Multisim模拟电路仿真实例

合集下载

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

(a )
( b)
(c )
图 19.17 去掉 RE1 将 RE2 改为 1. 2kΩ输出电压幅频特性
(a)
(b)
图 19.18 “加压求流法”测输入电阻
输出电压和输入电压反相(如图 19.17(a) ), 测得的电压放大倍数 AU=-94.8454/1 = - 94.8454 上限截止频率为 fL=117.4096Hz, 下限截止频率为 fH=16.9446MHz,带宽Δf=fH - fL =16.9445MHz 如图 19.18 所示,计算得输入电阻 ri = 707.106/377.948k Ω=1.8709 kΩ 列表如下: 电压放大倍 数 AU 有 RE1 去掉 RE1 -13.8449 -94.8452 上限截止频 率 fL/Hz 17.6833 117.4096 下限截止频 率 fH/MHz 18.1202 16.9446 通带带宽Δ f /M Hz 18.120 16.9445 输入电阻 ri/ k Ω 6.7859 1.8709
图 19.20 “交流分析”测通带电压放大倍数和截止频率
通带电压放大倍数为 AU=0.9976829,截止频率 f=102.3791Hz 两种测量方法获得的数据与理论值比较如下表: 通带电压放大倍数 AU 理论值 波特图示仪法 交流分析法 1 0.9974322 0.9976829 截止频率 f/Hz 102.4312 101.952 102.3791
(a)
( b)
图 19.6 文氏桥电路和文氏桥正弦波发生器电路图
4.实验数据分析和总结
实验 19-1 基本单管放大电路的仿真研究
(2) “直流工作点分析” 测量静态工作点如图 19.7,其中 IC= I(RC) = 0.9863mA,UCE = V(4)-V(3) = 7.54514V。Ibe=300 Ω+(1+60)×

multisim电路仿真图

multisim电路仿真图

一.直流叠加定理仿真图1.1图1.2图1.3结果分析:从上面仿真结果可以看出,V1和I1共同作用时R3两端的电压为36.666V;V1和I1单独工作时R3两端的电压分别为3.333V和33.333V,这两个数值之和等于前者,符合叠加定理。

二.戴维南定理仿真戴维南定理是指一个具有直流源的线性电路,不管它如何复杂,都可以用一个电压源UTH与电阻RTH串联的简单电路来代替,就它们的性能而言,两者是相同的。

图2.1如上图2.1电路所示,可以看出在XMM1和XMM2的两个万用表的面板上显示出电流和电压值为:IRL=16.667mA,URL=3.333V。

图2.2如上图2.2所示电路中断开负载R4,用电压档测量原来R4两端的电压,记该电压为UTH,从万用表的面板上显示出来的电压为UTH=6V。

图2.3在图2.2所测量的基础之上,将直流电源V1用导线替换掉,测量R4两端的的电阻,将其记为RTH,测量结果为RTH=160Ω。

图2.4在R4和RTH 之间串联一个万用表,在R4上并接一个万用表,这时可以读出XMM1和XMM2上读数分别为:IRL1=16.667mA ,URL1=3.333V 。

结果分析:从图2.1的测试结果和图2.4的测试结果可以看出两组的数据基本一样,从而验证了戴维南定理。

三.动态电路的仿真1、一阶动态电路:V1 1 VR110kΩC110uF12图3.12、二阶动态电路分析:图3.2 2、二阶动态电路:V110 VC11uFR12kΩL11H123图3.3一阶动态电路中V2随时间的变化可以看出,在0~500ms之间随时间的增大而非线性增大,大于500ms后趋于稳定。

图3.4当R1电位器阻值分别为500Ω,2000Ω,4700Ω时,输出瞬态波形的变化如上图所示。

四.交流波形叠加仿真图4.1图4.2结果分析:在信号分析中,一个周期的波形只要满足狄利克雷条件,该波形就可以分解为傅里叶级数。

图4.1为波形叠加仿真电路,将1kHz 15V,3kHz 5V和5kHz 3V的3路正弦信号通过电阻网络予以叠加,从图4.2可以看出示波器D通道的波形正好是示波器A,B,C通道波形的叠加,满足交流波形叠加。

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

实验19 Multisim 数字电路仿真实验1.实验目的用Multisim 的仿真软件对数字电路进行仿真研究。

2.实验内容实验19.1 交通灯报警电路仿真交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。

出故障时报警灯亮。

设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。

字母Z 表示报警灯,高电平表示报警。

则真值表如表 19.1所示。

逻辑表达式为:RY RG G Y R Z ++=若用与非门实现,则表达式可化为:RY RG G Y R Z ⋅⋅= Multisim 仿真设计图如图19.1所示:图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。

用发光二极管LED1的亮暗模拟报警灯的亮暗。

另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500表19.1LED_redLED1图19.1欧姆电阻。

在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。

实验19.2数字频率计电路仿真数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。

如果用2位数码管,则测量的最大频率是99Hz。

数字频率计电路Multisim仿真设计图如图19.2所示。

其电路结构是:用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。

四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。

信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。

multisim仿真教程 案例模拟

multisim仿真教程 案例模拟

III 增加接地
图6 电路组件就位
8. 要添加的最后一个组件是接地。 您无法在没有接地的情况下对电路进行仿 真,因为SPICE(基础仿真引擎)使用节点分析来求解电路。 节点分析的第一 步是选择一个接地节点。 电路在何处接地无关紧要,但是为了保持一致性,让 我们选择电路底部的节点作为接地。
9.
单击电源组件菜单中的接地工具。将地拖到电路的底部,结果显示在下图中
图26 模拟结果
MultiSim的最强大功能之一就是其交互性。 通过按“ A”或Shift + A来更改电 位计的电阻,并注意万用表读数如何变化(您可能需要等待几秒钟,万用表 才能记录该变化)。 始终将电位计电阻更改为1kΩ(100%)。 输出电压是 多少? 这是否符合您的直觉? 提示:考虑当R1 = R2时分压器公式会发生什 么。
MultiSim 教程
1. 引言 蜂窝电话和计算机只能算是当今复杂电子系统的两个典型示例。这种设备通常包含 了数百万个电路组件,普通的重复试验并不能保证最终产品的有效性。所以,设计 人员在制造之前经常需要使用电路模拟器来验证电路的性能。 目前常用的组件级电路仿真器称为SPICE(带有集成电路重点的仿真程序),它是 在1970年代由佩德森教授在加利福尼亚大学伯克利分校开发的。市场上有许多不 同版本的SPICE,它们的主要区别在于用户界面,但内部结构与早期的 Berkeley SPICE没有太大区别。 本教程主要介绍SPICE的0XOWL6LP版本。 用MultiSim模拟电路主要涉及两个步骤:
8. 使用面包板工具
如果您在实验室中将电路图映射到无焊面包板时遇到麻烦,则本节适合您。 面包 板工具使您可以看到自己的电路,就像在实验室中实际构建电路一样。 对于大型 电路(例如您的项目),此工具非常有用,因为它可以帮助您在实际构建电路之前 规划组件的有组织的布局。 但是,与使用MultiSim的仿真仪器类似,此过程往往很 耗时。 因此,一旦您熟悉了原理图,就应该放弃使用模拟面包板工具。

Multisim模拟电路仿真实例

Multisim模拟电路仿真实例
同时R3还将Vo反馈到运放U1的同相输入端,作为滞回比较器的 输入, 构成闭环。
滞回比较器
UREF 为参考电压;输 出电压 uO 为 +UZ 或 -UZ;uI 为输入电压。
当 u+ = u- 时,输出电压 的状态发生跳变。
u
RF R2 RF
U REF
R2 R2 RF
uO
UT-
比较器有两个不同的门限电平,
故传输特性呈滞回形状。
uO
+UZ
UT+
O
uI
-UZ
若 uO = UZ ,当 uI 逐渐增大时,使 uO 由 +UZ 跳变为
-UZ 所需的门限电平 UT+
UT
Байду номын сангаас
RF R2 RF
U REF
R2 R2 RF
UZ
若 uO= UZ ,当 uI 逐渐减小时,使 uO 由 UZ 跳变 为 UZ 所需的门限电平 UT
图5-25 乙类互补对称功放电路
运行仿真: 从中可以发现输出信号的波形有明显的交越失真。
其失真原因
当输入信号较小时,达不到三极 管的开启电压,三极管不导电。
因此在正、负半周交替过零处会出 现非线性失真,即交越失真。
输入波形
输出波形
其失真范围如何呢? 下面进行直流扫描分析,以便确定其交越失真的范围。
图5-24 波特图仪显示结果
若将信号源的频率分别修改为200Hz 和1MHz ,再次启动仿真,其输出电 压有何变化?
200Hz
1KHz
适当修改参数R1、R2、R3、R4和C1、C2,观察通带电压放大倍数和通带
截止频率的变化?
增如大果RR11输太出大波, 形输幅出度会增?大

模拟电子电路multisim仿真实例大全

模拟电子电路multisim仿真实例大全

模拟电子电路multisim仿真1.1 晶体管基本放大电路1.1.1 共射极基本放大电路按下图搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。

1. 静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。

2. 动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。

由波形图可观察到电路的输入,输出电压信号反相位关系。

再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。

3. 参数扫描分析在上图所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC 的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。

选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100k,终值为900k,扫描方式为线性,步长增量为400k,输出节点5,扫描用于暂态分析。

4.频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。

由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。

Multisim模拟电路仿真实例

Multisim模拟电路仿真实例

二、 RC - 型滤波电路
输出直流电压为:
U O(AV)

RL R RL
UO (AV)
脉动系数 S 约为:
S
1
S
C2 (R // RL )
适用于负载电流较小的场合。
三、电感滤波电路和 LC 滤波电路
一、电感滤波器
二、LC 滤波器
图 10.3.5
适用于负载电流比较 大的场合。
图 10.3.6
图5-2 瞬态分析结果
输出波形 已经失真
2)如何改善波形失真? ??
图5-3 加入反馈电阻R6
如何确定反馈电阻R6的阻值? 可对R6进行参数扫描分析
图5-4 参数扫描设置对话框
图5-5 参数扫描结果
比较输出波 形,选择 R6为400欧
R6=400
3)如何测试fL和fH?
加上电阻R6前后分别进行交流分析,测试节点为 2,其他设置默认,可分别得幅频和相频特性曲线如 图;
图5-30 例5.10输出波形
判断其最大电压输出范围:
Simulate/Analysis/DCSweep,直流扫描设置:设置Start value和Stop value 的值分别为-10V和10V,设置Increment为0.1V,在Output variables标签页, 选定节点5作为测试点,其他项默认。
输出直流电压为:
UO(AV) UO (AV) 0.9U 2
脉动系数 S :
S

1
2 LC
S
适用于各种场合。
5.1.5.4 串联型直流稳压电路
一、电路组成和工作原理
采样电路:R1、 R2、 R3 ; 基准电压:由 VDZ 提供; 稳压过程:

Multisim仿真实例电路

Multisim仿真实例电路

+ 3V -
4V I1
+
1
I2
I3
1 +
U3
- 5V 1
ቤተ መጻሕፍቲ ባይዱ
求:I1、I2 、I3、U3
h
7
2.2 仿真电路的创建
该电路需要调用电压源和电阻元件, 为了测量电流和电压,需要调用万用表。
+ 3V -
4V I1
+
1
I2
I3
1 +
U3
- 5V 1
h
8
2.2 仿真电路的创建
1.添加元件
1)点击用户界面中元件库的电源库按钮 , 或者选择菜单栏的Place/ComPonent,将会出现
保存的路径
默认的电路保存的路径是:
C:\Documents and Settings\Administrator\My
Documents\National Instruments\Circuit Design Suite
10.0\
h
2
2.1 设置Multisim10的界面
设定元器件的 放置方式:连 续/单个。选择 连续放置模式。
了测试仪器,部分连线需要重新连接。
也可以添加好元件之后,同时将需要的测试仪器一 同添加,统一连线。
h
23
5.添加测试仪器
连接好的电路如图所示:
注意:
连接好的电路中,如果元件位置不合适,可以用
鼠标选中元件,然后用上下左右键移动,或者直接用左键
拖移调整元件位置。
h
24
5.添加测试仪器
设置测试仪器参数
设定符号标准:美国标 准(ANSI)和欧洲标准 (DIN)。我国的元件符 号与DIN模式相同

四 Multisim仿真实例

四 Multisim仿真实例

R0kΩ
Rc2 10kΩ
T1
T2
Rb2 1kΩ
Io
190μA
T3
Rc3 5kΩ
图 7-1
+15V
T4 VO
Re4 -15V
例 2 电路如图 7-2 所示。求电路的闭环电压增益 Avf、输入电阻 Rif ,并与 手算闭环电压增益结果比较。
(仿真文档在光盘“feedback/ 2”文件夹中。)
例 3 电路如图 4-1(a)所示。设 BJT 的型号为 2N3904,β=50,rbb′=100Ω,
4
其他参数与例 1 相同。试分析 Ce 在 1μF 到 100μF 之间变化时,下限频率 fL 的变 化范围(Ce 为与 Re 并联的电容)。
(仿真文档在光盘“BJT/3”文件夹中。)
五、差分式放大电路仿真实例
IR
R
IO(IL)
+
+ VR −
IZ
+
VI
DZ
VO
RL


图 2-3
三、MOSFET 放大电路仿真实例
例 1 电路如图 3-1 所示。设 NMOS 管 T 的参数为 VT = 0.8V,Kn = 1mA/V2。 电路其他参数为 V DD= V SS= 5V,I = 0.5mA,R d = 7kΩ,R g = 200kΩ,Cs = 47μF, 输入信号采用振幅为 10mV,频率为 1kHz 的正弦波。试画出输出电压的波形。
(仿真文档在光盘“actual op-amp/1”文件夹中。)
+VCC
vi
R1
R
-
Rf
C1
vp
A +
R
C2

Multisim电路仿真

Multisim电路仿真

Multisim电路仿真示例1.直流电路分析步骤一:文件保存打开Multisim 软件,自动产生一个名为Design1的新文件。

打开菜单File>>Save as…,将文件另存为“CS01”(自动加后缀)步骤二:放置元件打开菜单Place>>Component…1.选择Sources(电源)Group (组),选择POWER_SOURCES(功率源)Family(小组),在元件栏中用鼠标双击DC_POWER,将直流电源放置到电路工作区。

说明:所有元件按Database -> Group -> Family 分类存放2.继续放置元件:Sources Group –>POWER_SOURCES Family->ROUND(接地点Basic Group->RESISTOR Family(选择5个电阻)3.设定元件参数。

采用下面两种方式之一1)在放置元件时(在一系列标准值中)选择;2)在工作区,鼠标右键点击元件,在Properties (属性)子菜单中设定。

步骤三.根据电路图连线用鼠标拖动元件到合适位置,如果有必要,鼠标右键点击元件,可对其翻转(Flip)或旋转(Rotate)。

连线时先用鼠移至一个元件的接线端,鼠标符号变成叉形,然后拖动到另一结点,点击右键确认连线。

若需显示全部节点编号,在菜单Option>>Sheet Properties>>Sheet visibility的Net names 选板中选中show all。

步骤四.电路仿真选择菜单Simulate>>Analyses>>DC operating point…(直流工作点分析)在DC operating point analysis窗口中,选择需要分析的变量(节点电压、元件电流或功率等)。

点击“Simulate”按钮,得到结果:可以验证,模拟结果与理论计算完全一致。

multisim仿真电路

multisim仿真电路
四、实验内容
1.输入和逻辑状态判断电路的测试
1)调节逻辑电平测试器的被测电压(输入直流电压)为低电平(VL<0.8v)用数字万用表测逻辑状态判断电路输出电平。
2)调节逻辑电平测试器的被测电压(输入直流电压)为高电平(VH>3.5v)用数字万用表测逻辑状态判断电路输出电平。
2.音响声调产生电路
1)逻辑电平测试器的被测电压为低电平(VL<0.8v)用示波器观察、记录音响声调产生电路输出波形,用频率计测量振荡频率f.
四、实验内容及步骤
1.场效应管共源放大器的调试
(1)连接电路。按图1连接好电路,场效应管选用N沟道消耗型2N3370,静态工作点的设置方式为自偏压式。直流稳压电源调至12V。
图1
2.测量静态工作点
将输入端短接(图2),并测量此时的 Vg、Vs、VD、 ,填入下表1
静态工作点:
1.006V
39.355nV
1)输入电阻测量:先闭合开关S1(R2=0),输入信号电压Vs,测出对应的输出电压 ,然后断开S1,测出对应的输出电压 ,因为两次测量中和是基本不变的,所以
,测得 =134.137mV, =67.074mV,
仿真结果如下图4:
2)输出电阻测量:在放大器输入端加入一个固定信号电压Vs,分别测量当已知负载RL断开和接上的输出电压 和 。则 ,由于本实验所用的场效应管必须接入很大的负载才能达到放大效果,因此此方法不适合用来测量本实验输出电阻效果不太好,仿真结果如下图5 =66.8mV, =125mV .
38.328
43.36
35
40
45
50
55
60
65
47.847
51.875
55.507

Multisim14电子电路仿真方法和样例

Multisim14电子电路仿真方法和样例
8图51瞬态分析参数设置图52瞬态分析仿真结果512虚拟仪器测试方法也可以利用虚拟仪器直接测试电压放大倍数测试电路如图53所示点击仿真按钮后双击示波器得到如图54所示波形直接读数并计算可得到电压放大倍数
Multisim14 电子电路仿真方法和样例
2019 年 9 月
1
前言
本手册基于 Multisim14 仿真环境,从最基本的仿真电路图的建立开始,结合实际的例 子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特 性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时 间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。
选定 sheet properties 即弹出图 2.3 所示界面,选中 Net names 下的 Show all(简述为
Optionsàsheet propertiesà Net namesàShow all,以下均用简述方法表述),即可在电路图中
显示出各个节点号。
4
图 2.2 移动连线
图 2.3 显示电路节点号
3
1. Multisim14 主界面简介
运行 Multisim14,自动进入电路图编辑界面。当前电路图的缺省命名为“Design1”,在 保存文件时可以选择存放路径并重新命名。Multisim14 主界面如图 1.1 所示。
图 1.1 Multisim14 用户界面
2. 仿真电路图的建立
下面以单管放大电路为例,介绍建立电路的步骤。其中三极管选用实际器件
此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题, 可参阅《Multisim 14 教学版使用说明书》或其它帮助文档。
2
目录

电路分析multisim仿真实验二

电路分析multisim仿真实验二

电路分析Multisim仿真实验二验证欧姆定律1.实验要求与目的(1)学习使用万用表测量电阻。

(2)验证欧姆定律。

2. 元器件选取(1)电源:Place Source→POWER_SOURCES→DC_POWER,选取直流电源,设置电源电压为12V。

(2)接地:Place Source→POWER_SOURCES→GROUND,选取电路中的接地。

(3)电阻:Place Basic→RESISTOR,选取R1=10Ω,R2=20Ω。

(4)数字万用表:从虚拟仪器工具栏调取XMM1。

(5)电流表:Place Indicators→AMMETER,选取电流表并设置为直流档。

3. 仿真实验电路图1 数字万用表测量电阻阻值的仿真实验电路及数字万用表面板图2 欧姆定律仿真电路及数字万用表面板4.实验原理欧姆定律叙述为:线性电阻两端的电压与流过的电流成正比,比例常数就是这个电阻元件的电阻值。

欧姆定律确定了线性电阻两端的电压与流过电阻的电流之间的关系。

其数学表达式为U=RI,式中,R为电阻的阻值(单位为Ω);I为流过电阻的电流(单位为A);U为电阻两端的电压(单位为V)。

欧姆定律也可以表示为I=U/R,这个关系式说明当电压一定时电流与电阻的阻值成反比,因此电阻阻值越大则流过的电流就越小。

如果把流过电阻的电流当成电阻两端电压的函数,画出U(I)特性曲线,便可确定电阻是线性的还是非线性的。

如果画出的特性曲线是一条直线,则电阻式线性的;否则就是非线性的。

5.仿真分析(1)测量电阻阻值的仿真分析①搭建图1所示的用数字万用表测量电阻阻值的仿真实验电路,数字万用表按图设置。

②单击仿真开关,激活电路,记录数字万用表显示的读数。

③将两次测量的读数与所选电阻的标称值进行比较,验证仿真结果。

(2)欧姆定律电路的仿真分析①搭建图2所示的欧姆定律仿真电路。

②单击仿真开关,激活电路,数字万用表和电流表均出现读数,记录电阻R1两端的电压值U和流过R的电流值I。

Multisim模拟电子技术仿真实验

Multisim模拟电子技术仿真实验
2)根据示波器显示的输出电压峰值U OP 和输入电压峰值U IP ,求
放大器的电压增益A u 和放大器的最大平均输出功率P O 。
第23页/共55页
9.5 结型场效应晶体管共源极放大电路仿真实验
1)学会测量跨导g m 。
2)依据结型场效应晶体管共源极放大电路输入输出电压波形,
计算电压增益。
1)直流电源:Place Source→POWER_SOURCES→VDD, 选取
直流电源并根据电路设置电压。
2)接地:Place Source→POWER_SOURCES→GROUND,选取
电路中的接地。
3)电阻:Place Basic→RESISTOR,选取电阻并根据电路设置电
阻值。
第24页/共55页
9.5 结型场效应晶体管共源极放大电路仿真实验
4)电容:Place Basic→CAPACITOR,选取电容并根据电路设置
1)根据仿真的数据U IP 和U OP ,计算放大电路的电压增益A u 。
2)放大电路输出与输入波形之间的相位差怎么样?
第30页/共55页
9.6 串联电压负反馈放大器仿真实验
1)学会测量串联电压负反馈放大器的输入和输出电压,计算闭
环电压增益。
2)学会测量负反馈放大器输入与输出电压波形之间的相位差。
电容值。
5)场效应晶体管:Place Transistors→JFET_N,选取2SK117型
场效应晶体管。
6)电压表:Place Indicators→VOLTMETER,选取电压表并设
置为直流档。
7)电流表:Place Indicators→AMMETER,选取电流表并设置
为直流档。
8)函数发生器:从虚拟仪器工具栏调取XFG1。

multisim仿真电路实例

multisim仿真电路实例

4.3.2 数字时钟的设计
2)60进制计数器子电路的创建 创建六十进制计数器子电路具体的
操作步骤是:单击菜单栏中的Place,再 选中Connetors中的SB/SC Connector, 逐一把电路的输入输出替换。电路如图 4-46。
A
13
4.3.2 数字时钟的设计
图4-46 60进制计数器子电路的创建
A
16
4.3.2 数字时钟的设计
在其编辑栏内输入子电路名称,如Counter60,点击OK即得到如图4-48 所示的子电路。
图4-48 60进制计数子模块
A
17
4.3.2 数字时钟的设计
连接电路测试,和前面的60进制计数器功能一样如图4-49所示:
图4-49 60进制计数子模块测试电路
A
18
图4-45 60进制计数器设计
A
11
4.3.2 数字时钟的设计
由图4-45可知,74LS290计数器是十 进制异步计数器,用反馈归零方法实现 十进制计数。U1是十进制计数器,U2和 与非门组成六进制计数,U1和U2串联实 现了六十进制计数。并用74LS20实现了 在59时向高位的进位信号。
A
12
A
7
4.3.2 数字时钟的设计
时 数码管 译码器 时计数器
分 数码管 译码器 分计数器 调时电路
秒 数码管 译码器 秒计数器 1Hz时钟脉冲
图4-44 数字电子钟的电路组成框图
A
8
4.3.2 数字时钟的设计
由图中可看出,1Hz的时钟脉冲送
入秒计数器计数,计数结果通过“时”、
“分”、“秒”译码器显示时间。 由不
A
22
4.3.2 数字时钟的设计

Multisim模拟电路仿真实例

Multisim模拟电路仿真实例

1.6
20lg Aup 4.1dB
第4章 Multisim8应用实例
运行仿真分析: 得输入信号V1和输出信号V0的波形图
说明输入信号通过了该滤波器,并被放大; 并从中可以测试到Vo=1.6Vi
第4章 Multisim8应用实例
从波特图仪上可以观察到当20lg︱Aup︱从4.1dB下降 到1dB左右时,其f0约为100Hz,理论值基本相同,达 到设计要求。
输入电阻Ri=20k
第4章 Multisim8应用实例
通频带△f=fH-fL,设其中:fL≤20Hz,fH≥10kHz 据此可估算出电路中C1、C2、C3的取值
取标称值,C1=C2=1 、C3=5.7
第4章 Multisim8应用实例
启动仿真:得输入输出的信号,可估算出放大倍数约为1000倍
图5-9 例5.2示波器窗口
工作原理?
图5-25 乙类互补对称功放电路
第4章 Multisim8应用实例
运行仿真: 从中可以发现输出信号的波形有明显的交越失真。
其失真原因
输入波形
输出波形
当输入信号较小时,达 不到三极管的开启电压,三 极管不导电。
因此在正、负半周交替 过零处会出现非线性失真, 即交越失真。
第4章 Multisim8应用实例
其最大电压输出范围为 -11.5000V~12.5000V。
图5-28 例5.9最大输出电压测试结果
第4章 Multisim8应用实例
例5.10 针对上例中乙类互补对称功放电路的交越失 真问题,如何对电路进行改进?
电路原理分析
图5-29改进后的电路 甲乙类互补对称功放电路
第4章 Multisim8应用实例
第4章 Multisim8应用实例

multisim模拟仿真实验

multisim模拟仿真实验

multisim模拟仿真实验⼀、实验⽬的和要求(1)学习⽤multisim 进⾏模拟电路的设计仿真 (2)掌握⼏种常见的实⽤电路原理图⼆、实验内容和原理2.1测量放⼤电路仿真分析在multisim11中画出如下电路原理图。

如图所⽰为测量放⼤电路,采⽤两级放⼤,前级采⽤同相放⼤器,可以获得很⾼的输⼊阻抗;后级采⽤差动放⼤器,可获得⽐较⾼的共模抑制⽐,增强电路的抗⼲扰能⼒。

该电路常常作为传感器放⼤器或测量仪器的前端放⼤器,在微弱信号检测电路设计中应⽤⼴泛。

电路的电压放⼤倍数理论计算为)1(94367R R R R R A u++=将电路参数代⼊计算:630)101001001(10300=++=uA2.2电压-频率转换电路仿真分析给出⼀个控制电压,要求波形发⽣电路的振荡频率与控制电压成正⽐,这种通过改变输⼊电压的⼤⼩来改变输出波形频率,从⽽将电压参数转换成频率参量电路成为电压—频率转换电路(VCO ),⼜称压控振荡器。

在multisim11中创建如图所⽰的电压-频率转换电路的电路原理图。

电路中,U1是积分电路,U2是同相输⼊迟滞⽐较器,它起开关左右;U3是电压跟随电流,输⼊测试电压U1。

电路的输出信号的振荡频率与输⼊电压的函数关系为Zi CU R R U R T f 31421==2.3单电源功率放⼤电路仿真分析在许多电⼦仪器中,经常要求放⼤电路的输出机能够带动某种负载,这就要求放⼤电路有⾜够⼤的输出功率,这种电路通称为功率放⼤器,简称“功放”。

⼀般对功放电路的要求有:(1)根据负载要求提供所需要的输出功率;(2)功率要⾼(3)⾮线性失真要⼩(4)带负载的能⼒强。

根据上述这些要求,⼀般选⽤⼯作在甲⼄类的共射输出器构成互补对称功率放⼤电路。

单电源功放电路中指标计算公式如下:功率放⼤器的输出功率:Lo oR U P = 直流电源提供的直流功率:CO CC E I U P ?=电路效率:%100?=EoP P η实验电路原理图如下:2.4直流稳压电源仿真分析在所以电⼦电路和电⼦设备中,通常都需要电压稳定的直流电源供电。

Multisim仿真模拟电路

Multisim仿真模拟电路

Multisim仿真模拟电路Multisim是一款由National Instruments(NI)开发的强大电路设计与仿真软件,被广泛应用于电子工程教育、电路设计、原型验证以及系统级测试等领域。

本文将探讨Multisim仿真模拟电路的原理、优势及应用例子。

一、Multisim仿真模拟电路的原理Multisim仿真模拟电路的原理基于虚拟仪器技术(Virtual Instrumentation),它允许用户在计算机上构建并测试电路原型。

通过虚拟实验室和可视化界面,用户可以在软件中添加电子元件、连接电路、设置信号源和测量仪器等,然后通过模拟仿真进行电路性能分析和验证。

Multisim采用了SPICE(Simulation Program with Integrated Circuit Emphasis)仿真引擎,该引擎能够模拟包括模拟电路、混合信号电路和数字电路等各种类型的电路行为。

通过SPICE引擎,Multisim能够准确模拟电子元件的特性,包括电流、电压、功率以及信号波形等,从而实现电路性能仿真。

二、Multisim仿真模拟电路的优势1. 真实性:Multisim能够准确模拟各种电子元件的特性,包括电容器、电感器、二极管、晶体管等,使得电路仿真结果更加真实可信。

2. 可视化:Multisim提供直观的电路设计界面和仿真结果显示,使得用户能够更清晰地理解电路结构和工作原理。

3. 效率:Multisim实现了电路设计与仿真的无缝集成,用户可以通过软件快速搭建电路原型并进行性能测试,大大提高了设计效率和实验效果。

4. 可靠性:Multisim具备强大的故障检测和校正功能,能够帮助用户发现和修复电路中的问题,提高电路设计的可靠性。

5. 教育性:Multisim作为一款常用的电路仿真软件,被广泛应用于电子工程教育中。

通过Multisim,学生可以动手实践,加深对电路原理和设计的理解。

三、Multisim仿真模拟电路的应用例子1. 模拟滤波器设计:利用Multisim,可以快速设计和优化各种滤波器,例如低通滤波器、高通滤波器、带通滤波器等。

Multisim电路仿真实验

Multisim电路仿真实验

Multisim电路仿真实验一、实验目的熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。

二、使用软件NI Multisim student V12三、实验内容1.研究电压表内阻对测量结果的影响输入如图1所示的电路图,在setting 中改变电压表的内阻,使其分别为200kΩ、5kΩ等,观察其读数的变化,研究电压表内阻对测量结果的影响。

并分析说明仿真结果。

图1实验结果:【200kΩ】图2【5kΩ】图3分析:①根据图1电路分析,如果不考虑电压表内阻的影响,U10=R2V1/(R1+R2)=5V;②根据图2,电压表内阻为200kΩ时,电压表示数U10=4.878V,相对误差|4.878-5|*100%/5=2.44%③根据图3,电压表内阻为5kΩ时,电压表示数U10=2.5V,相对误差|2.5-5|*100%/5=50%可以看出,电压表内阻对于测量结果有影响,分析原因,可知电压表具有分流作用,与R2并联后,R2’=1/(1/R1+1/R V)<R2,U10’=R2‘V1/(R1+R2’)=V1/(R1/R2‘+1)<U10;因而,电压表内阻使得测量结果偏小,并且电压表内阻越小,误差越大;电压表内阻越大,误差越小;当R V>>R2时,U10’≈U102. RLC串联谐振研究输入如图4的电路,调节信号源频率,使之低于、等于、高于谐振频率时,用示波器观察波形的相位关系,并测量谐振时的电流值。

用波特图仪绘制幅频特性曲线和相频特性曲线,并使用光标测量谐振频率、带宽(测量光标初始位置在最左侧,可以用鼠标拖动。

将鼠标对准光标,单击右键可以调出其弹出式菜单指令,利用这些指令可以将鼠标自动对准需要的座标位置)。

图4实验结果:【等于:f=159.155Hz】图5:波形图6:谐振时的电流图7:幅频特性曲线图8.1:测量带宽图8.2:测量带宽【小于:f=150Hz】【大于:f=200Hz】图11:波形分析:a.根据图5波形,当信号源频率等于谐振频率f0=159.155Hz时,其中f0=1/(2π√LC),相位相同,谐振时的电流为99.946mA;根据图8.1及8.2,可求得带宽Δf=(175.952-143.98)Hz=31.972Hzb.根据图10波形,当信号源频率小于谐振频率,f=150Hz时,可以观察到U R的相位超前U,分析原因知,由于X L=2πfL,X C=1/(2πfC),f<f0时,X L<X C,X L-X C<0,又易知U R的相位超前U。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果将电阻R3换成一个变阻器,则可调整其周期!
第4章 Multisim8应用实例
矩形波发生电路仿真分析举例
第4章 Multisim8应用实例
三角波发生电路仿真分析举例
第4章 Multisim8应用实例
仿真分析结果
第4章 Multisim8应用实例
例5.8 设计一个通带截止频率为100Hz的二阶低通有源滤 波电路。
例5.6 如图5-17,是一个方波和锯齿波产生电路。 测试其周期,如果使其周期可调,该如何处理?
图5-17 例5.6电路原理图
第4章 Multisim8应用实例
分析:
在该电路中,运放U1和电阻R1、R3、R5等构成了一 个滞回比较器;
其中R3、R5将Vo1反馈到运放U1的同相输入端,与 零电位比较,实现状态的转换。
第4章 Multisim8应用实例
图5-13 例5.4电路原理图
由电路可估算:
第4章 Multisim8应用实例
通过瞬态分析仿真,得到输出波形如图5-14所示。通过 测试可以发现Vo=0.2Vi。
输出波形
图5-14 例5.4仿真结果
第4章 Multisim8应用实例
5.1.3 信号产生和处理电路分析
理论分析: 仿真分析:
V0
R2 R1
(V
2
V 1)
2k 1k
(1.5
0.5)
2.0
输出波形, 幅值为2V
第4章 Multisim8应用实例
5.1.2 模拟信号运算电路分析
例5.4 用集成运放设计一个实现Vo=0.2Vi的电路。
分析:按照设计要求, Vo=0.2Vi,因此可采用两级反 相比例运放电路, 第一级实现Auf1=-0.2, 第二级实现Auf2=-1, 从而实现Auf=0.2。设计电路如图5-13所示。
仿真分析
仍然观察其输出波形,并判断其最大电压输出范围。
观察输出波形,如图所示, 可以发现已经没有交越失真
图5-30 例5.10输出波形
第4章 Multisim8应用实例
判断其最大电压输出范围:
Simulate/Analysis/DCSweep,直流扫描设置:设置Start value和Stop value 的值分别为-10V和10V,设置Increment为0.1V,在Output variables标签页, 选定节点5作为测试点,其他项默认。
为使输出功率大, 功率放大器采用的三极管均应工作在大信号状 态下。由于三极管是非线性器件, 在大信号工作状态下, 器件本身 的非线性问题十分突出, 因此, 输出信号不可避免地会产生一定的 非线性失真。
第4章 Multisim8应用实例
功率放大电路有三种工作状态 iC
(1) 甲类工作状态
iC Q
静态工作点 Q 大致在负载
uO
UT-
比较器有两个不同的门限电平,
故传输特性呈滞回形状。
uO
+UZ
UT+
O
uI
-UZ
第4章 Multisim8应用实例
若 uO = UZ ,当 uI 逐渐增大时,使 uO 由 +UZ 跳变
为 -UZ 所需的门限电平 UT+
UT
RF R2 RF
U REF
R2 R2 RF
UZ
若 uO= UZ ,当 uI 逐渐减小时,使 uO 由 UZ 跳 变为 UZ 所需的门限电平 UT
线的中点。三极管的工作角度
为360度。
O
tO
uCE
(1) 甲类工作状态
这种工作状态下,放大电路的最高效率为 50%。
第4章 Multisim8应用实例
(2) 甲乙类工作状态
iC
静态工作点 Q 沿负载
线下移,静态管耗减小,
但产生了失真。三极管的
导通角度大于180度小于
360度。 iC
iC
ቤተ መጻሕፍቲ ባይዱ
O
iC tO
第4章 Multisim8应用实例 图5-5 参数扫描结果
比较输出波 形,选择 R6为400欧
R6=400
第4章 Multisim8应用实例
3)如何测试fL和fH?
加上电阻R6前后分别进行交流分析,测试节点为 2,其他设置默认,可分别得幅频和相频特性曲线如 图;
可对比加电阻R6前后的幅频和相频特性曲线,看 出其通频带的变化;
第4章 Multisim8应用实例
二、Multisim11 应用实例
1 在模拟电子技术中的应用 2 在数字电子技术中的应用
第4章 Multisim8应用实例
5.1 在模拟电子技术中的应用
5.1.1 放大电路设计与分析 例5.1 共射晶体管放大电路,如图5-1所示,要求: 1)判断输出波形是否失真? 2)如何改善波形失真? 3)测试其fL和fH。
第4章 Multisim8应用实例
可以发现其失真范围为 -775.0000mV~666.6667mV。
图5-27 例5.9直流扫描分析结果
第4章 Multisim8应用实例
如何判断其最大电压输出范围? 打开直流扫描分析设置窗口,设置其Start value和 Stop value的值分别为-20V和20V,然后进行直流扫描 分析,结果如图5-28所示;
通过对Vo1的积分运算,输出三角波。 其周期T为:T=4R1*R3*C/R4=0.4ms
改变它,可调整输出 信号频率
第4章 Multisim8应用实例
仿真分析:检查电路无误后,启动仿真,双击示波器,
打开其显示窗口。结果如图5-18所示。
输出波形 测得周期为
4ms
图5-18 例5.6结果(左图为Vo1,右图为Vo)
Q uCE
(2) 甲乙类工作状态
Q
(3) 乙类工作状态
O
tO
(3) 乙类工作状态
uCE
静态工作点下移到
IC 0 处 ,管耗更小, 但输出波形只剩半波了。
第4章 Multisim8应用实例
功放电路仿真分析
例5.9 乙类互补对称功放电路如图5-25所示。要求观 察其输出波形,并判断其最大电压输出范围。
其失真范围如何呢? 下面进行直流扫描分析,以便确定其交越失真的范围。 直流扫描分析: Simulate/Analysis/DC Sweep
设置StartValue和Stop value的值分别为-5V和5V 设置Increment为0.1V 在Output variables标签中,选定节点1作为测试节 点,其他项默认。
其最大电压输出范围为 -11.5000V~12.5000V。
图5-28 例5.9最大输出电压测试结果
第4章 Multisim8应用实例
例5.10 针对上例中乙类互补对称功放电路的交越失 真问题,如何对电路进行改进?
电路原理分析
图5-29改进后的电路 甲乙类互补对称功放电路
第4章 Multisim8应用实例
第4章 Multisim8应用实例
进行交流频率分析
图5-10 例5.2交流频率分析
可得其fL的值约为13Hz、fH的值约为19KHz
第4章 Multisim8应用实例
例5.3 如图5.11是一个运放构成的差动放大器,分析其功能。
图5-11 例5.3差动放大电路
第4章 Multisim8应用实例
UT
RF R2 RF
U REF
R2 R2 RF
UZ
回差(门限宽度)UT :
UT
UT
UT
2R2 R2 RF
U
Z
第4章 Multisim8应用实例
作用:产生矩形波、三角波和锯齿波,或用于波形 变换。抗干扰能力强。
第4章 Multisim8应用实例
分析:运放U2和电阻R4、电容C1等构成反相积分电路,
输入电阻Ri=20k
第4章 Multisim8应用实例
通频带△f=fH-fL,设其中:fL≤20Hz,fH≥10kHz 据此可估算出电路中C1、C2、C3的取值
取标称值,C1=C2=1 、C3=5.7
第4章 Multisim8应用实例
启动仿真:得输入输出的信号,可估算出放大倍数约为1000倍
图5-9 例5.2示波器窗口
工作原理?
图5-25 乙类互补对称功放电路
第4章 Multisim8应用实例
运行仿真: 从中可以发现输出信号的波形有明显的交越失真。
其失真原因
输入波形
输出波形
当输入信号较小时,达 不到三极管的开启电压,三 极管不导电。
因此在正、负半周交替 过零处会出现非线性失真, 即交越失真。
第4章 Multisim8应用实例
同时R3还将Vo反馈到运放U1的同相输入端,作为滞 回比较器的 输入,构成闭环。
第4章 Multisim8应用实例
滞回比较器
UREF 为参考电压; 输出电压 uO 为 +UZ 或 -UZ;uI 为输入电压。
当 u+ = u- 时,输出电压 的状态发生跳变。
u
RF R2 RF
U REF
R2 R2 RF
图5-24 波特图仪显示结果
第4章 Multisim8应用实例
若将信号源的频率分别修改为200Hz 和1MHz ,再次 启动仿真,其输出电压有何变化?
200Hz
1KHz
第4章 Multisim8应用实例
适当修改参数R1、R2、R3、R4和C1、C2,观察通带电
压放大倍数和通带截止频率的变化?
增如大果RR11输太出大波, 形输幅出度会增?大
其最大电压输出范围为 -5V~+5V。
第4章 Multisim8应用实例
5.1.5 直流电源分析
5.1.5.1 直流电源的组成
电网 电压
电源 变压器
相关文档
最新文档