渗滤液处理工艺

合集下载

垃圾渗滤液MBR+纳滤或反渗透处理工艺

垃圾渗滤液MBR+纳滤或反渗透处理工艺

垃圾渗滤液MBR+纳滤或反渗透处理工艺城市生活垃圾卫生填埋因其技术成熟、处理费用相对较低、便于管理,已成为国内外广泛采用的处理方法之一。

但垃圾在填埋过程中会产生大量的高浓度有毒有害垃圾渗滤液,对环境危害极大,若处理不当,垃圾渗滤液不仅会污染土壤和地表水源,甚至会污染地下水。

因此,采用合理工艺对垃圾渗滤液开展有效的处理对保护生态环境有重要的意义。

1垃圾渗滤液概述1.1垃圾渗滤液的生成垃圾渗滤液的生成一般包含了五个主要阶段,与时间段的变化有所联系:(1)初始阶段:垃圾进入填埋场,垃圾中容易降解的组分开始迅速与垃圾中的氧气发生反应,不断生成二氧化碳和水,释放一定程度的热量;(2)过渡阶段:这一阶段填埋场中的氧气基本被垃圾氧化用尽,在整个垃圾填埋场内逐渐产生厌氧条件,好氧降解阶段过渡到了厌氧降解,其中的硝酸盐与硫酸盐被分别复原为氮气和硫化氢,PH值开始降低;(3)酸化阶段:该阶段不断产生氢气,填埋场整体进入了酸性环境,微生物与厌氧细菌对垃圾的降解起到了促进作用,气体成分主要为二氧化碳,渗滤液浓度不断上升,到达最大值后开始下降;与此同时,PH值开始下降到最低值后逐渐上升;(4)甲烷发酵阶段:随着氢气含量的逐渐降低,填埋场开始进入到甲烷发酵环境,将有机酸和氢气转化为甲烷,相应的有机物浓度与金属离子浓度不断下降,可生化性下降,PH值进一步上升;(5)成熟阶段:该阶段垃圾中几乎全部营养物质都随渗滤液排出,只剩下少量的微生物对垃圾中难降解物质开展降解,PH值呈现碱性状态,渗滤液的可生化性继续下降。

1.2垃圾渗滤液的特性垃圾渗滤液具有高浓度、成分复杂、水质水量变化大等特性,属于有机废水。

主要来源于直接降水、地表径流、地表灌溉、地下水以及垃圾自身水分,还有垃圾生化反应生成的水分。

影响渗滤液成分的因素包括了气候条件、垃圾成分、填埋环境等,主要决定因素垃圾渗滤液的水量。

垃圾渗滤液最大的特性就在于难以处理,主要是有以下特点:(1)水质复杂,危害性大。

渗滤液的处理工艺及原理

渗滤液的处理工艺及原理

渗滤液的处理工艺及原理一、引言渗滤液处理是一种常见的工艺,用于去除渗滤液中的杂质和污染物,使其达到特定的要求。

本文将介绍渗滤液处理的工艺和原理。

二、渗滤液处理工艺1. 沉淀法沉淀法是一种常用的渗滤液处理方法,通过加入适当的沉淀剂,使杂质和污染物在渗滤液中形成沉淀,然后通过过滤或离心等方式将沉淀物分离出来。

常用的沉淀剂有氢氧化钙、氢氧化铁等。

沉淀法适用于处理含有悬浮物或可沉淀物的渗滤液。

2. 吸附法吸附法是利用吸附剂吸附渗滤液中的污染物,使其附着在吸附剂表面,从而达到去除污染物的目的。

常用的吸附剂有活性炭、分子筛等。

吸附法适用于处理含有有机物或重金属等污染物的渗滤液。

3. 膜分离法膜分离法是利用特殊的膜过滤器,通过选择性渗透和分离的原理,将渗滤液中的杂质和污染物与水分离。

常用的膜分离方法有微滤、超滤、纳滤和反渗透等。

膜分离法适用于处理含有微小颗粒或溶解物的渗滤液。

4. 气浮法气浮法是一种通过气泡的作用,使渗滤液中的杂质和污染物在气泡的附着和升浮作用下分离出来的方法。

常用的气浮设备有气浮池和气浮机等。

气浮法适用于处理含有悬浮物或油脂等污染物的渗滤液。

三、渗滤液处理原理1. 沉淀法的原理沉淀法的原理是利用沉淀剂与渗滤液中的杂质和污染物发生化学反应,形成沉淀物,通过沉淀物与溶液的重力作用或离心力的作用而分离。

沉淀法适用于渗滤液中的悬浮物或可沉淀物。

2. 吸附法的原理吸附法的原理是利用吸附剂的表面特性,吸附渗滤液中的污染物,使其附着在吸附剂的表面,从而实现分离。

吸附法适用于渗滤液中的有机物或重金属等污染物。

3. 膜分离法的原理膜分离法的原理是利用特殊的膜过滤器,通过选择性渗透和分离的原理,将渗滤液中的杂质和污染物与水分离。

膜分离法适用于渗滤液中的微小颗粒或溶解物。

4. 气浮法的原理气浮法的原理是利用气泡的附着和升浮作用,使渗滤液中的杂质和污染物与气泡一起升浮到液面,然后通过刮泡或溢流等方式将其分离。

气浮法适用于渗滤液中的悬浮物或油脂等污染物。

垃圾渗滤液处理站运维及渗滤液处理方案

垃圾渗滤液处理站运维及渗滤液处理方案

垃圾渗滤液处理站运维及渗滤液处理方案引言垃圾渗滤液处理站是处理垃圾渗滤液的关键设施,主要用于将垃圾渗滤液进行处理和净化,从而确保其不会对环境造成污染。

运维及渗滤液处理方案是确保垃圾渗滤液处理站正常运行和有效处理渗滤液的重要内容。

本文将从运维方案、渗滤液处理工艺和设备选择三个方面,对垃圾渗滤液处理站的运维及渗滤液处理方案进行详细介绍。

一、运维方案垃圾渗滤液处理站的运维方案是确保设施正常运行,保障渗滤液处理效果的重要保障。

以下是垃圾渗滤液处理站运维方案的几个关键点:1. 定期巡检定期巡检是确保垃圾渗滤液处理站正常运行的重要措施。

定期巡检应包括对设备设施的完整性、运行状态和异常情况进行检查,对设备进行维护和保养,并及时排除故障。

2. 建立运维手册建立运维手册是为了规范垃圾渗滤液处理站的运维工作。

运维手册应包括设备操作、维护保养、故障处理等内容,以便运维人员进行参考和操作。

3. 健全备品备件管理垃圾渗滤液处理站的设备设施会有损耗和老化的情况,因此,健全备品备件管理是确保设施正常运行的必要环节。

备品备件的管理应包括采购、存储、使用和更新等方面。

4. 培训与考核为了确保运维人员具备必要的技能和知识,垃圾渗滤液处理站应定期开展培训和进行考核。

培训应包括设备操作、维护保养、故障处理等内容,考核可以通过模拟操作和理论考试等方式进行。

二、渗滤液处理工艺垃圾渗滤液的处理是保障环境不受污染的关键环节。

下面介绍一种常用的渗滤液处理工艺:1. 沉淀(预处理)垃圾渗滤液经过沉淀池进行预处理。

沉淀池中的渗滤液静置一段时间,使固体颗粒沉淀到池底,以便减少后续处理过程中的固体物质。

沉淀后的上清液进入下一步处理。

2. 活性炭吸附活性炭吸附是去除渗滤液中有机物的有效方法。

将经过沉淀的上清液通过活性炭床进行吸附处理,可以去除渗滤液中的有机物和部分重金属离子。

3. 膜分离膜分离是将渗滤液中的溶质和溶剂分离的过程。

其中,反渗透膜是最常用的膜分离方法之一。

垃圾焚烧渗滤液处理工艺介绍

垃圾焚烧渗滤液处理工艺介绍

垃圾焚烧渗滤液处理工艺介绍2020年4月29日焚烧厂的垃圾渗滤液主要由降水和垃圾堆放过程中发酵产生,是一种高浓度的有机废水,对周围环境危害严重,对人的健康也有很大危害。

那么怎样处理垃圾焚烧渗滤液呢,垃圾焚烧渗滤液处理工艺有哪些呢?下面我们就一起来了解一下。

1、采用膜工艺处理碟管式反渗透DTRO膜具有抗污染性好,膜通量较高,使用寿命较长等特点,碟管式反渗透DTRO膜前端只需经过砂滤保护便可直接处理渗滤液,即使在高浊度、高SDI值、高盐分、高COD的情况下,也能经济有效稳定运行。

是目前国内能保证渗滤液出水稳定、持续达到国家一级或二级排放标准的成熟技术。

2、生化+膜工艺处理渗滤液经过生化处理后进一步采用膜工艺处理是目前常用的渗滤液处理方法,该工艺出水水质好,可达到回用水的标准,对于渗滤液水质和水量的波动性也具有较高的抗变能力,运行稳定性高。

经过膜分离处理后,污染物的效果是显而易见的,经分离后的出水能够达到国家相应的排放标准。

而且膜技术具有能够连续化操作,机械化程度高,易于管理的特点,水质的不稳定对膜处理的效果影响较小。

3、生化+高级氧化+深度处理渗滤液的有机污染物浓度高且可生化性好,生化处理工艺是处理高浓度有机废水较为彻底和经济的工艺,可以在比较经济的条件下大幅度降解有机污染物,同时发挥脱氮除磷的效果,使得渗滤液总体处理成本较为节省。

由于渗滤液中还包括许多难降解大分子有机物,采用生化处理技术处理后,总会保留一些不能被生物降解和吸附的“惰性COD”。

工程实践表明,采用多种生化处理工艺,均可将渗滤液的CODcr降至1000mg/L以下,去除率非常可观,但出水一般不能直接达到排放标准要求。

4、蒸发处理MVC蒸发工艺处理渗滤液具有启动快,耗能小,浓缩液比例低,占地面积小等优点。

蒸发工艺存在的问题有:一是冷凝液中含有挥发性烃、挥发性有机酸和氨等污染物,需要进一步处理方可达标,处理成本相对较高。

二是渗滤液原液中COD比较高时,容易起泡,直接影响出水水质和浓缩倍数,可投加消泡剂解决,费用较高;氨氮大部分转移到冷凝液中,后续采用离子交换处理时,树脂更换频率高。

垃圾焚烧发电渗滤液处理工艺介绍

垃圾焚烧发电渗滤液处理工艺介绍

垃圾焚烧发电渗滤液处理工艺介绍垃圾焚烧发电是现代城市垃圾处理的重要手段之一。

在垃圾焚烧过程中,产生的渗滤液是需要处理的关键问题之一。

这篇文档将介绍一些关于垃圾焚烧发电渗滤液处理工艺的信息。

垃圾焚烧发电的基本流程包括:垃圾投放、燃烧、高温排出废气、发电、废渣处理等。

在垃圾燃烧时,会产生大量的渗滤液,渗滤液的pH值通常为7-8之间,含有大量的有机酸、无机盐、重金属等有害物质。

如果不进行处理,渗滤液将对环境造成严重污染。

目前,垃圾焚烧发电渗滤液处理工艺主要有三种方法:生物降解法、化学处理法、综合处理法。

生物降解法是指利用微生物降解渗滤液中的有害物质,将其转化为无害物质的方法。

不同的微生物适合降解的物质不同,因此需要针对不同的渗滤液选取适合的微生物。

这种方法有很高的降解效率,可以将渗滤液中的有害物质降解为各种无害物质,但此方法需要用到较复杂的设备,且处理周期较长。

化学处理法通常是利用化学药剂,将渗滤液中的有害物质转化为无害物质或者能够直接释放的物质。

此方法针对性较强,但对于各种污染物质均有所困难。

需要注意的是,在使用化学药剂之前,需要对药剂的选择进行合理的评估、实验,并严格按照操作规程进行操作,确保药剂使用的安全性和稳定性。

综合处理法是指根据渗滤液的特性,配合生物降解和化学处理等多种工艺方法,综合治理渗滤液中的各种有害物质。

这种方法的优点在于针对性强,处理效果好,但需要多种设备的协同配合,比较复杂。

无论是哪种渗滤液处理方法,都需要结合垃圾焚烧发电站的实际情况,对渗滤液的处理进行适当的调整和优化。

同时,需要注意的是,无论采用哪种方法,都需要符合国家的相关环保法规和标准。

因此,在垃圾焚烧发电过程中,对渗滤液的处理非常重要。

在处理渗滤液时,应该选择适合的处理方法,并根据实际情况进行调整和优化。

同时,还要遵守国家的相关环保法规和标准,确保垃圾焚烧发电的环保效果和社会效益。

垃圾渗滤液处理工艺介绍

垃圾渗滤液处理工艺介绍

垃圾渗滤液处理工艺介绍以前采用的自然降解净化法因对环境污染严重,已不允许再使用。

目前主要采用人工降解净化法,它利用渗滤液的可生化性,通过人工设置的设施、设备,让渗滤液通过厌氧、好氧以及静置、沉淀等方法得到净化,达到有效地消除渗滤液污染环境的目的。

国内外的主要处理方案分为:场外处理和场内处理。

场外处理主要指垃圾渗滤液与城市生活污水合并处理,利用生活污水对高浓度的垃圾渗滤液进行稀释,然后进行处理,这种方法可以节省单独设立垃圾渗滤液处理系统的费用,而且可以降低渗滤液处理成本。

缺点是垃圾渗滤液的输送造成比较大的经济负担,而且渗滤液所特有的水质特征会对城市生活污水处理厂的运行造成冲击,甚至破坏城市污水处理厂的正常运行。

场内处理主要指渗滤液向库区喷洒,或者在附近建立一座污水处理厂,从经济上考虑不大适合。

垃圾渗滤液的处理是城市生活垃圾卫生填埋工程必不可少的部分,目前垃圾渗滤液的处理方法主要是生物处理、物化处理和土地处理。

土地处理主要通过土壤颗粒的过滤,离子交换吸附和沉淀等作用去除渗滤液中悬浮颗粒和溶解成分。

通过土壤中的微生物作用,使渗滤液中的有机物和氨氮发生转化,通过蒸发作用减少渗滤液量。

目前用于渗滤液处理的土地法主要是回灌和人工湿地。

渗滤液回灌作为填埋场渗滤液处理方法之一,目前在国外已得到广泛应用。

据估计,英国50%的填埋场进行了渗滤液回灌。

对回灌法的研究国内也有较多,对其去除机理,国内有人作过实验研究,详细研究了渗滤液回灌的影响因素,发现在实验所用的亚粘土中加入一定比例的细砂,改善了覆盖土层的透水性和透气性。

当进水负荷为6∙6~ 115g∕(m2∙d)时,运行两个月,COD去除率可到98%左右。

回灌法在国内一些渗滤液处理中开始生产性应用。

人工湿地是近几年出现的一种新处理工艺。

对于垃圾渗滤液的处理,国外应用较多。

TjasaBulc建造一个450m2的人工湿地对渗滤液处理进行研究,结果发现COD去除率为68%、BOD5去除率为46%、NH3-N去除率为81%、Fe去除率为80%o CraigD.Martin建造一种长度与宽度比为10:1,深度为0.5m,种植了各种水草的人工湿地,并进行了处理营养物质的研究。

垃圾渗滤液处理工艺设计

垃圾渗滤液处理工艺设计

垃圾渗滤液处理工艺设计一、背景介绍垃圾渗滤液是指垃圾堆填场中产生的含有有机物、重金属和其他有害物质的液体。

由于垃圾渗滤液的高浓度和复杂性,如果不经过适当的处理,会对环境造成严重的污染。

因此,设计一种有效的垃圾渗滤液处理工艺,是保护环境、减少污染的重要任务。

二、目标和要求1. 目标:设计一种高效、经济、环保的垃圾渗滤液处理工艺,能够有效去除垃圾渗滤液中的有机物、重金属和其他有害物质。

2. 要求:- 处理效率高:能够高效去除垃圾渗滤液中的有机物、重金属和其他有害物质,使其达到排放标准;- 经济可行:工艺设计应考虑成本因素,力求达到经济可行的水平;- 环保可持续:工艺设计应尽量减少对环境的影响,实现可持续发展。

三、垃圾渗滤液处理工艺设计方案1. 前处理阶段- 液固分离:采用物理方法,如过滤、沉淀等,将垃圾渗滤液中的固体颗粒与液体分离,以减少后续处理的负担。

- 调节pH值:根据垃圾渗滤液的性质,采用酸碱中和等方法,调节垃圾渗滤液的pH值,以为后续处理做好准备。

2. 主处理阶段- 生物处理:采用生物降解的方法,利用微生物对垃圾渗滤液中的有机物进行降解。

常见的生物处理方法包括活性污泥法、厌氧消化法等。

这些方法具有处理效率高、运行成本低的优点。

- 化学处理:采用化学方法对垃圾渗滤液中的重金属和其他有害物质进行去除。

常见的化学处理方法包括氧化法、沉淀法、吸附法等。

这些方法具有处理效果好、反应速度快的特点。

- 高级氧化处理:采用高级氧化技术,如臭氧氧化、紫外光氧化等,对垃圾渗滤液中的难降解有机物进行处理。

这些方法具有处理效果好、能够去除难降解有机物的优点。

3. 后处理阶段- 深度处理:对经过主处理阶段处理后的垃圾渗滤液进行进一步处理,以达到排放标准。

可以采用吸附、膜分离等方法,去除残存的有机物和重金属等。

- 中水回用:对处理后的垃圾渗滤液进行中水回用,可以减少对水资源的需求,实现资源的循环利用。

四、工艺设计的优势和可行性分析1. 优势:- 高效性:采用多种处理方法的组合,能够高效去除垃圾渗滤液中的有机物、重金属和其他有害物质,使其达到排放标准;- 经济可行性:工艺设计考虑成本因素,选择经济可行的处理方法,降低处理成本;- 环保可持续性:工艺设计尽量减少对环境的影响,实现可持续发展。

垃圾焚烧厂渗滤液处理的工艺步骤

垃圾焚烧厂渗滤液处理的工艺步骤

垃圾焚烧厂渗滤液处理的工艺步骤2019年12月17日垃圾渗滤液是一种污染物浓度高、成分复杂、变化极不稳定的有机废水,会对周围环境造成严重的二次污染,并危害人体健康。

垃圾渗滤液中含有大量的有机物、氮磷类物质和种类繁多且含量超标的重金属类物质。

今天,垃圾焚烧厂渗滤液处理的工艺步骤是什么吧。

垃圾焚烧厂渗滤液处理的工艺步骤:1、垃圾渗滤液引入格栅沉砂池,去除渗滤液中的悬浮物和泥沙后,渗滤液溢流至调节池。

2、启动设置在调节池的底部潜水搅拌器,搅拌渗滤液,5~7天后经水泵抽入初沉池。

3、调节池内渗滤液以流速小于30mm/s进入初沉池,在初沉池内沉淀时间为1~1.5h,用以沉淀污泥和有机物,渗滤液从初沉池溢流进入UASB反应器的中间水池。

4、将中间水池内的渗滤液用泵抽入UASB水池,UASB水池的产水溢流至中间水池II,中间水池I的上层清液一部分溢流至中间水池II,形成UASB内循环,在内循环中使UASB反应器内的水温保持30℃~35℃,中间水池II的另一部分水,由泵抽送至兼氧池。

5、UASB反应器的出水溢流至兼氧池,启动设置在兼氧池内的水下搅拌器,使污水充分搅拌水解,而后溢流进入曝气池,废水中的有机物在曝气池中微生物的作用下充分硝化反应,硝化反应过程中PH值控制在7.5,硝化液从曝气池回流进入兼氧池的水量是由兼氧池直流进入曝气池水量的5-10倍,曝气池的出水经二沉池进行泥水分离。

6、二沉池上清液溢流至进入混凝絮凝池,去除二沉池上清液内的SS和CODCr 后,经水泵抽送至膜处理系统。

7、进入膜处理系统的清水经过超滤及纳滤过滤后进入清水井直接排放。

以上就是垃圾焚烧厂渗滤液处理的工艺步骤,希望对大家有所帮助。

莱特莱德拥有一系列先进,具有实用性的解决方案,应用于各类高难垃圾渗滤液的处理,确保废水排放指标达到国家废水排放要求,用优质的产品、专业的服务,构建双赢模式,成为国内外客户优秀的战略合作伙伴!莱特莱德从设计研发、实验论证、设备制造、工程施工、运营维护都将秉承"科学创新,技术先进,以人为本,客户至上"的经营服务理念。

渗滤液三效蒸发处理工艺流程

渗滤液三效蒸发处理工艺流程

渗滤液三效蒸发处理工艺流程
内容:
渗滤液三效蒸发处理工艺流程主要包括以下几个步骤:
1. 渗滤液预处理
将渗滤液经过过滤、调节等预处理,去除杂质,调节到适宜的值。

2. 第一效蒸发
将预处理后的渗滤液送入第一效蒸发器,利用低压蒸汽进行加热蒸发,蒸发至某一浓度。

第一效蒸发的目的是提高渗滤液的浓度,回收部分热量。

3. 第二效蒸发
将第一效蒸发浓缩后的液体送入第二效蒸发器,加入中间汽提汽用以加热,继续蒸发浓缩。

第二效蒸发可以进一步提高液体浓度,节省热能。

4. 第三效蒸发
将第二效蒸发浓缩后的液体送入第三效蒸发器,利用第二效蒸发器排出的汽提汽加热蒸发,浓缩到所需的最终浓度。

5. 余热回收
对各效蒸发器排出的蒸汽进行回收利用,为系统提供部分所需热量,节
约能源。

6. 得到的浓缩液经进一步处理,回收利用。

通过渗滤液的三效蒸发处理,可以有效提高处理效率,降低能耗,实现资源综合利用。

渗滤液工艺流程

渗滤液工艺流程

渗滤液工艺流程渗滤液工艺流程是指在化工领域中,对含有固体颗粒的混合物进行分离、过滤的过程。

下面是一个简单的渗滤液工艺流程示例。

首先,将待处理的混合物倒入一个渗滤设备中。

通常使用的设备有压力滤料、真空滤料等。

这些设备都配有过滤介质,通常是纸张或者筛网。

在装填混合物之后,将设备启动,并适当调整滤料设备的压力或真空度。

这样可以从混合物中分离出固体颗粒和液体。

在滤料设备中,液体会通过滤料的孔隙和空隙,逐渐从混合物中流出。

而固体颗粒则被滤料阻隔在设备内部。

当液体流出后,可以收集液体并进行进一步的处理。

比如,根据需要对液体进行沉淀、澄清、过滤等操作,以得到所需的产品。

而滤过的固体颗粒则可以进行处理。

通常会对固体颗粒进行洗涤、干燥等操作。

这样可以去除杂质,提高固体颗粒的纯度和质量。

在整个过程中需要注意一些事项。

首先是滤料的选择和调整。

不同的滤料适应不同的混合物性质和处理要求,因此需要根据实际情况选择合适的滤料。

其次是滤料的清洗和维护。

滤料会随着使用时间的增长逐渐堵塞或磨损,因此需要定期清洗和更换滤料。

此外,还需要对设备进行维护和保养。

定期检查设备的工作状态、密封性能等,并进行必要的维修和调整,以确保设备的正常运行和过滤效果。

在渗滤液工艺流程中,还可以加入其他辅助操作,比如加热、冷却、化学处理等。

这些操作可以提高过程的效率和效果,并得到更高质量的产品。

总结起来,渗滤液工艺流程是一个将混合物分离、过滤的过程。

通过适当选择滤料、调整设备压力和真空度,可以将混合物中的固体颗粒和液体分离出来。

通过进一步的处理,可以得到纯净的液体和固体产品。

在整个过程中需注意滤料选择、设备维护和保养等事项,以确保过程的正常运行和产品质量的提高。

渗滤液基本知识及常见处理工艺介绍

渗滤液基本知识及常见处理工艺介绍

稳定持续运行。
六、渗滤液处理典型常见问题分析
填埋中后期 C/N失衡
TN不稳定 有超标风险
调节池 厌 氧
硬度高 易结垢
MBR
NF
出水
RO
NF浓缩液 RO浓缩液
浓缩液量大 对系统及环境
危害高
典型常见问题分析
填埋场中后期,渗滤液的NH3-N值较高,COD降低,可生化性也降低,导致C/N比失衡,脱氮效果下 降明显;
序号
组合工艺
工艺特征
1
UASB+MBR+NF/RO 生化+膜处理,处理效果稳定可靠,但有浓缩液处理问题。
生化+膜处理,处理效果稳定可靠,膜设备投资及运行费用 2 UASB+MBR+DTRO/STRO
较高,也有浓缩液处理问题,但量相对卷式膜有所减少。
只是蒸发和离子交换,流程简单,缺点是设备及管道易结
3
地表水流失
降水
蒸发
侧面流水/地 层流水
堆积产 物
反应需 求
垃圾储存
地下水
进入处理设备
图1 填埋场渗滤液来源与去向
(二)垃圾焚烧电厂渗滤液来源
1.垃圾自身所含水分; 2.垃圾发酵分解产生的水分; 3.在储运过程中,雨水及地表水的渗入。
二、水质、水量的特点及影响因素
(一)垃圾渗滤液的水质特点
1、污染物浓度高:渗滤液中有机污染物高达数万mg/L,同时氨氮、盐分及硬度也很高; 2、成分复杂:目前已检测出有机物种类多达百余种,其中有22项被我国和美国列入优先污染物 “黑名单”; 3、金属种类多:有多达十几种金属离子; 4、微生物营养元素比例失衡; 5、色度深、有恶臭、具有腐蚀性。
四、渗滤液处理主要执行的排放标准

垃圾渗滤液处理工艺

垃圾渗滤液处理工艺

垃圾渗滤液处理工艺垃圾渗滤液处理含有种类繁杂的有机污染物、COD浓度高,从一万到十几万毫克/升,尤其是难直接被生物降解的羧基苯、杂环类及多联苯大分子有限化合物含量高,达数千毫克/升。

随着填埋时间的延长,渗滤液水质存在很大差异。

填埋场运行初期,渗滤液呈黑色、可生化性较好,易于处理,随着填埋时间的延长,渗滤液逐渐呈褐色、可生化性变差,并且氨氮浓度明显增加,越来越难以处理。

垃圾渗滤液处理工艺调节水库——集水池——新型厌氧反应器——催化反应器——高效生化池——沉淀池——混凝池——澄清池——出水。

工艺流程说明1、调节水库。

主要用来储存垃圾渗滤液以调节水质和水量,一般设计库容为存水100天,多就地筑土坝而成。

2、集水池。

用来安装提升水泵和废水中的粗大固形物拦截,钢筋混凝土结构。

3、新型厌氧反应器(N-UASB)。

是我公司开发的专用于高浓度垃圾渗滤液予以处理的一种设备,与传统的UASB相比,增加了微絮体拦截手段,改进了布水方式,增加了固体浓度和固液接触面积,因而大大地提高和稳定了废水处理效果。

4、催化反应器。

该反应器是一种技术设备,它能够有效地打断大分子化合物的长链和环链,从而变大分子化合物为小分子化合物,提高废水的可生化性,可为后续的生化处理创造有利条件。

5、高效生化池。

高效生化中水回用技术是我公司的专有技术,能够在一个生化池中同时高效进行有机物降解和氨氮的去除,开创了用生化法去除高浓度氨氮的先河,从而提高废水处理效率,降低废水处理成本。

6、化学混凝。

为了确保垃圾渗滤液(或渗滤液)出水长期稳定达标排放,我公司开发了一种专用絮凝剂用于垃圾渗滤液的最终混凝处理。

该絮凝剂对溶解性有机物的去除效率稳定在40~50%,而一般的絮凝剂只有10~15%。

因此能够确保垃圾渗滤液的最终出水长期稳定经济地达标排放。

中转站渗滤液处理工艺

中转站渗滤液处理工艺

中转站渗滤液处理工艺
中转站渗滤液处理工艺是将城市垃圾中转站产生的渗滤液进行
处理的一种技术。

在中转站中,垃圾储存压缩后,会产生大量的渗滤液,其中含有大量的有机物质和微生物,如果不进行处理,可能会导致环境污染和健康隐患。

因此,中转站渗滤液处理工艺是非常重要的。

目前,中转站渗滤液处理工艺主要包括生物处理工艺和化学处理工艺两种。

生物处理工艺主要是利用微生物对渗滤液中的有机物质进行降解,将其转化为无害物质。

而化学处理工艺则是利用化学反应对渗滤液中的有机物质进行去除和分解。

两种处理工艺各有优缺点,需要根据实际情况进行选择。

在中转站渗滤液处理工艺中,还需要考虑渗滤液的处理效果和处理成本。

处理效果主要包括COD、BOD、SS、NH3-N等指标的去除率,而处理成本主要包括投资成本、运行成本和维护成本等方面。

因此,在选择处理工艺时,需要综合考虑处理效果和成本。

总之,中转站渗滤液处理工艺是城市垃圾处理的重要环节,需要采用科学合理的处理技术,确保处理效果和成本的协调。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城市垃圾填埋场渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。

渗滤液是液体在填埋场重力流动的产物,主要来源于降水和垃圾本身的内含水。

由于液体在流动过程中有许多因素可能影响到渗滤液的性质,包括物理因素、化学因素以及生物因素等,所以渗滤液的性质在一个相当大的范围内变动。

一般来说,其pH值在4~9之间,COD在2000~62000mg/L的范围内,BOD5从60~45000mg/L,重金属浓度和市政污水中重金属的浓度基本一致。

城市垃圾填埋场渗滤液是一种成分复杂的高浓度有机废水,若不加处理而直接排入环境,会造成严重的环境污染。

以保护环境为目的,对渗滤液进行处理是必不可少的。

�1 渗滤液处理工艺的现状��垃圾渗滤液的处理方法包括物理化学法和生物法。

物理化学法主要有活性炭吸附、化学沉淀、密度分离、化学氧化、化学还原、离子交换、膜渗析、气提及湿式氧化法等多种方法,在COD为2000~4000�mg/L时,物化方法的COD去除率可达50%~87%。

和生物处理相比,物化处理不受水质水量变动的影响,出水水质比较稳定,尤其是对BOD5/COD比值较低(0.07~0.20)难以生物处理的垃圾渗滤液,有较好的处理效果。

但物化方法处理成本较高,不适于大水量垃圾渗滤液的处理,因此目前垃圾渗滤液主要是采用生物法。

��生物法分为好氧生物处理、厌氧生物处理以及二者的结合。

好氧处理包括活性污泥法、曝气氧化池、好氧稳定塘、生物转盘和滴滤池等。

厌氧处理包括上向流污泥床、厌氧固定化生物反应器、混合反应器及厌氧稳定塘。

�2 渗滤液处理介绍��垃圾渗滤液具有不同于一般城市污水的特点:BOD5和COD浓度高、金属含量较高、水质水量变化大、氨氮的含量较高,微生物营养元素比例失调等。

在渗滤液的处理方法中,将渗滤液与城市污水合并处理是最简便的方法。

但是填埋场通常远离城镇,因此其渗滤液与城市污水合并处理有一定的具体困难,往往不得不自己单独处理。

常用的处理方法如下。

�2.1 好氧处理��用活性污泥法、氧化沟、好氧稳定塘、生物转盘等好氧法处理渗滤液都有成功的经验,好氧处理可有效地降低BOD5、COD和氨氮,还可以去除另一些污染物质如铁、锰等金属。

在好氧法中又以延时曝气法用得最多,还有曝气稳定塘和生物转盘(主要用以去除氮)。

下面将分别予以介绍。

�2.1.1 活性污泥法�2.1.1.1 传统活性污泥法�渗滤液可用生物法、化学絮凝、炭吸附、膜过滤、脂吸附、气提等方法单独或联合处理,其中活性污泥法因其费用低、效率高而得到最广泛的应用。

美国和德国的几个活性污泥法污水处理厂的运行结果表明,通过提高污泥浓度来降低污泥有机负荷,活性污泥法可以获得令人满意的垃圾渗滤液处理效果。

例如美国宾州Fall Township污水处理厂,其垃圾渗滤液进水的CODCr为�6000~21000�mg/L,BOD5为�3000~13000�mg/L,氨氮为200~2000�mg/L。

曝气池的污泥浓度(MLVSS)为�6000~12000mg/L,是一般污泥浓度的3~6倍。

在体积有机负荷为1.87kgBOD5/(m3·d)时,F/M为0.15~0.31kgBOD5/(kgMLSS·d),BOD5 的去除率为97%;在体积有机负荷为0.3kgBOD5/(m3·d)时,F/M为0.03~0.05kg BOD5/(kgMLSS·d),BOD5的去除率为92%。

该厂的数据说明,只要适当提高活性污泥法浓度,使�F/M在0.03~0.31kgBOD5/(kgMLSS·d)之间(不宜再高),采用活性污泥法能够有效地处理垃圾渗滤液。

�许多学者也发现活性污泥能去除渗滤液中99%的BOD5,80%以上的有机碳能被活性污泥去除,即使进水中有机碳高达1000mg/L,污泥生物相也能很快适应并起降解作用。

在低负荷下运行的活性污泥系统,能去除渗滤液中80%~90%的COD,出水BOD5<20mg/L。

对于COD� 4000~13000�mg/L、BOD51600~11000mg/L、NH3-N 87~590mg/L的渗滤液,混合式好氧活性污泥法对COD的去除率可稳定在90%以上。

众多实际运行的垃圾渗滤液处理系统表明,活性污泥法比化学氧化法等其它方法的处理效果更佳。

�2.1.1.2 低氧�好氧活性污泥法�低氧�好氧活性污泥法及SBR法等改进型活性污泥流程,因其具有能维持较高运转负荷,耗时短等特点,比常规活性污泥法更有效。

同济大学徐迪民等用低氧�好氧活性污泥法处理垃圾填埋场渗滤液,试验证明:在控制运行条件下,垃圾填埋场渗滤液通过低氧�好氧活性污泥法处理,效果卓越。

最终出水的平均CODCr、BOD5、SS分别从原来的�6466� mg/L、3502�mg/L以及239.6mg/L相应降低到CODCr<300mg/L、BOD5<50mg/L(平均为13.3mg/L)以及SS<100mg/L(平均为27.8mg/L)。

总去除率分别为CODCr 96.4%、BOD5 99.6%、SS 83.4%。

�处理后的出水若进一步用碱式氯化铝进行化学混凝处理,可使出水的CODCr下降到1 00mg/L以下。

�两段法处理渗滤液的氮、磷也均较一般生物法为佳。

磷的平均去除率为90.5%;氮的平均去除率为67.5%。

此外该法运行弥补厌氧�好氧两段生物处理法第一段形成NH3-N较多,导致第二段难以进行和两次好氧处理历时太长的不足。

�2.1.1.3 物化活性污泥复合处理系统�由于渗滤水中难以降解的高分子化合物所占的比例高,存在的重金属产生的抑制作用,所以常用生物法和物理�化学法相结合的复合系统来处理垃圾渗滤液。

对于BOD5�1500m g/L、Cl-800mg/L、硬度(以CaCO3计)800mg/L、总铁600mg/L、有机氮100mg/L、TSS 300mg/L、SO2-4300mg/L的渗滤液,有学者采用该方法进行处理,发现效果很好,其BOD5 、COD、NH3-N、Fe的去除率分别达99%、95%、90%、99.2%。

该系统中的进水通过调节池后,可以避免毒性物质出现瞬时的高浓度而对活性污泥生物产生抑制作用;在澄清池中加入石灰,可去除重金属和部分有机质;气提池(进行曝气,温度低时加入NaOH)能去除进水NH3-N的50%,从而使NH3的浓度处于抑制水平之下;由于废水中磷被加入的石灰所沉淀,且pH值过高,因而需添加磷和酸性物质;活性污泥系统可以串联或并联使用,运行时可通过调节回流污泥比来选用常规法或延时曝气法处理,具有较大的操作灵活性。

�2.1.2 曝气稳定塘�与活性污泥法相比,曝气稳定塘体积大,有机负荷低,尽管降解进度较慢,但由于其工程简单,在土地不贵的地区,是最省钱的垃圾渗滤液好氧生物处理方法。

美国、加拿大、英国、澳大利亚和德国的小试、中试及生产规模的研究都表明,采用曝气稳定塘能获得较好的垃圾渗滤液处理效果。

�例如英国在Bryn Posteg Landfill投资60000英镑建立一座1000m3的曝气氧化塘,设2台表面曝气装置,最小水力停留时间为10d,氧化塘出水经沉淀后流经3km长的管道入城市下水道。

此系统1983年开始运行,渗滤液最大CODCr为24000mg/L,最大BOD5为�10000�mg/L,F/M=0.05~0.3kgCOD/(kgMLSS·d),水量变化范围0~150m3/d,出水BOD5平均为24mg/L,但偶然有超过50mg/L的时候,COD去除率达97%,但在运行过程中需投加P,考虑到日常运行费用,投资偿还及其利息,与渗滤液直接排至市政管网相比,每年可节约750英镑。

�英国水研究中心(Water Research Center)对东南部New Park Landfill的CODCr>15000mg/L的渗滤液也做了曝气稳定塘的中试,当负荷为0.28~0.32kgCOD/(kgMLSS·d)或者说为0.04~0.64kgCOD/(kgMLSS·d),泥龄为10d时,COD和BOD5去除率分别为98%和91%以上。

在运行过程中也需要投加磷酸。

�2.1.3 生物膜法�与活性污泥法相比,生物膜法具有抗水量、水质冲击负荷的优点,而且生物膜上能生长世代时间较长的微生物,如硝化菌之类。

加拿大British Columbia大学的C.Peddie和J.Atwater用直径0.9m的生物转盘处理CODCr<�1 000�mg/L,NH3-N<50m g/L的弱性渗滤液,其出水BOD5<25mg/L,当温度回升,微生物的硝化能力随即恢复。

但是应当指出,这种渗滤液的性质与城市污水相近,对于较强的渗滤液此方法是否适用还待研究。

�2.2 厌氧生物处理�厌氧生物处理的有目的运用已有近百年的历史。

但直到近20年来,随着微生物学、生物化学等学科发展和工程实践的积累,不断开发出新的厌氧处理工艺,克服了传统工艺的水力停留时间长,有机负荷低等特点,使它在理论和实践上有了很大进步,在处理高浓度(BOD5 ≥2000�mg/L)有机废水方面取得了良好效果。

�厌氧生物处理有许多优点,最主要的是能耗少,操作简单,因此投资及运行费用低廉,而且由于产生的剩余污泥量少,所需的营养物质也少,如其BOD5/P只需为4000∶1,虽然渗滤液中P的含量通常少于1mg/L,但仍能满足微生物对P的要求。

用普通的厌氧硝化,35℃、负荷为1kgCOD/(m3·d),停留时间10d,渗滤液中COD去除率可达90%。

�近年来,开发的厌氧生物处理方法有:厌氧生物滤池、厌氧接触池、上流式厌氧污泥床反应器及分段厌氧硝化等。

�2.2.1 厌氧生物滤池�厌氧滤池适于处理溶解性有机物,加拿大Halifax Highway101填埋场渗滤液平均COD 为12850mg/L、BOD5/COD为0.7,pH为5.6。

将此渗滤液先经石灰水调节至pH=7.8,沉淀1h后进厌氧滤池(此工序还起到去除Zn等重金属的作用),当负荷为4kgCOD/(m3·d)时,COD去除率可达92%以上;当负荷再增加时,其去除率急剧下降。

�加拿大Toronto大学的J.G.Henry等也在室温条件下成功地用厌氧滤池分别处理年龄为1.5 年和8年的填埋场渗滤液,它们的COD各为14000mg/L和4000�mg/L,BOD5/COD 各为0.7和0.5,当负荷为1.26~1.45kgCOD/(m3·d),水力停留时间为24~96h时,COD 去除率均可达90%以上。

当负荷再增加,其去除率也急剧下降。

由此可见,虽然厌氧滤池处理高浓度有机污水时负荷可达5~20kgCOD/(m3·d),但对于渗滤液其负荷必须保持较低水平才能得到理想的处理效果。

相关文档
最新文档