【全】初中数学 三角函数知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数

锐角三角函数

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边,

余弦(cos)等于邻边比斜边

正切(tan)等于对边比邻边;

余切(cot)等于邻边比对边

正割(sec)等于斜边比邻边

余割(csc)等于斜边比对边

正切与余切互为倒数

互余角的三角函数间的关系。

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

同角三角函数间的关系

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

•积的关系:

sinα=tanα•cosα

cosα=cotα•sinα

tanα=sinα•secα

cotα=cosα•cscα

secα=tanα•cscα

cscα=secα•cotα

•倒数关系:

tanα•cotα=1

sinα•cscα=1

cosα•secα=1

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

余切等于邻边比对边

三角函数值

(1)特殊角三角函数值

(2)0°~90°的任意角的三角函数值,查三角函数表。

(3)锐角三角函数值的变化情况

(i)锐角三角函数值都是正值

(ii)当角度在0°~90°间变化时,

正弦值随着角度的增大(或减小)而增大(或减小)

余弦值随着角度的增大(或减小)而减小(或增大)

正切值随着角度的增大(或减小)而增大(或减小)

余切值随着角度的增大(或减小)而减小(或增大)

(iii)当角度在0°≤α≤90°间变化时,

0≤sinα≤1, 1≥cosα≥0,

当角度在0°<α<90°间变化时,

tanα>0, cotα>0.

特殊的三角函数值

0° 30° 45° 60° 90°

0 1/2 √2/2 √3/2 1 ←sinα

1 √3/

2 √2/2 1/2 0 ←cosα

0 √3/3 1 √3 None ←tanα

None √3 1 √3/3 0 ←cotα

解直角三角形

勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)

a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。

常见的勾股弦数有:3,4,5;6,8,10;等等.

直角三角形的特征

⑴直角三角形两个锐角互余;

⑵直角三角形斜边上的中线等于斜边的一半;

⑶直角三角形中30°所对的直角边等于斜边的一半;

⑷勾股定理:直角三角形中,两直角边的平方和等于斜边的平方,即:

在Rt△ABC中,若∠C=90°,则a2+b2=c2;

⑸勾股定理的逆定理:如果三角形的一条边的平方等于另外两条边的平方和,则这个三角形是直角三角形,即:在△ABC中,若a2+b2=c2,则∠C=90°;

⑹射影定理:AC2=AD AB,BC2=BD AB,CD2=DA DB.

锐角三角函数的定义:

如图,在Rt△ABC中,∠C=90°,

∠A,∠B,∠C所对的边分别为a,b,c,

则sinA=c(a),cosA=c(b),tanA=b(a),cotA=a(b)

特殊角的三角函数值:(并会观察其三角函数值随的变化情况)

sin c os tan c ot

30°2(1)

2(3)

3(3)

45°2(2)

2(2)

11

60°2(3)

2(1)

3(3)

1.

解直角三角形(Rt△ABC,∠C=90°)

⑴三边之间的关系:a2+b2=c2.

⑵两锐角之间的关系:∠A+∠B=90°..

⑶边角之间的关系:sinA= ,cosA= .

tanA= ,cotA= .

⑷解直角三角形中常见类型:

①已知一边一锐角.

②已知两边.

③解直角三角形的应用.

相关文档
最新文档