③四边形CDFE 不可能是正方形;④△DFE是等腰直角三角形;⑤S四边形CDEF=S△ABC,上述结论正确的个数为()A.2B.3C.4D.5【分析】连接CF,如图,根据等腰直角三角形的性质得AC=BC,∠ACB=90°.点F 是AB中点,先证明△AFD≌△CFE,则AD=CE,DF=EF,于是可对①②④⑤进行判断;由于FD⊥AC时,四边形CDFE为矩形,利用FE=FD可判断四边形CDFE是正方形,则可对③进行判断.【解答】解:连接CF,如图,∵AC=BC,∠ACB=90°.点F是AB中点,∴CF=AF=BF,CF⊥AB,∠A=∠BCF=45°,∵∠AFD+∠CFD=90°,∠CFD+∠CFE=90°,∴∠AFD=∠CFE,∴△AFD≌△CFE(ASA),∴AD=CE,DF=EF,∴CD=BE,所以①正确;在Rt△CDE中,CE2+CD2=DE2,∴AD2+BE2=DE2;所以②正确;当FD⊥AC时,四边形CDFE为矩形,而FE=FD,则此时四边形CDFE是正方形,所以③错误;∵DF=EF,∠DFE=90°,∴△DFE是等腰直角三角形,所以④正确;∵S四边形CDEF=S△CDF+S△CEF,而△AFD≌△CFE,∴S四边形CDEF=S△CDF+S△ADF=S△ACF,∴S四边形CDEF=S△ABC,所以⑤正确.故选:C.10.在面积为6的平行四边形ABCD中,过点A作AE⊥BC于点E,作AF⊥CD于F,若AB=3,BC=2,则CE+CF的值为()A.10+5B.2+C.10+5或2+D.10+5或5﹣10【分析】根据平行四边形面积求出AE和AF,有两种情况,求出CE和CF的值,相加即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=3,BC=AD=2,①如图1中:由平行四边形面积公式得:BC×AE=CD×AF=6,∴AE=3,AF=2.在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=3,AE=3代入求出BE=6>2,即E在BC延长线上.同理DF=4<3,即F在DC上(如图1),∴CE=6﹣2,CF=3﹣4,即CE+CF=2+.②如图2中:∵AB=3,AE=3,在△ABE中,由勾股定理得:BE=6,同理DF=4,∴CE=6+2,CF=3+4,∴CE+CF=10+5.∴综上可得:CE+CF=2+或10+5.故选:C.二.填空题(共6小题)11.(2)2=20,=,()﹣1=.【分析】直接利用二次根式的性质化简求出答案.【解答】解:(2)2=20,=,()﹣1==.故答案为:20,,.12.当x=﹣1,代数式x2+2x+3的值是25.【分析】将所求式子进行配方处理,再将已知条件代入即可.【解答】解:x2+2x+3=(x+1)2+2,∵x=﹣1,∴x2+2x+3=(x+1)2+2=23+2=25,故答案为25.13.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=112.5°.【分析】由于CE=AC,∠ACB=45°,可根据外角定理求得∠E的值,同样根据外角定理∠AFC=∠FCE+∠E,从而求得∠AFC.【解答】解:∵四边形ABCD是正方形,∴∠ACB=45°,∠DCB=90°,∵AC=CE,∴∠E=∠CAF,∵∠ACB是△ACE的外角,∴∠E=∠ACB=22.5°,∵∠AFC是△CFE的外角,∴∠AFC=∠FCE+∠E=112.5°,故答案为:112.5°.14.观察下列等式:①;②;③、…根据上述的规律,写出用n(n为正整数,且n≥2)表示的等式(n≥2且n为整数).【分析】观察可发现整数部分与分子相同,分母为整数的平方减1,据此可解.【解答】解:观察可发现整数部分与分子相同,分母为整数的平方减1,∴用n(n为正整数,且n≥2)表示的等式为:=n.故答案为:=n(n为正整数,且n≥2).15.如图,正方形ABCD中,E是AD上一点,F是AB延长线上一点,DE=BF.点G,H 分别在边AB、CD上,且GH=,GH交EF于M.若∠EMH=45°,则EF的长为3【分析】连接CE、CF,证明△FBC≌△EDC(SAS),得出CF=CE,∠FCB=∠ECD,证出△CEF是等腰直角三角形,得出∠EFC=45°,EF=CF,证出四边形FCHG是平行四边形,得出CF=GH=3,进而得出答案.【解答】解:连接CE、CF,如图:∵四边形ABCD是正方形,∴AB∥DC,BC=DC,∠ABC=∠D=90°,∴∠FBC=90°=∠D,在△FBC和△EDC中,,∴△FBC≌△EDC(SAS),∴CF=CE,∠FCB=∠ECD,∴∠ECF=∠ECB+∠FCB=∠ECB+∠ECD=90°,∴△CEF是等腰直角三角形,∴∠EFC=45°,EF=CF,∵∠EMH=45°,∴∠EFC=∠EMH,∴GH∥FC,∵AF∥DC,∴四边形FCHG是平行四边形,∴CF=GH=3,∴EF=CF=3;故答案为:3.16.如图,∠ABC=90°,AB=BC,点P在BC边上,CP>BP,点D为AC中点,AB边上有一点N,使△BPN的周长等于BC的长,若DP=2,DN=3,则AN2+CP2的值为29.【分析】作∠PDN=45°,在线段CB上截取CN'=BN,连接BD,根据等腰直角三角形的性质得到BD=CD=AC,∠ABD=∠ACB=45°,延长ND到F,使DN=DF,连接CF,根据全等三角形的性质得到AN=CF,∠FCD=∠A=45°,作PM⊥ND,根据勾股定理即可得到结论.【解答】解:作∠PDN=45°,在线段CB上截取CN'=BN,连接BD,∵∠ABC=90°,AB=BC,点D为AC中点,∴BD=CD=AC,∠ABD=∠ACB=45°,∴△DNB≌△DN'C(SAS),∵△BPN的周长等于BC的长,∴PN=PN′,延长ND到F,使DN=DF,连接CF,∵AD=CD,∠ADN=∠CDF,∴△ADN≌△CDF(SAS),∴AN=CF,∠FCD=∠A=45°,∴∠PCF=90°,作PM⊥ND于M,∴△PMD是等腰直角三角形,∵DP=2,∴PM=DM=2,∴MF=DM+DF=5,AN2+CP2=PF2=22+52=29,故答案为:29.三.解答题(共8小题)17.计算:(1)﹣+;(2)2.【分析】(1)分别化简每个二次根式,再由加法运算法则运算即可;(2)先化简二次根式,再由左向右依次运算即可.【解答】解:(1)原式=4﹣2+=3;(2)原式=2×2×=4×3=12=12×=6.18.如图,在▱ABCD中,AH⊥BD于H,CG⊥BD于G,连接CH和AG,求证:∠1=∠2.【分析】首先证明AH∥CG,再利用平行四边形的性质证明△ABD≌△CDB(SSS),可得S△ABD=S△BCD,进而可得AH=CG,再根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵AH⊥BD,CG⊥BD,∴AH∥CG,∵四边形ABCD是平行四边形,∴CD=AB,AD=BC,在△ADB和△CBD中,∴△ABD≌△CDB(SSS),∴S△ABD=S△BCD,∴AH=CG,∴四边形AGCH为平行四边形,∴CH∥AG,∴∠1=∠2.19.如图1,每个小正方形的边长都为1,点A、B、C在正方形网格的格点上,AB=5,AC =2,BC=.(1)请在网格中画出△ABC.(2)如图2,直接写出:①AC=,BC=.②△ABC的面积为.③AB边上的高为.【分析】(1)根据点A、B、C在正方形网格的格点上,AB=5,AC=2,BC=,即可在网格中画出△ABC;(2)①根据勾股定理即可求出AC、BC的长;②根据割补法即可求出三角形ABC的面积;③根据等面积法即可求出AB边上的高.【解答】解:(1)△ABC即为所求;(2)①AC==,BC==;②S△ABC=2×2﹣×1﹣1×2﹣1×2=,③如图2,AB边上的高为CD,垂足为D,∵S△ABC=AB•CD=,∵AB==,∴CD=,∴CD=.故答案为:、、、.20.已知三角形三边为a、b、c,其中a、b两边满足a2﹣12a+36+=0.(1)求这个三角形的最大边c的取值范围.(2)已知三角形三边为a、b、c,且满足,求这个三角形的周长.【分析】(1)首先利用完全平方公式因式分解,进一步根据两个非负数的和是0,可以求得a,b的值.再由三角形的三边关系就可以求得第三边的范围;(2)首先利用非负数的性质得出b+c=8,进一步利用非负数的性质建立方程组求得a、b、c的数值,求得三角形的周长即可.【解答】解:(1)∵a2﹣12a+36+=0,∴(a﹣6)2+=0,∴a﹣6=0,b﹣8=0,则a=6,b=8,∴8﹣6<c<8+6,即2<c<14,∵c是三角形的最大边,∴8<c<14.(2)∵,∴,解得,∴b+c=8,∴a﹣5=0,解得a=5,∴这个三角形的周长为:a+b+c=5+8=13.21.如图,在▱ABCD中,AB=6,BC=4,∠B=60°.点E、F分别是AB、CD上的点,将▱ABCD沿EF折叠,得到四边形EFGC,点A、D的对应点分别为C、G.(1)求证:CE=CF.(2)求S△CEF.【分析】(1)连接AC、AF,设AC交EF于H.利用全等三角形的性质证明即可.(2)过C点作CG⊥AB于G点,令AE=CE=x,则EG=4﹣x,在Rt△CEG中,根据CE2=EG2+CG2,构建方程即可解决问题.【解答】(1)证明:连接AC、AF,设AC交EF于H.∵AB∥CD,∴∠EAC=∠ACD,∵EA=EC,∴∠ECA=∠EAC=∠ACD,∵CA⊥EF,∴∠CHE=∠CHF=90°,∵CH=CH,∴△CEH≌△CFH(ASA),∴CF=CE=AE=AF,∴四边形AECF为菱形.(2)过C点作CG⊥AB于G点,∵CB=4,∠B=60°,∠CGB=90°∴BG=BC=2,CG=BG=2,令AE=CE=x,则EG=4﹣x,在Rt△CEG中,∵CE2=EG2+CG2,∴x2=(4﹣x)2+(2)2,∴x=,∴S△CEF=S△ACE=.22.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE 和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.【分析】(1)连接AC,过P点作PG⊥BC交AC于G点,根据全等三角形的判定求出△P AG≌△PEC即可;(2)延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,根据全等三角形的判定求出△ABQ≌△ADF,△QAP≌△F AP,△PEH≌△APB,根据全等三角形的性质得出QP=PE,设EH=CH=BP=x,求出PC=4﹣x,PF=1+x,在Rt△PCF中,由勾股定理得出(1+x)2=(4﹣x)2+32,求出x即可.【解答】(1)证明:连接AC,过P点作PG⊥BC交AC于G点,∵四边形ABCD是正方形,∴∠ACB=45°,∠BCD=90°,∵PG⊥BC,∴∠GPC=90°,∴∠PGC=45°,∴PG=PC,∵∠DCE=45°,∴∠AGP=∠ECP=90°+45°=135°,∴∠APE=∠GPC=90°,∴∠APG=∠EPC=90°﹣∠GPE,在△P AG和△PEC中∴△P AG≌△PEC(ASA),∴PE=P A;(2)解:延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,∵四边形ABCD是正方形,∴∠D=∠DAB=∠ABC=90°,AD=AB,∴∠ABQ=∠D=90°,在△ABQ和△ADF中∴△ABQ≌△ADF(SAS),∴AQ=AF,∠DAF=∠QAB,∵∠APE=90°,AP=PE,∴∠P AE=∠AEP=45°,∴∠AQP=∠QAB+∠BAP=∠DAF+∠BAP=∠DAB﹣∠P AE=90°﹣45°=45°=∠P AE,在△QAP和△F AP中∴△QAP≌△F AP(SAS),∵EH⊥BC,∠ABP=90°,∠APE=90°,∴∠ABP=∠H=90°,∠APB=∠PEH=90°﹣∠EPH,在△PEH和△APB中∴△PEH≌△APB(AAS),∴BP=EH,∵∠H=90°,∠DCE=45°,∴∠ECH=45°=∠CEH,∴CH=EH=BP,设EH=CH=BP=x,∴PC=4﹣x,PF=BQ+BP=DF+BP=4﹣3+x=1+x,在Rt△PCF中,由勾股定理得:(1+x)2=(4﹣x)2+32,解之得:x=,即CH=EH=,∴在Rt△CHE中,由勾股定理得:CE=CH=.23.如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交BE,BF于M,N,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为﹣1(直接写出结果).【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S四边形BMDN=BD×MN=×6×2=12;(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=a+a=(+1)a,∴==﹣1.故答案为:﹣1.24.如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE=1,正方形ABCD的边长=;(2)如图2,将∠AED绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.【分析】(1)利用已知得出△AED≌△DGC(AAS),即可得出AE,以及正方形的边长;(2)①过点B′作B′M垂直于l1于点M,进而得出Rt△AE′D′≌Rt△B′MA(HL),求出∠B′AD′与α的数量关系即可;②首先过点E′作ON垂直于l1分别交l1,l2于点O,N,若α=30°,则∠E′D′N=60°,可求出AE′=1,E′O,E′N,ED′的长,进而由勾股定理可知菱形的边长.【解答】解:(1)由题意可得:∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△AED和△DGC中,,∴△AED≌△DGC(AAS),∴AE=GD=1,又∵DE=1+2=3,∴正方形ABCD的边长==,故答案为:1,;(2)①∠B′AD′=90°﹣α;理由:过点B′作B′M垂直于l1于点M,在Rt△AE′D′和Rt△B′MA中,,∴Rt△AE′D′≌Rt△B′MA(HL),∴∠D′AE′+∠B′AM=90°,∠B′AD′+α=90°,∴∠B′AD′=90°﹣α;②过点E′作ON垂直于l1分别交l1,l3于点O,N,若α=30°,则∠E′D′N=60°,AE′=1,故E′O=,E′N=,E′D′=,由勾股定理可知菱形的边长为:==.。
2019-2020学年湖北省武汉市东湖高新区八年级(上)期中数学试卷( 解析版)
2019-2020学年湖北省武汉市东湖高新区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5 2.(3分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形3.(3分)△ABC中BC边上的高作法正确的是()A.B.C.D.4.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.(3分)计算(x+1)(x+2)的结果为()A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+26.(3分)如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D 到AB的距离为()cm.A.3B.4C.2D.17.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D8.(3分)如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定9.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,则这样的点P 有()A.1个B.2个C.3个D.4个10.(3分)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF 交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)x2•x5=,(103)3=,()0=.12.(3分)若三角形三边长分别为2、a、5,则a的取值范围为.13.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=28°,求∠DAE的度数.14.(3分)请写出所有使(3x+2)(3x﹣4)>9(x﹣2)(x+3)成立的非负整数解..15.(3分)如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是.16.(3分)如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为度.三、解答题(共8题,共72分)17.(8分)计算:(1)a•a2•a3+(a3)2﹣(2a2)3(2)(3y+2x)(3y﹣2x)18.(8分)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.19.(8分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=0.5,y=﹣1.20.(8分)如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,若a+b=4,a2+b2=10,求剩下的钢板的面积.21.(8分)如图,C为线段AB上一点,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)问:CF与DE的位置关系?22.(10分)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE 相交于点P(1)求∠CPD的度数;(2)若AE=3,CD=7,求线段AC的长.23.(10分)已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.24.(12分)如图1,平面直角坐标系xOy中,若A(0,4)、B(1,0)且以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.(1)如图1,求C点坐标;(2)如图2,在图1中过C点作CD⊥x轴于D,连接AD,求∠ADC的度数;(3)如图3,点A在y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请说明理由.2019-2020学年湖北省武汉市东湖高新区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5【分析】根据同底数幂的乘除法则及幂的乘方与积的乘方法则进行各选项的判断即可.【解答】解:A、a2与a3不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,计算正确,故本选项正确;C、(ab2)3=a3b6,原式计算错误,故本选项错误;D、a10÷a2=a8,原式计算错误,故本选项错误;故选:B.2.(3分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形【分析】稳定性是三角形的特性.【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.3.(3分)△ABC中BC边上的高作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.4.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.故这个多边形是六边形.故选:B.5.(3分)计算(x+1)(x+2)的结果为()A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选:B.6.(3分)如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D 到AB的距离为()cm.A.3B.4C.2D.1【分析】作DE⊥AB于E,如图,根据角平分线的性质得到DC=DE,然后计算CD即可.【解答】解:作DE⊥AB于E,如图,∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DC=DE,∵BC=5cm,BD=3cm,∴CD=2cm,∴DE=2cm,即点D到AB的距离为2cm.故选:C.7.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC ≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.8.(3分)如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【分析】在AB上截取AE=AD,则易得△AEC≌△ADC,则AE=AD,CE=CD,则AB ﹣AD=BE,放在△BCE中,根据三边之间的关系解答即可.【解答】解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选:A.9.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,则这样的点P 有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定定理找出各个点即可.【解答】解:如图所示,共3个点,故选:C.10.(3分)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF 交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠F AG =∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【解答】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠F AG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)x2•x5=x7,(103)3=109,()0=1.【分析】根据同底数幂的乘法、积的乘方运算法则和零次幂的性质分别进行计算即可.【解答】解:x2•x5=x7,(103)3=109,()0=1,故答案为:x7;109;1.12.(3分)若三角形三边长分别为2、a、5,则a的取值范围为3<a<7.【分析】根据三角形的三边关系列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为2、a、5,∴5﹣2<a<5+2,即3<a<7.故答案为:3<a<7.13.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=28°,求∠DAE的度数12°.【分析】先根据角平分线的定义求得∠EAC的度数,再由外角的性质得∠AED,最后由直角三角形的性质可得结论.【解答】解:∵AE平分∠BAC,∴∠EAC=∠BAC=×100°=50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.故答案为12°.14.(3分)请写出所有使(3x+2)(3x﹣4)>9(x﹣2)(x+3)成立的非负整数解.0,1,2,3.【分析】首先解不等式,再从不等式的解集中找出适合条件的整数即可.【解答】解:不等式(3x+2)(3x﹣4)>9(x﹣2)(x+3)的解集是:x<,因而他的非负整数解是0,1,2,3.15.(3分)如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是92°.【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为:92°.16.(3分)如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为32度.【分析】过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得∠BDC的度数.【解答】解:过C点作∠ACE=∠CBD,∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,∴∠ECD=∠BDC,∵对角线BD平分∠ABC,∴∠ABD=∠CBD,∴∠ABD=∠ACE,∴∠BAC=∠CEB=64°,∴∠BDC=∠CEB=32°.故答案为:32.三、解答题(共8题,共72分)17.(8分)计算:(1)a•a2•a3+(a3)2﹣(2a2)3(2)(3y+2x)(3y﹣2x)【分析】(1)先利用同底数幂的乘法和积的乘方运算,然后合并同类项;(2)利用平方差公式计算.【解答】解:原式=a6+a6﹣8a6=﹣6a6;(2)原式=(3y)2﹣(2x)2=9y2﹣4x2.18.(8分)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.19.(8分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=0.5,y=﹣1.【分析】先根据乘法公式算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=0.5,y=﹣1时,原式=12×0.5×(﹣1)+10×(﹣1)2=﹣6+10=4.20.(8分)如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,若a+b=4,a2+b2=10,求剩下的钢板的面积.【分析】由大圆面积减去两个小圆面积求出阴影部分面积即可.【解答】解:根据题意得:S阴影=()2π﹣()2π﹣()2π=,∵a+b=4,a2+b2=10,∴ab==,∴S阴影=.21.(8分)如图,C为线段AB上一点,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)问:CF与DE的位置关系?【分析】(1)根据SAS即可证明;(2)利用等腰三角形的三线合一的性质即可证明;【解答】证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,,∴△ACD≌△BEC(SAS);(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.22.(10分)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE 相交于点P(1)求∠CPD的度数;(2)若AE=3,CD=7,求线段AC的长.【分析】(1)由题中条件可得△APE≌△APF,进而得出∠APE=∠APF,再利用∠ABC =60°,AD、CE分别平分∠BAC,∠ACB,即可得出答案;(2)通过角之间的转化可得出△CPF≌△CPD,进而可得出线段之间的关系,即可得出结论.【解答】解:如图,在AC上截取AF=AE,连接PF.∵AD平分∠BAC,∴∠BAD=∠CAD,在△APE和△APF中,∴△APE≌△APF(SAS),∴∠APE=∠AOP,∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,∴∠APC=120°,∴∠CPD=60°.(2)∵∠APC=120°,∴∠APE=60°,∴∠APF=∠CPD=60°=∠CPF,在△CPF和△CPD中,,∴△CPF≌△CPD(ASA)∴CF=CD,∴AC=AF+CF=AE+CD=3+7=10.23.(10分)已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论BM﹣DN=MN;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.【分析】(1)延长CB到G使BG=DN,容易证明△AGB≌△AND,由此得到AG=AN 而根据∠MAN=45°,∠BAD=90°,可以得到∠GAM=∠NAM=45°,从而证明△AMN ≌△AMG,然后根据全等三角形的性质可以证明BM+DN=MN;(2)BM﹣DN=MN.在BC上截取BG=DN,连接AG,然后也可以证明△AMN≌△AMG,也根据全等三角形的性质就可以得到结论;(3)DN﹣BM=MN.在ND上截取DG=BM,连接AG,首先证明△AMB≌△AGD,再证△AMG为等腰直角三角形,即可.【解答】解:(1)延长CB到G使BG=DN,∵AB=AD,GB=DN,∠AGB=∠ADN=90°,∴△AGB≌△AND,∴AG=AN,∠GAB=∠DAN,∵∠MAN=45°,∠BAD=90°,∴∠GAM=∠GAB+∠BAM=∠DAN+∠BAM=45°,∴∠GAM=∠NAM,而AM是公共边,∴△AMN≌△AMG,∴MN=GM=BM+GB=MB+DN;(2)BM﹣DN=MN;(3)DN﹣BM=MN.证明:如图3,在ND上截取DG=BM,∵AD=AB,∠ABM=∠ADN=90°,∴△ADG≌△ABM,∴AG=AM,∠MAB=∠DAG,∵∠MAN=45°,∠BAD=90°,∴∠MAG=90°,△AMG为等腰直角三角形,∴AN垂直MG,∴AN为MG垂直平分线,所以NM=NG.∴DN﹣BM=MN.24.(12分)如图1,平面直角坐标系xOy中,若A(0,4)、B(1,0)且以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.(1)如图1,求C点坐标;(2)如图2,在图1中过C点作CD⊥x轴于D,连接AD,求∠ADC的度数;(3)如图3,点A在y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请说明理由.【分析】(1)先判断出△AOB≌△CGA,进而求出CE=OA=4,AG=OB=1,即可得出结论;(2)由(1)知C(4,5),进而求出OD=4,进而判断出OA=OD,得出∠OAD=45°,最后用平行线的性质即可得出结论;(3)点判断出点E在y轴的左侧,再分点A在y轴正半轴和负半轴上,同(1)的方法求出点C坐标,再用待定系数法求出直线CE的解析式,进而求出点F的坐标,即可得出结论.【解答】解:(1)如图①,∵A(0,4)、B(1,0),∴OA=4,OB=1,过点C作CG⊥y轴于G,∴∠AGC=90°=∠BOA,∴∠OAB+∠OBA=90°∵∠CAB=90°,∴∠OAB+∠GAC=90°,∴∠OBA=∠GAC,∵AB=AC,∴△AOB≌△CGA(AAS),∴CG=OA=4,AG=OB=1,∴OG=OA+AG=5,∴C(4,5);(2)由(1)知,OA=4,点C(4,5),∵CD⊥x轴,∴点D(4,0),∴OD=4,∴OA=OD,∠OAD=45°,∵CD⊥x轴,∴CD∥y轴,∴∠ADC=∠OAD=45°;(3)A点在运动过程中S△AOB:S△AEF的值不会发生变化,理由:设点A的坐标为(0,a),①当点A在y轴正半轴上时,连接CE交y轴于F,∴点C,E在y轴的两侧,即点E在y轴左侧,同(1)的方法得,C(a,a+1),∵△OAE是等腰直角三角形,∴AE⊥OA,∴E(﹣a,a),∴直线CE的解析式为y=x+a+,∴F(0,a+),∴AF=a+﹣a=,∵OB=1,∴=2;②当点A在y轴负半轴上时,同①的方法得,C(﹣a,a﹣1),E(a,a),∴直线CE的解析式为y=x+a﹣,∴F(0,a﹣),∴AF=,∴=2.即A点在运动过程中S△AOB:S△AEF的值不会发生变化.。
湖北省武汉市江汉区2018-2019学年八年级(上)期中数学试卷(含答案解析)
2018-2019学年湖北省武汉市江汉区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm2.如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BD B.AC=AD C.∠ACB=∠ADB D.∠CAB=∠DAB3.下列运算中,正确的是()A.x+x=x2B.3x2﹣2x=x C.(x2)3=x6D.x2•x3=x64.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD =OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB 的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是()A.SAS B.ASA C.AAS D.SSS5.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab6.如图,BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,则∠CDE的度数是()A.50°B.60°C.70°D.120°7.如图,AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论:①DE=DF;②BD=CD;③AE=AF;④∠ADE=∠ADF,其中正确结论的个数有()A.1个B.2个C.3个D.4个8.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a﹣b)(a+2b)=a2﹣2b2+abB.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)(a+b)=a2﹣b29.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.已知3m=a,81n=b,m、n为正整数,则33m+12n的值为()A.a3b3B.15ab C.3a+12b D.a3+b3二、填空题(共6小题,每小题3分,共18分)11.计算:(x﹣2)(2+x)=.12.八边形中过其中一个顶点有条对角线.13.如图,△ABC≌△DEF,则∠E的度数为.14.如果等腰三角形的两边长分别为3和7,那么它的周长为.15.若x2+kx﹣15=(x+3)(x+b),则k=.16.若一个多边形的每一个内角都等于156°,则这个多边形是边形.三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)17.(1)计算:(﹣4x)(2x2+3x﹣1)(2)解方程:(2x﹣3)(3x﹣2)=6(x﹣2)(x+2)18.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C =28°,求∠DAE的度数.20.已知x2+y2=25,x+y=7,求xy和x﹣y的值.21.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为;(2)直接写出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.四、填空题(共4小题,每小题4分,共16分)22.若x2+2(m﹣4)x+25是一个完全平方式,那么m的值应为.23.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是.24.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE 与AC交于点E,连接DE,则∠DEB=.25.如图,在△ABC中,BC=10,BC边上的高为3.将点A绕点B逆时针旋转90°得到点E,绕点C顺时针旋转90°得到点D.沿BC翻折得到点F,从而得到一个凸五边形BFCDE,则五边形BFCDE的面积为.五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分)26.(1)计算:(x3)2+x3•x5÷x2﹣(2x2)3(2)化简:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x.27.如图,在等腰Rt△ABC中,∠ACB=90°,∠CBA=∠CAB,AC=BC.点D在CB的延长线上,BD =CB.DF⊥BC,点E在BC的延长线上,EC=FD.(1)如图1,若点E、A、F三点共线,求证:∠FAB=∠FBA;(2)如图2,若线段EF与BA的延长线交于点M,求证:EM=FM.28.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA 上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.2018-2019学年湖北省武汉市江汉区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm【分析】根据三角形的三边关系可得6﹣4<第三根小棒的长度<6+4,再解不等式可得答案.【解答】解:设第三根小棒的长度为xcm,由题意得:6﹣4<x<6+4,解得:2<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BD B.AC=AD C.∠ACB=∠ADB D.∠CAB=∠DAB【分析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出正确结果.【解答】解:A、补充BC=BD,根据SAS可以推出△ABC≌△ABD,故本选项错误;B、补充AC=AD,没有两边及其一边的对角相等的两三角形全等的判断方法,∴不能推出△ABC≌△ABD,故本选项正确;C、补充∠ACB=∠ADB,根据AAS可以推出△ABC≌△ABD,故本选项错误;D、补充∠CAB=∠DAB,根据ASA可以推出△ABC≌△ABD,故本选项错误.故选:B.【点评】本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.做题时要逐个验证,排除错误的选项.3.下列运算中,正确的是()A.x+x=x2B.3x2﹣2x=x C.(x2)3=x6D.x2•x3=x6【分析】直接利用合并同类项法则以及幂的乘方运算法则和同底数幂的乘法运算法则分别计算得出答案.【解答】解:A、x+x=2x,故此选项错误;B、3x2﹣2x,无法计算,故此选项错误;C、(x2)3=x6,正确;D、x2•x3=x5,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及幂的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.4.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB 的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是()A.SAS B.ASA C.AAS D.SSS【分析】由三边对应相等得△DOF≌△EOF,即由SSS判定两个三角形全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:依题意知,在△DOF与△EOF中,,∴△DOF≌△EOF(SSS),∴∠AOF=∠BOF,即OF即是∠AOB的平分线.故选:D.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.5.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(﹣4a2+12a3b)÷(﹣4a2)=1﹣3ab.故选:A.【点评】此题主要考查了整式的除法,正确掌握运算法则是解题关键.6.如图,BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,则∠CDE的度数是()A.50°B.60°C.70°D.120°【分析】根据角平分线定义求出∠FCB和∠EBC,根据三角形的外角性质求出即可.【解答】解:∵BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,∴∠EBC=∠ABC==25°,∠FCB===35°,∴∠CDE=∠EBC+∠FCB=25°+35°=60°,故选:B.【点评】本题考查了三角形的角平分线定义和三角形的外角性质,能根据三角形的外角性质得出∠CDE=∠EBC+∠FCB是解此题的关键.7.如图,AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论:①DE=DF;②BD=CD;③AE=AF;④∠ADE=∠ADF,其中正确结论的个数有()A.1个B.2个C.3个D.4个【分析】根据角平分线的性质可得①正确,即可证△ADE≌△ADF,可得③④正确.【解答】解:∵AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F∴DE=DF∵DE=DF,AD=AD∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∠ADE=∠ADF故①③④正确∵只有等腰三角形顶角的角平分线才是底边的中线∴②错误故选:C.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,熟练运用这些性质解决问题是本题的关键.8.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a﹣b)(a+2b)=a2﹣2b2+abB.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)(a+b)=a2﹣b2【分析】左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a﹣b),根据二者相等,即可解答.【解答】解:由题可得:(a﹣b)(a+b)=a2﹣b2.故选:D.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.10.已知3m=a,81n=b,m、n为正整数,则33m+12n的值为()A.a3b3B.15ab C.3a+12b D.a3+b3【分析】根据幂的乘方与积的乘方运算法则计算即可.【解答】解:33m+12n=(3m)3•(34n)3=(3m)3•(81n)3=a3b3,故选:A.【点评】本题考查的是幂的乘方与积的乘方运算,掌握幂的乘方与积的乘方的运算法则是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.计算:(x﹣2)(2+x)=x2﹣4.【分析】依据平方差公式进行计算即可.【解答】解:(x﹣2)(2+x)=(x+2)(x﹣2)=x2﹣22=x2﹣4.故答案为:x2﹣4.【点评】本题主要考查的是平方差公式的应用,熟练掌握平方差公式是解题的关键.12.八边形中过其中一个顶点有5条对角线.【分析】根据从n边形的一个顶点可以作对角线的条数为(n﹣3),即可得解.【解答】解:∵一个八边形过一个顶点有5条对角线,故答案为:5.【点评】本题考查了多边形的对角线的公式,牢记公式是解题的关键.13.如图,△ABC≌△DEF,则∠E的度数为38°.【分析】利用全等三角形的性质以及三角形的内角和定理即可解决问题;【解答】解:∵△ABC≌△DEF,∴∠E=∠ABC,∵∠ABC=180°﹣∠A﹣∠C=38°,∴∠E=38°,故答案为38°.【点评】本题考查全等三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.14.如果等腰三角形的两边长分别为3和7,那么它的周长为17.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.15.若x2+kx﹣15=(x+3)(x+b),则k=﹣2.【分析】已知等式右边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出k的值.【解答】解:x2+kx﹣15=(x+3)(x+b)=x2+(b+3)x+3b,∴k=b+3,3b=﹣15,解得:b=﹣5,k=﹣2.故答案为:﹣2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.若一个多边形的每一个内角都等于156°,则这个多边形是十五边形.【分析】先求出多边形一个外角的度数,然后根据多边形的外角和为360°,求出边数即可.【解答】解:∵多边形的每一个内角都等于156°,∴多边形的每一个外角都等于180°﹣156°=24°,∴边数n=360°÷24°=15.故答案为:十五.【点评】题主要考查了多边形的内角与外角的关系,解题的关键根据外角和定理求出多边形的边数.三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)17.(1)计算:(﹣4x)(2x2+3x﹣1)(2)解方程:(2x﹣3)(3x﹣2)=6(x﹣2)(x+2)【分析】(1)根据单项式乘多项式的运算法则计算可得;(2)依次去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)原式=﹣8x3﹣12x2+4x;(2)6x2﹣4x﹣9x+6=6x2﹣24,6x2﹣4x﹣9x﹣6x2=﹣24﹣6,﹣13x=﹣30,x=.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.18.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.【解答】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE.【点评】本题主要考查全等三角形的判定,涉及到平行线的性质知识点,比较简单.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C =28°,求∠DAE的度数.【分析】先根据角平分线的定义求得∠EAC的度数,再由外角的性质得∠AED,最后由直角三角形的性质可得结论.【解答】解:∵AE平分∠BAC,∴∠EAC===50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.【点评】此题主要考查了三角形内角和定理,角平分线的定义,关键是掌握三角形内角和为180°,直角三角形两锐角互余.20.已知x2+y2=25,x+y=7,求xy和x﹣y的值.【分析】先根据完全平方公式求出xy的值,再根据完全平方公式求出(x﹣y)2的值,再求出答案即可.【解答】解:∵x2+y2=(x+y)2﹣2xy,∴25=72﹣2xy,∴xy=12,∴(x﹣y)2=x2﹣2xy+y2=25﹣2×12=1,∴x﹣y=±1.【点评】本题考查了完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键,注意:a2+2ab+b2=(a+b)2,a2﹣2ab+b2=(a﹣b)2.21.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为6;(2)直接写出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.【分析】(1)根据三角形的构造法则,确定出(a+b)4的展开式中各项系数最大的数;(2)原式变形后,计算即可得到结果;(3)当x=0时,得到a2019=1,当x=1时,得到a2019=1,于是得到结论.【解答】解:(1)根据题意得:(a+b)4的展开式中各项系数分别为1,4,6,4,1,即最大的数为6;故答案为:6;(2)原式=(2﹣3)5=﹣1;(3)当x=0时,a2019=1,当x=1时,a1+a2+a3+…+a2017+a2018+a2019=1,∴a1+a2+a3+…+a2017+a2018=0.【点评】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.四、填空题(共4小题,每小题4分,共16分)22.若x2+2(m﹣4)x+25是一个完全平方式,那么m的值应为﹣1或9.【分析】根据完全平方式得出2(m﹣4)x=±2•x•5,求出即可.【解答】解:∵x2+2(m﹣4)x+25是一个完全平方式,∴2(m﹣4)x=±2•x•5,解得:m=﹣1或9,故答案为:﹣1或9.【点评】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2.23.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是92°.【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为:92°.【点评】此题考查了翻折变换(折叠问题)以及三角形外角性质,熟练掌握折叠的性质是解本题的关键.24.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE 与AC交于点E,连接DE,则∠DEB=40°.【分析】作辅助线,构建角平分线的距离,根据角平分线的性质和逆定理可得:EF=EG=EH,设∠DEG =y,∠GEB=x,根据三角形的内角和定理可得:∠GEA=∠FEA=40°,∠FEB=∠HEB,列方程为2y+x=80﹣x,y+x=40,可得结论:∠DEB=40°.【解答】解:过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD,∴EH=EF,∵∠BAC=130°,∴∠FAE=∠CAD=50°,∴EF=EG,∴EG=EH,∴EH平分∠CDG,∴∠HED=∠DEG,设∠DEG=y,∠GEB=x,∵∠EFA=∠EGA=90°,∴∠GEA=∠FEA=40°,∵∠EFB=∠EHB=90°,∠EBF=∠EBH,∴∠FEB=∠HEB,∴2y+x=80﹣x,2y+2x=80,y+x=40,即∠DEB=40°,故答案为:40°.【点评】本题考查了三角形内角和定理和角平分线的性质,正确作辅助线是本题的关键,有难度. 25.如图,在△ABC 中,BC =10,BC 边上的高为3.将点A 绕点B 逆时针旋转90°得到点E ,绕点C 顺时针旋转90°得到点D .沿BC 翻折得到点F ,从而得到一个凸五边形BFCDE ,则五边形BFCDE 的面积为 80 .【分析】将点C 绕点B 逆时针旋转90°得到点G ,绕点C 顺时针旋转90°得到点H ,连接EG 、DH 、GH ,则△EBG ≌△ABC ≌△HDC ,四边形BCHG 是正方形,六边形BCDHGE 是中心对称图形,根据轴对称和中心对称的性质得出S △BEG =S △CDH =S △ABC ,S 四边形BCDE =S 六边形BCDHGE ,然后由S 五边形BFDE =S 四边形BCDE+S △BFC 即可求得.【解答】解:将点C 绕点B 逆时针旋转90°得到点G ,绕点C 顺时针旋转90°得到点H ,连接EG 、DH 、GH ,则△EBG ≌△ABC ≌△HDC ,四边形BCHG 是正方形,六边形BCDHGE 是中心对称图形, ∴四边形BCDE ≌四边形HGED ,∵S △BEG =S △CDH =S △ABC =×10×3=15=S △BFC ,S 正方形BCHG =10×10=100, ∴S 六边形BCDHGE =S △BEG +S △CDH +S 正方形BCHG =2×15+100=130,∴S 四边形BCDE =S 六边形BCDHGE =65,∴S 五边形BFDE =S 四边形BCDE +S △BFC =65+15=80, 故答案为80.【点评】本题考查了图形的全等,熟练掌握轴对称和中心对称的性质是解题的关键. 五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分) 26.(1)计算:(x 3)2+x 3•x 5÷x 2﹣(2x 2)3(2)化简:[(x +2y )2﹣(x +y )(3x ﹣y )﹣5y 2]÷2x .【分析】(1)根据幂的乘方、同底数幂的乘除法和积的乘方可以解答本题; (2)根据完全平方公式和多项式乘多项式以及整式的除法可以解答本题.【解答】解:(1)(x3)2+x3•x5÷x2﹣(2x2)3=x6+x6﹣8x6=﹣6x6;(2)[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x=[x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2]÷2x=(﹣2x2+2xy)÷2x=﹣x+y.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.27.如图,在等腰Rt△ABC中,∠ACB=90°,∠CBA=∠CAB,AC=BC.点D在CB的延长线上,BD =CB.DF⊥BC,点E在BC的延长线上,EC=FD.(1)如图1,若点E、A、F三点共线,求证:∠FAB=∠FBA;(2)如图2,若线段EF与BA的延长线交于点M,求证:EM=FM.【分析】(1)证明△ACE≌△BDF(SAS),得∠EAC=∠FBD,根据平角的定义可得∠FAB=∠FBA;(2)连接FB,EA,延长BM,分别过点E,F作BM的垂线,垂足分别为P,Q,同理得△EAC≌△FBD,所以AE=BF,再证明△EAP≌△FBQ和△EMP≌△FMQ,可得结论.【解答】证明:(1)连接BF,∵AC=BC,BC=BD,∴AC=BD,∵DF⊥BC,∴∠ACB=∠D=∠ACE=90°,在△ACE和△BDF中,∵,∴△ACE≌△BDF(SAS),∴∠EAC=∠FBD,∵∠FAB=180°﹣∠EAC﹣∠CAB,∠FBA=180°﹣∠FBD﹣∠CBA,∵∠CAB=∠ABC,∴∠FAB=∠FBA;(2)如图2,连接FB,EA,延长BM,分别过点E,F作BM的垂线,垂足分别为P,Q,同理得:△EAC≌△FBD,∴AE=BF,同理可知:∠EAP=∠FBQ,在△EAP和△FBQ中,,∴△EAP≌△FBQ(AAS),∴PE=FQ,在△EMP和△FMQ中,∴△EMP≌△FMQ(AAS),∴EM=FM.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用定理是解题的关键.28.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA 上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【分析】(1)根据非负性得出a=b=4,过点A分别作x轴,y轴的垂线,垂足分别为M、N,进而利用角平分线的性质解答即可;(2)过A作AH平分∠OAB,交BM于点H,根据全等三角形的判定和性质解答即可;(3)过H作HM⊥OF,HN⊥EF于M、N,根据全等三角形的判定和性质解答.【解答】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△AHC中∴△AOE≌△AHC(ASA)∴AH=OE在△ONE和△AMH中∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=180°﹣2∠ONE=90°﹣∠NEA∴2∠ONE﹣∠NEA=90°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP⊥y轴于P,AQ⊥x轴于Q可证:△APF≌△AQE(SAS)∴PF=EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=8【点评】此题是三角形综合题,主要考查了角平分线的性质,全等三角形的性质和判定,解本题的关键是全等三角形性质和判定的运用.。
2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)
2018-2019学年八年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.以下各式不是代数式的是()A.0B.C.D.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.85.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.256.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.计算的结果是()A.2+B.C.2﹣D.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是.12.化简的结果是.13.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.16.若成立,则x满足.17.若a﹣=,则a+=.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=2,不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.8【分析】首先化简,再确定x的最小正整数的值.【解答】解:=3,x可取的最小正整数的值为2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是正确进行化简.5.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.计算的结果是()A.2+B.C.2﹣D.【分析】原式利用积的乘方变形为=[(+2)(﹣2)]2017•(﹣2),再利用平方差公式计算,从而得出答案.【解答】解:原式=(+2)2017•(﹣2)2017•(﹣2)=[(+2)(﹣2)]2017•(﹣2)=(﹣1)2017•(﹣2)=﹣(﹣2)=2﹣,故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则及积的乘方的运算法则.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.12.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.13.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.16.若成立,则x满足2≤x<3.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.【点评】本题考查了二次根式的乘除法及二次根式及分式有意义的条件,关键是掌握二次根式有意义:被开方数为非负数,分式有意义:分母不为零.17.若a﹣=,则a+=.【分析】根据完全平方公式即可求出答案.【解答】解:由题意可知:(a﹣)2=2017,∴a2﹣2+=2017∴a2+2+=2021∴(a+)2=2021∴a+=±故答案为:±【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.【分析】根据圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住,根据勾股定理进行解答.【解答】解:∵正方形的边长为2m,∴正方形的对角线长为=2(m),∴想用一个圆盖去盖住这个洞口,则圆形盖的半径至少是m;故答案为【点评】本题考查的是正多边形和圆、勾股定理的应用,根据正方形和圆的关系确定圆的半径是解题的关键.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.【点评】本题考查的是算术平方根,根据题意得出8※12=是解答此题的关键.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2013=,故答案为:.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算可得.【解答】解:(1)原式=5×+4﹣=5﹣;(2)原式=×()=×==.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【分析】根据分式的除法可以化简题目中的式子,然后将a、b代入化简后的式子即可解答本题.【解答】解:(a2b+ab)÷=ab(a+1)=ab,当a=+1,b=﹣1时,原式==3﹣1=2.【点评】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的方法.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.【分析】过A作CD⊥AB.修建公路CD,则工厂C到公路的距离最短,首先证明△ABC是直角三角形,然后根据三角形的面积公式求得CD的长.【解答】解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S=AB•CD=AC•BC,△ACB×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.【点评】此题主要考查了勾股定理逆定理以及三角形的面积公式,关键是证明△ABC是直角三角形.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.【分析】先设CD=x,则BD=BC+CD=9+x,再运用勾股定理分别在△ACD与△ABD中表示出AD2,列出方程,求解即可.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.【点评】本题主要考查了勾股定理的运用,根据AD的长度不变列出方程是解题的关键.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.【分析】(1)根据分母有理化可以解答本题;(2)根据分母有理化可以解答本题;(3)根据(2)中的结果可以解答本题.【解答】解:(1)==,==;(2)==,==;(3)+==﹣1+=﹣1+10=9.【点评】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.。
2022-2023学年湖北省武汉市东湖高新区八年级(上)期末数学试卷+答案解析(附后)
2022-2023学年湖北省武汉市东湖高新区八年级(上)期末数学试卷1. 下列图形中,不是轴对称图形的是( )A. B. C. D.2. 点关于y轴对称点的坐标为( )A. B. C. D.3. MERS属于冠状病毒,病毒粒子成球形,直径约为140纳米纳米米,用科学记数法表示为( )A. 米B. 米C. 米D. 米4. 如果把中的x和y都扩大2倍,那么分式的值( )A. 扩大2倍B. 不变C. 缩小2倍D. 扩大4倍5. 下列各式是最简分式的是( )A. B. C. D.6. 下列因式分解正确的是( )A. B.C. D.7. 下列各式从左到右的变形正确的是( )A. B.C. D.8. 《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为( )A. B.C. D.9. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动。
C点固定,,点D、E可在槽中滑动.若,则的度数是( )A. B. C. D.10. 如图,在中,点E、D分别在AB、AC的延长线上,与的平分线相交于点P,,PB与CE交于点H,交BC于F,交AB于G,下列结论:①;②CP平分;③BP垂直平分CE,其中正确的结论有( )A. 0个B. 1个C. 2个D. 3个11. 计算:______;______;______.12. 如果分式的值为零,那么______.13. 在中,,CD是AB边上的高,,则的度数为______.14.如图,在中,BO平分,CO平分,过点O作,MN分别与AB、AC相交于点M、若的周长为18,的周长为12,则______.15. 若关于x的方程无解,则m的值是______.16. 如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为_________.17. 整式乘法:;18. 因式分解:;19. 先化简再求值:,其中20. 请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.说明:图1、图2中仅点A,B,C在格点上.在图1中,作的角平分线AE;在图1中,BD是的角平分线,作的角平分线CF;在图2中,画格点H,使在图2中,在线段BC上画一点G,使21. 如图,在中,,,D是AC上一点,于E,于求证:;若,求证:22. 某单位在疫情期间用8000元购进A、B两种口罩共3400个,已知A种口罩的单价是B种口罩单价的倍,且购买A种口罩的总金额是购买B种口罩总金额的3倍;求A,B两种口罩的单价各是多少元?若计划用不超过15000元的资金再次购进A、B两种口罩共7000个,已知A、B两种口罩的单价不变,求A种口罩最多能购进多少个?23. 我们学习等边三角形时得到特殊直角三角形的一个性质:在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半.即:如图,在中,,,则如图1,作AB边上的中线CE,得到结论:①为等边三角形;②BE与CE之间的数量关系为______.如图2,CE是的中线,点D是边CB上任意一点,连接AD,作等边,且点P在的内部,连接试探究线段BP与DP之间的数量关系,写出你的猜想并加以证明.当点D为边CB延长线上任意一点时,在中条件的基础上,线段BP与DP之间存在怎样的数量关系?画图并直接写出答案即可.24. 已知点在y轴正半轴上,以OA为边作等边,其中y是方程的解.求点A的坐标;如图1,点P在x轴正半轴上,以AP为边在第一象限内作等边,连QB并延长交x轴于点C,求证;如图2,若点M为y轴正半轴上一动点,点M在点A的上边,连MB,以MB为边在第一象限内作等边,连NA并延长交x轴于点D,当点M运动时,的值是否发生变化?若不变,求出其值;若变化,求出其变化的范围.答案和解析1.【答案】B【解析】解:是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此解答即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】A【解析】解:点关于y轴对称点的坐标为故选:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.【答案】D【解析】解:140纳米米米米,故选:绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】B【解析】解:根据题意,,把中的x和y都扩大2倍,那么分式的值不变,故选:根据分式的基本性质求解即可.本题考查了分式的基本性质,掌握分式的基本性质是解答的关键.5.【答案】A【解析】解:A、是最简分式,故本选项符合题意;B、,不是最简分式,故本选项不符合题意;C、,不是最简分式,故本选项不符合题意;D、,不是最简分式,故本选项不符合题意;故选:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.本题考查了最简分式.熟练掌握一个分式的分子与分母没有公因式时,叫最简分式是解题的关键.6.【答案】D【解析】解:,分解因式不彻底,故此选项错误;B.不能分解因式,而,故此选项错误;C.,故此选项错误;D.,故此选项正确.故选:利用提公因式法同时结合公式法进行因式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7.【答案】B【解析】解:A、分式的分子和分母同时乘上一个不为0的数时,分式的值不改变,可能等于0,故A错,不符合题意;B、正确,分式的分子和分母同时除一个不为0的数时值不变,故B正确,符合题意;C、分式的分子和分母同时加减一个相同的数,值可能会改变,故C错,不符合题意;D、,故D错,不符合题意.故选:根据分式的基本性质对各个选项进行判断.本题考查了分式的性质,解题的关键是掌握分子与分母同时乘上或除以相同的不为0的数,值不变.8.【答案】B【解析】解:规定时间为x天,慢马送到所需时间为天,快马送到所需时间为天,又快马的速度是慢马的2倍,两地间的路程为900里,故选:根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为天,快马送到所需时间为天,再利用速度=路程时间,结合快马的速度是慢马的2倍,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的感觉.9.【答案】D【解析】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.根据,可得,,根据三角形的外角性质可知,,根据三角形的外角性质即可求出的度数,进而求出的度数.解:,,,,,,故选:10.【答案】D【解析】解:①平分,,,,,,故①正确;②与的平分线相交于点P,点P也位于的平分线上,,故②正确;③,BP平分,垂直平分三线合一,故③正确;故选:①根据角平分线的性质和平行线的性质即可得到结论;②根据角平分线的性质即可得到结论;③根据线段垂直平分线的性质即可得出结论.本题主要考查了角平分线的性质和定义,平行线的性质,等腰三角形的性质,熟练掌握各性质定理是解题的关键.11.【答案】;; .【解析】解:;;故答案为:;;根据幂的乘方与积的乘方以及同底数幂的乘法运算法则即可求解.本题考查了幂的乘方与积的乘方以及同底数幂的乘法运算,掌握运算法则是解答本题的关键.12.【答案】4【解析】解:,根据题意,有:,解得:,故答案为:先将分式化简,再根据分式的值为0,可知分式分子的值为0,分母的值不为0,据此作答即可.本题主要考查了分式的化简,分式有意义的条件以及分式值为0的知识,掌握分式的化简的知识是解答本题的关键.13.【答案】或【解析】解:如图,当D在线段AB上时,是AB边上的高,,又,,,,,;如图,当D在线段BA的延长线上时,是AB边上的高,,又,,,,又,,,综上所述,的度数为或故答案为:或分两种情况:当D在线段AB上时,根据题意,得出,再根据三角形的内角和定理,得出,再根据等边对等角,得出,再根据三角形的内角和定理,计算即可得出的度数;当D在线段AB的延长线上时,根据题意,得出,再根据三角形的内角和定理,得出,再根据等边对等角,得出,再根据三角形的外角的性质,计算即可得出的度数,综合即可得出答案.本题考查了三角形的内角和定理、等边对等角、三角形的外角的性质,解本题的关键在熟练掌握相关的性质定理,分类讨论.14.【答案】6【解析】本题考查了等腰三角形的判定和性质以及平行线的性质,根据角平分线的定义及平行线的性质证得,是解决问题的关键.根据BO平分,CO平分,且,结合等腰三角形的判定可证得,,得到的周长,根据的周长即可求得解:平分,CO平分,,,,,,,,的周长为18,,的周长为12,,故答案为:15.【答案】或【解析】解:,方程两边同乘:,得:,整理得:,①整式方程无解:,解得:;②分式方程有增根:或,解得:或;当时:整式方程无解;当时:,解得:;综上,当或时,分式方程无解;故答案为:或将分式方程转化为整式方程,分整式方程无解和分式方程有增根两种情况求解.本题考查了分式方程无解问题,掌握整式方程无解或分式方程有增根时,分式方程无解是关键.16.【答案】8【解析】【分析】本题考查的是轴对称-最短路线问题,线段垂直平分线的性质,三角形的面积,等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD,AM,依据等腰三角形三线合一的性质可证明AD为底边上的高线,依据三角形的面积为12可求得AD的长.由线段垂直平分线的性质可知,则,故当A、M、D在一条直线上时,有最小值,进而求出答案.【解答】解:连接AD,是等腰三角形,点D是BC边的中点,,,解得,是线段AB的垂直平分线,当A、M、D在一条直线上时,有最小值,最小值是AD为的周长的最小值为故答案为17.【答案】解:;【解析】根据单项式乘多项式的法则计算即可;根据多项式除以单项式的法则计算即可.本题考查了单项式乘多项式和整式的除法,能灵活运用整式的运算法则进行化简是解此题的关键.18.【答案】解:;【解析】先提公因式,再用公式法进行因式分解即可;先提公因式,再用公式法进行因式分解即可.本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.19.【答案】解:当时,原式【解析】根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.【答案】解:如下图:即为所求;即为所求;点H即为所求;点G即为所求.【解析】根据等腰三角形的三线合一画图;根据三角形的三条角平分线相较于一点作图;根据横向对角线与纵向对角线垂直作图;根据等腰直角三角形的底角为,作图.本题考查了作图,掌握等腰三角形的性质是解题的关键.21.【答案】证明:,,,,,又,,在和中≌,由≌得,,又,,又于F,,平分,又,,,【解析】欲证明,只要证明≌即可;只要证明,利用等腰三角形的三线合一即可解决问题;本题考查等腰直角三角形的性质、全等三角形的判定和性质、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】解:设B种口罩的单价为x元,则A种口罩单价为元.依题意得,,解得:,经检验,是方程的解,且符合题意.则,答:A种口罩单价为元,B种口罩单价为2元;设购进A种口罩m个,则购进B种口罩个,依题意,得:,解得:答:A种口罩最多能购进2000个.【解析】设B种口罩的单价为x元,则A种口罩单价为元.由题意:某单位在疫情期间用8000元购进A、B两种口罩共3400个,已知购买A种口罩的费用是购买B种口罩费用的3倍,列出分式方程,解方程即可;设购进A种口罩m个,由题意:计划用不超过15000元的资金再次购进A、B两种口罩共7000个,已知A、B两种口罩的进价不变,列出一元一次不等式,解不等式即可.本题考查了分式方程的应用、一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;找准数量关系,正确列出一元一次不等式.23.【答案】①,,,,为AB边上的中线,,,是等边三角形;②;证明如下:如图2,连接PE,,都是等边三角形,,,,,即,在和中,,≌,,,,,,;当点D为边CB延长线上任意一点时,理由如下:连接PE,,都是等边三角形,,,,,即,在和中则≌,,同可知,【解析】解:①见答案;②在中,CE为AB边上的中线,,故答案为:;见答案;见答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年湖北省武汉市东湖高新区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣22.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65 4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.109.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.810.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是.12.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试8085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是.24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.2017-2018学年湖北省武汉市东湖高新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2【解答】解:由题意得:a+2≥0,解得:a≥﹣2,故选:B.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65【解答】解:由表可知1.75m出现次数最多,有4次,所以众数为1.75m,这15个数据最中间的数据是第8个,即1.70m,所以中位数为1.70m,故选:A.4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位【解答】解:要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象向上平移5个单位,故选:C.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)【解答】解:在y=3x﹣2中,∴y随x的增大而增大;∵b=﹣2<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;∵当x=﹣2时,y=﹣8,所以与x轴交于(﹣2,0)错误,∵当y=﹣2时,x=0,所以与y轴交于(0,﹣2)正确,故选:C.8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.10【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=5.故选:A.9.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.10.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是5.【解答】解:=5,故答案为:512.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=8.【解答】解:根据勾股定理得:a2+b2=c2,∵a=6,c=10,∴b===8,故答案为8.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD﹣AE=BC﹣AB=5﹣3=2.故答案为2.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为y=2x﹣7.【解答】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(4,1),设直线QD的解析式为y=kx+b,∴,∴,∴该直线的函数表达式为y=2x﹣7,故答案为:y=2x﹣7.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为87°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠DAE=∠AEB,∵∠EAB=∠EAD,∴∠EAB=∠AEB,∴BA=BE,∵AB=AE,∴AB=BE=AE,∴∠B=∠BAE=∠AEB=60°,∴∠EAD=∠CDA=60°,∵EA=AB,CD=AB,∴EA=CD,∵AD=DA,∴∠AED≌△DCA,∴∠AED=∠DCA,∵AB∥CD,∴∠ACD=∠BAC=60°+27°=87°,∴∠AED=87°.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【解答】解:∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,故答案为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)【解答】解:原式=42﹣()2=16﹣7=9.18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.【解答】解:连接BD.∵ABCD为正方形,∴∠A=∠C=90°.在Rt△BCE中,BC=.在Rt△ABD中,BD=.∴正方形ABCD的面积=.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【解答】解:(1)∵一次函数图象过原点,∴,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<3.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试908085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.【解答】解:(1)观察图象1可知:A的面试成绩为90分.故答案为90.条形图如图所示:(2)A的得票数:300×35%=105(人)B的得票数:300×40%=120(人)C的得票数:300×25%=75(人);(3)A的成绩:=93B的成绩:=96.5C的成绩:=83.5,故B学生成绩最高,能当选学生会主席.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.【解答】解:(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,6).(2)设Q(m,0),由题意:•|m﹣3|•6=6,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=6,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<6.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.【解答】解:(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得,解得.答:A商品、B商品的单价分别是50元、40元;(2)当0<x≤10时,y=50x;当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;(3)设购进A商品a件(a>10),则B商品消费40a元;当40a=30a+200,则a=20所以当购进商品正好20件,选择购其中一种即可;当40a>30a+200,则a>20所以当购进商品超过20件,选择购A种商品省钱;当40a<30a+200,则a<20所以当购进商品少于20件,选择购B种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是MN=(BM+ND).【解答】证明:(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON ∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD∴△BOM≌△FOD∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)答案为MN=(BM+FN)24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.【解答】解:(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(6,t),A(2,0),∵S=12t﹣×2×2t﹣×6×t﹣×4×t=9.△OA′C∴t=.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=8.。