数学分析2课件:13-1函数项级数及其一致收敛性
数学分析课件一致收敛函数列与函数项级数的性质
对于一致收敛的函数列或函数项级数 ,在每个点的某个邻域内,函数列或 级数的每一项都是有界的。这意味着 在每个点的附近,函数列或级数的变 化范围是有限的。
性质三:局部连续性
总结词
局部连续性是指一致收敛的函数列或函 数项级数在每个点的邻域内都是连续的 。
VS
详细描述
对于一致收敛的函数列或函数项级数,在 每个点的某个邻域内,函数列或级数的每 一项都是连续的。这意味着在每个点的附 近,函数列或级数的值是平滑变化的,没 有突然的跳跃或断点。
03
一致收敛函数列与函数项 级数的应用
应用一:微积分学中的一致收敛概念
要点一
总结词
要点二
详细描述
理解一致收敛在微积分学中的重要性
一致收敛是数学分析中的一个重要概念,它描述了函数列 或函数项级数在某个区间上的收敛性质。在微积分学中, 一致收敛的概念对于研究函数的极限行为、连续性、可微 性和积分等性质至关重要。通过理解一致收敛,可以更好 地理解函数列和级数的收敛性质,从而更好地应用微积分 学中的相关定理和性质。
应用二:实数完备性的证明
总结词
利用一致收敛证明实数完备性
详细描述
实数完备性是实数理论中的重要性质,它表 明实数具有某些理想的完备性。利用一致收 敛的性质,可以证明实数完备性的一些重要 定理,如确界定理、区间套定理和闭区间套 定理等。这些定理在实数理论中起着至关重 要的作用,为实数性质的研究提供了重要的 理论支持。
05
一致收敛函数列与函数项 级数的扩展知识
扩展知识一:一致收敛的判定定理
01
柯西准则
对于任意给定的正数$varepsilon$,存在正整数$N$,使得当
$n,m>N$时,对所有的$x$,有$|f_n(x)-f_m(x)|<varepsilon$。
数学分析课件 一致收敛性资料讲解
列(1)在点 x0 发散. 当函数列(1)在数集 D E上每一 点都收敛时, 就称(1)在数集 D 上收敛. 这时 D 上每
一点 x 都有数列 { fn( x)}的一个极限值与之相对应 ,
根据这个对应法则所确定的 D 上的函数, 称为函数
列(1)的极限函数. 若将此极限函数记作f, 则有
lim
n
fn(x)
f (x) ,
xD
前页 后页 返回
或 fn(x) f (x) (n ) , x D.
函数列极限的 N 定义: 对每一固定的 x D , 任 给正数 , 总存在正数N(注意: 一般说来N值与 和
x 的值都有关, 所以有时也用N( , x)表示三者之间
0, | x | 1,
f
(
x)
1,
x 1.
证 任给 0 (不妨设 1), 当 0 | x | 1 时, 由于
| fn( x) f ( x) || xn |,
只要取 N ( , x) ln , 当 n N ( , x) 时,就有
ln | x |
| fn( x) f ( x) || x |n| x |N .
(1)
是一列定义在同一数集 E 上的函数,称为定义在E
上的函数列. (1) 也可记为
{ fn } 或 fn , n 1, 2,L .
以 x0 E 代入 (1), 可得数列
f1( x0 ), f2( x0 ), L , fn( x0 ), L .
(2)
前页 后页 返回
如果数列(2)收敛, 则称函数列(1)在点 x0 收敛, x0 称 为函数列(1)的收敛点. 如果数列(2)发散, 则称函数
一致收敛函数列与函数项级数级数的性质.ppt
又
lim
x x0
fN1( x) aN1
,
所以存在δ > 0 , 当0 < | x – x0 | <δ时,
| fN+1(x) – aN+1 | <ε/3
这样当0 < | x – x0 | <δ时,
| f (x) A|
| f ( x) f N 1( x) | | f N 1( x) aN 1 | | aN 1 A |
? lim
x x0
n1
un ( x)
n1
lim
x x0
un
(
x)
注:对函数序列{Sn ( x)}而言,应为
? lim
x x0
lim
n
Sn
(
x
)
lim
n
lim
x x0
Sn
(
x)
2.求导运算与无限求和运算交换次序问题
? d
dx n1 un ( x)
d n1 dx un ( x)
lim lim
x x0 n
fn
(
x)
lim
n
lim
x x0
fn(x) .
这表明在一致收敛的条件下,极限可以交换顺序.
证 先证数列 { an } 收敛.因为{ fn } 一致收敛,
故对任给的ε > 0 , 存在 N > 0 , 当 n > N 时,对任何 正整数 p ,对一切 x ∈(a , x0 )∪(x0 , b) 有
| fn(x) – f n+p(x) | <ε
从而
lim
x x0
|
函数项级数的一致收敛性及基本性质ppt课件
.
故 幂 级 数 anxn在 [a,b]上 适 合 定 理3条 件 , 从 n1
而 可 以 逐 项 求 导 . 由 [a ,b ]在 ( R ,R )内 的 任 意 性 ,
即 得 幂 级 数 a n x n 在 ( R ,R )内 可 逐 项 求 导 . n 1
区间上的一致收敛性.
cos nx
1.
n1
2n
,
x ;
2. x2enx , 0 x .
n1
.
练习题答案 一1、 .取自然 N数 x.
二、一致收敛.
.
由 比 值 审 敛 法 可 知 级 数 nn 1 q 收 敛 , n 1
于是 nn 1 q 0 (n ),
.
故 数 列nn q1有 界 , 必 有 M0, 使 得
nn q 11M (n1,2,) x1
又 0x 1R , 级 数a nx 1 n收 敛 , n 1
由 比 较 审 敛 法 即 得 级 数 nn x a n 1收 敛 . n 1 由 定 理4, 级 数 nnaxn1在 (R,R)内 的 任 意 n1
致收敛.
进一步还可以证明,如果幂级数anxn在收敛 n1
区间的端点收敛,则一致收敛的区间可扩大到包 含端点.
.
定理5 如 果 幂 级 数 a n x n 的 收 敛 半 径 为 n1
R 0 ,则其和函数s(x) 在( R, R) 内可导,且
有逐项求导公式
s( x )
an xn
n1
na n x n1 ,
n1
逐项求导后所得到的幂级数与原级数有相同的收
敛半径.
.
证 先证级数 nanxn1在(R,R)内收敛. n1
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用1. 引言1.1 研究背景函数项级数是数学分析中一个重要的研究对象,它是由无穷个函数组成的无穷级数求和。
在实际的应用中,往往需要研究级数的收敛性,其中一致收敛性是一个重要的性质。
一致收敛性指的是对于每一个给定的ε>0,存在一个N,使得当n>N时,级数的部分和与其极限的差的绝对值小于ε。
函数项级数一致收敛性的研究有着重要意义,它可以帮助我们更好地理解函数序列之间的关系,从而应用到不同的数学问题中。
函数项级数的一致收敛性判别方法有多种,比较判别法和魏尔斯特拉斯判别法是常用的方法之一。
比较判别法通过比较级数与已知收敛的级数的大小关系来判断级数的收敛性,而魏尔斯特拉斯判别法则利用函数项级数中的Cauchy收敛原理来判断其收敛性。
在实际应用中,函数项级数的一致收敛性判别方法可以帮助我们解决各种数学问题,例如在微积分和数学分析中的应用。
通过深入研究函数项级数的一致收敛性,我们可以更好地理解其数学性质,为进一步的研究提供基础。
【研究背景】1.2 研究意义函数项级数是数学中重要的概念之一,它在分析学、数学物理等领域中有着广泛的应用。
研究函数项级数的一致收敛性对于深入理解这一概念的性质和特点具有重要意义。
一致收敛性是函数项级数收敛的一种较强的方式,它能够保证收敛的速度和稳定性,从而使得我们能够更好地掌握级数的性质和行为。
研究函数项级数的一致收敛性,不仅可以帮助我们更好地理解级数的收敛性质,还可以为我们解决实际问题提供有力的数学工具。
在实际应用中,我们经常会遇到需要考察函数项级数的收敛性的情况,比如在数值计算、信号处理、概率论等领域中都会涉及到函数项级数的处理。
研究函数项级数的一致收敛性具有重要的理论意义和实际应用价值。
1.3 研究目的研究目的是对函数项级数的一致收敛性进行深入探讨,通过研究不同的判别方法来确定函数项级数是否在整个定义域上一致收敛。
通过对比比较判别法和魏尔斯特拉斯判别法的优缺点,可以更好地理解和判断函数项级数的收敛性。
§131级数的收敛性数学分析课件(华师大四版)高教社ppt华东师大教材配套课件-图文
§131级数的收敛性数学分析课件(华师大四版)高教社ppt华东师大教材配套课件-图文数学分析第十三章函数列与函数项级数§13.1级数的收敛性一、函数列及其一致收敛性二、函数项级数及其一致收敛性三、函数项级数的一致收敛判别法某点击以上标题可直接前往对应内容对于一般项是函数的无穷级数,其收敛性要比数项级数复杂得多,特别是有关一致收敛的内容就更为丰富,它在理论和应用上有着重要的地位.§1级数的收敛性函数列及其一致收敛性函数列及其一致收敛性设f1,f2,,fn,函数项级数及其一致收敛性函数项级数的一致收敛性判别法(1)是一列定义在同一数集E上的函数,称为定义在E上的函数列.(1)也可记为{fn}或fn,n1,2,.以某0E代入(1),可得数列f1(某0),f2(某0),,fn(某0),.后退前进(2)目录退出数学分析第十三章函数列与函数项级数高等教育出版社§1级数的收敛性函数列及其一致收敛性函数项级数及其一致收敛性函数项级数的一致收敛性判别法如果数列(2)收敛,则称函数列(1)在点某0收敛,某0称为函数列(1)的收敛点.如果数列(2)发散,则称函数列(1)在点某0发散当函数列(1)在数集DE上每一.点都收敛时,就称(1)在数集D上收敛.这时D上每一点某都有数列{fn(某)}的一个极限值与之相对应,根据这个对应法则所确定的D上的函数,称为函数列(1)的极限函数.若将此极限函数记作f,则有或limfn(某)f(某),n某Dfn(某)f(某)(n),某D.数学分析第十三章函数列与函数项级数高等教育出版社§1级数的收敛性函数列及其一致收敛性函数项级数及其一致收敛性函数项级数的一致收敛性判别法函数列极限的N定义对每一固定的某D,任给正数,总存在正数N,(注意:一般说来N值与和某的值都有关,所以有时也用N(,某)表示三者之间的依赖关系)使当nN时,总有|fn(某)f(某)|.使函数列{fn}收敛的全体收敛点集合,称为函数列{fn}的收敛域.数学分析第十三章函数列与函数项级数高等教育出版社§1级数的收敛性函数列及其一致收敛性函数项级数及其一致收敛性函数项级数的一致收敛性判别法例1设fn(某)某,n1,2,为定义在(-,)上的函数列,证明它的收敛域是(1,1],且有极限函数0,|某|1,f(某)1,某1.证任给0(不妨设1),当0|某|1时,由于n|fn(某)f(某)||某|,ln只要取N(,某),当nN(,某)时,就有ln|某|n|fn(某)f(某)||某||某|.数学分析第十三章函数列与函数项级数高等教育出版社nN。
函数项级数的一致收敛性课件
一致收敛性的判定准则
柯西准则
如果存在常数$M$,使得对于任意的$x in I$和任意的$n in mathbb{N}$,都有 $|f_n(x)| leq M$,则该级数在区间$I$上一致收敛。
狄利克雷-阿贝尔准则
如果存在一个非零函数$g(x)$,使得对于任意的$x in I$和任意的$n in mathbb{N}$,都有$|f_n(x)| leq g(x)$,并且$sum_{n=0}^{infty} g(x)$在区间 $I$上收敛,则该级数在区间$I$上一致收敛。
微分方程求解
一致收敛的函数项级数可以用来 求解某些微分方程,例如求解某 些初值问题和边值问题。
在实变函数中的应用
测度论
一致收敛的函数项级数在测度论中有重要应用,例如在证明某些测度的可积性和可测性 时需要用到一致收敛性。
积分方程
一致收敛的函数项级数可以用来求解某些积分方程,例如求解某些初值问题和边值问题 。
Part
03
一致收敛性的判定方法
柯西准则
柯西准则
如果对于任意的正数$varepsilon$,存在一个正整数$N$,使得当$n>N$时,对于所有的$x$,都有$left| sum_{k=n}^{m} a_k(x) right| < varepsilon$,则函数项级数$sum_{k=0}^{infty} a_k(x)$在$mathbf{R}$上一 致收敛。
总结了几种常用的判别函数项 级数一致收敛的方法,包括柯 西准则、狄利克雷定理、阿贝 尔定理等,并给出了相应的证 明和实例。
探讨了函数项级数一致收敛性 与函数项级数项的连续性的关 系,证明了函数项级数一致收 敛时,其项的极限函数是连续 的。
通过几个具体的例子,展示了 函数项级数一致收敛性在解决 实际问题中的应用,如近似计 算、积分计算等。
《数学分析》课件 (完整版)
§1 无穷限广义积分
定积分的两个限制
积分区间的有界性 被积函数的有界性 实践中,我们却经常要打破这两个限制。如:关于级数收敛的Cauchy积分判别法;概率统计中,随机变量的空间通常是无限的;第二宇宙速度;物理中的 函数;量子运动;‥‥‥
无穷限积分的定义
设函数 在 有定义,在任意有限区间 上可积。若 存在,则称之为 在 上的广义积分,记为 此时亦称积分 收敛;若 不存在,则称积分 发散。
P.S. 为一符号,表示的是一无穷积分;而当它收敛时,还有第二重意义,可用来表示其积分值。
1. 2. 当 , 均收敛时,定义 显然, 的值与 的选取无关。
类似地,我们可以给出其它无穷积分的定义:
特别地,我们若可利用Taylor公式,求得
则
时 收敛, 时 发散, 时,只能于 时推得 收敛。
Question
我们将参照物取为幂函数 ,而有了上述的比较判别法;那么,将参照物取为指数函数 ,结果又如何呢? 无穷限的广义积分有着与级数非常类似的比较判别法,都是通过估计其求和的对象大小或收敛于0的速度而判断本身的敛散性;而且,我们还有Cauchy积分判别法,使某些级数的收敛与某些无穷限积分的收敛等价了起来。那么,是否可以将关于级数中结论推广至无穷限积分中来呢?某些结论不能推广的原因是什么呢?
1. 结合律
对于收敛级数,可任意加括号,即
2. 交换律
仅仅对于绝对收敛的级数,交换律成立 而对于条件收敛的级数,是靠正负抵消才可求和的,故重排后结果将任意。可见,绝对收敛才是真正的和。
定理 10.19 若级数 绝对收敛,其和为 ,设 为 的任意重排,则 亦绝对收敛,且和仍为
第十章 数项级数
§5 无穷级数与代数运算 有限和中的运算律,如结合律,交换律,分配律,在无穷和中均不成立。具体地,我们有下面的一些结论。
数学分析13.1一致收敛性
第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。
函数项级数的一致收敛性及一致收敛级数的基本性质
y S(x)
y Sn (x)
I
x
定理(柯西收敛原理)
un ( x)在I上一致收敛于S( x) 0, N ( ) N ,
n1
当n N ( )时, x I ,p N , un1( x) un p( x) .
推论 若 un ( x)在I上一致收敛,则 {un( x)}在I上一致 n1
即 0, N ( x0 , ) 0,当n N ( x0 , )时, | fn ( x0 ) f ( x0 ) |
定义 设 fn(x)在点集I上逐点收敛于f (x),且对
任意 0, 存在与x无关N ( ), 使得当n N时, 对一
切x I , 都有 fn(x) f (x) , 则称 fn(x)在I上一
>
N
时有
rn (x) (0 x )
这说明级数在 [0, +∞) 上一致收敛于 S(x) 1 . x 1
余项 rn (x) 一致收敛于 0
几何解释 : (如图)
0, N N , 当n > N 时, S(x) Sn (x) 表示 曲线 y Sn (x) 总位于曲线 y S(x) 与y S(x)
之间.
y S(x)
y S(x)
例.
求证fn ( x)
1
x n2
x2
在(, )上一致收敛.
证明: x (, ),
lim
n
fn ( x)
x
lim
n
1
n2
x
2
0, 逐点收敛于f ( x)
函数项级数一致收敛性
函数项级数一致收敛性有关问题的讨论函数项级数是微积分的主要内容之一,是数学分析研究的重点.用函数项级数(或函数列)来表示(或定义)一个函数,判断其一致收敛性是关键.从函数项级数一致收敛的定义及性质出发,下面主要讨论函数项级数(或函数列)一致收敛性的判别及其应用.1 函数项级数一致收敛的相关定义定义1.1[]1(31)P 设函数列{})(x S n 是函数项级数∑∞=1)(n nx u的部分和函数列,若,0>∀ε 存在正整数)(εN ,当n >)(εN 时,不等式∑=-nk kx S x u1)()(=)()(x S x S n -<ε对I 上一切x 都成立,则称∑∞=1)(n nx u在I 上一致收敛于()S x .一致收敛的定义还可以用下面的方式来表达: 定义1.1[]2(67)'P 函数列{})(x S n (或∑∞=1)(n nx u)在I 上一致收敛于()S x⇔∞→n lim Ix ∈sup )(x R n =0)()(sup lim =-∈∞→x S x S n Ix n ,其中)(x R n =()()n S x S x -称为函数项级数∑∞=1)(n nx u的余项.定义1.2 函数列{})(x S n 在I 上非一致收敛于()S x⇔00>∃ε,0>∀N ,N n >∃0,I x ∈∃0,使得)()(000x S x S n -≥0ε.定义 1.3 函数列{})(x S n 在区间()b a ,内的任一闭区间上一致收敛时,称{})(x S n 在区间()b a ,内闭一致收敛.2 一致收敛函数项级数的性质[]3(417430)P -定理2.1(逐项取极限) 设级数∑∞=1)(n nx u在0x 的某个空心邻域0U (0x )={}δ<-<||0:0x x x 内一致收敛,0lim x x →()n n u x c =.则∑∞=1n nc收敛,且limx x →∑∞=1)(n nx u=∑∞=→1)(lim 0n n x x x u =∑∞=1n n c . (1)定理2.2(连续性) 若)(x u n 在区间I 上连续(1,2,n =⋅⋅⋅),∑∞=1)(n nx u在I 上一致收敛,则()S x≡∑∞=1)(n n x u 在I 上连续.定理2.2' 若)(x u n 在(,)a b 内连续(1,2,n =⋅⋅⋅),∑∞=1)(n nx u在(,)a b 内闭一致收敛,则()S x ≡∑∞=1)(n nx u在(,)a b 内连续.定理2.3(逐项求导) 若级数∑∞=1)(n nx u区间I 上满足以下三条:(1)级数∑∞=1)(n nx u在I 上收敛(或验证在I 上至少有一个收敛点);(2))(x u n 在I 上有连续导数(1,2,n =⋅⋅⋅); (3)1()n n u x ∞='∑在I 上一致收敛(或在I 的任一内闭区间上一致收敛),则∑∞=1)(n nx u区间I 上可微,且可逐项求导,即在I 上有d dx∑∞=1)(n n x u =1()n n d u x dx ∞=⎛⎫⎪⎝⎭∑ (2) 定理2.4(逐项求积分) 若级数∑∞=1)(n nx u的各项连续,并且此级数在[,]a b 上一致收敛,则有11()()b bn n aan n u x dx u x dx ∞∞===∑∑⎰⎰(3)一般地,若当∞→n 时,()0bn aR x dx →⎰,则上式为真.3 一致收敛性的判断判别一致收敛的方法有多种,下面将分别进行介绍和讨论.3.1 利用一致收敛的定义通常称定义1.1为“N -ε法”,定义1.2为“确界法”,从中还可以得到一种更简便的方法“放大法”:若,0n n N α+∀∈∃>,使得)(,)()(I x x S x S n n ∈∀≤-α,且n →∞时,0n α→,则n →∞时,()n S x 在I 上一致收敛于()S x .例1 讨论级数2321()()()n n u x x xx x x ∞==+-+-+⋅⋅⋅∑在下列区间的一致收敛性.(1)210≤≤x , (2)10≤≤x . 解 令nnk k n x x u S ==∑=1)(,则001;()lim ()1 1.nn x S x S x x →∞≤<⎧==⎨=⎩ (1)当210≤≤x 时,()0S x =. ,0>∀ε若)()(x S x S n -=ε<⎪⎭⎫⎝⎛≤nn x 21,只要2ln 1lnε>n ,取1ln[]ln 2N ε=,则当N n >时,∀]21,0[∈x 均有)()(x S x S n -=0)(-x S n <ε. 因此∑∞=1)(n nx u 在]21,0[上一致收敛于零. (2)方法1 取0ε,使2100<<ε,不论n 多大,只要取nx 21=,就有)21()21(n n n S S -=021ε>.因此,∑∞=1)(n nx u在[0,1]上收敛而非一致收敛.方法2 01;()()()11.nn n x x R x S x S x x ⎧≤<=-=⎨=⎩故01sup ()1n x R x ≤≤≡.因此,∑∞=1)(n nx u在[0,1]上非一致收敛.注意在(1)中找N 的方法与技巧,对()()n S x S x -适当放大时,应使N 与x 无关,只与ε有关. 例2 设101()()n n i if x f x nn -==+∑,1,2,n =⋅⋅⋅,其中()f x 为连续函数,证明序列{}()n f x 在任何有限闭区间[,]a b 上一致收敛.证 记{}()n f x 的极限函数为()F x ,则111101()lim ()()()()(01;0,1,,1).i n n x x i n i n xn x i i n i i F x f x f t dt f t dt f x nn n i n θθ+--++→∞+======++<<=⋅⋅⋅-∑∑⎰⎰由于()f x 在[,1]a b +上连续,故在[,1]a b +上一致连续,即,0>∀ε()0δδε∃=>,使对于',''[,1]x x a b ∀∈+,只要当'''x x δ-<时,就有(')('')f x f x ε-<.取1[]1N δ=+,则当,n N a x b >≤≤时,有()11()()[,1][,1]0,1,,1i i i i i i x x x a b x a b i n n n n n N n n nθθδ++-+<<<+∈+++∈+=⋅⋅⋅-且,.于是110011()()()().n n i n i i i i F x f x f x f x n n n n nθεε--==-≤++-+<=∑∑因此{}()n f x 在[,]a b 上一致收敛于()f x .例3 试证:221(1)nn n n x∞=-+∑在(,)-∞+∞内一致收敛. 证 易知(,)x ∀∈-∞+∞,当n 充分大时,22n n x ⎧⎫⎨⎬+⎩⎭单调减且趋于0.故该级数为莱布尼茨型级数.则有2211()0(1)1n n R x n x n +≤≤→+++ ()n →+∞所以级数 221(1)nn n n x ∞=-+∑在(,)-∞+∞内一致收敛. 3.2 柯西准则判断一致收敛性[]5(31)P定理3.2(一致收敛的柯西准则) 函数项级数1()n n u x ∞=∑ (部分和函数列()nSx )在I 上一致收敛的充分必要条件为:,0>∀ε总存在正整数N =)(εN ,使N n >时,不等式12()()()n n n p u x u x u x +++++⋅⋅⋅+<ε )()((x S x S n p n -+<)ε对任意的正整数p 和I 上任意的x 都成立.当1=p 时得到函数项级数一致收敛的必要条件.推论 函数项级数1()n n u x ∞=∑在数集I 上一致收敛⇒函数列{})(x un在I 上一致收敛于零,即,0>∀ε+∈∃N N ,当n N >时,I x ∈∀都有)(x u n <ε.例4 设{}()n u x 为[,]a b 上的可导函数列,且在[,]a b 上1()nk k u x C ='≤∑,C 是不依赖与x 和n的正数.证明:若1()n n u x ∞=∑在[,]a b 上收敛,则必为一致收敛.证 0ε∀>,取m 充分大,将[,]a b m 等分,使得4b a m Cε-<.顺次以12,,,m x x x ⋅⋅⋅表示各小区间段的中点.由已知得,∑∞=1)(n i nx u收敛⇒()0,,,i i i i N N x n N εε∀>∃=>时,有1()2n pk i k n u x ε+=+<∑,()p N +∀∈.令12max{,,,}m N N N N =⋅⋅⋅,则[,]x a b ∀∈(不妨设x 位于第i 个小区间段,{}1,2,,i m ∈⋅⋅⋅),于是11111()()(())()()iin p n pn p n pn pxxkkikkikx x k n k n k n k n k n u x u x u t dt u x u t dt +++++=+=+=+=+=+''=+≤+∑∑∑∑∑⎰⎰2.222i C x x εεεε<+-≤+=原命题得证.注意:在证明过程中对1()n pkk n u x +=+∑进行变形时,有一个重要方法可利用—阿贝尔变换.3.3 判别函数项级数一致收敛性的常用方法判别函数项级数一致收敛性除根据定义和柯西准则外,还可以根据级数各项的特性来判别,常用以下判别法.3.3.1 Weierstrass 判别法 定理3.3.1 (Weierstrass 判别法)[]1(32)P 设函数项级数1()n n u x ∞=∑定义在数集I 上,1nn M∞=∑为收敛的正项级数,若对一切x I ∈,有(),n n u x M ≤1,2,n =⋅⋅⋅,则函数项级数1()n n u x ∞=∑在I 上一致收敛.其中1nn M∞=∑称为1()n n u x ∞=∑的优级数,因此该定理也称为优级数判别法.求优级数的方法有多种,主要有以下方法:(1)观察法; 例5 证明:21cos n nxn ∞=∑在x <+∞时一致收敛. 提示:22cos 1nx n n≤可证. (2)找出()n u x 的最大值法; 例6 证明21(1)nn xx ∞=-∑在[0,1]上一致收敛.提示:求出通项()n u x 的最大值点(求导法),2nx n =+时. (3)利用已知不等式法; 例7 讨论5211n nxn x∞=+∑在区间x <+∞上的一致收敛性. 解 当x <+∞时,552212n x n x +≥,于是,3522112nx n x n ≤+.又因31212n n ∞=∑收敛,故级数 5211n nxn x∞=+∑在(,)-∞+∞上一致收敛. (4)利用某些已知公式进行变形,等等. 例8 证明21nxn x e∞-=∑在(0,)+∞内一致收敛.证 利用泰勒公式,2212nxn x e nx =+++⋅⋅⋅ ()x R ∈.从而 222222222122nxx x x en x n x nnx -=<=+++⋅⋅⋅(0)x >. 而级数212n n∞=∑一致收敛,因此由优级数判别法可知原级数在(0,)+∞内一致收敛.3.3.2 Abel 判别法和Dirichlet 判别法对级数1()nn u x ∞=∑,若()n u x =()()n na xb x .定理3.3.2 (Abel 判别法)[]1(33)P 设(1)()1n n a x ∞=∑在区间I 上一致收敛;(2)对于每一个x I ∈,{}()n b x 是单调的;(3){}()n b x 在I 上一致有界,即对一切x I ∈和n N +∈,存在正数M ,使得()n b x M ≤,则级数1()n n u x ∞=∑在I 上一致收敛.定理3.3.3 (Dirichlet 判别法)[]1(34)P 设(1)()1n n a x ∞=∑的部分和函数列1()()nnk k Sx a x ==∑(1,2,)n =⋅⋅⋅在I 上一致有界;(2)对于每一个x I ∈,{}()n b x 是单调的; (3)在I 上,()0n b x →→,()n →∞,则级数1()nn ux ∞=∑在I 上一致收敛.例9讨论1n ∞=在区间0x <<+∞上的一致收敛性.解(1)n -=.由于1(1)n n ∞=-∑收敛,且与x 无关,故它对x 而言是一对于每一个(0,)x ∈+∞1≤.因此由Abel 判别法可知原级数在(0,)+∞上一致收敛.例10讨论(1)211)n n n -∞=10x ≤上的一致收敛性.解(1)21(1)2k k nk -=-≤∑,记()n b x =.>,故()nb x≤→(10)x≤,故()nb x单调一致地趋于零.因此,由Dirichlet判别法知,级数在[10,10]-上一致收敛.例11 证明21(1)sin1nnnxx nxx∞=--∑在1(,1)2内一致收敛.证原级数=11(1)sin11nn nnx xnxx x∞=-⋅+-∑.其中11n x+对任意1(,1)2x∈关于n单调,且一致有界:111n x≤+.下面考察级数1(1)sin1nnnx xnxx∞=--∑.因为111sin2sin sin22sin2n nk kxkx kxx===∑∑1111[cos()cos()]222sin2nkk x k xx==--+∑1cos cos()112212sin sin sin224xx nxx-+=≤≤1((,1),1,2,)2x n∈=⋅⋅⋅所以1sinnkkx=∑在1(,1)2内一致有界.而21(1)1,(,1)112n nn nx x xxx x x x--=∈-+++⋅⋅⋅+关于n单减,又2111001n nn nx xx x x nx n--≤≤<→+++⋅⋅⋅+1(,1)2x∈.所以(1)1nnx xx--在1(,1)2上单减一致收敛于0.由Dirichlet判别法可知,级数1(1)sin1nnnx xnxx∞=--∑在1(,1)2内一致收敛.则由Abel判别法可知原级数在1(,1)2上一致收敛.3.3.3 Dini定理定理3.3.4(Dini定理)[]3(407)P设()0nu x≥,在[,]a b上连续,1,2,n=⋅⋅⋅.又1()nnu x∞=∑在[,]a b上收敛于连续函数()f x ,则1()n n u x ∞=∑在[,]a b 上一致收敛于()f x .证 (反证法) 若1()n n u x ∞=∑在[,]a b 上非一致收敛,则00ε∃>,使得0,,[,]N N n N x a b +∀∈∃>∃∈,有00()n R x ε≥.取1N =,知11n ∃>,1[,]x a b ∃∈使110()n R x ε≥,令1N n =知21n n ∃>,2[,]x a b ∃∈ ,使220()n R x ε≥,如此下去,我们得到{}n 的子序列12k n n n <<⋅⋅⋅<<⋅⋅⋅使得0()k n k R x ε≥(1,2,)k =⋅⋅⋅ (1) 利用致密性原理,在有界数列{}k x 里,存在收敛子列{}0[,]j k x x a b →∈ ()j →+∞,因()n R x 单减(关于n ),所以m N +∀∈,当jk n m >时,有0()()j k j jm k n k R x R x ε≥≥ (因式(1)) 由于()()()m m R x f x S x ≡-连续,所以j →+∞时,对0()j m k R x ε≥取极限,知 00()m R x ε≥, ()m N +∀∈, 与1()n n u x ∞=∑在[,]a b 上收敛矛盾.证毕.注意:Dini 定理在和函数便于求得的情况下应用比较方便.例12 证明函数列1(),(1,2,)(1)n x nnf x n xe n==⋅⋅⋅++在区间[0,1]上一致收敛.证 当n →∞时,(1)n x x e n +→,且(1)(1,2,),n x xn e n+=⋅⋅⋅都在[0,1]上连续,故由Dini 定理可知函数列(1)n x n ⎧⎫+⎨⎬⎩⎭在[0,1]上一致收敛于xe .由于(1)1111e (1)(1)(1)x n x nx x xn x n n n xe e n x x e e e n n ++---=+⎡⎤+++++⎢⎥⎣⎦(1)1xn x n x e e n ≤+-+- 1(1)1xnn x e e n =-++-在[0,1]上一致收敛于0()n →∞.又11xe+,11nx nx e n ⎛⎫++ ⎪⎝⎭(1,2)n =⋅⋅⋅在[0,1]上连续,因此,在[0,1]上,当n →∞时,原函数列一致收敛于11xe+. 3.4 一致有界与等度连续 定义3.4.1{}()n f x 在I 上一致有界,是指:,0>∃M 对一切I x ∈,都有()(1,2,n f x M n ≤=)⋅⋅⋅成立.例13[]3(410)P 设{}()n f x 在区间[0,1]上一致有界,试证存在一个子序列,在[0,1]的一切有理点收敛.证 我们知道[0,1]的全体有理点可以排成一个数列{}n a .因{}()n f x 一致有界,故{}1()n f a 是有界数列.由致密性原理知其中存在收敛的子序列.为了便于叙述,记此收敛的子序列为{}1,1()n f a ,于是{}{}1,()()n n f x f x ⊂在1x a =处收敛.同理,因{}1,2()nfa 是有界数列,又必存在收敛子列{}2,2()n f a .即{}{}2,1,()()n n f x f x ⊂,{}2,()n f x 在12,x a a =处都收敛.如此不断地进行下去,不断地在子序列里取子序列,使{},()k n f x 在12,,,k x a a a =⋅⋅⋅处收敛,于是得到一串子序列:1,11,21,31,2,12,22,32,3,13,23,33,,1,2,3,(),(),(),,(),(),(),(),,(),(),(),(),,(),(),(),(),,(),n n n n n n n n f x f x f x f x f x f x f x f x f x f x f x f x f x f x f x f x ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅最后能用上表对角线元素组成一个子序列{},()n n f x ,即1,12,23,3(),(),(),f x f x f x ,⋅⋅⋅,(),n n f x ⋅⋅⋅易知此序列在点(1,2,)i a i =⋅⋅⋅上收敛.事实上,{}(1,2,)i a i ∀∈⋅⋅⋅,已知上面的子序列中第i 个子序列在i a 处收敛,而,1,1(),()i i i i f x f x ++⋅⋅⋅是第i 个子序列的子序列,故{},()n n f x 在i a 点上收敛.由此知{},()n n f x 在{}12,,,,n a a a ⋅⋅⋅⋅⋅⋅上收敛.定义 3.4.2 设Ω是区间I 上定义的函数族,Ω上的函数在I 上等度连续,是指:0ε∀>,0δ∃>,当12x x I ∈,且12x x δ<-时有12()()()f x f x f ε-<∀∈Ω.特别,I 上定义的函数序列{}()n f x ,在I 上等度连续,是指:0,0εδ∀>∃>,当12x x I∈,且12x x δ<-时有12()()()n n f x f x n N ε+-<∀∈.例14 设函数序列()n f x 在区间[,]a b 上等度连续的,且有()0,1,2,n f x n ≥=⋅⋅⋅.试证:若在[,]a b 上有()()n f x f x →()n →∞,则在[,]a b 上有()()n f x f x →→()n →∞.证 因{}n f 等度连续,0,0εδ∀>∃>,当12x x I ∈,且12x x δ<-时有12()()2n n f x f x ε-<,令∞→n 取极限可得εε<≤-2)()(21x f x f .此即表明)(x f 在I 上一致连续,从而()f x 连续.由Dini 定理知,在[,]a b 上,()()n f x f x →→()n →∞.4 函数项级数非一致收敛的判断这里也给出几种巧证函数项级数非一致收敛的方法,这些方法为一些教科书所忽视,但对判别函数项级数非一致收敛却十分有用.4.1 利用定义法判别(见例1用“N ε-法”) 4.2 利用柯西准则法判别由函数项级数一致收敛的柯西准则,可以得到以下命题. 命题 4.2.1 ()1n n u x ∞=∑在区间I 上非一致收敛⇔00,,,,,N N n N x I p N ε++∃>∀∈∃>∃∈∃∈有1().n pkk n u x ε+=+≥∑(证明略)特别,当n →∞时,若通项n u 在区间I 上非一致收敛于0,则函数项级数()nu x ∑在区间I 上非一致收敛.根据函数列一致收敛的概念,又有以下命题.命题 4.2.2 若函数项级数1()nn ux ∞=∑在区间I 上逐点收敛,且在区间I 中存在一点列{}n x ,使lim ()0n n n u x →∞≠,则函数项级数1()n n u x ∞=∑区间I 上非一致收敛.(证明略) 例15 证明级数1sin n nxn ∞=∑在0x =的邻域内非一致收敛.分析 要证片段01sin n pk n kx k ε+=+≥∑(某个事先给定的正数).取p n =,又在[,]42ππ上恒有sin sin 4x π≥,则只要使[,]42kx ππ∈,就有2211sin 11sin sin 424nn k n k n kx k k ππ=+=+≥⋅≥∑∑. 为此,取4n x x nπ==,因为12n k n +≤≤,所以(1)244442n k n nnnπππππ<+≤⋅≤⋅=,即[,]442k n πππ⋅∈.则n N +∀∈,有2220111sin()sinsin 144sin 24nnnnk n k n k n k kx n k kk πππε=+=+=+⋅=≥>==∑∑∑因此可取0ε=(证明略) 例16 证明:11(1)x n n x e n n ∞=⎡⎤-+⎢⎥⎣⎦∑在(0,)+∞上非一致收敛. 证 因为n N +∀∈,当x →+∞时,易知1(1)x n x e n n ⎡⎤-+⎢⎥⎣⎦→∞. 所以对任意(0,)x ∈+∞,当n →∞时,通项1(1)x n x e n n ⎡⎤-+⎢⎥⎣⎦非一致收敛于0. 所以原级数在(0,)+∞非一致收敛.例17 讨论级数112sin3n n n x∞=∑在(0,)+∞上的一致收敛性. 解 显然原级数在(0,)+∞上逐点收敛,取2(0,)3nn n x =∈+∞,1,2,n =⋅⋅⋅,有1()2sin1()2n n n nu x n =→→∞,故原级数在(0,)+∞上非一致收敛. 4.3 利用一致收敛函数列的性质判别[8](3637)P -一致收敛函数列的性质:设各项连续的函数列{})(x S n 在区间上一致收敛于)(x S ,则对任何以)(00I x x ∈为极限的数列{}n x ,都有 )()(lim 0x S x S n n =∞→.由上性质可得如下命题: 命题4.3.1 若连续的函数项级数1()n n u x ∞=∑(记1()()nnk k Sx u x ==∑)在区间I 上逐点收敛于)(x S ,且{}0,:n x I x I ∃∈∃⊂ 0lim n n x x →∞=有0lim ()()n n n S x S x →∞≠,则函数项级数1()nn ux ∞=∑在区间I 上非一致收敛于)(x S .(证明略)例18 讨论函数项级数1sin ([0,1))pn nxp n ∞=∈∑在[0,]π上的一致收敛性. 解 由Dirichlet 判别法易知该级数在区间[0,]π上逐点收敛,设其和函数为()S x ,则(0)0S =.取1[0,](1,2,)n x n nπ=∈=⋅⋅⋅,则0()n x n →→∞,而11111sinsin sin 1()sin n nn n nknp k k k k k k k kk n n n u x k k n n n ======≥≥=∑∑∑∑∑所以 10111lim ()lim sin sin 0(0)nn k n n n k k ku x xdx S n n →∞→∞==≥=>=∑∑⎰.故原级数在[0,]π上非一致收敛.4.4 利用和函数的连续性质及端点发散性判别 命题4.4.1 若连续函数项级数1()nn ux ∞=∑在区间I 上逐点收敛于和函数)(x S ,且0x I ∃∈,)(x S 在0x 处不连续,则函数项级数1()nn ux ∞=∑在区间I 上非一致收敛于)(x S .(证明略)命题4.4.2[9](63)P 若函数项级数1()nn ux ∞=∑在区间(,]a b (或(,)a +∞)上逐点收敛,但在左端点x a =处发散,n N +∀∈,()n u x 在左端点x a =(右)连续,则函数项级数1()n n u x ∞=∑在区间(,]a b(或(,)a +∞)上非一致收敛.证 用反证法. 假设函数项级数1()nn ux ∞=∑在区间(,]a b (或(,)a +∞)上一致收敛.即0,,,(,]N N n N x a b ε+∀>∃∈∀>∀∈或(,)a +∞,有12()()()n n n p u x u x u x ε+++++⋅⋅⋅+<.又因n N +∈,()n u x 在左端点x a =(右)连续,令x a →(或a +),对上式两端取极限,得12()()()n n n p u a u a u a ε+++++⋅⋅⋅+≤则级数收敛,与已知矛盾,故函数项级数1()n n u x ∞=∑在区间(,]a b (或(,)a +∞)上非一致收敛.例19 讨论函数项级数1nxn ne∞-=∑在区间为(0,)+∞上的一致收敛性.解 易知函数项级数1nxn ne∞-=∑在区间(0,)+∞上逐点收敛,且每一项都在0x =处连续,而函数项级数1nxn ne∞-=∑在0x =处发散,故该函数项级数在(0,)+∞上非一致收敛.该题还可利用其它方法判别,但相比较而言此方法更为简便. 例20 讨论0(1)nn x x∞=-∑在区间01x ≤≤上的一致收敛性.解 10()(1)(1)1nnkk n n k k S x x xx x x +===-=-=-∑∑.于是101;()lim ()0 1.n n x S x S x x →∞≤<⎧==⎨=⎩取0ε,使0102ε<<,不论n多么大,只要取x = ,就有011122n S S ε-=-=>因此,级数(1)nn x x∞=-∑在[0,1]上收敛而非一致收敛.5 综合应用例21[]4(368)P证明级数2312(1)x nn e n∞=+-∑在任何有界区间[,]a b 上一致收敛.证 [,]x a b ∀∈,12(1)nn n∞=-∑,且余项()()23221()0()111cn e R x n n n n ≤≤+→→∞+++ {}(max ,)c a b =, 故 [,]lim sup ()0n n x a b R x →∞∈=.所以级数12(1)nn n∞=-∑[,]a b 上一致收敛.例22 证明:级数(1)1(1)nxn x n nxen xe ∞---=⎡⎤--⎣⎦∑在闭区间01x ≤≤上收敛但非一致收敛,而它的和在此区间上是连续函数.证 考虑部分和(1)1()(1)nkx k x nxn k S x kxe k xe nxe ----=⎡⎤=--=⎣⎦∑,显然在[0,1]上其极限函数()S x 存在(即级数的和)且连续:()lim ()0n n S x S x →∞==.但此级数在[0,1]上非一致收敛.用反证法.若不然,则对任给的0ε>,存在数()N N ε=,使当n N ≥时,对于[0,1]上的一切x 值,均有()()n S x S x ε-<.今取1012e ε-=,应有11()()2n S x S x e --<.取01x x n ==,则也应有11()()2n S x S x e --<,但另一方面,却有10000()()()n n S x S x S x eε--==>,矛盾.证毕.例23[]4(385)P 证明函数11()x n f x n ∞==∑在(1,)+∞无穷次可微. 证 (1)先证()f x 在(1,)+∞上可微.任取0(1,)x ∈+∞,则0δ∃>使得00112x x δδ<+≤<+<∞.在0[1,2]x δδ++上,考察111ln ()x x n n nn n∞∞=='=-∑∑.由于01ln ln 0,[1,2]x n n x x n n δδδ+≤≤∈++ 而121ln lim 0n n n n δδ++→∞⋅=.由比较判别法知11ln n n nδ∞+=∑收敛.从而函数项级数1ln x n nn ∞=-∑在0[1,2]x δδ++一致收敛.故函数()f x 在0[1,2]x δδ++上可微且111ln ()()x x n n n f x n n ∞∞==''==-∑∑,则001ln ()x n nf x n∞='=-∑.由0(1,)x ∈+∞的任意性,()f x 在(1,)+∞上可微,且1ln ()x n nf x n ∞='=-∑. (2)再证对任意自然数k ,均有 ()1(1)ln ()k k k xn nfx n ∞=-=∑. 事实上,当1k =时,由(1)知结论成立.假设m k =时结论成立,则当1m k =+时,考察: 1111(1)ln (1)ln ()k k k k x xn n n nn n ++∞∞==--'=∑∑. 由于1111(1)ln ln k k k x n n n n δ++++-≤,0[1,2]x x δδ∈++.而1121ln lim 0k n n n n δδ+++→∞⋅=.故级数111ln k n n nδ+∞+=∑收敛,从而函数项级数1(1)ln ()k k xn nn ∞=-'∑在0[1,2]x δδ++一致收敛,故函数()()k f x 在0[1,2]x δδ++可微,且 11()'11(1)ln (1)ln (())()k k k k k x xn n n nfx n n ++∞∞==--'==∑∑. 由以上证明可知函数()f x 在(1,)+∞无穷次可微.通过以上对函数项级数(函数列)一致收敛非一致收敛相关问题的讨论,希望能对这部分内容的学习提供一些参考.。
数学分析2课件:13-1一致收敛性
问题:
? 若
lim
n
fn ( x)
f ( x),
lim
n
fn( x)
f ( x),
? b
b
lim
n a
fn( x)dx
a
f ( x)dx
? lim lim n x x0
fn(x)
lim
x x0
f (x)
如例1中, n, fn( x) xn在( 1,1]连续、可导,
其极限函数为:f
| fn( x) fm ( x) || fn( x) f ( x) f ( x) fm ( x) |
| fn( x) f ( x) | | fm ( x) f ( x) |
.
22
"收敛,
设其极限函数为f(x),
在 | fn( x) fm ( x) | 中,令m 有
即sup | fn( x) f ( x) | ,
xD
从而
lim sup |
n xD
fn(x)
f ( x) |
0.
""
lim sup
n xD
|
fn(x)
f ( x) |
0.
0,N ,n N ,都有sup | fn( x) f ( x) | .
xD
又x D,| fn( x) f ( x) | sup | fn( x) f ( x) | ,
定义1: 设函数列{fn(x)}与函数f (x)定义在同一数集D上,
若 0,N ,n N ,x D,都有 | fn( x) f ( x) | ,
则称{fn(x)}在D上一致收敛于f(x), 记作
fn ( x)
f ( x) n , x D
数学分析课件 一致收敛函数列与函数项级数的性质.ppt
*例4
确定函数项级数
n1
x
1 n
n
的收敛域并讨论
和函数的连续性.
前页 后页 返回
解 首先利用连续性定理(或极限交换定理)建立一个
判别法: 若函数项级数 un( x) 的每一项在 [a, b)上
有定义, 且 (i) n, un( x) 在点 a 右连续;
(ii) x (a, b), un( x) 收敛; (iii) 级数 un(a) 发散, 则 un( x) 在 (a, b) 上不一致收敛. 理由是, 如果 un( x) 在 (a, b) 上一致收敛, 则由(i)
y
(其图象如图13-6所示).
n
显然 { fn( x)}是[0, 1] 上的
fn
图13 6
连续函数列, 且对任意
x [0, 1] ,
lim
n
fn(
x)
0.
O
11
1x
2n n
前页 后页 返回
又 sup | fn( x) 0 | n, 因此{ fn( x)} 在 [0, 1]上一致 x[0, 1]
b
b
lim
n
a
fn( x) dx
a
lim
n
fn( x)
dx.
(3)
前页 后页 返回
证 设 f 为函数列{ fn }在 [a, b]上的极限函数. 由定理 13.9知 f 在 [a, b] 上连续, 从而 fn (n 1,2, )与 f 在
[a, b]上都可积. 于是(3)变为
b
b
lim
§2 一致收敛函数列与 函数项级数的性质
一致收敛性的重要性在于可以将通 项函数的许多解析性质遗传给和函数, 如连续性、可积性、可微性等,这在 理论上非常重要.
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用函数项级数是数学中的重要概念,它是指由一系列函数相加而成的级数。
函数项级数的一致收敛性是一个重要的性质,它描述了级数是否在整个定义域上收敛于一个函数。
在实际应用中,我们常常需要判断函数项级数的一致收敛性,并利用这一性质来解决各种问题。
本文将介绍函数项级数一致收敛性的判别方法以及其在实际问题中的应用。
我们来介绍一下函数项级数的一致收敛性的定义。
设有一列函数序列{f_n(x)},若对于任意给定的ε>0,存在N∈N,使得当n>N时,对于任意的x∈D,有|f(x)-f_n(x)|<ε成立,则称函数项级数{f_n(x)}在D上一致收敛于f(x),记作f_n(x)→f(x)(n→∞)。
(其中D为函数的定义域)接下来,我们来介绍一些判别函数项级数一致收敛性的方法。
1. 初等法通过直接比较函数序列{f_n(x)}的各个函数项来判别其是否一致收敛。
可以通过计算级数的通项函数的极限来判断级数的一致收敛性。
3. Weierstrass判别法若对于函数序列{f_n(x)}的每个函数f_n(x)以及定义域D,存在非负数序列{M_n},使得|f_n(x)|≤M_n成立,且级数∑M_n在D上一致收敛,则{f_n(x)}在D上一致收敛。
以上方法是判别函数项级数一致收敛性的常用方法,通过这些方法我们可以判断函数项级数在定义域上的一致收敛性。
二、函数项级数一致收敛性在实际中的应用函数项级数的一致收敛性在实际问题中有着广泛的应用,下面我们就来介绍一些实际问题中函数项级数一致收敛性的应用。
1. 逼近问题逼近问题是函数项级数一致收敛性的一个重要应用,它研究如何用简单的函数序列来逼近更为复杂的函数。
通过函数项级数的一致收敛性,我们可以得到更加紧密的逼近结果,从而解决实际问题中的逼近需求。
2. 微分方程的级数解在微分方程的求解中,函数项级数的一致收敛性也有着重要的应用。
通过对微分方程的解进行级数展开,并判断级数的一致收敛性,我们可以得到微分方程的级数解,从而解决实际问题中的微分方程求解需求。
13_1 一致收敛性
n x ( , )
su p
sin n x n
sin n x n
0 lim
0
1 n
n
0,
所 以 在 ( , )上 ,
( n ).
前页 后页 返回
例3 定义在[0,1]上的函数列
2 2n x, 2 fn ( x ) 2n 2n x, 0, 0 x 1 2n 1 n
2
2
.
充分性 若条件 (4) 成立, 由数列收敛的柯西准则,
{ f n } 在D上任一点都收敛,
记其极限函数为
f ( x ),
前页 后页 返回
x D . 现 固 定 ( 4 )式 中 的 n , 让 m , 于 是 当 n N 时 , 对 一 切 x D 都 有 | f n ( x ) f ( x ) | . fn ( x ) f ( x )
f n ( x ) f ( x )( n ) , x D .
由定义看到, 一致收敛就是对 D 上任何一点, 函数列 趋于极限函数的速度是 “一致” 的. 这种一致性体现
前页 后页 返回
为: 与 相对应的 N 仅与 有关, 而与 x 在 D 上的
取值无关, 因而把这个对所有 x 都适用的 N 写作
x0 称
为函数列(1)的收敛点. 如果数列(2)发散, 则称函数 列(1)在点 x 0 发散. 当函数列(1)在数集 D E 上每一 点都收敛时, 就称(1)在数集 D 上收敛. 这时 D 上每 一点
x
都有数列 {
f n ( x )} 的一个极限值与之相对应
,
函数项级数的一致收敛性及一致收敛级数的基本性质
定理1. 若级数 u n ( x) 满足 :
n 1
1) 各项un ( x) 在区间[a, b] 上连续;
2) un ( x) 在区间[a, b] 上一致收敛于 S ( x) ,
n 1
则S ( x) 在[a, b] 上连续.
证: 只需证明 x0 [a, b] , lim S ( x) S ( x0 ) .
因为对任意 x 都有:
sin n x
2
1
cos x cos 2 2 x cos n 2 x
其一般项不趋于0, 所以对任意 x 都发散 .
问题: 对什么样的函数项级数才有:
逐项连续 和函数连续;
逐项求导 = 和函数求导; 逐项积分 = 和函数积分
函数序列的一致收敛
回忆
设 fn ( x) 是区间I 上的函数列, 若x0 I , 数列
x 求证f n ( x ) 在( , )上一致收敛. 2 2 1 n x x lim f n ( x ) lim 0, 逐点收敛于f ( x ) 0. 2 2 n n 1 n x x 1 2n x 1 fn ( x) f ( x) 2 2 2 2 1 n x 2n 1 n x 2n 1 n sup f n ( x ) f ( x ) 0. 2n x( , )
2 n n 1
在 [0,1] 上不一致收敛 .
证: S n ( x ) x ( x x ) ( x x
)x
n
S ( x)
xn , 0 x 1 rn ( x) S ( x) S n ( x) x 1 0, 1 1 n 取正数 , 对无论多么大的正数 n , 取xn ( 1 ) , 2 2 xn [0, 1] , 而 rn ( xn ) 1 2 , 因此级数在 [0, 1] 上不
数学分析一致收敛函数列和函数项级数的性质讲解-推荐优秀PPT
下面证明 lim f(x ) lim lim f(x ) A . 立变量 x 与 n 的极限可以交换次序, 即(1)式成立.
上都收敛于0, 由于
上的连续性、可积性与可微性. x x 0
x x 0 n n
注意到 与前面两个定理一样, 一致收敛是极限运算与求导
| f(x)A|
| f ( x ) f N 1 ( x ) | | f N 1 ( x ) a N 1 | | a N 1 A |
n
显然 { fn( x)}是[ 0 , 1 ] 上的
fn
图13 6
连续函数列, 且对任意
x[0,1], lni m fn(x)0. O
x x0
x li m x 0f(x ) l n i m f n (x 0 ) f(x 0 ) , 因 此 f(x )在 x 0 上 连 续 .
定理13.9可以逆过来用: 若各项为连续函数的函数
列在区间 I 上其极限函数不连续, 则此函 的各项在(1, 1] 上都是连续的, 但
( 1 )
证 先证 { a n } 是收敛数列. 对任意 0 , 由于{ f n } 一
致收敛, 故存在正整数 N, 当 n>N 及任意正整数 p,
对一切 x (a ,x 0 ) (x 0 ,b )有
|fn (x)fn p(x)|.
从而
|a n a n p | x l i m x 0 |f n ( x ) f n p ( x ) | .
若 f n ( x ) 在 ( a , b ) 上 一 致 收 敛 , 且 x l i m b f n ( x ) 存 在 , 则 有
x li m b l n i m f n (x ) l n i m x li m b f n (x ) .
第六节函数项级数的一致收敛性及一致收敛级数的基本性质
(2) 若函数项级数不一致收敛时, 定理结论不一定成立.
例如, 级数
x x(x 1) x2 (x 1) xn1(x 1)
在区间 [ 0 , 1 ] 上处处收敛, 而其和函数
S(x) 0, 0 x 1 在 x = 1 处不连续 . 1, x 1
例.(内闭一致收敛)
证明S( x) nenx在(0,)上连续. n1
解:
1
1 1
(x k)(x k 1) x k x k 1
(k 1,2, )
Sn
(x)
(
x
1
1
x
1
) 2
(
x
1
2
x
1
) 3
( 1 1 ) x n x n1
1 1 x 1 x n1
S(x)
lim Sn (x)
n
lim ( 1 n x 1
x
1 n
) 1
1 x 1
(0 x )
之间.
y S(x)
y S(x)
y S(x)
y Sn (x)
I
x
定理(柯西收敛原理)
un ( x)在I上一致收敛于S( x) 0, N ( ) N ,
n1
当n N ( )时, x I ,p N , un1( x) L un p( x) .
推论 若 un ( x)在I上一致收敛,则 {un( x)}在I上一致 n1
故
S(x) 在 x0 连续, 即 lim S(x) S(x0 ) xSnx(0
xS)(x)Sn (Sx0()x0).
rn
(
x)
证毕
rn (x0 )
说明:
(1) 定理1 表明, 对一致收敛的级数, 极限运算与无限
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x(1,1) 1 x n 1
n1
而右端极限为,
故原级数在(-1,1)不一致收敛。
但限制x [a,a],a 1,则
sup
x(a,a )
|
sn( x)
s( x) |
sup
x(a,a )
| 1 xn 1 x
1 1
x
|
sup | xn | an , x(a,a) 1 x 1 a
[( xn ) 0,单调增] 1 x
故 un( x)在数集D上一致收敛。
n1
证毕。
注1 在这个定理的条件下,可得| un( x) | 也一致收敛。
n1
注2 不是每个收敛级数都有优级数。
例8
sin n
nx
p
,
cos n
nx
p
,(
p
1)在(,)一致收
敛。
优级数均为
1 np
.
(1)n sin nx的优级数为 np
1, np
一致收敛。
xn在[a,a](a 1)的优级数为 an,一致收敛。
an为绝对收敛级数,则 an sin nx, an cos nx
n1
n1
n1
在(,)一致收敛,且| an | 就是其优级数。
n1
全体收敛点的集合称为收敛域。
un( x) s( x)
n1
——和函数。
例5
xn 1 x x2 x3
n0
lim
n
sn( x)
lim
n
1 xn 1 x
1 , 1 x 发散,
| x | 1 | x | 1
xn在( 1,1)内收敛于s( x)
1
.
n0
1 x
定义: 设sn( x)
(2) 0,N ,m, n N ,x D,都有 | fn( x) fm ( x) | .
(3)
lim sup
n
xD
|
fn(x)
f ( x) |
0.
好用!
uk ( x)一致收敛于s( x). 等价于下列3条之一:
k 1
(1) sn( x)
s( x), x D,
(2) 0,N ,m N ,p 0,x D,有 | um1( x) um2( x) um p( x) | .
n
uk ( x)是
uk ( x)的部分和函数列,
k 1
k 1
若sn( x)
s( x), x D,
则称 uk ( x)一致收敛于s( x).
k 1
定理3:(Cauchy收敛准则)
un( x)在D上一致收敛
n1
0,N ,m N ,p 0,x D,有
| um1( x) um2( x) um p( x) | .
称为函数项级数的部分和函数列。
若x0 E, 数项级数
un( x0 ) u1( x0 ) u2( x0 ) u3( x0 ) un( x0 )
n1
收敛, 则称函数项级数 un( x)在x0收敛,
n1
如果函数项级数 un( x)在D E上的每一点收敛,
n1
则称函数项级数 un( x)在D收敛,
1
s( x)
lim
n
sn( x)
lim
n
x
n
0
(0 x )
sn( x)
s( x)
x
1
n
1 n
(0 x )
lim
n
sup s( x)
x[ 0 , )
sn( x)
0,
一致收敛。
fn ( x)
f ( x) x D. 等价于下列3条之一:
(1) 若 0,N ,n N ,x D,都有 | fn( x) f ( x) | ,
n1
优级数
证 0,N ,n N ,p,都有
| Mn1 Mn2 Mn p | . 即 Mn1 Mn2 Mn p .
| un1( x) un2( x) un p( x) | | un1( x) | | un2( x) | | un p( x) |
Mn1 Mn2 Mn p .
好用!
二、函数项级数及其一致收敛性
定义在数集E上的函数列{un( x)},
un( x) u1( x) u2( x) u3( x) un( x)
n1
称为定义在E上的函数项级数,
n
sn( x) uk ( x) u1( x) u2( x) u3( x) un( x)
k 1
fn ( x)
f ( x) x D. 等价于下列3条之一:
(1) 若 0,N ,n N ,x D,都有 | fn( x) f ( x) | ,
(2) 0,N ,m, n N ,x D,都有 | fn( x) fm ( x) | .
(3)
lim sup |
n xD
fn(x)
f ( x) | 0.
x2
1
x n2
x
2
,
由例3, sn( x)
s( x) 0, x R,
原级数一致收敛。
三、函数项级数一致收敛性判别法
定理5(Weierstrass判别法,优级数判别法)
设
un
(
x
)定义在数集D上,
M
为一收敛的正项级数,
n
n1
n1
若x D,有 | un( x) | Mn , n 1,2,,
则 un( x)在数集D上一致收敛。
解
sup
x( 1,1)
|
sn( x)
s( x) |
sup
x( 1,1)
|
1 xn 1 x
1 1
x
|
sup | xn | x(1,1) 1 x
取x n (1,1), n1
则 sup | xn |(| n )n (1 n )
x(1,1) 1 x n 1
n1
则 sup | xn |(| n )n (1 n )
推论:(级数一致收敛的必要条件)
un( x)在D上一致收敛,则 un( x)
n1
0, x D.
定理 4
un( x)在D上一致收敛
n1
lim sup
n xD
|ቤተ መጻሕፍቲ ባይዱ
sn (
x)
s(
x)
|
0.
例6
xn 1 x x2 x3
n0
在( 1,1)内收敛于s( x) 1 , 1 x
是否一致收敛?
0 故原级数在[-a,a] 一致收敛。
{ xn }在(1,1)不一致收敛, 但在[a,a](a 1)一致收敛。
xn在(1,1)不一致收敛,
但在[a,a](a 1)一致收敛。
例
研究级数
1 x 1
x
1
2
1 x
1
x
1
n
x
1 n
1
在区间[ 0,)上的一致收敛性.
解
sn( x)
x
1
, n
(3)
lim
n
sup
xD
|
sn (
x)
s(
x)
|
0.
例7
x
1 x2
[ n2 1
x n2 x2
1
(n
x
1)2
x2 ]
在(,)一致收敛于f ( x) 0.
解
x
x
x
x
x
sn( x) 1 x2 1 22 x2 1 x2 1 32 x2 1 22 x2
1
x n2 x2
1
(n
x
1)2