最新平面几何练习题
高三数学平面几何练习题及答案
高三数学平面几何练习题及答案一、选择题1. 已知直线l与x轴的交点为A(2, 0),与y轴的交点为B(0, -3)。
则直线l的斜率是:A. 3B. -3C. 1/3D. -1/3答案: B. -32. 已知平面上两点P(2, 4)、Q(5, 7),则向量PQ的坐标表示为:A. (3, 3)B. (2, 3)C. (5, 7)D. (7, 11)答案: A. (3, 3)3. 已知点A(-3, 4)、B(1, -2),则直线AB的斜率为:A. 2B. -2C. 3/2D. -3/2答案: D. -3/24. 在直角坐标系中,点P(3, 4)关于y轴的对称点为:A. (3, -4)B. (-3, 4)C. (4, 3)D. (-4, 3)答案: B. (-3, 4)5. 直线y = 2x + 3与直线y = -x + 1的交点坐标为:A. (1, 2)B. (2, 1)C. (-1, 2)D. (2, -1)答案: C. (-1, 2)二、填空题1. 已知向量AB = (-3, 2),向量BC = (-1, 4),则向量AC = ______。
答案: (-4, 6)2. 已知点A(2, 3)、B(5, 7),则直线AB的斜率为______。
答案: 4/33. 已知线段的中点坐标为M(3, -2),其中一端点为N(5, 1),则另一端点坐标为______。
答案: (1, -5)4. 平面上一点P(x, y),与坐标轴的距离之和为7,且x > 0,y > 0。
则点P可能的坐标是______。
答案: (4, 3)5. 直线y = 3x + 2与y轴交点的坐标为(0, b),则b = ______。
答案: 2三、解答题1. 已知四边形ABCD,其中AB为水平线段,CD为垂直线段。
已知AB的中点坐标为M(2, 3),CD的中点坐标为N(5, 4)。
求四边形ABCD的中心点坐标。
解答:四边形的中心点坐标为两个中点的坐标的平均值。
平面几何练习题
平面几何练习题题一:求三角形边长和周长已知一个三角形的两边长分别为a和b,夹角为C°,求第三边c的长度和三角形的周长P。
解:根据余弦定理可知,余弦公式为:c² = a² + b² - 2ab·cos(C)。
根据上述公式,可以计算得到c的长度。
根据三角形的定义可知,三角形的周长P等于三边之和,即P = a + b + c。
题二:求三角形的面积已知一个三角形的底边长为b,高为h,求三角形的面积S。
解:根据三角形的面积公式可知,S = 0.5 * b * h。
题三:判断点是否在三角形内部已知一个三角形的三个顶点坐标分别为A(x₁,y₁),B(x₂,y₂),C(x₃,y₃),以及一个待判断的点D(x,y),判断点D是否在三角形ABC的内部。
解:利用行列式的性质可以判断点D是否在三角形ABC内部。
设点D的坐标为(x,y),则点D在三角形ABC内部的条件为:|(x₁ - x) (y₁ - y) 1||(x₂ - x) (y₂ - y) 1| > 0|(x₃ - x) (y₃ - y) 1|如果等式左侧的行列式结果大于0,则点D在三角形ABC内部;如果等式左侧的行列式结果小于0,则点D在三角形ABC的外部;如果等式左侧的行列式结果等于0,则点D在三角形ABC所在的边界上。
题四:求矩形的面积和周长已知一个矩形的长为L,宽为W,求矩形的面积S和周长P。
解:矩形的面积公式为S = L * W,周长公式为P = 2 * (L + W)。
题五:求圆的面积和周长已知一个圆的半径为r,求圆的面积S和周长C(circumference)。
解:圆的面积公式为S = π * r²,其中π取近似值3.14159;圆的周长公式为C = 2 * π * r。
题六:判断点是否在圆内部已知一个圆的圆心坐标为O(x₀,y₀),半径为r,以及一个待判断的点P(x,y),判断点P是否在圆O内部或者在圆的边界上。
2024年数学九年级上册平面几何基础练习题(含答案)
2024年数学九年级上册平面几何基础练习题(含答案)试题部分一、选择题:1. 在平面几何中,下列哪个图形既是轴对称图形又是中心对称图形?()A. 矩形B. 等腰三角形C. 梯形D. 正五边形2. 下列各角中,哪个角是补角?()A. 30°B. 45°C. 60°D. 120°3. 在直角坐标系中,点A(2, 3)关于原点对称的点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)4. 下列哪个条件能判定两个三角形全等?()A. 两边和其中一边的对角相等B. 两角和其中一边相等C. 两边和它们的夹角相等D. 两边和其中一边的对角相等5. 若平行线l1和l2之间的距离为5cm,直线l3与l1、l2均相交,且l3与l1、l2的夹角均为45°,则l3与l1、l2之间的距离为()A. 5cmB. 5√2 cmC. 2.5cmD. 2.5√2 cm6. 下列哪个图形是正多边形?()A. 边长为1,内角为108°的多边形B. 边长为1,内角为120°的多边形C. 边长为1,内角为135°的多边形D. 边长为1,内角为140°的多边形7. 在直角三角形中,若一个锐角的度数为30°,则另一个锐角的度数为()A. 30°B. 45°C. 60°D. 90°8. 下列哪个比例式成立?()A. a² : b² = (a+b)² : (ab)²B. a² : b² = (a+b) : (ab)C. a : b = (a+b)² : (ab)²D. a : b = (a+b) : (ab)9. 若等腰三角形的底边长为8cm,腰长为5cm,则该三角形的面积为()A. 20cm²B. 40cm²C. 30cm²D. 24cm²10. 在平面几何中,下列哪个说法是正确的?()A. 对角线互相垂直的四边形一定是矩形B. 对角线互相平分的四边形一定是平行四边形C. 对角线相等的四边形一定是矩形D. 对角线互相垂直平分的四边形一定是菱形二、判断题:1. 平行线的性质是:同位角相等,内错角相等,同旁内角互补。
平面几何练习题
平面几何选讲练习题1.如图所示,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线交⊙O 2于点C,过点B 作两圆的割线,分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P 。
(1)求证:AD ∥EC ;(2)若AD 是⊙O 2的切线,且PA=6,PC=2,BD=9,求AD 的长;2.如图:已知AD 为⊙O 的直径,直线BA 与⊙O 相切于点A ,直线OB 与弦AC 垂直并相交于点G ,连接DC 。
求证:BA ·DC =GC ·AD .3. 已知:如图,△ABC 中,AB=AC ,∠BAC=90°,AE=31AC ,BD=31AB ,点F 在BC 上,且CF=31BC.求证: (1)EF ⊥BC ;(2)∠ADE=∠EBC.B E DO 1 O 2A P CF EDABC4.如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 的延长线交BC 于F .(1)求FCBF 的值;(2)若△BEF 的面积为1S ,四边形CDEF 的面积为2S ,求21:S S 的值.5.已知C 点在圆O 直径BE 的延长线上,CA 切圆O 于A 点,DC 是ACB ∠的平分线交AE 于点F ,交AB 于D 点。
(1)求ADF ∠的度数; (2)若AB=AC ,求AC:BC.6.自圆O 外一点P 引切线与圆切于点A ,M 为PA 中点,过M 引割线交圆于B ,C 两点.求证:∠MCP=∠MPB . O A BDE F7.如图,AD 是⊙O 的直径,AB 是⊙O 于点M 、N ,直线BMN 交AD 的延长线于点C ,NC MN BM ==,2=AB ,求BC 的长和⊙O 的半径.8.如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作CD ⊥AF 交AF 的延长线于D 点,CM ⊥AB ,垂足为点M . (1)求证:DC 是⊙O 的切线; (2)求证:AM ·MB =DF ·DA .9.如图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B 、C 两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(Ⅰ)证明A ,P ,O ,M 四点共圆; (Ⅱ)求∠OAM +∠APM 的大小.10.如图 ,过圆O 外一点M 作它的一条切线,切点A ,过A 点作直线AP 垂直直线OM ,垂足为P 。
平面几何习题
1、三角形ABC中,AD为中线,P为AD上任意一点,过p的直线交AB于M.交ac 于N,若AN=AM,求证PM/PN=AC/AB2、在三角形BCD中,BC=BD,延长BC至A,延长BD至E,使AC=BE,连接AD,AE,AD=AE,求BCD为等边3、三角形ABC中若圆O在变化过程中都落在三角形ABC内(含相切), A为60度,AC为8,AB为10,X为未知数,是AE的长.圆O与AB,AC相切,圆O与AB的切点为E, X的范围是?4、已知三角形ABE中C 、D分别为AB、BE上的点,且AD=AE,三角形BCD 为等边三角形,求证BC+DE=AC5、已知在三角形ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC与F,求证AF=EF6、在△ABC中,D是BC边中点,O是AD上一点,BO,CO的延长线分别交AC,AB 于E,F求证:EF平行BC。
7、已知:在△ABC和△A'B'C'中,AB=A'B', AC=A'C'.AD,A'D'分别是△ABC和△A'B'C'的中线,且AD=A'D'.求证:△ABC≌△A'B'C'8、四边形ABCD为菱形,E,F为AB,BC的中点,EP⊥CD,∠BAD=110º,求∠FPC的度数9、已知:E是正方形ABCD内的一点,且∠DAE=∠ADE=15°,求证:△EBC是等边三角形10、在三角形ABC中,经过BC的中点M,有垂直相交于M的两条直线,它们与AB,AC分别交于D、E,求证,BD+CE>DE11、AB是等腰直角三角形ABC的斜边,若点M在边AC上,点N在边BC上,沿直线MN把△MCN翻折,使点C落在AB上设其落点(1).如图一,当是AB的中点时,求证:PA/PB=CM/CN(2).如图二当P不是AB中点时,结论PA/PB=CM/CN是否成立?若成立,请给出证明12、三角形ABC中,BC=5,M和I分别是三角形ABC的重心和内心,若MI 平行于BC,则AB+AC的值是多少?13、已知圆O是三角形ABC的外接圆CD是AB边上的高,AE是圆O的直径。
平面几何练习题(1)(原创)(免财富)
平面几何练习题(1)一.如图,△ABC中,∠ABC=90°,∠ACB=α,△CDH中,∠CDH=90°,∠HCD=α,连接AH,取AH的中点M,连接MB、MD(1)求证:MB=MD(2)求∠BMD(用α表示)MH DCBA二.如图,△ABC中,∠ABC=90°,∠ACB=α,△CDH中,∠CDH=90°,∠HCD=α,连接AH,取AH的中点M,连接MB、MD(1)求证:MB=MD(2)求∠BMD(用α表示)MH DCB A三. 如图,△ABC 中,∠ABC=90°,∠ACB=α,△CDH 中,∠CDH=90°,∠HCD=α,连接AH ,取AH 的中点M ,连接MB 、MD (1)求证:MB=MD(2)求∠BMD (用α表示)ABCDHM四. 如图,△ABC 中,∠ABC=90°,∠ACB=α,△CDH 中,∠CDH=90°,∠HCD=α,连接AH ,取AH 的中点M ,连接MB 、MD (1)求证:MB=MD(2)求∠BMD (用α表示)MHDCBA中点M ,连接MB 、MD (1)求证:MB=MD(2)求∠BMD (用α表示)ABCDHM六. 如图,△ABC 中,∠ABC=90°,∠ACB=α,△CDH 中,∠CDH=90°,∠HCD=α,连接AH ,取AH 的中点M ,连接MB 、MD (1)求证:MB=MD(2)求∠BMD (用α表示)MHDCBAAB CDHM中点M ,连接MB 、MD (1)求证:MB=MD(2)求∠BMD (用α表示)八. 如图,△ABC 中,∠ABC=90°,∠ACB=α,△CDH 中,∠CDH=90°,∠HCD=α,连接AH ,取AH 的中点M ,连接MB 、MD (1)求证:MB=MD(2)求∠BMD (用α表示) MHDCBA。
中职教育数学《平面解析几何-复习课》练习题
第八章 平面解析几何(知识点)1. 直线:(1) 倾斜角α:一条直线l 向上的方向与x 轴的正方向所成的最小正角叫这条直线的倾斜角。
其范围是),0[π(2) 斜率:①倾斜角为090的直线没有斜率;②αtan =k(倾斜角的正切)③经过两点),(),,(222111y x P y x P 的直线的斜率1212x x y y K --= )(21x x ≠(3) 直线的方程①两点式:121121x x x x y y y y --=-- ② 截距式 1=+b y a x③ 斜截式:b kx y += ④点斜式:)(00x x k y y -=- ⑤一般式:0=++C By Ax注:1.若直线l 方程为3x+4y+5=0,则与l 平行的直线可设为3x+4y+C=0;与l 垂直的直线可设为4X-3Y+C=0 2.求直线的方程最后要化成一般式。
(4) 两条直线的位置关系①点),(00y x P 到直线0=++C By Ax 的距离:2200||B A C By Ax d +++=②0:1=++C By Ax l 与0:2=++C By Ax l 平行2221||BA C C d ++=2. 圆的方程(1) 标准方程:222)()(r b y a x =-+-(0>r)其中圆心),(b a ,半径r 。
(2) 一般方程:022=++++F Ey Dx y x (0422>-+F E D )圆心(2,2E D --) 半径:2422F EDr -+=(4)直线和圆的位置关系:主要用几何法,利用圆心到直线的距离d 和半径r 比较。
相交⇔<r d ; 相切⇔=r d ; 相离⇔>r d3. 二次曲线:定义一:平面内到一个定点和一条定直线的距离的比等于定长e 的点的集合,①当0<e<1时,是椭圆.②当e>1时,是双曲线.③当e=1时,是抛物线. 4. 椭圆注:等轴双曲线:(1)b a =(2)离心率2=e (3)渐近线x y ±=6. 抛物线(如右图示) 注:(1)p 的几何意义表示焦点到准线的距离。
高中数学练习题:平面几何
高中数学练习题:平面几何引子在高中数学中,平面几何是一个重要的知识点,也是学生们经常接触和练习的内容之一。
平面几何涉及到平面上的点、线、面等概念,通过运用几何定律和性质,解决与平面相关的问题。
掌握平面几何的基本概念与方法不仅有助于学生提高逻辑思维和推理能力,还能够拓宽学生的数学视野,使他们能够更好地应用数学知识解决实际问题。
本文将提供一系列高中平面几何的练习题,并逐一解析,帮助读者更好地理解和掌握平面几何的知识。
1. 点、线、面的基本概念H2:点的基本概念练习题 1:在平面上,画出以下图形:•两个不在同一直线上的点•三个共线的点•四个不在同一直线上的点H3:线的基本概念练习题 2:根据以下描述,判断相应的线段关系:•两个线段长度相等的关系是什么?•两个线段互相垂直的关系是什么?•如果一个线段是另一个线段的一半,它们之间的关系是什么?H3:面的基本概念练习题 3:根据以下描述,判断相应的平面关系:•两个平面都垂直于同一条直线的关系是什么?•如果两个平面相交,它们的交线是什么?•两个平行平面之间的夹角是多少?2. 直线与角的性质H2:平行线与相交线练习题 4:判断以下直线关系:•如果两条直线垂直相交,它们之间的夹角是多少?•如果一条直线与另一条直线平行,它们之间的夹角是多少?•如果两条直线相交,它们之间的夹角是多少?H2:三角形与四边形练习题 5:根据以下描述,判断相应的三角形和四边形特征:•如果一个四边形的对角线相等,它是什么形状的四边形?•如果一个三角形的三边相等,它是什么类型的三角形?•一个三角形的两个角相等,它是什么类型的三角形?H3:角的性质练习题 6:根据以下描述,判断相应角的性质:•如果一个角是直角,它的度数是多少?•如果一个角是锐角,它的度数是多少?•如果一个角是钝角,它的度数是多少?H3:三角形的性质练习题 7:根据以下描述,判断相应三角形的性质:•如果一个三角形的三个角都是锐角,它是什么类型的三角形?•如果一个三角形有一个角是钝角,它是什么类型的三角形?•如果一个三角形有一个角是直角,它是什么类型的三角形?3. 圆与圆的性质H2:圆的基本概念练习题 8:根据以下描述,判断相应的圆的性质:•什么是圆心?•什么是半径?•什么是直径?H2:角与圆的性质练习题 9:根据以下描述,判断相应角和圆的性质:•一个角的两条边与圆的切点相接,这个角叫什么?•如果一条边是直径,这个角叫什么?•如果一条边与圆的切点相接,而另一条边不过圆心,这个角叫什么?H3:切线与切点练习题 10:根据以下描述,判断相应的切线和切点的性质:•如果一条直线与圆的切点相接,这条直线叫什么?•如果一条直线与圆的切点相接,并且垂直于半径,这条直线叫什么?•如果一条直线与圆的切点相接,并且平行于半径,这条直线叫什么?4. 平面几何题目解析H2:练习题 11将一张纸对折两次得到四个重叠的小正方形,再按其中一条对角线剪开,得到两个相等的小三角形,请问这两个小三角形相似吗?解析首先,我们知道正方形的对角线可以将正方形分成两个相等的直角三角形。
初二平面几何基础练习题
初二平面几何基础练习题1. 问题描述:在平面上给定一个等边三角形ABC,边长为10cm。
求三角形ABC的高和面积。
解答:设三角形ABC的高为h,由于ABC是等边三角形,所以三角形ABC也是等腰三角形。
连接AB的中点M与C,可得到三角形AMC。
由于AM与CM分别垂直于BC和AB,所以AM和CM就是三角形ABC的高。
根据勾股定理,三角形AMC的斜边AC等于三角形ABC的边长,即AC = 10cm。
由于三角形AMC是直角三角形,所以AM和CM相等,记为AM = CM = h。
根据勾股定理,有AC² = AM² + CM²,即10² = h²+ h² = 2h²。
解方程2h² = 100,可以得到h = √50 ≈ 7.07 cm。
三角形ABC的面积S可以通过底乘高的公式计算,即S = 0.5 × 10× h = 0.5 × 10 × 7.07 ≈ 35.35 cm²。
所以,三角形ABC的高为7.07 cm,面积为35.35 cm²。
2. 问题描述:在平面上给定一个矩形ABCD,已知AB = 12cm,BC = 8cm。
求矩形ABCD的对角线长度和周长。
解答:设矩形ABCD的对角线长度为d。
根据勾股定理,可以得到d² = AB² + BC² = 12² + 8² = 144 + 64 = 208。
解方程d² = 208,可以得到d = √208 ≈ 14.42 cm。
矩形ABCD的周长可以通过将四条边的长度相加得到,即周长 =AB + BC + CD + DA = 12 + 8 + 12 + 8 = 40 cm。
所以,矩形ABCD的对角线长度约为14.42 cm,周长为40 cm。
3. 问题描述:在平面上给定一个圆O,半径为6cm。
平面几何习题大全
平面几何习题大全(总39页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面几何习题大全下面的平面几何习题均是我两年来收集的,属竞赛范围。
共分为五种类型,1,几何计算;2,几何证明;3,共点线与共线点;4,几何不等式;5,经典几何。
几何计算-1命题设点D是Rt△ABC斜边AB上的一点,DE⊥BC于点E,DF⊥AC于点F。
若AF=15,BE=10,则四边形DECF的面积是多少解:设DF=CE=x,DE=CF=y. ∵Rt△BED∽Rt△DFA, ∴BE/DE=DF/AF<==> 10/y=x/15 <==> xy=150.所以,矩形DECF的面积150.几何证明-1命题在圆内接四边形ABCD中,O为圆心,己知∠AOB+∠COD=180.求证:由O向四边形ABCD所作的垂线段之和等于四边形ABCD的周长的一半。
证明(一) 连OA,OB,OC,OD,过圆心O点分别作AB,BC,CD,DA的垂线,垂足依次为P,Q,R,S。
易证ΔAPO≌ΔORD,所以 DR=OP,AP=OR,故 OP+OR=DR+AP=(CD+AB)/2。
同理可得:OQ+OS=(DA+BC)/2。
因此有 OP+OQ+OR+OS=(AB+BC+CD+DA)/2。
证明(二) 连OA,OB,OC,OD,因为∠AOB+∠COD=180°,OA=OD,所以易证RtΔAPO≌RtΔORD,故得 DR=OP,AP=OR,即 OP+OR=DR+AP=(CD+AB)/2。
同理可得:OQ+OS=(DA+BC)/2。
因此有 OP+OQ+OR+OS=(AB+BC+CD+DA)/2。
几何不等式-1命题设P是正△ABC内任意一点,△DEF是P点关于正△ABC的内接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。
平面几何图形面积练习题
平面几何图形面积练习题在平面几何中,图形的面积是一个常见的概念。
计算图形的面积既可以是实际生活中的问题,也可以是学习数学的一个重要知识点。
在本文中,我们将通过一些练习题来巩固对平面几何图形面积计算的理解和应用。
题目一:矩形的面积计算计算下列矩形的面积:1. 长为10厘米,宽为5厘米的矩形的面积是多少?2. 如果一个矩形的长是3倍于宽,且宽为4米,那么它的面积是多少?解答:1. 矩形的面积可以通过长乘以宽来计算。
所以,长为10厘米,宽为5厘米的矩形的面积是10厘米 × 5厘米 = 50平方厘米。
2. 根据题目中的条件,该矩形的长为3 × 4米 = 12米。
因此,它的面积为12米 × 4米 = 48平方米。
题目二:三角形的面积计算计算下列三角形的面积:1. 底边长为10厘米,高为6厘米的三角形的面积是多少?2. 边长分别为5厘米、12厘米和13厘米的三角形的面积是多少?解答:1. 三角形的面积可以通过底边乘以高再除以2来计算。
所以,底边长为10厘米,高为6厘米的三角形的面积是(10厘米 × 6厘米)/ 2 = 30平方厘米。
2. 根据海伦公式,我们可以通过三角形的边长来计算其面积。
设三角形的三边长分别为a、b、c,它们的半周长为s,那么三角形的面积可以通过以下公式计算:面积= √(s × (s - a) × (s - b) × (s - c)),其中,s = (a + b + c) / 2。
根据题目中给出的边长,可以计算得到s = (5厘米 + 12厘米 + 13厘米) / 2 = 15厘米。
代入公式计算得到面积= √(15厘米 × (15厘米 - 5厘米) × (15厘米 - 12厘米) × (15厘米 - 13厘米)) = 30平方厘米。
题目三:圆的面积计算计算下列圆的面积:1. 半径为5厘米的圆的面积是多少?2. 直径为8厘米的圆的面积是多少?解答:1. 圆的面积可以通过半径的平方乘以π(即3.14159...)来计算。
中学数学 平面几何最短路径 练习题(含答案)
平面图形上的最短路径问题知识点:1.两点之间,线段最短2.垂线段最短3.线段垂直平分线是的点到线段两端点的距离相等4.三角形任意两边之差小于第三边总思路:找点关于线的对称点实现“折”转“直”常考题型题:将军饮马、造桥选址、费马点(一)根据两点之间,线段最短题型一两点在直线同侧(将军饮马)题型二相交直线之间一点或两点题型四费马点(二)根据垂线段最短题型五和最小(三)根据线段垂直平分线上点到线段两端点距离相等题型六差最小(四)根据三角形任意两边之差小于第三边题型七差最大题型一两点在直线同侧例题1:如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.3B.6解:在AC上取一点E,使得AE=AB,过E作EN⊥AB于N′,交AD于M,连接BM,BE,BE交AD于O,则BM+MN’最小(根据两点之间线段最短;点到直线垂直距离最短),∵AD平分∠CAB,AE=AB,∴EO=OB,AD⊥BE,∴AD是BE的垂直平分线(三线合一),∴E和B关于直线AD对称,∴EM=BM,即BM+MN′=EM+MN′=EN′,∵EN’⊥AB,∴∠EN’A=90°,∵∠CAB=60°,∴∠AEN′=30°,∵AE=AB=6,∴AN’=3,在△AEN’中,由勾股定理得:EN’即BM+MN B.巩固练习:如图,在平面直角坐标系中,R t△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,点C的坐标为(1,0),且∠AOB=30°点P为斜边OB上的一个动点,则P A+PC的最小值为____ _____.解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时P A+PC的值最小.∵DP=P A,∴P A+PC=PD+PC=CD.∵B(3,∴AB OA=3,∠B=60°.由勾股定理得:OB OA×AB OB×AM,∴AM AD.∵∠AMB=90°,∠B=60°,∴∠BAM=30°.∵∠BAO=90°,∴∠OAM=60°.∵DN⊥OA,∴∠NDA=30°.∴AN由勾股定理得:DN C(1,0),∴CN=3-1在R t△DNC中,由勾股定理得:DC∴P A+PC题型二相交直线之间一或两点例题2:如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R .若△PQR 周长最小,则最小周长是( )A .10B .15C .20D .30 解:设∠POA =θ,则∠POB =30°﹣θ,作PM ⊥OA 与OA 相交于M ,并将PM 延长一倍到E ,即ME =PM . 作PN ⊥OB 与OB 相交于N ,并将PN 延长一倍到F ,即NF =PN . 连接EF 与OA 相交于Q ,与OB 相交于R ,再连接PQ ,PR , 则△PQR 即为周长最短的三角形.∵OA 是PE 的垂直平分线, ∴EQ =QP ;同理,OB 是PF 的垂直平分线, ∴FR =RP , ∴△PQR 的周长=EF . ∵OE =OF =OP =10,且∠EOF =∠EOP +∠POF =2θ+2(30°﹣θ)=60°, ∴△EOF 是正三角形,∴EF =10,即在保持OP =10的条件下△PQR 的最小周长为10,故选A .巩固练习:如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =5,ON =12,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是 .解:作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M’N’,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM’=OM =5,ON’=ON =12, ∴△ONN ′为等边三角形,△OMM ′为等边三角形, ∴∠N′OM′=90°,∴在Rt M ON ''中,''13M N = 故答案为:13.题型三 造桥选址例题3:荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A 到B点路径最短?解:作AF⊥CD,且AF=河宽,作B G⊥CE,且BG=河宽,连接GF,与河岸相交于E’、D’,作DD’、EE’即为桥证明:由做法可知,AF∥DD’,AF=DD’,则四边形AFDD’为平行四边形于是AD=FD’同理,BE=G E’由两点之间线段最短可知,GF最小即当桥建于如图所示位置时,ADD’E’EB最短巩固练习:如图,工厂A和工厂B被一条河隔开,它们到河的距离都是2km,两个工厂水平距离是3km,河宽1km,现在要架一座垂直于河岸的桥,使工厂A到工厂B的距离最短(河岸是平行的)①请画出架桥的位置(不写画法)②求从工厂A经过桥到工厂B的最短路程.解:①如图所示,AA’=1km,则MN为架桥位置A B===②过点B作BE⊥AA’,交其延长线于点E。
平面几何练习一及答案
平面几何练习题(一)1、在△ABC的边AC上取点D,E,使得AD=AB,BE=EC,(E在A与D之间),点F是△ABC外接圆上(不含A点的)BC弧的中点,求证:B、E、D、F四点共圆.FA2、在△ABC中,BC>AB,BD平分∠ABC 交AC于D,如图,CP垂直于BD,垂足为P,AQ垂直于BP,垂足为Q,M是AC的中点,E是BC的中点.若△PQM的外接圆O与AC的另一个交点为H.求证:O,H,E,M四点共圆.C3、AB是圆O的直径,C为AB延长线上一点,过点C作圆O的割线,与圆O交于D,E两点,OF是△BOD的外接圆O1的直径,连接CF并延长交圆O1 于点G .求证:O、A、E、G四点共圆.A4、如图,在锐角△ABC中,AB<AC,AD是边BC上的高,P是线段AD内一点。
过P作PE⊥AC,垂足为E,做PF⊥AB,垂足为F。
O1、O2分别是△BDF、△CDE的外心。
求证:O1、O2、E、F四点共圆的充要条件为P是△ABC的垂心。
B平面几何练习一参考答案1、证明:设∠ABC=α.因AB=AD ,故∠ABD=α,∠BAD=180°-2α.∠CBF 的度数等于21CF 弧的度数,而∠CAB 的度数等于21BC 弧的度数,所以∠CBF=21∠CAB =90°-α,点E ,F 分别与点B ,C 等距,所以EF 垂直平分BC.因此∠BFE=90°-∠CBF=90°-(90°-α)=α.于是∠BDE=∠BFE=α,所以B 、F 、D 、E 四点共圆.2、证明:如图联结PH ,作AQ 延长线交BC 于N ,则Q 为AN 的中点. M 为AC中点,∴QM ∥BC.故∠PQM=∠PBC=1/2∠ABC,同理,延长CP 交BA 延长线于N '可得P M ∥B N ',因此∠MPQ =∠ABP=1/2∠ABC ,∴QM=PM.又 Q,H,P,M 四点共圆, ∴∠PHC =∠PHM=∠PQM ,得∠PHC =∠PBC ,∴P,H,B,C 四点共圆,得∠BHC =∠BPC =90°,故HE=1/2BC=EP.结合OH=OP ,知OE 为HP 的中垂线,由∠MPQ =1/2∠ABC=∠PBC 及E 为BC 的中点可得P,M,E 共线,故∠EHO =∠EPO=∠OPM=∠OMP ,所以 O,H,E,M 四点共圆.3、证明:联结AD,DG,GA,GO,EA,EO.因为OFOF 平分∠DOB ,又因为∠DAB=1/2∠DOB ,所以∠DAB=∠DOF ,又∠DGF=∠DOF ,所以∠DAB=∠DGF ,所以G ,A,C,D 四点共圆,所以∠AGC=∠AD C ①,而∠AGC= ∠AGO +∠OGF=∠AGO+π/2,② ∠ADC=∠ADB +∠BDC=∠BDC+π/2,③结合①②③得∠AGO=∠BD C .因为B,D,E,A 四点共圆,所以∠BDC=∠EAO ,又OA=OE ,有∠AEO=∠EAO ,所以∠AGO=∠AEO ,故O,A,E,G 四点共圆.AC。
平面几何练习题及答案
平面几何练习题及答案一、选择题1. 已知三角形ABC中,∠A=90°,AB=3cm,BC=4cm,求AC的长度。
A. 5cmB. 6cmC. 7cmD. √7cm2. 在矩形PQRS中,若PS=6cm,QR=8cm,求对角线PR的长度。
A. 10cmB. 12cmC. 14cmD. √(6²+8²)cm3. 圆O的半径为5cm,点A在圆上,点B在圆外,且OA=5cm,OB=10cm,求AB的长度。
A. 5cmB. 10cmC. 15cmD. √(10²-5²)cm二、填空题4. 已知等腰三角形的底边长为6cm,两腰长为5cm,求其面积。
答案:____cm²5. 已知直角三角形的两条直角边分别为3cm和4cm,求其外接圆的半径。
答案:____cm6. 已知正六边形的边长为a,求其内切圆的半径。
答案:____三、计算题7. 在三角形DEF中,DE=7cm,DF=8cm,EF=9cm,求三角形DEF的面积。
8. 已知圆的半径为r,圆心为O,点A在圆上,点B在圆外,OA=r,OB=2r,求AB的长度。
9. 已知矩形LMNP的长为10cm,宽为6cm,求其内切圆的半径。
四、证明题10. 证明:在直角三角形中,斜边的中线等于斜边的一半。
11. 证明:如果一个三角形的两边和其中一边上的高相等,那么这个三角形是等腰三角形。
12. 证明:在等边三角形中,每个内角都是60°。
五、解答题13. 已知圆的半径为r,求圆的周长和面积。
14. 已知矩形ABCD的长为a,宽为b,求对角线AC的长度。
15. 已知三角形ABC的三个顶点坐标分别为A(x1, y1),B(x2, y2),C(x3, y3),求三角形ABC的面积。
答案:1. D2. D3. D4. 12cm²5. 2.5cm6. a/√37. 27cm²8. 5r9. 2cm10. 利用直角三角形斜边上的中线等于斜边的一半的性质证明。
高考数学《平面解析几何》练习题及答案
平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。
平面解析几何-多选题练习
9.(2024·石家庄调研)已知双曲线 C:x42-y52=1,F1,F2 为 C 的左、右焦点,则( BC )
A.双曲线4+x2m-5+y2m=1(m>0)和 C 的离心率相等
B.若 P 为 C 上一点,且∠F1PF2=90°,则△F1PF2 的周长为 6+2 14
C.若
C
上存在四个点
P
使得
PF1⊥PF2,则
C
的离心率的取值范围是0,
2 2
D.若|PF1|≤2b 恒成立,则 C 的离心率的取值范围为0,53
1 2 3 4 5 6 7 8 9 10
解析 对于 A,设 P(x0,y0),则xa202+by202=1, ∵e=ac=12,∴a=2c,∴a2=34b2, ∴∴43kxbP20A21+·kbyPA202=2=1y,0x-∴0 b3·yx020x++0 b4=y20=y20-x420bb22,=b2-34xx2020-b2=-34,故 A 错误; 对于 B,若 PF1⊥PF2,则|PF1|+|PF2|=2a,|PF1|2+|PF2|2=4c2, ∴|PF1|·|PF2|=2b2,则△PF1F2 的面积为12·|PF1|·|PF2|=b2,故 B 正确; 对于 C,若 C 上存在四个点 P 使得 PF1⊥PF2,
则a2≥2b2,所以选项AC满足.
1 2 3 4 5 6 7 8 9 10
4.已知 F1,F2 分别是双曲线 C:y2-x2=1 的上、下焦点,点 P 是其一条渐近线
上一点,且以线段 F1F2 为直径的圆经过点 P,则( ACD )
A.双曲线 C 的渐近线方程为 y=±x B.以 F1F2 为直径的圆的方程为 x2+y2=1 C.点 P 的横坐标为±1 D.△PF1F2 的面积为 2 解析 等轴双曲线C:y2-x2=1的渐近线方程为y=±x,故A正确; 由双曲线的方程可知|F1F2|=2 2, 所以以F1F2为直径的圆的方程为x2+y2=2,故B错误; 设点P(x0,y0),因为点P是双曲线C的一条渐近线上一点,
平面解析几何练习题
平面解析几何练习题一、直线与圆的相交1. 已知圆的方程为:x^2 + y^2 - 4x - 6y + 9 = 0,求与直线y = 2x + 1相交的点坐标。
解析:首先将直线方程代入圆的方程,得到:x^2 + (2x + 1)^2 - 4x - 6(2x + 1) + 9 = 0。
将方程化简得到二次方程 5x^2 - 22x - 14 = 0。
解此二次方程,得两个不同实根:x1 ≈ 0.953 和x2 ≈ 2.337。
将x的值带入直线方程求得对应的y值,即可得到两个交点的坐标。
2. 已知直线过点A(2, 4)且与圆x^2 + y^2 - 6x + 8y + 9 = 0相切,求此直线的方程。
解析:首先求圆的切线方程,在圆的方程中,将x和y的系数前的项移至另一侧得到新方程 x^2 + y^2 = 6x - 8y - 9。
然后利用点到直线的距离公式,得到圆心O(a, b)到直线的距离公式:d = |a + 2b - 8| / √(1 + 4) = |a + 2b - 8| / 2。
因为直线与圆相切,所以圆心到直线的距离等于圆的半径。
将距离公式代入原方程,得到二次方程 (2a + 4b - 16)^2 = 4(a^2 + b^2 - 6a + 8b + 9)。
通过求解此二次方程,得到a和b的值,即可得到直线的方程。
二、圆的切线与切点1. 已知圆C的方程为:(x-2)^2 + (y+1)^2 = 16,求过点P(3,2)的圆C 的切线方程及切点。
解析:首先求得点P到圆心C(2,-1)的距离,即两点之间的线段CP 的长度r = √((3-2)^2 + (2+1)^2) = √(2^2 + 3^2) = √13。
因为点P在圆C 上,所以点P到圆C的距离等于圆C的半径 r = 4。
接下来求得点P到圆C的切线斜率k,即斜率为 -1/k 的直线与圆C的切线。
切线斜率 k = (2 - (-1)) / (3 - 2) = 3。
高中平面几何试题及答案
高中平面几何试题及答案一、选择题1. 下列哪个选项不是平面几何中的基本元素?A. 点B. 线C. 面D. 体答案:D2. 在平面几何中,两条直线的位置关系有几种?A. 1种B. 2种C. 3种D. 4种答案:B3. 如果一个三角形的两边长度分别为3和4,且第三边的长度是整数,那么第三边的长度可能是多少?A. 1B. 2C. 3D. 4答案:D二、填空题1. 在平面几何中,两条平行线之间的距离处处相等,这个距离称为______。
答案:平行线间的距离2. 如果一个三角形的内角和为180°,那么这个三角形是______三角形。
答案:平面三、解答题1. 已知三角形ABC,其中∠A=90°,AB=6,AC=8,求BC的长度。
解答:根据勾股定理,BC² = AB² + AC² = 6² + 8² = 36 +64 = 100,所以BC = √100 = 10。
2. 已知圆O的半径为5,点P在圆O上,PA和PB是圆O的两条切线,且PA=PB,求∠APB的大小。
解答:由于PA和PB是圆O的切线,且PA=PB,根据切线的性质,∠APB是等腰三角形的顶角,根据等腰三角形的性质,∠APB = 180° - 2 * ∠AOP = 180° - 2 * 30° = 120°。
四、证明题1. 证明:在直角三角形中,斜边的中点到三个顶点的距离相等。
证明:设直角三角形ABC中∠C=90°,D为斜边AB的中点。
连接CD,根据直角三角形斜边上的中线性质,CD=DA=DB=1/2AB,因此D到三个顶点的距离相等。
结束语本试题涵盖了高中平面几何的基础知识和一些典型问题,旨在帮助学生巩固和检验他们对平面几何概念的理解和应用能力。
希望学生能够通过练习这些题目,提高解题技巧,增强空间想象能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何选讲练习题1.如图所示,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线交⊙O 2于点C ,过点B 作两圆的割线,分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P. (1)求证:AD ∥EC;(2)若AD 是⊙O 2的切线,且PA=6,PC=2,BD=9,求AD 的长;2.如图:已知AD 为⊙O 的直径,直线BA 与⊙O 相切于点A ,直线OB 与弦AC 垂直并相交于点G ,连接DC .求证:BA ·DC =GC ·AD .3. 已知:如图,△ABC 中,AB=AC ,∠BAC=90°,AE=31AC ,BD=31AB ,点F 在BC 上,且CF=31BC 。
求证: (1)EF ⊥BC ;(2)∠ADE=∠EBC 。
B E DO 1 O 2A P CF EDABC4.如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 的延长线交BC 于F .(1)求FCBF的值;(2)若△BEF 的面积为1S ,四边形CDEF 的面积为2S ,求21:S S 的值.5.已知C 点在圆O 直径BE 的延长线上,CA 切圆O 于A 点,DC 是ACB ∠的平分线交AE 于点F ,交AB 于D 点. (1)求ADF ∠的度数; (2)若AB=AC ,求AC:BC.6.自圆O 外一点P 引切线与圆切于点A ,M 为PA 中点,过M 引割线交圆于B,C 两点.求证:∠MCP=∠MPB .O A BDE F7.如图,AD 是⊙O 的直径,AB 是⊙O 于点M 、N ,直线BMN 交AD 的延长线于点C ,NC MN BM ==,2=AB ,求BC 的长和⊙O 的半径.8.如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作CD ⊥AF 交AF 的延长线于D 点,CM ⊥AB ,垂足为点M . (1)求证:DC 是⊙O 的切线; (2)求证:AM ·MB =DF ·DA .9.如图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B 、C 两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(Ⅰ)证明A ,P ,O ,M 四点共圆; (Ⅱ)求∠OAM +∠APM 的大小.10.如图 ,过圆O 外一点M 作它的一条切线,切点A ,过A 点作直线AP 垂直直线OM ,垂足为P.(Ⅰ)证明:OM ·OP=OA 2;(Ⅱ)N 为线段AP 上一点,直线NB 垂直直线ON ,且交圆O 于B 点,过B 点的切线交直线ON 于K.证明:∠OKM=90°BMC O PA BCE D11.如图,在四边形ABCD 中,△ABC ≌△BAD.求证:AB ∥CD.12.已知 ∆ABC 中,AB=AC, D 是 ∆ABC 外接圆劣弧»AC 上的点(不与点A,C 重合),延长BD 至E 。
(1) 求证:AD 的延长线平分∠CDE ;(2) 若∠BAC=30,∆ABC 中BC 边上的高为2+3,求∆ABC 外接圆的面积。
13.如图,已知ABC ∆的两条角平分线AD 和CE 相交 于H ,060B ∠=,F 在AC 上,且AE AF =。
(I )证明:B,D,H,E 四点共圆: (II )证明:CE 平分DEF ∠。
14.已知:如右图,在等腰梯形ABCD 中,AD ∥BC,AB =DC,过点D 作AC 的平行线DE,交BA的延长线于点E .求证:(1)△ABC ≌△DCB (2)DE·DC =AE·BD .15.在圆O 的直径CB 的延长线上取一点A ,A P 与圆O 切于点P ,且∠APB =30°,AP =3,则CP = ( )A. 3 B .2 3 C .23-1 D .23+116.已知AB 是圆O 的直径,弦AD 、BC 相交于点P ,那么CD ∶AB 等于∠BPD 的( )A .正弦B .余弦C .正切D .余切17.如图所示,已知D 是△ABC 中AB 边上一点,DE ∥BC 且交AC于E ,EF ∥AB 且交BC 于F ,且S △ADE =1,S △EFC =4,则四边 形BFED 的面积等于 ( ) A .2 B .3 C .4 D .518.AD 、AE 和BC 分别切⊙O 于D 、E 、F ,如果AD =20,则△ABC 的周长为 ( )A .20B .30C .40D .35125.如图所示,AB 是半圆的直径,弦AD 、BC 相交于P ,已知∠DPB =60°,D 是弧BC 的中点,则tan ∠ADC =________.19.如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD =4,BD =8,则圆O 的半径长为________.20.如图,AB 是半圆O 的直径,∠BAC =30°,BC 为半圆的切线,且BC =43,则点O 到 AC 的距离OD =________.平面几何选讲练习题答案1.(1)证明:连接AB ,∵AC 是⊙O 1的切线,∴∠BAC=∠D ,又∵∠BAC=∠E ,∴∠D=∠E 。
∴AD ∥EC (4分) (2)设BP=x ,PE=y ,∵PA=6,PC=2,∴xy=12,①∵AD ∥EC ,∴269=+⇒=y x PC AP PE DP ②, 由①②可得,⎩⎨⎧==43y x 或⎩⎨⎧-=-=112y x (舍去)∴DE=9+x+y=16,∵AD 是⊙O 2的切线, ∴AD 2=DB •DE=9×16, ∴AD=12。
(6分)2.证法一:∵ AC OB ^ ,∴ 90AGB ?o , 又 AD 是⊙O的直径,∴ 90DCA ?o ,又 ∵ BAGADC ??(弦切角等于同弧对圆周角)………4分∴ Rt △AGB ∽Rt △DCA …………………………………5分∴ BAAGAD DC = , 又∵ OG AC ^∴ GC AG =…………………………7分 ∴ BAGCADDC=…………………………………………………9分 即 BA •DC=G C •AD ………………………………………10分 证法二:∵ BA 与⊙O相切于A ∴ 90BAO?o又 AG BO ^于G , ∴ ABGGOA ??∴ Rt △BGA ∽Rt △AGO …………………………3分 ∵BA AOAG OG=………………………………………①…5分 ∵ OG AC G ^弦于 ,∴ G 为AC 的中点G FEDABC又 ∵ O 为直径AD 的中点,∴ 12AO AD = ,12OG DC =………………………7分 ∴ 1212ADBA ADAG DCDC ==∴ BA •DC=G C •A D ……………………………10分3. 证明:设AB=AC=3a ,则AE=BD=a ,CF=.2a (1).3232,32232====a a CA CF a a CB CE 又∠C 公共,故△BAC ∽△EFC ,由∠BAC=90°, ∴∠EFC=90°,∴EF ⊥BC …………4分 (2)由(1)得.22222,222,2=====a a BF AD aa EF AE a EF 故.BFADEF AE =∴…………6分∴∠DAE=∠BFE=90°∴△ADE ∽△FBE , …………8分 ∴∠ADE=∠EBC 。
…………10分 4.证明:(1)过D 点作DG ∥BC ,并交AF 于G 点, -------------------------2分∵E 是BD 的中点,∴BE=DE ,又∵∠EBF=∠EDG ,∠BEF=∠DEG , ∴△BEF ≌△DEG ,则BF=DG ,∴BF :FC=DG :FC , 又∵D 是AC 的中点,则DG :FC=1:2,则BF :FC=1:2;----------------------------------------------4分(2)若△BEF 以BF 为底,△BDC 以BC 为底, 则由(1)知BF :BC=1:3,又由BE :BD=1:2可知1h :2h =1:2,其中1h 、2h分别为△BEF 和△BDC 的高,则612131=⨯=∆∆BDC BEF S S ,则21:S S =1:5. -----------------------8分5. ΘAC 为圆O 的切线,∴EAC B ∠=∠又知,DC 是ACB ∠的平分线,∴DCB ACD ∠=∠ ∴ACD EAC DCB B ∠+∠=∠+∠即 AFD ADF ∠=∠ 又因为BE 为圆O 的直径, ∴︒=∠90DAE∴︒=∠-︒=∠45)180(21DAE ADF (2)ΘEAC B ∠=∠,ACB ACB ∠=∠,∴ACE ∆∽ABC ∆∴ABAEBC AC =又ΘAB=AC, ∴︒=∠=∠30ACB B , ∴在RT ⊿ABE 中,3330tan tan =︒=∠==B AB AE BC AC ……10分 6.证明:∵PA 与圆相切于A ,∴2MA MB MC =⋅, ………………2分∵M 为PA 中点,∴PM MA =, ………………3分∴2PM MB MC =⋅,∴PM MBMC PM=. ………5分 ∵BMP PMC ∠=∠, ………………6分 ∴△BMP ∽△PMC ,………………8分 ∴MCP MPB ∠=∠. ………………10分7.证明:AD Θ是⊙O 的直径,AB 是⊙O 的切线,直线BMN 是⊙O 的割线,ο90=∠∴BAC ,BN BM AB ⋅=2.233,2,42,2,2==∴=∴=∴===BM BC BM BM AB NC MN BM Θ…4分222BC AC AB =+∴,1842=+AC ,14=AC .1472,14222,=∴⋅==⋅∴⋅=⋅CD CD CA CD CM CN Θ ∴⊙O 的半径为14145)(21=-CD CA ………………………………………8分8.解:(I )连结OC ,∴∠OAC =∠OCA ,又∵CA 是∠BAF 的角平分线,∴∠OAC =∠F AC ,∴∠F AC =∠ACO ,∴OC ∥AD .………………3分 ∵CD ⊥AF ,∴CD ⊥OC ,即DC 是⊙O 的切线.…………5分 (Ⅱ)连结BC ,在Rt △ACB 中, CM ⊥AB ,∴CM 2=AM ·MB .又∵DC 是⊙O 的切线,∴DC 2=DF ·DA . 易知△AMC ≌△ADC ,∴DC =CM ,∴AM ·MB =DF ·DA …………10分19.(Ⅰ)证明:连结OP ,OM .因为AP 与⊙O 相切于点P ,所以OP ⊥AP .AO P因为M 是⊙O 的弦BC 的中点,所以OM ⊥BC .于是∠OP A +∠OMA =180°,由圆心O 在PAC ∠的内部, 可知四边形APOM 的对角互补,所以A ,P ,O ,M 四点共圆…6分 (Ⅱ)解:由(Ⅰ)得A ,P ,O ,M 四点共圆,所以∠OAM =∠OPM. 由(Ⅰ)得OP ⊥AP .由圆心O 在PAC ∠的内部,可知∠OPM +∠APM =90°. 所以∠OAM +∠APM =90°. ……10分 10.(Ⅰ)证明:因为MA 是圆O 的切线,所以OA ⊥AM又因为AP ⊥OM ,在Rt △OAM 中,由射影定理知,.2OP OM OA ⋅=(Ⅱ)证明:因为BK 是圆O 的切线,BN ⊥OK , 同(Ⅰ),有OB 2=ON ·OK ,又OB=OA , 所以OP ·OM=ON ·OK ,即.OKOMOP ON = 又∠NOP=∠MOK ,所以△ONP ∽△OMK ,故∠OKM=∠OPN=90°11.证明:由△ABC ≌△BAD 得∠ACB=∠BDA ,故A 、B 、C 、D 四点共圆,从而∠CBA=∠CDB 。