【全】初中数学 三角函数知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数
锐角三角函数
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边,
余弦(cos)等于邻边比斜边
正切(tan)等于对边比邻边;
余切(cot)等于邻边比对边
正割(sec)等于斜边比邻边
余割(csc)等于斜边比对边
正切与余切互为倒数
互余角的三角函数间的关系。
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
同角三角函数间的关系
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
•积的关系:
sinα=tanα•cosα
cosα=cotα•sinα
tanα=sinα•secα
cotα=cosα•cscα
secα=tanα•cscα
cscα=secα•cotα
•倒数关系:
tanα•cotα=1
sinα•cscα=1
cosα•secα=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
余切等于邻边比对边
三角函数值
(1)特殊角三角函数值
(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况
(i)锐角三角函数值都是正值
(ii)当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小)
余弦值随着角度的增大(或减小)而减小(或增大)
正切值随着角度的增大(或减小)而增大(或减小)
余切值随着角度的增大(或减小)而减小(或增大)
(iii)当角度在0°≤α≤90°间变化时,
0≤sinα≤1, 1≥cosα≥0,
当角度在0°<α<90°间变化时,
tanα>0, cotα>0.
特殊的三角函数值
0° 30° 45° 60° 90°
0 1/2 √2/2 √3/2 1 ←sinα
1 √3/
2 √2/2 1/2 0 ←cosα
0 √3/3 1 √3 None ←tanα
None √3 1 √3/3 0 ←cotα
解直角三角形
勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)
a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。
勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。
常见的勾股弦数有:3,4,5;6,8,10;等等.
直角三角形的特征
⑴直角三角形两个锐角互余;
⑵直角三角形斜边上的中线等于斜边的一半;
⑶直角三角形中30°所对的直角边等于斜边的一半;
⑷勾股定理:直角三角形中,两直角边的平方和等于斜边的平方,即:
在Rt△ABC中,若∠C=90°,则a2+b2=c2;
⑸勾股定理的逆定理:如果三角形的一条边的平方等于另外两条边的平方和,则这个三角形是直角三角形,即:在△ABC中,若a2+b2=c2,则∠C=90°;
⑹射影定理:AC2=AD AB,BC2=BD AB,CD2=DA DB.
锐角三角函数的定义:
如图,在Rt△ABC中,∠C=90°,
∠A,∠B,∠C所对的边分别为a,b,c,
则sinA=c(a),cosA=c(b),tanA=b(a),cotA=a(b)
特殊角的三角函数值:(并会观察其三角函数值随的变化情况)
sin c os tan c ot
30°2(1)
2(3)
3(3)
45°2(2)
2(2)
11
60°2(3)
2(1)
3(3)
1.
解直角三角形(Rt△ABC,∠C=90°)
⑴三边之间的关系:a2+b2=c2.
⑵两锐角之间的关系:∠A+∠B=90°..
⑶边角之间的关系:sinA= ,cosA= .
tanA= ,cotA= .
⑷解直角三角形中常见类型:
①已知一边一锐角.
②已知两边.
③解直角三角形的应用.