复积分的各种计算方法与应用

合集下载

复变函数积分计算

复变函数积分计算

复变函数积分计算方法总结1、 一般计算方法:()(,)(,)f z u x y iv x y =+沿有向曲线C 的积分:()CCCf z dz udx vdy i udy vdx =-++⎰⎰⎰若有向光滑曲线C 可以表示为参数方程()()() ()z z t x t iy t t αβ==+≤≤,则:()[()]()Cf z dz f z t z t dt βα'=⎰⎰2、 柯西积分定理:()f z 在简单闭曲线C 上和内部解析,则:()0Cf z dz =⎰由闭路变形原理可得重要积分:100, 012, 0()n C n dz i n z z π+≠⎧=⎨=-⎩⎰ 可以把各种简单闭路变为圆周进行积分。

3、 柯西积分公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式:00()2()f z dz if z z z πΓ=-⎰高阶导数公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式:()010()2()()!n n f z i dz f z z z n π+Γ=-⎰ 联系:柯西积分公式是高阶导数公式的特殊情况,高阶导数公式是柯西积分公式的推广。

4、 用洛朗级数展开式的-1次项系数计算积分00101()()() (r<) 2()n n n n C n f z f z c z z z z R c dz iz z π∞+=-∞=--<=-∑⎰,其中:其中C 为环域内任意围绕0z 的正向简单闭路。

当1n =-时,-1次项的系数为11()2Cc f z dz iπ-=⎰,因此1()2Cf z dz ic π-=⎰5、 用留数计算复积分 函数()f z 在点0z 的留数定义为:01Re [(),]()2Cs f z z f z dz iπ=⎰,即洛朗级数展开式中-1次项的系数。

复积分的各种计算方法及应用

复积分的各种计算方法及应用

复积分的各种计算方法及应用复积分(double integral)是微积分中的一个重要概念,它可以用来计算在平面上的二维区域上面的函数的整体性质,比如面积、质心、质量等。

本文将介绍复积分的各种计算方法及其应用。

一、复积分的定义与性质复积分是对二元函数在一个二维区域上的积分,可以表示为:∬f(x,y)dA其中f(x,y)是定义在区域D上的函数,dA表示微元面积。

复积分可以用极限的思想进行定义,即将区域D划分成无数小块,计算每个小块的函数值与面积的乘积,再将所有小块的结果求和,即可得到复积分的近似值。

当划分的小块越来越小,求和的结果就逐渐逼近复积分的真实值。

复积分具有以下性质:1. 线性性质:对于两个函数f(x, y)和g(x, y),以及常数a、b,有∬(af(x, y) + bg(x, y))dA = a∬f(x, y)dA + b∬g(x, y)dA。

2.区域可加性:如果区域D可以划分成有限个不相交的子区域Di,那么有∬f(x,y)dA=∑∬f(x,y)dA。

3. 改变变量的性质:如果用变量变换将区域D变为区域D',那么有∬f(x, y)dA = ∬f(g(u, v), h(u, v)),J,dudv,其中J是变换的雅可比矩阵的行列式。

二、计算复积分的方法计算复积分的方法主要有以下几种:1.直角坐标法:通过在直角坐标系中进行积分,将复积分转化为两个一元函数的累次积分。

具体步骤是:先按照x或y的范围将区域D划分成若干个小区域;然后在每个小区域上,将函数f(x,y)中的另一个变量固定,将其视为常数,进行一元积分;最后将所有小区域上的积分结果相加。

2.极坐标法:对于具有极坐标对称性或区域边界为圆、椭圆、直线的情况,可以使用极坐标系进行积分。

具体步骤是:将x和y用r和θ表示,并将函数f(x,y)转化为g(r,θ),然后在极坐标系下进行积分。

需要注意的是,在进行变量变换时,面积元的变化要用雅可比行列式来表示。

复积分的计算方法及其应用

复积分的计算方法及其应用

摘要在复变函数的理论中,复积分是研究解析函数的重要工具.解析函数中的许多重要性质都要利用复变函数积分来证明.柯西积分定理在复积分的计算理论中处于关键地位,柯西积分公式、柯西积分定理及其推论、柯西高阶导数公式和留数定理对复积分的计算起到很大的作用.本文首先阐述复积分的相关概念,在此基础上介绍复积分的几种基本求法,如:用参数方程法、牛顿—莱布尼兹公式、柯西积分定理、柯西积分公式、复周线柯西积分定理、解析函数的高阶导数公式、留数定理.针对每一种计算方法给出相应的例子.对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.关键词:复积分;解析函数;柯西积分定理;柯西积分公式;留数定理ABSTRACTIn complex function theory, complex integration is an important tool of analytic function.Analytic function of many important properties are using the complex function integral to prove.Cauchy integral theorem in the calculation of complex integration theory in a key position,Cauchy integral formulas, Cauchy integral theorem and its corollary, Cauchy higher derivatives formula and residue theorem of integral to the complex calculation has played a significant role. This paper first describes the complex integration of related concepts introduced on this basis, the complex integration of several basic method for finding such as : parametric equations , Newton - Leibniz formula , Cauchy's integral theorem, Cauchy integral formula , complex contour Cauchy integral theorem, the formula of the higher order derivatives of analytic functions , residue theorem to give the corresponding examples for each type of calculation.The calculation method of complex integral to make a summary of the system, from which generalizes the complex functions for solving integral method and the skill.Key words:Complex integral; Analytic function; Cauchy integral theorem; Cauchy integral formula; the residue theorem目录摘要................................................................................... . (I)ABSTRACT............................................................................. .............................................I I 1前言................................................................................... (1)2 预备知识................................................................................... .. (2)3复变函数积分的计算方法................................................................................... . (6)法................................................................................... (6)3.2用牛顿—莱布尼兹公式计算复积分 (8)3.3 用柯西积分定理计算复积分 (10)3.4 用柯西积分公式计算复积分 (12)3.5 用复周线柯西积分定理计算复积分 (14)3.6用解析函数的高阶导数公式计算复积分 (16)3.7用留数定理计算复积分................................................................................... . (20)结论................................................................................... (24)参考文献................................................................................... .....................................2 5致谢................................................................................... .. (26)1前 言2006年3月淮南师范学院的崔东玲研究的《复积分的计算方法》,他通过变量代换、柯西积分公式、柯西积分定理、留数定理从中揭示诸多方法的内在联系.在研究复积分的计算方法这一方面取得了许多进展,证明了复变函数积分的计算方法.复变函数积分的计算方法灵活多样,而目前对复变函数积分的计算方法作出较系统的归纳却很少见.本文将利用复变函数积分基本原理,利用几种复积分的基本求法,针对每一种计算方法给出例子,并通过柯西积分定理、柯西积分公式、柯西高阶导数公式等来计算复积分,从中揭示诸多方法的内在联系,对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.2预备知识定义2.1[]1 设l 为复平面上以0z 为起点,而以z 为终点的光滑曲线(()y y x =有连续导数),在l 上取一系列分点011,,,,n n z z z z z -=把l 分为n 段,在每一小段1k k z z -上任取一点k ξ作和数()()()111nnn k k k k k k k S f z z f z ξξ-===-=∆∑∑,1k k k z z z -∆=-当n →∞,且每一小段的长度趋于零时,若lim n n S →∞存在,则称()f z 沿l 可积,lim n n S →∞称为()f z 沿l 的路径积分.l 为积分路径,记为()lf z dz ⎰(若l 为围线(闭的曲线),则记为()lf z dz ⎰).()()1lim lim nnk k ln n k f z dz Sf z ξ→∞→∞===∆∑⎰ (()f z 在l 上取值,即z 在l 上变化).定理 2.1 若函数()()(),,f z u x y iv x y =+沿曲线C 连续,则()f z 沿C 可积,且().CCCf z dz udx vdy i vdx udy =-++⎰⎰⎰(1.1)复变函数积分的基本性质 设函数()(),f z g z 沿曲线C 连续,则有下列性质: (1) ()(),CCaf z dz a f z dz a =⎰⎰是复常数:(2) ()()()()=C C C f z g z dz f z dz g z dz ++⎡⎤⎣⎦⎰⎰⎰; (3) ()()()12,+CC C f z dz f z dz f z dz =⎰⎰⎰其中C 由曲线1C 和2C 衔接而成;图2.1(4) ()();CCf z dz f z dz -=-⎰⎰(5) ()()().CCCf z dz f z dz f z ds ≤=⎰⎰⎰这里dz 表示弧长的微分,即定义2.2 如果函数()w f z =在区域D 内可微,则称()f z 为区域D 内的解析函数,或称()f z 在区域D 内解析.定理2.2 函数()f z 在区域G 内解析的充要条件是: (1) ()f z 在G 内连续;()2 对任一周线C ,只要C 及其内部全部含于G ,就有()0C f z dz =⎰.定义2.3 若函数()f z 在0z 不解析,但在0z 的任一邻域内总有()f z 的解析点,则称0z 为函数()f z 的奇点.定义2.4 如果函数()f z 在点a 的某一去心邻域{}:0K a z a R -<-<(即除去圆心a 的某圆)内解析,点a 是()f z 的奇点,则称a 为()f z 的一个孤立奇点.定义2.5 设a 为函数()f z 的孤立奇点.(1) 如果()f z 在点a 的主要部分为零,则称a 为()f z 的可去奇点. (2) 如果()f z 在点a 的主要部分为有限多项,设为()()()111m mmm c c c z az a z a -----++⋅⋅⋅+---(0m c -≠) 则称a 为()f z 的m 阶极点.一阶极点也称为单极点.(3) 如果()f z 在点a 的主要部分有无限多项,则称a 为()f z 的本质奇点. 定理2.3 如果a 为函数()f z 的孤立奇点,则下列三条是等价的.它们中的任何一条都是可去奇点的特征.(1) ()f z 在点a 的主要部分为零; (2) lim ()()z af z b →=≠∞;(3) ()f z 在点a 的某去心邻域内有界.定理2.4 如果函数()f z 以点a 为孤立奇点,则下列三条是等价的.它们中的任何一条都是m 阶极点的特征.(1) ()f z 在点a 的主要部分为()()()111m mmm c c c z az a z a -----++⋅⋅⋅+---(0m c -≠); (2) ()f z 在点a 的某去心邻域内能表成()()()mz f z z a λ=-,其中()z λ在点a 邻域内解析,且()0z λ≠;(3) 1()()g z f z =以点a 为m 阶零点(可去奇点要当作解析点看,只要令()0g a =).注 第(3)条表明:()f z 以点a 为m 阶极点⇔()1f z 以点a 为m 阶零点. 定理2.5 函数()f z 的孤立奇点a 为极点的充要条件是lim ()z af z →=∞. 定理2.6 函数()f z 的孤立奇点a 为本质奇点的充要条件是:lim ()(有理数)z a b f z →⎧≠⎨∞⎩,即lim ()z a f z →不存在. 定理2.7 若z a =为函数 ()f z 之一本质奇点,且在点a 的充分小去心邻域内不为零,则z a =亦必为()1f z 的本质奇点. 定理2.8 如果函数()f z 在单连通域B 内处处解析,那么积分dz z f C⎰)(与连结起点与终点的路线C 无关.定理2.9 如果函数()f z 在单连通域B 内处处解析,那么函数 ζζd f F zz ⎰=0)(z )(必为B 内一个解析函数,并且()()F z f z '=.定义2.6 如果函数)(z f z =')(ϕ,那么称)(z ϕ为)(z f 在区域内的原函数. 注 原函数之间的关系:)(z f 的任何两个原函数相差一个常数.定义2.7 称)(z f 的原函数的一般表达式C z F +)((C 为任意常数)为)(z f 的不定积分,记作()()f z dz F z C =+⎰.定义2.8 考虑1n +条周线01,,,n C C C ⋅⋅⋅,其中12,,,n C C C ⋅⋅⋅中的每一条都在其余各条的内部,而它们又全都在0C 的内部.在0C 内部的同时又在12,,,n C C C ⋅⋅⋅外部的点集构成一个有界的1n +连通区域D ,以012,,,,n C C C C ⋅⋅⋅为它的边界.在这种情况下,我们称区域D 的边界是一条复周线012n C C C C C ---=+++⋅⋅⋅+,它包括取正方向的0C ,以及取负方向的12,,,n C C C ⋅⋅⋅.换句话说,假如观察者沿复周线C 的正方向绕行时,区域D 的点总在它的左手边.定义2.9 如果函数()f z 在点a 是解析的,周线C 全在点a 的某邻域内,并包围点a ,则根据柯西积分定理得()0.Cf z dz =⎰注 如果a 为()f z 的一个孤立奇点,且周线C 全在a 的某个去心邻域内,并包 围点a ,则积分()Cf z dz ⎰的值,一般来说,不再为零.设函数()f z 以有限点a 为孤立奇点,即()f z 在点a 的某个去心邻域0z a R <-<内解析,则称积分()12f z d z iπΓ⎰ (:,0)z a R ρρΓ-=<<为()f z 在点a 的留数(residue ),记为Res ()f z .3复变函数积分的计算方法3.1用参数方程法设有光滑曲线C :()()()z z t x t i t ==+(t αβ≤≤), 这就表示()z t '在],αβ⎡⎣上连续且有不为零的导数,()()().z t x t iy t '''=+又设()f z 沿C 连续.令 由 (式1.1) 得 即()()(),C f z dz f z t z t dt βα'=⎡⎤⎣⎦⎰⎰ (1.2) 或()()(){}()(){}Re Im =+Cf z dz f z t z t dt i f z t z t dt ββαα''⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰⎰ (1.3) 公式(1.2)、(1.3)是从积分路径的参数方程着手,称为参数方程法. (1.2)、(1.3)称为复积分的变量代换公式.注 (1) 一个重要的常用积分: (这里C 是以a 为圆心,ρ为半径的圆周)(2) 如果C 是由12,,,n C C C 等光滑曲线依次相互连接所组成的按段光滑曲线,则(3)在今后讨论的积分中,总假定被积函数是连续的, 曲线C 是按段光滑的. 例3.1[2]计算d Cz z ⎰,其中C 为:圆周3z =.解 积分路径的参数方程为3(02)πi z e θθ=≤≤,3i dz ie d θθ=2033πi Cz dz ie d θθ=⋅⎰⎰(因为3z =)0=.例3.2 计算积分()2Cx y ix dz -+⎰,积分路径C 是连接由0到1i +的直线段. 解 C 的参数方程是()()()1,,,01,1z i t x t y t t dz i dt =+==≤≤=+ 由参数方程法得:13i-=-. 注 通过上面的例子,我们知道在计算沿光滑曲线的复变函数积分的时候,可利用曲线的参数方程把复积分化为定积分,这是计算复积分的基本方法.凡是在定积分和线积分中使用的技巧,在这里都可以照常使用.在解题的时候要注意曲线用参数方程来表示时,正方向是参数增大的方向.参数的取值应与起点和终点相对应;在分段光滑曲线时,要注意各段曲线的起点与终点所对应的参数值的准确性.3.2 用牛顿—莱布尼兹公式计算复积分牛顿-莱布尼兹公式[3] 如果函数)(z f 在单连通域内处处解析,()G z 为)(z f 的一个原函数,那么)()()(01z 10z G z G dz z f z -=⎰,这里01,z z 为B 内的两点.例3.3 求20cos iz z dz π⎰的值.解 222001cos cos 2iiz z dz z dz ππ=⎰⎰21sin 2π=-.注 此题先使用了微积分学中的“凑微分”法,然后运用牛顿-莱布尼兹公式进行求解.例3.4 求0cos iz zdz ⎰的值.解 ()0cos sin i iz zdz zd z =⎰⎰11e -=-.注 此题先使用了微积分中的“分部积分法”,然后运用牛顿-莱布尼兹公式进行求解.例 3.5 求()2281Czz dz ++⎰的值,其中C 是连接0到2a π的摆线:()()sin ,1cos .x a y a θθθ=-=-解 因为函数2281z z ++在复平面内处处解析,所以积分与路线无关,由牛顿—莱布尼兹公式得:3322161623a a a πππ=++. 注 利用这种方法将复变函数积分转化成定积分来计算,方法虽然很好,但是要求非常苛刻,函数必须在单连通域内解析,而很多函数都不具备这一性质,所以在应用时需注意.3.3用柯西积分定理计算复积分柯西积分定理[4] 如果函数()f z 在单连通区域B 内处处解析,那么函数()f z 沿B 内的任何一条周线C 的积分为零. 即:()0Cf z dz =⎰.注 (1) 定理中的C 可以不是简单曲线.(2) 如果曲线C 是区域B 的边界,函数在()f z 在B 内C 上解析,即在闭区域B BC =+上解析,那么()0Cf z dz =⎰。

复积分计算公式

复积分计算公式

复积分计算公式复积分是指采用被称为“分部和”的计算方法,在一定的范围上将函数的形式表达式的复合式的求解过程,称为复积分。

这一公式经常被应用于物理、数学和工程学等多种领域。

二、复积分的具体形式复积分的具体形式可以表示为:∫∫[f(x,y)dxdy=∫xf(x,y)dy-∫yf(x,y)dx]其中,x为积分的上限,y为积分的下限,f(x,y)为函数形式表达式。

三、复积分的运用复积分在物理学和数学中有广泛的应用,主要用于求解双变量函数的积分,尤其是在解决复杂的物理问题时十分有用。

例如,在电力学中,可以使用复积分来解决求解局部电荷的问题;在热力学中,则可以用复积分来计算局部温度的问题;在量子力学中,可以使用复积分计算某个变量的概率分布;在几何学中,也可以使用复积分计算弯曲曲线的数值分析等。

四、复积分的计算1、把函数f(x,y)先按照一条变量的函数的方式进行积分,即:∫f(x,y)dx=g(x,y)2、然后再把第一步求得的结果g(x,y)坐标轴上另一个变量y 进行积分,即:∫g(x,y)dy=h(x,y)3、最后,将原函数f(x,y)按照另一个变量y先求积分,再求另一个变量x的积分,即:∫∫f(x,y)dxdy=h(x,y)五、复积分的扩展复积分的形式可以扩展到多变量的情况下,即:∫∫∫[f(x1, x2, x3...,xn)dx1 dx2 dx3...dxn]=∫x1f(x1, x2, x3,...,xn)dx2dx3...dxn-∫x2f(x1, x2,x3,...,xn)d x1dx3...dxn+∫x3f(x1, x2,x3,...,xn)dx1dx2...dxn...以上即为复积分计算公式的完整内容,本文介绍了复积分的定义、具体形式、运用及计算以及复积分的扩展,希望以上内容对读者有所帮助。

复变函数的积分总结

复变函数的积分总结

复变函数的积分总结引言复变函数积分是复分析的重要内容之一。

与实变函数不同的是,复变函数在积分时需要同时考虑实部和虚部,因此在处理复变函数的积分时需要注意一些特殊的性质和方法。

本文将对复变函数的积分进行总结,包括复积分的定义、性质和常见的积分方法。

复积分的定义复积分是对复变函数沿着曲线或者面积进行积分的操作。

复积分可以分为线积分和面积积分两种形式。

线积分对于复变函数f(z),其在线段L上的线积分定义为:$$ \\int_L f(z)dz = \\int_a^b f(z(t))z'(t)dt $$其中z(t)是L上参数化曲线的方程,$t \\in [a, b]$。

线积分的结果是一个复数。

面积积分对于复变函数f(z),其在有界连续曲线围成的区域D上的面积积分定义为:$$ \\int_D f(z)dz = \\iint_D f(z) dxdy $$其中z=x+iy,dxdy是区域D上的面积微元。

复积分的性质复积分具有一些重要的性质,它们在计算复积分时非常有用。

线积分的基本性质•线积分与路径无关:如果L1和L2是起点和终点相同的两条路径,且f(z)在路径间连续,则 $\\int_{L_1} f(z)dz = \\int_{L_2} f(z)dz$。

•线积分的线性性质:对于任意的复数c1和c2,以及复变函数f(z)和g(z),有 $\\int_L (c_1f(z) + c_2g(z))dz = c_1\\int_L f(z)dz + c_2\\int_L g(z)dz$。

•同路径积分相等:如果L是起点为z1终点为z2的路径,且f(z)在L 上连续且有原函数F(z),则 $\\int_L f(z)dz = F(z_2) - F(z_1)$。

面积积分的基本性质•面积积分与区域无关:如果D1和D2是相同的区域,且f(z)在区域D上连续,则 $\\int_{D_1} f(z)dz = \\int_{D_2} f(z)dz$。

计算复积分的几种方法

计算复积分的几种方法

计算复积分的几种方法
1、凑微分法:把被积分式凑成某个函数的微分的积分方法。

2、换元法:包括整体换元,部分换元等等。

3、分部积分法:利用两个相加函数的微分公式,将所建议的分数转变为另外较为简
单的函数的分数。

4、有理函数积分法:有理函数是指由两个多项式函数的商所表示的函数,由多项式
的除法可知,假分式总能化为一个多项式与一个真分式之和。

分数公式法
直接利用积分公式求出不定积分。

换元积分法
换元积分法可分为第一类换元法与第二类换元法。

一、第一类换元法(即为兎微分法)
通过凑微分,最后依托于某个积分公式。

进而求得原不定积分。

二、备注:第二类换元法的转换式必须对称,并且在适当区间上就是单调的。

第二类换元法经常用于消去被积函数中的根式。

当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。

常用的换元手段有两种:
1、根式赋值法,
2、三角代换法。

在实际应用领域中,赋值法最常用的就是链式法则,而往往用此替代前面所说的换元。

链式法则就是一种最有效率的微分方法,自然也就是最有效率的分数方法。

分部积分法
分部积分法的实质就是:将所求分数化成两个分数之差,分数难者先分数,实际上就
是两次分数。

有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假
分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和,可见问题转化为
计算真分式的积分。

可以证明,任何真分式总能水解为部分分式之和。

复积分的计算方法

复积分的计算方法

复积分的计算方法复积分是一种重要的数学计算方法,可用来计算一类复杂函数在某种参数下的积分结果。

它具有可预测性和准确性,在工程科学、物理科学和数学分析中都有广泛的应用。

本文简要介绍复积分的定义、形式及计算方法,以供读者参考。

一、定义复积分,即二重积分,是一种求解不定积分的数学方法,通过多次使用积分函数来计算。

它通常用于计算较复杂的函数的积分,用于解决许多常见的计算问题,如求曲面积、求体积、解微分方程等。

二、形式复积分的形式可以用一元二次多项式表示,通常有两种形式:(1)横向积分:∫∫f(x,y)dxdy;(2)纵向积分:∫∫f(x,y)dydx。

其中,符号“∫∫”表示复积分;f(x,y)表示被积函数;dx和dy分别表示其中的一阶导数,x和y为变量,表示函数的参数。

三、计算方法(1)计算步骤复积分的计算简单来说就是多次使用积分计算函数,而分解积分就是把某一复杂的函数两两分解成若干个简单函数,再依次计算每个函数的积分。

具体计算步骤如下:(a)确定函数形式:首先,要确定被积函数f(x,y)的函数形式;(b)定义积分范围:其次,要确定积分的范围,即x的上下限和y的上下限,用来求解复积分;(c)分解积分:把某一复杂的函数两两分解成若干个简单函数,再依次计算每个函数的积分;(d)计算结果:最后,把每个函数的积分相加,即可得到复积分的结果。

(2)常用计算公式有些复杂函数形式较为简单,可以应用一些已有的计算公式来计算复积分。

例如,当被积函数为一元二次多项式时,可以使用如下公式计算复积分:∫∫ax2+bxy+cy2+dydx = (1/3)abc(x3 - x1) + (1/2)abcd(x2 - x1) + (1/2)acd(y2 - y1) + (1/2)bcd(y2 + y1x2 - y1x1) + ad(y12 - y11 - y22 + y21) + bd(y2x1 - y1x12 - y2x2 + y1x22) + cd(x12y1 - x1y1 - x22y2 + x2y2) + dc(x22 - x11 - x32 + x21) 注:其中a、b、c、d为定值,x1、x2、y1、y2为变量,表示积分的上下限。

复积分的各种计算方法与应用

复积分的各种计算方法与应用

复积分的各种计算方法与应用复积分(double integral)是积分学中的重要概念,它是对二重积分的一种扩展,用于计算在二维平面上一些区域上的函数值的总和。

在实际应用中,复积分涉及到物理、工程、经济等领域。

一、复积分的计算方法:1.面积法:复积分可以用来计算二维平面上的面积。

通过将函数视为高度,对函数进行积分可以得到平面上一些区域的面积。

2.矩形法:将复积分区域划分为若干个小矩形,在每个小矩形上计算函数值,并对所有小矩形的函数值求和,即可得到复积分的近似值。

3.累次积分法:复积分可以通过累次积分的方式计算。

先对一个变量进行积分,再对另一个变量进行积分,得到的结果即为复积分的值。

4.极坐标法:当复积分的计算区域具有旋转对称性时,可以使用极坐标系来简化计算。

先将复积分换算为极坐标系下的积分,再进行计算。

5.曲线坐标法:当复积分的计算区域具有弯曲特点时,可以使用曲线坐标系来简化计算。

将复积分换算为曲线坐标系下的积分,再进行计算。

二、复积分的应用:1.几何应用:复积分可以用来计算曲线与坐标轴之间的面积,或者计算曲线围成的封闭区域的面积。

例如:计算圆的面积、计算椭圆的面积等。

2.物理应用:复积分经常用于计算质量、力、能量等物理量。

例如:计算平面上的质心坐标、计算质点受到的力的合力、计算电场的电势能等。

3.经济应用:复积分可以用来计算经济学中的一些重要量,如总产出、消费量、利润等。

例如:计算一些城市的总GDP、计算一些行业的总销售额等。

4.概率应用:复积分可以用来计算概率密度函数。

例如:计算一些随机变量在一些区间内取值的概率、计算一些随机事件发生的概率等。

5.工程应用:复积分在工程领域也有广泛的应用。

例如:计算工程中一些曲线的长度、计算工程中一些区域的质量等。

综上所述,复积分是计算二维平面上函数值总和的一种方法,在几何、物理、经济、概率和工程等领域都有广泛的应用。

掌握复积分的计算方法和应用,对于解决实际问题具有重要的意义。

复数积分计算公式推导方法

复数积分计算公式推导方法

复数积分计算公式推导方法复数积分是复变函数理论中的重要内容,它在物理学、工程学、数学等领域都有着广泛的应用。

复数积分的计算方法有很多种,其中最常见的是使用复数积分的公式进行计算。

本文将介绍复数积分的计算公式推导方法,帮助读者更好地理解复数积分的计算过程。

1. 复数积分的定义。

在介绍复数积分的计算公式推导方法之前,我们先来回顾一下复数积分的定义。

设函数f(z)在复平面上的一条曲线L上有定义,即z=z(t),a≤t≤b,其中z(t)是连续函数。

那么,复数积分的定义如下:∫f(z)dz=∫f(z(t))z'(t)dt。

其中,z'(t)表示z对t的导数。

这个定义和实数积分的定义有些类似,只不过在复数积分中,积分路径是在复平面上的曲线L,而不是实数轴上的区间。

2. 复数积分的计算公式推导方法。

接下来,我们将介绍复数积分的计算公式推导方法。

在实际计算中,我们通常会遇到一些特殊的积分形式,这时可以通过一些公式来简化计算。

下面我们将介绍几种常见的复数积分公式及其推导方法。

2.1 复数积分的线性性质。

首先,我们来看复数积分的线性性质。

设函数f(z)和g(z)在曲线L上有定义,且积分路径相同,那么有以下公式成立:∫(f(z)+g(z))dz=∫f(z)dz+∫g(z)dz。

这个公式的推导方法非常简单,只需将积分式展开,然后利用实数积分的线性性质即可得到。

2.2 复数积分的保守场。

其次,我们来看复数积分的保守场。

如果函数f(z)在曲线L上有定义,并且满足f(z)=F'(z),其中F(z)是一个复变函数,那么有以下公式成立:∫f(z)dz=F(z)∣ab。

这个公式的推导方法可以通过复变函数的柯西—黎曼方程得到,具体推导过程略显复杂,这里就不展开了。

2.3 柯西—格林公式。

最后,我们来看复数积分的柯西—格林公式。

设函数f(z)在曲线L上有定义,且积分路径为闭合曲线C,那么有以下公式成立:∮f(z)dz=0。

复变积分知识点总结

复变积分知识点总结

复变积分知识点总结一、复变函数的积分1. 复变函数的积分复变函数的积分是指对复平面上的函数进行积分,其中积分路径可以是一条曲线或者一条闭合曲线。

复变函数的积分包括对于实部和虚部的积分两部分,也可以看作是对于复变函数的实部和虚部的积分的和。

复变函数的积分可以用复积分的方式来表示,即对于积分路径上的每一个点,都可以对应一个复数,这样对于整个路径上的所有点的积分就可以用复数来表示。

2. 复变函数的积分性质复变函数的积分具有一些独特的性质,比如线性性、可微性、路径无关性等。

其中线性性是指对于复变函数的积分满足线性组合的性质,即对于两个复变函数的积分和它们的线性组合的积分是相同的。

而可微性是指对于复变函数的积分可以通过对积分路径上的点进行微分来得到,这与实部和虚部的积分分别成立。

路径无关性是指对于一个复变函数在不同的积分路径上积分得到的结果是相同的。

3. 古代积分定理古代积分定理是复变积分的重要定理之一,它是复平面上函数积分的一个基本定理,也是复变函数在复平面上的积分与在实数轴上的积分之间的联系的一个重要桥梁。

古代积分定理表明,对于一个复变函数在一个简单闭合曲线内的积分等于该函数在这个闭合曲线上的积分。

古代积分定理同时也说明了对于一个复变函数在整个复平面上的积分等于该函数在所有简单闭合曲线上的积分之和。

4. 柯西-黎曼积分定理柯西-黎曼积分定理是复变积分的另一个重要定理,它是复变函数积分在实数轴上的积分的推广和深化,也是复变积分的一个基本定理。

柯西-黎曼积分定理表明了对于一个复变函数来说,如果它在一个闭合曲线内保持解析,那么对于这个曲线内的复变函数的积分一定等于零。

柯西-黎曼积分定理是复变积分中一个非常重要且基础的定理,它为复变函数积分的计算和应用提供了一个非常重要的方法和途径。

5. 积分的应用复变积分在工程、物理、数学等领域都有广泛的应用,比如它可以用来求解一些特殊的积分问题,解决一些特殊的微分方程问题,描述一些特殊的物理现象等。

复合函数求积分范文

复合函数求积分范文

复合函数求积分范文在微积分中,复合函数是指由多个简单函数组成的一个函数。

求复合函数的积分是解决微积分问题中的重要部分,可以应用于各种问题的求解中。

复合函数的积分可以通过多种方法来求解,其中包括代换法、分部积分法和三角代换法等。

下面将详细介绍这些方法,并通过实例来说明具体的步骤和技巧。

一、代换法代换法也称为换元法,是求解复合函数积分的一种常用方法。

它的基本思想是将被积函数中的自变量进行替换,从而将原来的积分转化为一个更容易求解的积分。

具体步骤如下:1.选择合适的替换变量。

替换变量的选择应该能够简化积分的计算,一般来说,选择与被积函数的形式相似的变量作为替换变量较为常见。

2.计算替换变量的导数。

将被积函数中的自变量替换为替换变量,并求得其导数。

3.将被积函数和替换变量的导数代入积分式中。

将被积函数中的自变量替换为替换变量,并将替换变量的导数代入积分式中。

4.求解新的积分式。

根据替换变量的导数和原来的积分式,求得新的积分式。

5.恢复自变量。

将替换变量恢复为原来的自变量。

例如,考虑求解积分∫(2x + 1)² dx。

我们可以选择 u = 2x + 1作为替换变量,然后计算出 du = 2dx,将其代入原积分式中,得到∫u²(1/2) du。

然后求解新的积分式∫u²(1/2) du = (1/2) * u³/3 + C。

最后将替换变量恢复为原来的自变量,得到最终结果(1/6)(2x + 1)³ + C。

二、分部积分法分部积分法是求解复合函数积分的另一种重要方法。

它是基于求导的乘积法则的逆过程,通过将积分式中的两个函数分别求导和积分,从而将原来的积分转化为一个更简单的积分。

具体步骤如下:1.选择合适的分部函数。

分部函数的选择应该能够使得积分式中至少有一个函数在求导后形式更简单。

2.对积分式中的函数进行求导和积分。

根据乘积法则,将原来的积分式中的两个函数分别求导和积分,并得到形式更简单的积分式。

复变积分的计算方法

复变积分的计算方法

复变积分是对复变函数沿着曲线或曲面进行积分的过程。

常见的复变积分包括复数路径积分(线积分)和复数面积积分(面积积分)。

下面将简要介绍一些常用的复变积分计算方法:
1. 复数路径积分(线积分):
-定义路径:首先需要定义积分路径,即曲线C。

可以使用参数方程、分段线段或复平面上的点集来表示路径。

-参数化路径:将路径C 参数化为z(t) = x(t) + iy(t),其中x(t) 和y(t) 分别表示实部和虚部关于参数t 的函数。

-积分公式:根据路径C 和被积函数的不同,可以使用不同的积分公式,如柯西—格林定理、柯西积分定理、柯西积分公式等。

选择适当的公式进行计算。

2. 复数面积积分(面积积分):
-定义积分区域:首先需要定义要积分的区域D,即一个闭合的复平面上的区域。

-参数化区域:将区域D 参数化为z(u, v) = x(u, v) + iy(u, v),其中x(u, v) 和y(u, v) 分别表示实部和虚部关于参数u 和v 的函数。

-积分公式:根据积分区域D 和被积函数的不同,可以使用不同的积分公式,如格林定理、高斯定理等。

选择适当的公式进行计算。

在实际计算过程中,可以结合使用复数的性质和技巧,如留数定理、变量替换、分部积分等来简化计算。

此外,需要注意路径或区域的光滑性、奇点的情况以及积分路径或区域的方向等因素,以确保正确计
算复变积分。

复变积分的具体计算方法和技巧是复杂的,并且超出了这个简要介绍的范围。

深入学习复变函数论和复变积分的理论和方法,以及进行大量的练习和实际问题的求解,将有助于更好地理解和应用复变积分。

复变函数积分的几种计算方法

复变函数积分的几种计算方法

复变函数积分的几种计算方法1.直接计算:直接计算是最基本的方法,通过对复变函数$f(z)$在积分路径上进行参数表示,然后将被积函数代入并对参数进行一定的变换和化简,最后进行求和或积分求解。

这种方法适用于被积函数的表达式简单,并且路径也比较简单的情况。

例如,对于一个简单的复变函数$f(z)=z^2$,可以沿着一个简单闭合的路径求积分。

2.共形映射:共形映射是一个重要而强大的工具,它可以将一个复平面上的路径映射到另一个复平面上的路径,并保持路径上的角度不变。

通过选择适当的共形映射,可以将复变函数$f(z)$在原路径上的复变积分变换为相对简单的形式。

例如,对于一条围绕原点的圆形路径,可以通过一个合适的共形映射将其映射为一条直线路径,这样原本的复变函数积分就可以转化为实变函数积分。

3.柯西-黎曼方程:柯西-黎曼方程是复变函数的基本性质之一,它表明对于任意一个复变函数$f(z)$,其满足柯西-黎曼方程的实部和虚部的偏导数存在且连续。

利用柯西-黎曼方程可以将复变函数$f(z)$表示为一个实部$f(x,y)$和虚部$g(x,y)$的形式,然后对实部和虚部分别进行求积分,最后进行合并得到原始的复变函数积分结果。

4.留数定理:留数定理是复变函数积分的重要工具,它给出了对于一个复变函数在围道内的积分结果与围道内的奇点有关。

根据留数定理,复变函数的积分结果可以表示为该函数在奇点处的留数与围道内奇点的总个数之和。

通过计算围道内的奇点的留数,可以得到复变函数的积分结果。

5.应用级数展开:对于一些复变函数,可以通过级数展开的方法进行计算。

例如,对于一个解析函数,可以将其展开为泰勒级数,并根据泰勒级数的性质进行积分。

通过截取级数展开的有限项,可以得到复变函数积分的近似解。

除了上述方法,还有一些特殊的积分计算方法,例如分部积分法、换元法等,这些方法在复变函数积分中同样适用。

关键在于选取合适的方法和工具,根据具体的被积函数和路径选择最合适的计算方法。

计算复积分的方法

计算复积分的方法
形如

谢谢
即函数 f ( z )在有限可去奇点处的留数总为零 (这是可去奇点处留数的一个特征).
(二)极点处的留数
定理6.3 设点a为函数 f ( z ) 的 n 阶极点,即 f ( z )在a点 0 U 的某去心邻域 (a) : 0 z a R内, 可以表示成
f ( z)
( z)
( z a)n
为沿这些小圆周的积分来计算.我们把这种方法
称为挖洞法。
4、牛顿—莱布尼茨公式
基于原函数、不定积分以及变上限积分的相 关定理,有以下定理:
f ( z )在单连通区域D解析,若(z)为f ( z )在单 连通区域D内的一个原函数,则

z
z0
f ( )d = ( z ) ( z0 )
z z0
(2)解析函数的无穷可微性 若函数f ( z )在区域D内解析,则f ( z )在D内具有 任意阶导数,从而f ( z )在D内的任意阶导数也是 D内的解析函数。 由此:解析函数的实部和虚部这两个二元实函 数的各阶偏导数均连续。
(3)莫勒拉定理与解析函数的积分 定义
莫勒拉定理: 若f ( z )在区域D内连续,且对D内任意围线C, 总有
2、解析函数的平均值定理
若函数f ( z )在圆域 z a R内解析,在闭圆盘 z a R上连续,则 1 f (a) 2
2 0

f (a Rei )d
3、解析函数的无穷可微性
(1)解析函数的高阶导数公式: 设D为一个有界区域,其边界为C (当D为单连通 区域时,C是一条围线;当D为多连通区域时,C 就是一条复合闭路),如果函数f ( z )在区域D内 解析,在闭区域 D D C上连续,则f ( z )在区域 D内有任意阶导数,且 n! f ( ) (n) f ( z) d ( z D) n 1 2 i C ( z ) 高阶导公式在计算中常用。

复变函数积分总结

复变函数积分总结

复变函数积分总结导言在数学中,复变函数是指定义在复数域上的函数。

复变函数的积分是对复变函数在特定区域上的求和操作,与实变函数积分有所不同。

本文将对复变函数积分进行总结和讨论。

复杂积分的定义复杂积分,也称为复数积分,是指对复变函数在闭合曲线上的积分。

设有复变函数f(z)在某条复曲线C上连续,则函数f(z)在C上的复积分可记作∮Cf(z)dz。

复积分的计算方法复积分通常通过求曲线上各点处的函数值乘以位移的和来计算。

常用的计算方法有以下几种:直接计算直接计算法是指根据复积分的定义,对曲线进行参数化,将函数f(z)的表达式与曲线参数进行替换,然后依次计算函数值和位移,并求和得到积分的结果。

换元法当曲线C上的积分难以直接计算时,可以使用换元法简化问题。

通过引入新的复变量进行变换,使得积分的计算变得更加简便。

洛朗级数展开法洛朗级数展开法常用于计算含有奇点的复积分。

通过将复变函数在奇点附近展开为洛朗级数,并利用级数的性质进行计算,可以得到积分的近似值。

留数定理留数定理是计算复积分的重要工具。

该定理指出,如果复变函数在有限个奇点上可导,并且曲线上的积分路径不经过这些奇点,那么积分的结果等于这些奇点的留数的和。

复积分的性质复积分具有许多重要的性质,这些性质在计算和应用中起着重要的作用。

1.线性性质:复积分与常数的乘积、函数的线性组合和积分路径无关。

2.相对路径无关性:如果曲线C和C’在同一个区域内且只有端点不同,那么对于可积函数f(z),∮Cf(z)dz = ∮C’f(z)dz。

3.积分与路径无关性(格林定理):如果函数f(z)在以闭合曲线C为界的区域内解析,那么对于任意两条路径P1和P2,有∮P1f(z)dz = ∮P2f(z)dz。

4.积分与积分路径方向无关性:对于可积函数f(z),路径的方向不同,积分结果相差一个负号,即∮Cf(z)dz = -∮-Cf(z)dz。

应用领域复积分在许多领域中有着广泛的应用,包括物理学、工程学和统计学等。

复积分计算方法

复积分计算方法

复积分计算方法复积分是一类对函数f(x)在一定区间[a,b]上反复积分的技术,它可以求出函数f(x)在[a,b]上的定积分。

它是数学及其它科学计算中常用的方法之一,也是强大的科学计算工具。

一、复积分的定义复积分是一类技术,它可以求出函数f(x)在[a,b]上的定积分,其定义为:F(x) =a b f(t)dt其中a < b, 且f(x)为连续函数,即需要求出f(x)在[a,b]上的定积分,其计算步骤为:1.[a,b]上将函数f(x)分割成n份;2.每个分割点的函数值分别积分,直至[a,b]的积分和为F (x);3.用梯形公式求解积分,直至达到满意精度。

二、复积分的积分方法1.梯形公式梯形公式是复积分中常用的一种方法,它是在[a,b]上将函数f(x)分割成n份,然后在这n份上分别计算,最终将这n份的积分之和相加,得到函数在[a,b]上的定积分。

梯形公式的计算公式为:F(x)=∑i=1n(f(x_i)+(f(x_i+1)-f(x_i))/2)Δx_i 其中n为分割的份数,x_i为每个分割点的函数值,Δx_i为每份的步长,f(x_i)为每个分割点函数值的积分梯形结果。

2.抛物线公式抛物线公式是根据函数f(x)在[a,b]上的连续二阶导数和抛物线方程构建的,通过三个点的函数值,来构建三角形,再将三角形分成三角形及抛物线两部分,最终将三个小积分的和作为整个积分的结果。

三、复积分的优点复积分是一类技术,它可以作为集积分、解常微分方程以及应用数学模型的有效工具,是精确的数学计算方法。

复积分的优点:1.积分步骤简单,节省时间;2.算准确,结算精确;3.算范围广,可以用于计算复杂多变的函数;4.算过程透明,可以清楚地掌握每一步的结果;5.算可视化,可以利用复积分计算结果来绘制反应曲线;6.算过程可调整,可以根据计算结果调整步长,达到满意精度。

四、复积分的应用复积分的应用非常广泛,常被用于物理及工程中,典型的如:1.势场力学:用于求解电势场力学中的电场力、磁场力;2.学力学:用于求解声学力学中的声场力;3.力学:用于求解热力学中的热量,以及求解温度场;4.他:还可用于管道流体力学、流变学中的复杂问题,应用范围很广。

复变函数积分的几种计算方法

复变函数积分的几种计算方法

复变函数积分的几种计算方法《复变函数积分的几种计算方法》一、概述求解复变函数积分是数学分析中一个重要问题,复变函数积分是指将某个复变函数沿定义域内任意等距离曲线积分计算。

复变函数积分拥有广泛的应用范围,可以应用在物理、化学等多种领域,它具有很高的实用性和重要的实现意义。

对于复变函数的积分可以采用传统的计算机算法,也可以采用其他算法,以求解复变函数积分的效率和精度。

二、求积法求积法是常用的复变函数积分的计算方法,它是通过求某个复变函数的定义域内等距离曲线上每个“小段”积分值来计算函数积分。

求积法对于多元复变函数积分计算效率较低,但是具有很高的通用性和稳定性,是初学者最容易掌握的求复变函数积分的算法。

三、数值积分法数值积分法是将复变函数的积分问题转化为求解多个方程组解的问题,采用数值方法求解复变函数积分一般包括前向梯形法、中间梯形法、各向同性梯形法和后向梯形法。

可以采用牛顿-拉夫逊数值积分法,以及几何素数、拉格朗日插值等数值计算方法,解决复变函数积分问题。

四、函数解析法函数解析法是指采用函数解析的方法,如积分变换、参数替换等,并结合某些函数的性质,求解复变函数的积分问题。

目前,微积分的教科书中有许多常见求积公式,这些常见求积公式可以帮助解决复变函数积分问题。

五、蒙特卡洛法蒙特卡洛法是指采用概率论中熵学原理,采用大数定律等方法,计算复变函数的积分。

蒙特卡洛法可以避免上述几种方法在求解某些复变函数积分问题时所出现的不精确的结果,可以改善复变函数积分计算的精度和效率。

除此之外,蒙特卡洛法还可用于计算多元复变函数的积分。

六、结论复变函数的积分法有很多,上述介绍了几种常用的求解复变函数积分的方法,并对其优缺点作了论述。

综上所述,计算复变函数积分一般应对函数特点、计算所采用的算法特点等方面进行选择,确定最合适的求解方法。

复积分的各种计算方法及应用

复积分的各种计算方法及应用

第1章 引言曹1.1研究背景及研究内容复变函数的积分理论是复变函数理论的重要组成部分,是研究解析函数的重要工具之一.但对于如何计算复变函数积分以及如何处理有关复变函数积分的问题,往往很难迅速找到解决问题的方法.因此,理解复变函数积分,并能够灵活运用复积分计算方法进行复积分计算就显得极其重要.复积分中的Cauchy 积分定理在理论上处于关键地位,由它派生出的Cauchy 积分公式、留数定理、辐角原理等都涉及到积分的计算问题.解析函数在孤立奇点的留数原本是一个积分,而实际计算却需要Laurent 展式.因而把积分与级数结合起来的留数定理使复积分理论甚至是复变函数理论达到高潮,且其用途十分广泛.因此,研究复变函数积分计算的各种方法有着非常重要的意义,本文以所列参考文献[3]中的复积分计算方法为基础,并通过查阅相关资料,借鉴了文献[4]-[7]的结果,总结复积分计算的各种方法,并通过应用[1],[2],[8],[9]中的相关知识和方法,对所列出的每种方法作典型例证和分析.1.2预备知识定义1.1[3] 复积分 设有向曲线C :()()βα≤≤=t t z z ,,以()αz a =为起点,()βz b =为终点,()z f 沿C 有定义.顺着C 从a 到b 的方向在C 上依次取分点:011,,,,n n a z z z z b -==.把曲线C 分成若干个弧段.在从1-k z 到k z ()n k ,..,2,1=的每一弧段上任取一点k ζ.作成和数()1nn k k k S f z ζ==∆∑,其中1k k k z z z -∆=-.当分点无限增多,而这些弧段长度的最大值趋于零时,如果和数n S 的极限存在且等于J ,则称()z f 沿C (从a 到b )可积,而称J 为()z f 沿C (从a 到b )的积分,并记以()cf z dz ⎰.C 称为积分路径. ()cf z dz ⎰表示沿C 的正方向的积分,()c f z dz -⎰表示沿C 的负方向的积分.定义1.2[3] 解析函数 如果函数()z f 在0z 点及()z f 的某个邻域内处处可导,那么称 ()z f 在0z 点解析,如果()z f 在区域D 内解析就称()z f 是D 内的一个解析函数.定义1.3[3] 孤立奇点 若函数()z f 在点的0z 邻域内除去点0z 外处处是解析的,即在去心圆域{}00()N z z z z δδ=-<内处处解析,则称点0z 是()z f 的一个孤立奇点.定义 1.4[3] 留数 函数()z f 在孤立奇点0z 的留数定义为()12c f z dz iπ⎰,记作()0Re ,s f z z ⎡⎤⎣⎦.第2章 复积分的各种计算方法2.1复积分计算的常见方法(1)参数方程法定理[3] 设光滑曲线:()()()()C z z t x t iy t t αβ==+≤≤,(()z t '在[,]αβ上连续,且()0z t '≠),又设()f z 沿C 连续,则()d [()]()d Cf z z f z t z t t βα'=⎰⎰.(α、β分别与起、终点对应)1.若曲线C 为直线段,先求出C 的参数方程C 为过12,z z 两点的直线段,1211:(),[0,1],C z z z z t t z =+-∈为始点,2z 为终点. 例1 计算积分1Re d iz z -⎰,路径为直线段.解 设1(1)(1),[0,1]z i t t it t =-++=-+∈,则2.若曲线C 为圆周的一部分,例如C 是以a 为圆心,R 为半径的圆. 设:C z a R -=,即Re ,[0,2]i z a θθπ=+∈,(曲线的正方向为逆时针). 例2 计算积分d ,Cz z C ⎰为从1-到1的下半单位圆周.解 设,d d ,[,0]i i z e z ie θθθθπ==∈-,d (cos sin )d 2Cz z i i πθθθ-=+=⎰⎰.用Green 公式法也可计算复积分, Green 公式法是参数方程法的一种具体计算方法.例3 设C 为可求长的简单闭曲线,A 是C 所围区域的面积,求证:2czdz iA =⎰.证明 设z x iy =+,则 由Green 公式,有: 得证.本题目用Green 公式解决了与区域面积有关的复积分问题. (2)用Newton-Leibnize 公式计算复积分在积分与路径无关的条件下(即被积函数()f z 在单连通区域内处处解析)也可直接按类似于实积分中的Newton-Leibnize 公式计算.例4 计算222(2)d i z z -+-+⎰.解 因为2()(2)f z z =+在复平面上处处解析,所以积分与路径无关.22222322221(2)d (44)d 2433ii i iz z z z z z z z -+-+-+---+=++=++=-⎰⎰.(3)用Cauchy 定理及其推论计算复积分Cauchy 积分定理[3] 设函数()f z 在复平面上的单连通区域D 内解析,C 为D 内任一条周线,则()d 0Cf z z =⎰.Cauchy 积分定理的等价定理[3]设函数()f z 在以周线C 为边界的闭域D D C =+上解析, 则()d 0Cf z z =⎰例5 计算2d ,22C zC z z ++⎰为单位圆周1z =.解 1z =是21()22f z z z =++的解析区域内的一闭曲线,由Cauchy 积分定理有2d 022C zz z =++⎰.注1 利用Cauchy 积分定理也有一定的局限性,主要是要求被积函数的解析区域是单连通的,计算起来较为方便.注2 此题可用参数方法,但计算要复杂得多,而用Cauchy 积分定理很简单. 另外,Cauchy 积分定理可推广到复周线的情形.定理[3] 设D 是由复周线012nC C C C C ---=++++ 所围成的有界1n +连通 区域,函数()f z 在D 内解析,在D D C =+上连续,则()0Cf z dz =⎰,或写成 ()()()010nC C C f z dz f z dz f z dz --++=⎰⎰⎰,。

复积分的计算方法及其应用

复积分的计算方法及其应用

摘要在复变函数的理论中,复积分是研究解析函数的重要工具.解析函数中的许多重要性质都要利用复变函数积分来证明.柯西积分定理在复积分的计算理论中处于关键地位,柯西积分公式、柯西积分定理及其推论、柯西高阶导数公式和留数定理对复积分的计算起到很大的作用.本文首先阐述复积分的相关概念,在此基础上介绍复积分的几种基本求法,如:用参数方程法、牛顿—莱布尼兹公式、柯西积分定理、柯西积分公式、复周线柯西积分定理、解析函数的高阶导数公式、留数定理.针对每一种计算方法给出相应的例子.对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.关键词:复积分;解析函数;柯西积分定理;柯西积分公式;留数定理ABSTRACTIn complex function theory, complex integration is an important tool of analytic function.Analytic function of many important properties are using the complex function integral to prove.Cauchy integral theorem in the calculation of complex integration theory in a key position,Cauchy integral formulas, Cauchy integral theorem and its corollary, Cauchy higher derivatives formula and residue theorem of integral to the complex calculation has played a significant role. This paper first describes the complex integration of related concepts introduced on this basis, the complex integration of several basic method for finding such as : parametric equations , Newton - Leibniz formula , Cauchy's integral theorem, Cauchy integral formula , complex contour Cauchy integral theorem, the formula of the higher order derivatives of analytic functions , residue theorem to give the corresponding examples for each type of calculation.The calculation method of complex integral to make a summary of the system, from which generalizes the complex functions for solving integral method and the skill.Key words: Complex integral; Analytic function; Cauchy integral theorem; Cauchy integral formula; the residue theorem目录摘要 (I)ABSTRACT (II)1 前言 (1)2 预备知识 (2)3复变函数积分的计算方法 (6)3.1用参数方程法 (6)3.2用牛顿—莱布尼兹公式计算复积分 (8)3.3 用柯西积分定理计算复积分 (10)3.4 用柯西积分公式计算复积分 (12)3.5 用复周线柯西积分定理计算复积分 (14)3.6 用解析函数的高阶导数公式计算复积分 (16)3.7 用留数定理计算复积分 (20)结论 (24)参考文献 (25)致谢 (26)1前言2006年3月淮南师范学院的崔东玲研究的《复积分的计算方法》,他通过变量代换、柯西积分公式、柯西积分定理、留数定理从中揭示诸多方法的内在联系.在研究复积分的计算方法这一方面取得了许多进展,证明了复变函数积分的计算方法.复变函数积分的计算方法灵活多样,而目前对复变函数积分的计算方法作出较系统的归纳却很少见.本文将利用复变函数积分基本原理,利用几种复积分的基本求法,针对每一种计算方法给出例子,并通过柯西积分定理、柯西积分公式、柯西高阶导数公式等来计算复积分,从中揭示诸多方法的内在联系,对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.2预备知识定义2.1[]1 设l 为复平面上以0z 为起点,而以z 为终点的光滑曲线(()y y x =有连续导数),在l 上取一系列分点011,,,,n n z z z z z -=把l 分为n 段,在每一小段1k k z z -上任取一点k ξ作和数()()()111nnn k k k k k k k S f z z f z ξξ-===-=∆∑∑,1k k k z z z -∆=-当n →∞,且每一小段的长度趋于零时,若lim n n S →∞存在,则称()f z 沿l 可积,lim n n S →∞称为()f z 沿l 的路径积分.l 为积分路径,记为()lf z dz ⎰(若l 为围线(闭的曲线),则记为()lf z dz ⎰).()()1lim lim nnk k ln n k f z dz Sf z ξ→∞→∞===∆∑⎰ (()f z 在l 上取值,即z 在l 上变化).定理 2.1 若函数()()(),,f z u x y iv x y =+沿曲线C 连续,则()f z 沿C 可积,且().CCCf z dz udx vdy i vdx udy =-++⎰⎰⎰ (1.1)复变函数积分的基本性质 设函数()(),f z g z 沿曲线C 连续,则有下列性质: (1) ()(),CCaf z dz a f z dz a =⎰⎰是复常数:(2) ()()()()=CC C f z g z dz f z dz g z dz ++⎡⎤⎣⎦⎰⎰⎰;(3) ()()()12,+CC C f z dz f z dz f z dz =⎰⎰⎰其中C 由曲线1C 和2C 衔接而成;(4)()();CCf z dz f z dz -=-⎰⎰图2.1(5) ()()().CCCf z dz f z dz f z ds ≤=⎰⎰⎰这里dz 表示弧长的微分,即dz ds ==定义2.2 如果函数()w f z =在区域D 内可微,则称()f z 为区域D 内的解析函数,或称()f z 在区域D 内解析.定理2.2 函数()f z 在区域G 内解析的充要条件是: (1) ()f z 在G 内连续;()2 对任一周线C ,只要C 及其内部全部含于G ,就有()0C f z dz =⎰.定义2.3 若函数()f z 在0z 不解析,但在0z 的任一邻域内总有()f z 的解析点,则称0z 为函数()f z 的奇点.定义2.4 如果函数()f z 在点a 的某一去心邻域{}:0K a z a R -<-<(即除去圆心a 的某圆)内解析,点a 是()f z 的奇点,则称a 为()f z 的一个孤立奇点.定义2.5 设a 为函数()f z 的孤立奇点.(1) 如果()f z 在点a 的主要部分为零,则称a 为()f z 的可去奇点. (2) 如果()f z 在点a 的主要部分为有限多项,设为()()()111m mmm c c c z az a z a -----++⋅⋅⋅+---(0m c -≠) 则称a 为()f z 的m 阶极点.一阶极点也称为单极点.(3) 如果()f z 在点a 的主要部分有无限多项,则称a 为()f z 的本质奇点. 定理2.3 如果a 为函数()f z 的孤立奇点,则下列三条是等价的.它们中的任何一条都是可去奇点的特征.(1) ()f z 在点a 的主要部分为零; (2) lim ()()z af z b →=≠∞;(3) ()f z 在点a 的某去心邻域内有界.定理2.4 如果函数()f z 以点a 为孤立奇点,则下列三条是等价的.它们中的任何一条都是m 阶极点的特征.(1) ()f z 在点a 的主要部分为()()()111m mmm c c c z az a z a -----++⋅⋅⋅+---(0m c -≠); (2) ()f z 在点a 的某去心邻域内能表成()()()mz f z z a λ=-,其中()z λ在点a 邻域内解析,且()0z λ≠;(3) 1()()g z f z =以点a 为m 阶零点(可去奇点要当作解析点看,只要令()0g a =). 注 第(3)条表明:()f z 以点a 为m 阶极点⇔()1f z 以点a 为m 阶零点. 定理2.5 函数()f z 的孤立奇点a 为极点的充要条件是lim ()z af z →=∞. 定理2.6 函数()f z 的孤立奇点a 为本质奇点的充要条件是:lim ()(有理数)z a b f z →⎧≠⎨∞⎩,即lim ()z af z →不存在. 定理2.7 若z a =为函数 ()f z 之一本质奇点,且在点a 的充分小去心邻域内不为零,则z a =亦必为()1f z 的本质奇点. 定理2.8 如果函数()f z 在单连通域B 内处处解析,那么积分dz z f C⎰)(与连结起点与终点的路线C 无关.定理 2.9 如果函数()f z 在单连通域B 内处处解析,那么函数 ζζd f F zz ⎰=0)(z )(必为B 内一个解析函数,并且()()F z f z '=.定义2.6 如果函数)(z f z =')(ϕ,那么称)(z ϕ为)(z f 在区域内的原函数.注 原函数之间的关系:)(z f 的任何两个原函数相差一个常数.定义2.7 称)(z f 的原函数的一般表达式C z F +)((C 为任意常数)为)(z f 的不定积分,记作()()f z dz F z C =+⎰.定义 2.8 考虑1n +条周线01,,,n C C C ⋅⋅⋅,其中12,,,n C C C ⋅⋅⋅中的每一条都在其余各条的内部,而它们又全都在0C 的内部.在0C 内部的同时又在12,,,n C C C ⋅⋅⋅外部的点集构成一个有界的1n +连通区域D ,以012,,,,n C C C C ⋅⋅⋅为它的边界.在这种情况下,我们称区域D 的边界是一条复周线012n C C C C C ---=+++⋅⋅⋅+,它包括取正方向的0C ,以及取负方向的12,,,n C C C ⋅⋅⋅.换句话说,假如观察者沿复周线C 的正方向绕行时,区域D 的点总在它的左手边.定义2.9 如果函数()f z 在点a 是解析的,周线C 全在点a 的某邻域内,并包围点a ,则根据柯西积分定理得()0.Cf z dz =⎰注 如果a 为()f z 的一个孤立奇点,且周线C 全在a 的某个去心邻域内,并包 围点a ,则积分()Cf z dz ⎰的值,一般来说,不再为零.设函数()f z 以有限点a 为孤立奇点,即()f z 在点a 的某个去心邻域0z a R <-<内解析,则称积分()12f z dz iπΓ⎰ (:,0)z a R ρρΓ-=<<为()f z 在点a 的留数(residue ),记为Res ()f z .3复变函数积分的计算方法3.1用参数方程法设有光滑曲线C :()()()z z t x t i t ==+(t αβ≤≤), 这就表示()z t '在],αβ⎡⎣上连续且有不为零的导数,()()().z t x t iy t '''=+又设()f z 沿C 连续.令()()()()()()(),,f z t u x t y t iv x t y t u t iv t =+=+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦由 (式1.1) 得()CCCf z dz udx vdy i udy vdx =-++⎰⎰⎰()()()()()()()()=u t x t v t y t dt i u t y t v t x t dt ββαα''''-++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰ 即()()(),Cf z dz f z t z t dt βα'=⎡⎤⎣⎦⎰⎰ (1.2) 或()()(){}()(){}Re Im =+Cf z dz f z t z t dt i f z t z t dt ββαα''⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰⎰ (1.3) 公式(1.2)、(1.3)是从积分路径的参数方程着手,称为参数方程法. (1.2)、(1.3)称为复积分的变量代换公式.注 (1) 一个重要的常用积分:()()2,10,1()nCi n dzn z n z a π=⎧⎪=⎨∈≠⋅-⎪⎩⎰(这里C 是以a 为圆心,ρ为半径的圆周)(2) 如果C 是由12,,,n C C C 等光滑曲线依次相互连接所组成的按段光滑曲线,则()12nCC C C f z f(z)dz f(z)dz f(z)dz.=+++⎰⎰⎰⎰(3)在今后讨论的积分中,总假定被积函数是连续的, 曲线C 是按段光滑的.例3.1[2]计算d Cz z ⎰,其中C 为:圆周3z =.解 积分路径的参数方程为3(02)πi z e θθ=≤≤,3i dz ie d θθ=2033πi Cz dz ie d θθ=⋅⎰⎰(因为3z =)209(cos sin )πii d θθθ=+⎰0=.例3.2 计算积分()2Cx y ix dz -+⎰,积分路径C 是连接由0到1i +的直线段.解 C 的参数方程是()()()1,,,01,1z i t x t y t t dz i dt =+==≤≤=+ 由参数方程法得:()()()1221=Cx y ix dz t t it t dt -+-++⎰⎰()1201=i i t dt +⎰()21013t i =-⋅13i-=-. 注 通过上面的例子,我们知道在计算沿光滑曲线的复变函数积分的时候,可利用曲线的参数方程把复积分化为定积分,这是计算复积分的基本方法.凡是在定积分和线积分中使用的技巧,在这里都可以照常使用.在解题的时候要注意曲线用参数方程来表示时,正方向是参数增大的方向.参数的取值应与起点和终点相对应;在分段光滑曲线时,要注意各段曲线的起点与终点所对应的参数值的准确性.3.2 用牛顿—莱布尼兹公式计算复积分牛顿-莱布尼兹公式[3] 如果函数)(z f 在单连通域内处处解析,()G z 为)(z f 的一个原函数,那么)()()(01z 10z G z G dz z f z -=⎰,这里01,z z 为B 内的两点.例3.3 求20cos iz z dz π⎰的值.解 22201cos cos 2ii z z dz z dz ππ=⎰⎰201sin 2iz π=21sin()2π=-21sin 2π=-.注 此题先使用了微积分学中的“凑微分”法,然后运用牛顿-莱布尼兹公式进行求解.例3.4 求0cos iz zdz ⎰的值.解 ()0cos sin i iz zdz zd z =⎰⎰00sin sin ii z z zdz =-⎰0sin cos =z i z z + 11e -=-.注 此题先使用了微积分中的“分部积分法”,然后运用牛顿-莱布尼兹公式进行求解.例 3.5 求()2281Czz dz ++⎰的值,其中C 是连接0到2a π的摆线:()()sin ,1cos .x a y a θθθ=-=-解 因为函数2281z z ++在复平面内处处解析,所以积分与路线无关,由牛顿—莱布尼兹公式得:()222(281)281aCz z dz zz dz π++=++⎰⎰23202(4)3az z z π=++3322161623a a a πππ=++. 注 利用这种方法将复变函数积分转化成定积分来计算,方法虽然很好,但是要求非常苛刻,函数必须在单连通域内解析,而很多函数都不具备这一性质,所以在应用时需注意.3.3用柯西积分定理计算复积分柯西积分定理[4] 如果函数()f z 在单连通区域B 内处处解析,那么函数()f z 沿B 内的任何一条周线C 的积分为零. 即:()0Cf z dz =⎰.注 (1) 定理中的C 可以不是简单曲线.(2) 如果曲线C 是区域B 的边界,函数在()f z 在B 内C 上解析,即在闭区域B BC =+上解析,那么()0Cf z dz =⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 引言曹1.1研究背景及研究内容复变函数的积分理论是复变函数理论的重要组成部分,是研究解析函数的重要工具之一.但对于如何计算复变函数积分以及如何处理有关复变函数积分的问题,往往很难迅速找到解决问题的方法.因此,理解复变函数积分,并能够灵活运用复积分计算方法进行复积分计算就显得极其重要.复积分中的Cauchy 积分定理在理论上处于关键地位,由它派生出的Cauchy 积分公式、留数定理、辐角原理等都涉及到积分的计算问题.解析函数在孤立奇点的留数原本是一个积分,而实际计算却需要Laurent 展式.因而把积分与级数结合起来的留数定理使复积分理论甚至是复变函数理论达到高潮,且其用途十分广泛.因此,研究复变函数积分计算的各种方法有着非常重要的意义,本文以所列参考文献[3]中的复积分计算方法为基础,并通过查阅相关资料,借鉴了文献[4]-[7]的结果,总结复积分计算的各种方法,并通过应用[1],[2],[8],[9]中的相关知识和方法,对所列出的每种方法作典型例证和分析.1.2预备知识定义1.1[3] 复积分 设有向曲线C :()()βα≤≤=t t z z ,,以()αz a =为起点,()βz b =为终点,()z f 沿C 有定义.顺着C 从a 到b 的方向在C 上依次取分点:011,,,,n n a z z z z b -==.把曲线C 分成若干个弧段.在从1-k z 到k z ()n k ,..,2,1=的每一弧段上任取一点k ζ.作成和数()1nn k k k S f z ζ==∆∑,其中1k k k z z z -∆=-.当分点无限增多,而这些弧段长度的最大值趋于零时,如果和数n S 的极限存在且等于J ,则称()z f 沿C (从a 到b )可积,而称J 为()z f 沿C (从a 到b )的积分,并记以()cf z dz ⎰.C 称为积分路径. ()cf z dz ⎰表示沿C 的正方向的积分,()c f z dz -⎰表示沿C 的负方向的积分.定义1.2[3] 解析函数 如果函数()z f 在0z 点及()z f 的某个邻域内处处可导,那么称 ()z f 在0z 点解析,如果()z f 在区域D 内解析就称()z f 是D 内的一个解析函数.定义1.3[3] 孤立奇点 若函数()z f 在点的0z 邻域内除去点0z 外处处是解析的,即在去心圆域{}00()N z z z z δδ=-<内处处解析,则称点0z 是()z f 的一个孤立奇点.定义 1.4[3] 留数 函数()z f 在孤立奇点0z 的留数定义为()12c f z dz iπ⎰,记作()0Re ,s f z z ⎡⎤⎣⎦.第2章 复积分的各种计算方法2.1复积分计算的常见方法(1)参数方程法定理[3] 设光滑曲线:()()()()C z z t x t iy t t αβ==+≤≤,(()z t '在[,]αβ上连续,且()0z t '≠),又设()f z 沿C 连续,则()d [()]()d Cf z z f z t z t t βα'=⎰⎰.(α、β分别与起、终点对应)1.若曲线C 为直线段,先求出C 的参数方程C 为过12,z z 两点的直线段,1211:(),[0,1],C z z z z t t z =+-∈为始点,2z 为终点.例1 计算积分1Re d iz z -⎰,路径为直线段.解 设1(1)(1),[0,1]z i t t it t =-++=-+∈,则112101Re d (1)d 22iiz z t i t t t i -⎛⎫=-=-=- ⎪⎝⎭⎰⎰2.若曲线C 为圆周的一部分,例如C 是以a 为圆心,R 为半径的圆. 设:C z a R -=,即Re ,[0,2]i z a θθπ=+∈,(曲线的正方向为逆时针). 例2 计算积分d ,Cz z C ⎰为从1-到1的下半单位圆周.解 设,d d ,[,0]i i z e z ie θθθθπ==∈-,d (cos sin )d 2Cz z i i πθθθ-=+=⎰⎰.用Green 公式法也可计算复积分, Green 公式法是参数方程法的一种具体计算方法.例3 设C 为可求长的简单闭曲线,A 是C 所围区域的面积,求证:2czdz iA =⎰.证明 设z x iy =+,则ccczdz xdx ydy i xdy ydx =++-⎰⎰⎰由Green 公式,有:0cxdx ydy +=⎰2cxdy ydx A -=⎰得证.本题目用Green 公式解决了与区域面积有关的复积分问题. (2)用Newton-Leibnize 公式计算复积分在积分与路径无关的条件下(即被积函数()f z 在单连通区域内处处解析)也可直接按类似于实积分中的Newton-Leibnize 公式计算.例4 计算222(2)d i z z -+-+⎰.解 因为2()(2)f z z =+在复平面上处处解析,所以积分与路径无关.22222322221(2)d (44)d 2433ii i iz z z z z z z z -+-+-+---+=++=++=-⎰⎰.(3)用Cauchy 定理及其推论计算复积分Cauchy 积分定理[3] 设函数()f z 在复平面上的单连通区域D 内解析,C 为D 内任一条周线,则()d 0Cf z z =⎰.Cauchy 积分定理的等价定理[3]设函数()f z 在以周线C 为边界的闭域D D C =+上解析, 则()d 0Cf z z =⎰例5 计算2d ,22C zC z z ++⎰为单位圆周1z =.解 1z =是21()22f z z z =++的解析区域内的一闭曲线,由Cauchy 积分定理有2d 022C zz z =++⎰.注1 利用Cauchy 积分定理也有一定的局限性,主要是要求被积函数的解析区域是单连通的,计算起来较为方便.注2 此题可用参数方法,但计算要复杂得多,而用Cauchy 积分定理很简单. 另外,Cauchy 积分定理可推广到复周线的情形.定理[3] 设D 是由复周线012nC C C C C ---=++++ 所围成的有界1n +连通 区域,函数()f z 在D 内解析,在D D C =+上连续,则()0Cf z dz =⎰,或写成 ()()()010nC C C f z dz f z dz f z dz --++=⎰⎰⎰,或写成 ()()()010nC C C f z dz f z dz f z dz --++=⎰⎰⎰.这也是计算复积分的一个有力工具,即复函数沿区域外边界曲线的积分等于沿区域内边界积分的和.适用于积分曲线内部含被积函数奇点的情形.例6计算22d C zz z z -⎰的值,C 为包含圆周1z =的任何正向简单闭曲线.解 2211d d 1C C z z z z z z z ⎛⎫=+ ⎪--⎝⎭⎰⎰,分别以0,1z z ==为心做两个完全含于C 且互不相交的圆周12,C C ,则有12221111d d d 11CC C z z z z z z z z z z ⎛⎫⎛⎫=+++ ⎪ ⎪---⎝⎭⎝⎭⎰⎰⎰ 11221111d d d d 11C C C C z z z z z z z z =+++--⎰⎰⎰⎰ 20024i i i πππ=+++=.(4)用Cauchy 积分公式计算复积分Cauchy 积分公式[3] 设区域D 的边界是周线(或复周线),()C f z 在D 内解析,在D D C =+上连续,则有1()()d ()2C f f z z D i zζζπζ=∈-⎰.Cauchy 积分公式可以解决积分曲线内有被积函数的奇点的积分问题.例7 计算2d 1zCe z z +⎰,其中C 为圆周2z =. 解 因被积函数的两个奇点是,i i -,分别以这两点为心做两个完全含于C 且互不相交的圆周12,C C .则有1212222d d d d d 111z z z z zCC C C C e e e e e z i z i z z z z z z z z z iz i +-=+=++++-+⎰⎰⎰⎰⎰22()zzi i z iz ie e iie e z iz i πππ-==-=+=-+-.此题是Cauchy 积分公式与Cauchy 积分定理复周线情形的结合. (5)用解析函数的高阶导数公式计算复积分 Cauchy 积分公式解决的是形如()d ,()C f z D zζζζ∈-⎰的积分,那么形如()d ,()()n C f z D z ζζζ∈-⎰的积分怎样计算呢?利用解析函数的高阶导数公式()1!()()d ,()(1,2,)2()n n C n f f z z D n i z ζζπζ+=∈=-⎰可解决此问题.例8 计算22d ,(1)zC e z C z +⎰为2z =. 解 因被积函数的两个奇点是,i i -,分别以这两点为心做两个完全含于C 而且互不相交的圆周12,C C .12222222d (1)d d (1)(1)zC zzC C e z z e ez z z z +=+++⎰⎰⎰1222222222()()d d ()()22()()(1)()2z zC C z z z iz ii i e e z i z i z z z i z i e e i i z i z i i e ie πππ==--+-=+-+''⎡⎤⎡⎤=+⎢⎥⎢⎥+-⎣⎦⎣⎦=--⎰⎰注 Cauchy 积分公式与解析函数的高阶导数公式在计算复积分时的主要区别在于被积函数分母的次数是否为一次因式,二者在计算时都常与Cauchy 积分定理复周线情形相结合.(6)用留数定理计算复积分留数定理[3] 设函数()z f 在以C 为边界的区域D 内除12,,,n a a a 外解析,且连续到C ,则()()12Re k nCz a k f z dz i s f z π===∑⎰.例9 计算2252d (1)z z z z z =--⎰.解 252()(1)z f z z z -=-在圆周2z =内有一阶极点0z =,二阶极点1z =.20052Re ()2(1)z z z s f z z ==-==--,1152Re ()2z z z s f z z =='-⎛⎫== ⎪⎝⎭,由留数定理()221052d 2Re ()Re ()2(22)0(1)z z z z z i sf z s f z i z z ππ===-=+=-=-⎰. 留数计算方法的改进留数是复变函数中的一个重要的概念,一般的复变函数专著对函数在极点处的留数通常采用下面三个引理中叙述的计算方法进行计算,即引理1[3] 若a 为()f z 的m 阶极点,即()()()mz f z z a ϕ=-,其中()z ϕ在a 解析,且()0a ϕ≠,则()()1Re ()(1)!m z aa s f z m ϕ-==-.引理2[3]若()()()z f z z ϕψ=,其中(),()z z ϕψ在a 解析,()0a ϕ≠,()0,()0a a ψψ'=≠,则()Re ()()z aa s f z a ϕψ=='. 引理3[3] 设()f z 在扩充复平面上除12,,,,n a a a ∞外解析,,则()f z 在各点的留数总和为零,即1Re ()Re ()0k nz z a k s f z s f z =∞==+=∑.在实际运用中,发现以上三个引理所给公式应用范围有限,对有些留数的计算效果不佳.为了使计算简化、公式更为通用,下面通过三个定理给出三个改进的留数计算公式,并相应的给出算例.定理1[6] 设a 是()h z 的m 阶零点,也是()g z 的m 阶零点,则()()()g z f z h z =在a点的留数为111d Re ()lim ()()(1)!d m mm z a z a s f z z a f z m z --→=⎡⎤=-⎣⎦-. 证明 因为a 为()f z 的m n -阶极点,则()f z 在点a 的邻域内可展开为()1()1()1()101()()()()()m n m n m n m n f z C z a C z a C z a C C z a ----------=-+-++-++-+.则11()1()10()()()()()()m n n m m m n m n z a f z C z a C z a C z a C z a +-------=-+-++-+-+.两端求1m -阶导数,令z a →,则1111d lim ()()(1)!d m mm z a C z a f z m z---→⎡⎤=-⎣⎦-. 运用定理1只需判断()f z 分母零点的阶数,不必判断分子的零点阶数及()f z 极点的阶数,它简化了一些分式函数留数的计算.推论1[6] 设()()()nz f z z a ϕ=-,其中()z ϕ在点a 解析,则(1)1Re ()()(1)!n z as f z a n ϕ-==-. 例10 求225(1)()z e f z z -=在孤立奇点处的留数.解 因为0z =是5()h z z =的5阶零点,据推论1[6],有44522440001d 1d 28Re ()lim (())lim (1)4!d 4!d 3z z z z s f z z f z e z z →→==⋅=-=. 定理2[6] 设a 为()()()z f z z ϕψ=的一阶极点,且(),()z z ϕψ在a 解析,z a =为()z ϕ的m 阶零点,为()z ψ的1m +阶零点,则()(1)(1)()Re ()()m m z a m a s f z a ϕψ+=+=. 证明 由假设可得112112()()(),()()()m m m m m m m m z a z a a z a z b z a b z a ϕψ++++++=-+-+=-+-+.又a 为()f z 的一阶极点,则1101()()()f z C z a C C z a --=-++-+,即1101()()()()z z C z a C C z a ϕψ--⎡⎤=-++-+⎣⎦.比较系数得11mm a C b -+=,而()(1)1()(),!(1)!m m m m a a a b m m ϕϕ++==+,由此解得()1(1)(1)()()m m m a C a ϕψ-++=.例11 计算积分31sin d (1)z z z zz e =-⎰.解 被积函数在单位圆内只有0z =一个奇点,且0z =是3()(1)z z e ψ=-的三阶零点,是()sin z z z ϕ=的二阶零点,又23()2cos sin ,()32427z z z z z z z z e e e ϕψ'''''=-=-+-. 由定理2[6],得(2)(3)0(21)(0)Re ()1(0)z s f z ϕψ=+==-. 另外,对于多个奇点留数的和利用定理1、定理2相当麻烦,于是通过对引理3进行改进得到如下一种更简便的方法.定理3[6] 设()()()P z f z Q z =,其中110()(0)n n n n n P z a z a z a a --=+++≠,110()(0)m m m m m Q z b z b z b b --=+++≠,则有以下结论:(1)当2m n -≥时,Re ()0z s f z =∞=; (2)当1m n -=时,Re ()nz ma s f zb =∞=-; (3)当0m n -≤时,设()()()()P z R z Q z r z =+,其中(),()R z r z 为z 的多项式,且()r z 的次数小于m ,则()Re ()Re ()z z r z s f z sQ z =∞=∞=,化为1)或2). 此定理的结论是求有理函数()f z 在∞点留数的一个好方法,使用起来很方便.当分子次数比分母高时,可用综合除法转化为1)或2)的情形.例12 计算积分152244d (1)(2)z z I z z z ==++⎰. 解 被积函数在4z =内部有6个奇点,计算它们十分麻烦,利用留数定理[3] 及引理3[3]有2Re ()z I i s f z π=∞=-.再利用定理3[6],1,1m m a b ==,则Re ()1mz ma s f zb =∞=-=-,故2I i π=. 例13 求221d ()1n n n z z z I z n N z =-+=∈+⎰. 解 设被积函数()f z 的n 个极点为(1,2,)k z k n =,并且()f z 在2z =外部无极点,利用留数定理及引理3[3],12Re ()2Re ()k nz z z k I i s f z i s f z ππ==∞===-∑,而213()211n n nn n z z f z z z z -+==-+++,利用定理3[6]0,1;32Re 6,1.1nz n I i si n z ππ=∞>⎧=-=⎨=+⎩ 注 运用定理3[6]求有理函数()f z 在∞点的留数特别简洁,并且利用它求()f z 在孤立奇点的留数可以达到事半功倍的效果.(7)用级数法计算复积分连续性逐项积分定理[3]设()n f z 在曲线C 上连续(1,2,3,n =…),()1n n f z +∞=∑在C上一致收敛于()f z ,则()f z 在曲线C 上连续,并且沿C 可逐项积分:()()1n ccn f z dz f z dz +∞==∑⎰⎰.将函数展成Taylor 级数或Laurent 级数就解决了该类复积分的有关问题.例14 计算积分11,:2n c n z dz C z ∞=-⎛⎫= ⎪⎝⎭∑⎰.解 在12z <内,有:1111n n z z z ∞=-=+-∑所以 1112021n c c n z dz dz i i z z ππ∞=-⎛⎫⎛⎫=+=+= ⎪ ⎪-⎝⎭⎝⎭∑⎰⎰. 例15 设()f z 在圆环0z a R <-<内解析,且()()lim 0z az a f z →-=,证明:在圆环0z a R <-<内,有()()12a r f f z dz i zηηπη-==-⎰ ()0r R <<. 证明 因为()f z 在圆环0z a R <-<内解析,故有()()nn f z C z a =-∑0z a R <-<,于是()()()()()()21320112n nn nC C C z a fC z a C z a C z a C z a z a z a +-----=-+-++-+++++++---由()()lim 0z az a f z →-=,得120n C C C --====,则()0n n n f z C Z ∞==∑在z a R -<内解析,根据Cauchy 积分定理可得:()()12a r f f z dz i zηηπη-==-⎰ ()0r R <<. (8)用Laplace 变换法计算复积分定义[4] 设()f t 是定义在[)0,+∞上的实函数或复函数,如果含复变量p is σ=+(,s σ为实数)的积分()0pt f t e dt +∞-⎰在p 的某个区域内存在,则由此积分定义的复函数()()0pt F p f t e dt +∞-=⎰称为函数()f t 的Laplace 变换,简记为()()F p L f t =⎡⎤⎣⎦.计算该类复积分时,可先运用Laplace 变换的基本运算法则(线性关系、相似定理、位移定理、象函数微分法、本函数微分法、本函数积分法、延迟定理、卷积定理等),将该类复积分化为()F p 的形式,再参照Laplace 变换表,得出相应的复积分结果.例16 计算积分012pz e dz az ∞-⎰. 解 令 ()12f az az = 则 ()012pz L f az e dz az ∞-=⎡⎤⎣⎦⎰ 由相似定理有 ()1p L f az F a a ⎛⎫=⎡⎤ ⎪⎣⎦⎝⎭由Laplace 变换表得p F a ⎛⎫= ⎪⎝⎭所以 0112pz p e dz F az a a ∞-⎛⎫== ⎪⎝⎭⎰.2.2各种方法的选择原则及其联系上一节给出了复积分的各种计算方法.那么,碰到有关复积分计算的题目时,我们到底应该如何选择具体的计算方法,简便而快捷地进行计算呢.这是本节所要探讨的主要问题.我们知道,复积分是由三部分构成的,即积分路径、被积函数以及积分微元。

相关文档
最新文档