新能源材料论文
新能源材料概论范文
新能源材料概论范文新能源材料是指在新能源领域发挥重要作用的一类材料。
随着全球能源环境问题的日益严峻,人们对于新能源的研究和应用越来越重视,这也促使了新能源材料的发展。
新能源材料具有高效、可再生和环境友好等特点,被广泛应用于太阳能、风能、水能等新能源的开发和利用。
首先,太阳能是一种广泛使用的新能源形式。
太阳能是指将太阳的辐射能转化为电能或热能的能源形式。
太阳能电池是太阳能的主要利用形式之一,通过半导体材料吸收太阳辐射能,将其转化为电能。
硅是目前太阳能电池最常用的材料,但是硅太阳能电池的转化效率有限,需要不断寻找更高效的新能源材料。
其次,风能是另一种常见的新能源形式。
风能是指利用风的动力将风能转化为电能的能源形式。
风力发电机是利用风能进行发电的装置,其中叶片是关键的部件。
传统的风力发电机叶片多采用玻璃纤维增强复合材料制造,但是这种材料存在重量大、寿命短等问题。
近年来,一些新能源材料如碳纤维复合材料、聚合物复合材料等逐渐应用于风力发电机叶片中,以提高其强度和耐久性。
此外,水能也是一种常见的新能源形式。
水能是指将水的动能转化为电能的能源形式,一般通过水力发电机实现。
水力发电机的转子是关键的部件,材料的选择对于提高水力发电机的性能至关重要。
传统的水力发电机转子多采用钢材制造,但是钢材存在重量大、寿命短等问题。
新能源材料如杂化材料、陶瓷材料等可以替代传统材料,具有更轻、更耐用等优点。
在新能源材料的研究和应用过程中,还面临一些挑战。
首先是材料的研发难度较大。
新能源材料需要同时具备较高的能量转化效率和较低的成本,这对于材料的研发提出了更高的要求。
其次是材料的可持续性问题。
新能源材料的生产和回收过程对环境造成一定压力,需要找到更加环保的生产和回收方式。
此外,新能源材料的推广应用也面临一定的技术壁垒和市场竞争。
综上所述,新能源材料具有重要的应用价值和发展潜力。
随着人们对于新能源的需求不断增加,对于新能源材料的研究和应用也将越来越广泛。
新能源材料与器件论文
新能源材料与器件论文随着社会的不断发展,新能源领域的研究日益受到重视。
新能源材料与器件作为新能源技术发展的核心,其研究和应用具有重要的意义。
本文将重点探讨目前新能源材料与器件领域的最新进展和研究趋势。
新能源材料研究新能源材料的研究是新能源技术发展的基础,其性能和稳定性直接影响着新能源器件的效率和可靠性。
近年来,钙钛矿材料作为一种热门的光伏材料备受关注。
其高光吸收系数、光电转换效率和低制备成本使其成为一种理想的太阳能电池材料。
除此之外,石墨烯作为一种具有优异导电性和热传导性的二维材料,也在新能源领域展现出巨大潜力。
研究人员通过改性石墨烯的方法,成功提高了其在光伏和储能器件中的应用性能。
新能源器件设计与制备新能源器件的设计与制备是新能源技术发展的关键环节。
光伏电池作为新能源产业的核心设备,在新能源材料的基础上不断进行优化和创新。
研究人员通过设计新型光伏结构和调控器件界面,提高了光伏器件的光电转换效率和稳定性。
此外,储能技术也是新能源领域的热点之一。
纳米材料作为储能器件的关键材料之一,具有高比表面积和较强的化学稳定性,为储能器件的高性能提供了可能。
新能源材料与器件的未来发展新能源材料与器件领域的研究将会持续深入,未来的发展方向主要包括提高材料性能、降低制备成本、优化器件结构和提高系统整体效率等方面。
随着新能源技术的不断创新和完善,新能源材料与器件将更好地满足社会对清洁能源的需求,推动新能源产业的快速发展。
综上所述,新能源材料与器件作为新能源技术发展的关键领域,其研究和应用具有重要的意义。
不断创新和提高材料性能,将推动新能源技术的发展,为人类社会的可持续发展做出贡献。
期待在未来的研究中,新能源材料与器件领域能取得更大的突破和进步。
新能源材料论文
新能源材料论文新能源材料是近年来发展迅速的研究领域之一。
新能源材料是指利用先进材料技术研制出来的能够转换和存储能量的材料,包括太阳能电池、燃料电池、锂离子电池等。
本文将对新能源材料进行探讨,并介绍其在能源领域的应用。
太阳能电池是一种将太阳能转化为电能的装置。
通过将太阳光照射在太阳能电池上,太阳能会被光敏材料吸收并转化为电能。
新能源材料在太阳能电池领域的应用主要包括有机太阳能电池和钙钛矿太阳能电池。
有机太阳能电池采用有机材料作为光敏材料,具有轻巧、柔性和可塑性等特点,可以广泛应用于建筑物的外墙等场所。
而钙钛矿太阳能电池具有高效转换效率和低成本的优势,被认为是下一代太阳能电池的发展方向。
燃料电池是一种将燃料直接转化为电能的装置。
燃料电池利用材料的化学能直接转化为电能,并且不会产生有害气体排放。
新能源材料在燃料电池领域的应用主要包括质子交换膜燃料电池和固体氧化物燃料电池。
质子交换膜燃料电池采用质子交换膜作为电解质,具有高效率、快速启动和长寿命的特点,被广泛应用于汽车和家庭能源系统等领域。
固体氧化物燃料电池则具有高温操作和高效能的特点,主要用于工业领域的应用。
锂离子电池是一种以锂离子嵌入和脱嵌的方式进行充放电的装置。
锂离子电池具有高能量密度和长循环寿命的特点,被广泛应用于移动通信设备、电动汽车等领域。
新能源材料在锂离子电池领域的应用主要包括锂离子导电材料、电解质材料和电极材料等。
例如,锂离子导电材料采用导电性能较高的材料替代传统的锂离子电池中使用的材料,能够提高锂离子电池的充放电性能和循环寿命。
总之,新能源材料是推动能源转型和可持续发展的关键技术之一。
通过不断研究和开发新能源材料,可以提高能源转换效率、降低能源消耗和污染,并促进经济的可持续发展。
新能源论文[5篇材料]
新能源论文[5篇材料]第一篇:新能源论文新能源助力传统交运企业转型摘要:目前环境污染与能源枯竭问题,已经制约了我国的可持续发展,推进新能源汽车市场的发展已经成为解决此问题的有效手段。
通过研究我国新能源车辆发展现状,针对当前我国新能源车辆在推广问题上碰到的重点与难点问题,从企业发展的角度提出了新能源汽车在交通运输行业推广的对策与建议,为行业管理部门进一步指导新能源汽车的应用与推广实现新能源汽车应用的标准化和规范化提供决策支持关键词:新能源,发展背景,政策,变革,转型。
●新能源客车的主要类型:(1)混合动力客车——约占我国新能源客车市场90%以上份额,是无可争议的主导车型。
对于我国客车行业来说,混合动力主要是柴油—电混合,优点是可以降低30%以上的燃油消耗,排放标准可以达到国Ⅳ水平,缺点是蓄电池容量和寿命问题没有得到彻底解决,混合动力客车属于发展期产品,允许进行批量生产,但只能在批准的区域、范围、期限和条件下销售、使用,并至少对20%销售产品的运行状态进行实时监控,造成单车价格下不来。
(2)纯电动客车——由蓄电池作为动力源。
以电机代替燃油机,噪声低、无污染,使用单一的电能源。
而且,纯电动车的蓄电池可在夜间利用电网的廉价“谷电”进行充电,可以平抑电网的峰谷差。
我国纯电动车主要用于机场、社区、球场等地方。
纯电动客车作为起步进行示范运行,并对全部产品进行实时监控。
(3)燃料电池客车——主要是氢燃料电池客车,被认为是最有前途的产品,能够真正解决能源短缺问题,并且真正实现了零排放。
但也是属于起步期产品。
(4)CNG客车——CNG(压缩天然气)作为一种气体燃料,与空气混合更均匀,燃烧更加充分,排放的CO、HC等有害物质更少;天然气燃烧后没有积炭,可减少发动机磨损,维护保养费用低;天然气发动机改装简单,特别是用汽油机改装的双燃料发动机,因性价比极高,使用广泛;此外更重要的一点是,行驶同样公里数,天然气客车的燃料费用要远低于柴油或者汽油机,经济效益非常高。
新能源论文3000字
新能源论文3000字篇一:风能发电3000字论文风力发电技术在不断持续的能源紧张中,不少人想到了新能源利用。
利用洁净的能源(可再生能源)是人类社会文明进步的表现、是科学技术的发展、是环保理念的体现。
洁净能源指太阳能、风能、潮汐能、生物能等,这都是可再生取之不尽的能源,特别是风能技术最为成熟,经济可行性较高,是一种较理想的发展能源。
风是地球上的一种自然现象,它是由太阳辐射热引起的。
风能是太阳能的一种转换形式,是一种重要的自然能源。
太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。
据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。
全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。
我国风能资源总量约42亿千瓦,技术可开发量约3亿千瓦。
目前东南沿海是最大风能资源区,风能密度为200W/M2~300W/M2,大于6m/s的风速时间全年3000h 以上就可取得较大经济效益。
一风力发电的现状21世纪是可再生能源的世纪,由于风能非常丰富、价格非常便宜、能源不会枯竭,又可以在很大范围内取得,非常干净、没有污染,不会对气候造成影响,因而风力发电具有极大的推广价值。
在中国,风能资源丰富的地区主要集中在北部、西北和东北的草原、戈壁滩以及东部、东南部的沿海地带和岛屿上。
这些地区缺少煤炭及其他常规能源,并且冬春季节风速高,雨水少;夏季风速小,降雨多,风能和水能具有非常好的季节补偿。
另外,在中国内陆地区,由于特殊的地理条件,有些地区具有丰富的风能资源,适合发展风电,比如江西省都阳湖地区以及湖北省通山地区。
目前我国的风能利用方面与国际水平还在一定差距,但是发展很快,无论在发展规模上还是发展水平上,都有很大提高。
据资料显示,“十一五”末九江电网电力开始出现缺额,20xx年缺额将达158兆瓦。
新能源材料论文
新能源材料论文随着全球能源需求的不断增长和传统能源资源的日益枯竭,新能源材料的研究与应用变得愈发重要。
新能源材料的开发和利用对于推动清洁能源产业的发展,促进环境保护和可持续发展具有重要意义。
本文将从太阳能光伏材料、风能发电材料和储能材料三个方面进行论述,探讨新能源材料的研究现状、发展趋势以及未来的应用前景。
首先,太阳能光伏材料作为一种绿色清洁能源,具有广阔的应用前景。
目前,硅基太阳能电池是主流产品,但其成本高、能效低、生产过程能耗大等问题亟待解决。
因此,研究人员正在积极探索新型太阳能光伏材料,如钙钛矿材料、有机-无机杂化材料等,以提高太阳能电池的能效和降低成本,推动太阳能产业的可持续发展。
其次,风能发电材料也是新能源领域的重要研究方向。
风能作为一种清洁、可再生的能源资源,具有巨大的开发潜力。
目前,风力发电机主要采用的是玻璃纤维增强塑料和碳纤维复合材料等,但这些材料存在质量轻、强度高、耐腐蚀等问题。
因此,研究人员正在探索新型的风能发电材料,如纳米复合材料、生物基复合材料等,以提高风力发电机的性能,降低生产成本,推动风能产业的发展。
最后,储能材料作为新能源领域的重要支撑,对于解决新能源波动性大、间歇性强的特点具有重要意义。
目前,锂离子电池是主流的储能设备,但其成本高、能量密度低、安全性差等问题亟待解决。
因此,研究人员正在积极探索新型储能材料,如钠离子电池、钠硫电池、超级电容器等,以提高储能设备的能量密度、循环寿命和安全性,推动储能产业的发展。
综上所述,新能源材料的研究与应用对于推动清洁能源产业的发展,促进环境保护和可持续发展具有重要意义。
未来,随着新能源材料技术的不断突破和创新,相信新能源产业将迎来更加美好的发展前景。
让我们共同努力,为新能源材料的研究与应用贡献自己的力量,推动清洁能源事业迈向新的高度。
新能源材料论文 南京工业大学
聚合物太阳能电池光伏材料的研究进展班级:复材1002 学号:15 姓名:金奇杰摘要:聚合物太阳能电池中给体材料的能级水平、带隙、光吸收系数、溶解性、成膜性及载流子迁移率是决定器件性能的关键因素。
阐述了聚合物太阳能电池中给体材料的最新研究进展,着重介绍了含有苯并双噻吩的窄带隙D-A类型的共聚物,并对一些给体材料的能级水平优化结果做了简单的总结。
最后指出了未来聚合物太阳能电池给体材料今后的发展方向。
关键词:共轭聚合物;聚合物太阳能电池;窄带隙;苯并双噻吩中图分类号:O633 文献标志码:ARecent Progress of the Photovoltaic Materials in Polymer Solar CellsClass: CM1002 SN:15 Name: Jin QijieAbstract:The performance of devices is depend on the energy levels, bandgap, light absorption coefficient, solubility, film forming ability and carrier mobility of the donor materials in polymer solar cells. The recent progress of the in polymer solar cells is reviewed, and the containing benzo bisthien of D-A copolymers is introduced. The energy le photovoltaic materials vels optimization results of the photovoltaic materials are summarized. Furthermore, the future prospects of the photovoltaic materials in polymer solar cells are pointed out.Key words: conjugated polymer; polymer solar cells; narrow bandgap; benzo bisthien1.引言随着人类对能源需求的增加,能源问题成为当今社会面临的重要问题之一。
能源材料的论文范文
能源材料的论文范文关于能源材料的论文新能源是降低碳排放、优化能源构造、实现可持续开展的重要途径, 新能源材料是引导和支撑新能源开展的重要根底, 新能源系统中得到了大量应用。
概要介绍了目前在新能源开展过程中发挥重要作用的核用锆合金、镍氢动力电池关键材料及氢质高容量储氢材料等新能源材料的现状及存在问题。
新能源; 氢能; 新能源材料新能源材料是指支撑新能源开展的、具有能量储存和转换功能的功能材料或构造功能一体化材料。
新能源材料对新能源的开展发挥了重要作用, 一些新能源材料的创造催生了新能源系统的诞生, 一些新能源材料的应用提高了新能源系统的效率, 新能源材料的使用直接影响着新能源系统的投资与运行本钱。
本文主要介绍核用锆合金、锂离子电池关键材料、镍氢动力电池关键材料及氢能燃料电池关键材料等新能源材料的现状及存在问题。
目前得到实际应用的储氢材料主要有AB5型稀土系储氢合金、钛系AB型合金和AB2 型Laves相合金, 但这些储氢材料的储氢质量分数低于212%。
近期美国能源部将xx年储氢系统的储氢质量分数的目标调整为515% , 目前尚无一种储氢方式能够满足这一要求, 因此必须大力开展新型高容量储氢材料。
目前的研究热点主要集中在高容量金属氢化物储氢材料、配位氢化物储氢材料、氨基化合物储氢材料和MOFs等方面的研究。
在金属氢化物储氢材料方面, 北京有色金属研究总院近期研制出Ti32 Cr46 V22 Ce014合金, 其室温最大储氢质量分数可达3165% , 在70 ℃和011 MPa条件下有效放氢质量分数到达215%[ 35 ] 。
目前研究报道的钛钒系固溶体储氢合金, 大多以纯V 为原料, 合金本钱偏高, 大规模应用受到限制, 因此, 高性能低钒固溶体合金和以钒铁为原料的钛钒铁系固溶体储氢合金的研究日益受到重视。
1997年, Bogdanovic等人发现当以Ti(OBun) 4 为催化剂时, NaAlH4 在中温条件( 100~200 ℃)下可实现可逆吸放氢, 其理论储氢质量分数可达516% , 从而掀起了配位氢化物储氢材料的研究热潮。
新能源与材料范文
新能源与材料范文随着全球能源需求的不断增加和传统能源资源的枯竭,寻找替代能源已经成为现代社会的重要课题。
新能源技术的发展,源于对环境问题和能源危机的深刻意识,以及对可持续发展的追求。
而新能源的开发离不开材料科学与工程的支持。
新能源涉及的材料科学与工程包括但不限于:太阳能电池材料、电池材料、储能材料、光伏材料、燃料电池材料等。
这些材料的优劣将直接影响到新能源技术的效率、稳定性和成本等重要指标。
太阳能电池是一种直接将太阳光能转化为电能的技术。
太阳能电池材料的研究与开发是提高太阳能电池效率和降低成本的关键。
目前广泛应用的硅基太阳能电池材料具有稳定性好、寿命长等优点,但其制造成本较高,限制了其在大规模应用中的发展。
因此,研发新型太阳能电池材料成为当前的热点研究方向。
如硒化铜、锌锗硫化物等新型太阳能电池材料已经引起了广泛的关注。
储能材料是实现电能与化学能之间的转换的关键。
目前,储能材料主要包括超级电容器材料和碳纳米管材料。
超级电容器材料具有高能量密度、长循环寿命和快速充放电等特点,被广泛应用于电动汽车、可再生能源和电力系统等领域。
碳纳米管具有优异的电导性能、高比表面积和优秀的力学性能,被认为是一种理想的储能材料。
光伏材料是将光能转化为电能的关键材料。
常见的光伏材料包括硅、镓化合物、有机光伏材料等。
传统的硅光伏材料制造成本高,使用受限,不适合大规模应用。
因此,研究发展新型光伏材料成为提高光伏技术效率和降低成本的关键。
有机光伏材料由于其制备过程简单、成本低、可塑性好等优点,被认为是未来光伏技术的发展方向。
燃料电池是将燃料直接转化为电能的装置,被广泛应用于交通运输、电力供应和航空航天等领域。
燃料电池材料包括电极材料、电解质材料和催化剂材料等。
研发高效的电极材料、稳定的电解质材料和廉价的催化剂材料,可以提高燃料电池的转化效率和稳定性,推动燃料电池技术的发展。
综上所述,新能源与材料的研究与开发是实现可持续能源的关键。
新能源与材料科学论文
《新能源材料论文》院系:辽宁科技大学无机11 姓名:杨赫学号:就目前来说,人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。
(1)太阳能集热器太阳能热水器装置通常包括太阳能集热器、储水箱、管道及抽水泵其他部件。
另外在冬天需要热交换器和膨胀槽以及发电装置以备电厂不能供电之需。
太阳能集热器(solar collector)在太阳能热系统中,接受太阳辐射并向传热工质传递热量的装置。
按传热工质可分为液体集热器和空气集热器。
按采光方式可分为聚光型集热器和吸热型集热器两种。
另外还有一种真空集热器:一个好的太阳能集热器应该能用20~30年。
自从大约1980年以来所制作的集热器更应维持40~50年且很少进行维修。
(2)太阳能热水系统早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。
太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。
此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。
依循环方式太阳能热水系统可分两种:1、自然循环式:此种型式的储存箱置于收集器上方。
水在收集器中接受太阳辐射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现像,促使水在除水箱及收集器中自然流动。
由与密度差的关系,水流量于收集器的太阳能吸收量成正比。
此种型式因不需循环水,维护甚为简单,故已被广泛采用。
2、强制循环式:热水系统用水使水在收集器与储水箱之间循环。
当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水使水流动。
水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。
由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。
如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。
【论文】新能源材料结课论文
【关键字】论文18 宋正坤电气与电子工程学院电气1007班新能源材料结课论文对于新能源而言,目前有较大规模发展的大致有风能、太阳能、生物质能三类。
对于新能源的利用,最有前景的方式莫过于用来发电。
相比较而言,风力发电更有其规模性与技术基础。
下面首先分析太阳能发电与生物质能发电的优缺点。
太阳能发电的优点:1:太阳能取之不尽,用之不竭,地球表面接受的太阳辐射能,足够目前全球能源需求的1万倍,只要在全球4%的沙漠安装太阳能就可以满足全球需要。
2:安全可靠,不受能源危机和燃料市场不稳定的冲击。
3:太阳能处处可得到,不必远距离运输,躲免长距离输电线路的损失。
4:不用燃料,运行成本很低。
5:太阳能发电没有运动部件不易损坏,维护简单。
6:太阳能发电过程中不易产生污染废弃物,是理想的清洁能源。
7:太阳能发电系统建设周期短,方便灵活,可以根据负荷的增减,任意添加或减少太阳能方阵,躲免浪费。
太阳能发电的缺点:1:地面应用时有间歇性,在晚上或阴雨天不能或很少发电。
2:能量密度低,一般情况下,每平方米,太阳强度为1000W/m2。
3:目前价格较高,为常规电价的5-15倍。
针对太阳能发电的优缺点可知,太阳能发电具有极大的地域限制以及规模化生产限制,大面积覆盖在短期内实现仍有较大难度。
生物质能发电的优点:生物质能与传统化石能源相比具有可再生性、低污染性、分布广泛性和储量丰富的特点。
生物质属可再生资源,通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用。
生物质的硫含量、氮含量低,燃烧过程中生成的硫化物、氮化物较少,因而可有效地减轻温室效应。
生物质能储量丰富,根据专家估算,地球陆地每年生产1000-1250亿吨生物质,海洋年生产500亿吨生物质。
生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。
生物质能发电的缺点:燃烧秸杆发电是一种,成本高,效率低,应用范围很小的发电方式。
新能源材料论文
题目:新能源材料的应用与发展前景学院:材料科学与工程学院2013年11月26日目录0.摘要 (2)1.太阳能电池及光伏材料 (2)2.风电机组叶片材料 (3)3.贮氢材料 (4)4.镍氢电池和锂离子电池 (5)4.1.镍氢电池 (5)4.1.1.镍氢电池基本简介 (6)4.1.2.镍氢电池电池材料 (6)4.1.3.镍氢电池研究进展 (7)4.2.锂离子电池 (7)4.2.1.锂离子电池基本简介 (7)4.2.2.锂离子电池充放电原理及其电池材料 (7)4.2.3.锂离子电池的应用前景 (9)5.燃料电池 (10)5.1.燃料电池的基本原理及组成 (10)5.2.燃料电池的分类 (11)5.3.燃料电池的优缺点 (12)6. 新能源材料有待解决的课题 (12)7.参考文献 (12)摘要人类社会对能源的需求持续增长,能源需求结构也在发生变化,与此同时人类又面临着矿物能源环境污染和枯竭的难题,这一切都激励着新能源的出现和发展。
太阳能、氢能、核能、生物能、风能、地热能、海洋能等被认为是新能源,但它们必须依靠新材料的开发与应用才能得以实现,并进一步提高效率、降低成本。
新能源材料就是用于新能源生产、转换和应用所需的材料。
新能源材料有以下特点:1.新材料把原来已经使用的能源变成新能源,更便于使用;2.一些新材料可提高储能和能量转化效果;3.新材料保障了核反应堆等新能源的安全;4.材料工艺决定着新能源的成本。
AbstractHuman society’s demand for energy continued growth, energy demand structure is changing, at the same time the human faces pollution and depletion of fossil energy environment problem, this all motivated the emergence of new energy and development. Solar energy, hydrogen energy, nuclear energy, bio energy, wind energy, geothermal energy, ocean energy is considered to be a new energy, but they must rely on the development and application of the new materials can be realized, and further improve efficiency, reduce costs. Shinno source material for ability of Industrial sources, Change sum Application required plant material. Shinno source material have the following Features:1.New materials have used the original energy into new energy sources, easier touse;2.Some new materials to improve energy storage and energy conversion effect;3.New materials to protect the safety of nuclear reactors and other new energy;4.Materials technology determines the cost of new energy sources.关键词:太阳能电池贮氢材料风电机叶片镍氢电池锂离子电池燃料电池1.太阳能电池及光伏材料我国地面接收的太阳能资源非常丰富,辐射总量为3340~8400(MJ/m2)/a,主要分布在我国的西北、华北以及云南中部和西部、广东东南部、福建东南部、海南岛东部和台湾西南部等地区。
新能源材料的发展前景分析论文
新能源材料的发展前景分析论文在当今社会,随着环境污染和能源危机的日益加剧,新能源材料的研究和应用变得日益重要。
新能源材料作为替代传统能源的重要组成部分,被广泛研究和应用于各个领域。
本文将从新能源材料的定义、分类、应用前景以及发展趋势等方面进行深入分析。
首先,新能源材料是指那些可以转化各种可再生能源为电能或其他形式能量的材料。
根据能源来源的不同,新能源材料可分为太阳能材料、风能材料、水能材料等。
这些材料能够有效利用特定能源并转化为可供人类使用的能量,对于解决能源危机和减缓环境污染具有重要意义。
其次,新能源材料在各个行业中都有广泛的应用前景。
在能源领域,新能源材料可以用于太阳能发电、风力发电、水力发电等,取代传统的化石能源,减少碳排放并保护环境。
在交通运输领域,新能源材料可以用于制造电动汽车、氢燃料电池车等,降低对传统石油资源的依赖,减少空气污染。
在建筑领域,新能源材料可以用于建设智能高效的绿色建筑,减少能耗,提高能源利用效率。
未来,新能源材料的发展趋势将主要集中在以下几个方面。
首先,新能源材料将不断提高能源转换效率和储能性能,以满足不同领域对能源密度和稳定性的需求。
其次,新能源材料将不断降低成本,提高生产工艺的可持续性,从而推动其大规模应用和市场普及。
此外,新能源材料也将不断创新,拓展应用领域,以适应社会经济的发展和需求变化。
综上所述,新能源材料作为未来替代传统能源的重要选择,具有广阔的应用前景和发展空间。
随着技术的不断进步和创新,我们有理由相信新能源材料将为人类社会的可持续发展提供重要支持,推动能源革命的到来。
相信在不久的将来,新能源材料将成为能源领域的主流,成为人类社会迈向更加绿色、清洁与可持续的重要力量。
新能源材料与器件结课论文
新能源材料与器件结课论文第一篇:新能源材料与器件结课论文新能源汽车的发展及应用--------燃料电池电动汽车随着煤、石油、天然气等传统化石能源的开采和利用,全球可供使用的资源越来越少;另外,在传统能源的使用过程中,能源的过度使用也引起了温室效应等一系列问题。
面临着这些问题,开发新型的、可持续发展的能源技术迫在眉睫,因此,新能源材料技术应运而生。
新能源材料的出现带动了工业的进一步发展,比如新能源汽车就是在这一背景下诞生。
新能源汽车是指采用非常规的车用燃料作为动力来源或者使用常规的车用燃料、采用新型车载动力装置,综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。
包括增程式电动汽车、混合动力汽车、氢发动机汽车、燃料电池电动汽车、纯电动汽车、其他新能源汽车等。
一、工作原理普通汽车的工作原理是由发动机将热能转变为机械能的过程,是经过进气、压缩、作功和排气四个连续的过程来实现的,每进行一次这样的过程就叫一个工作循环。
而新能源汽车按照动力的不同,其工作原理也各不相同。
以燃料电池电动汽车为例,其利用氢气和空气中的氧在催化剂的作用下.在燃料电池中经电化学反应产生的电能作为主要动力源驱动的汽车。
燃料电池电动汽车实质上是纯电动汽车的一种,主要区别在于动力电池的工作原理不同。
一般来说,燃料电池是通过电化学反应将化学能转化为电能,电化学反应所需的还原剂一般采用氢气,氧化剂则采用氧气,因此最早开发的燃料电池电动汽车多是直接采用氢燃料,氢气的储存可采用液化氢、压缩氢气或金属氢化物储氢等形式。
二、燃料电池车的结构燃料电池城市客车动力系统主要有燃料电池发动机、动力蓄电DC/DC变换器、能量控制单元、电机及其控制系统组成。
其控制系统为线传操控系统。
燃料电池电动汽车的布置形式大概分为五种:单一的FC驱动结构(由燃料电池DC/DC、控制器、电动机组成)、FC+B系统结构(DC LINK)、FC+UC系统结构(超级电容器)、FC+B+UC(动力电池)、FC+B+FW(超高速飞轮)等几种情况。
新能源材料的发展前景及趋势论文
新能源材料的发展前景及趋势论文随着全球环境问题愈发凸显,新能源材料的研究和应用日益受到关注。
新能源材料是指能够高效转化、存储和利用能量的材料,代表了未来能源技术的发展方向。
在当前新能源热潮的推动下,新能源材料的发展前景前所未有地广阔,趋势也愈发清晰。
一方面,在能源全球化和多样化的趋势下,石油、煤炭等传统能源资源的有限性和环境污染问题已经日益凸显,这也促使了新能源材料的发展。
太阳能、风能等可再生能源因其清洁、无限的特点而备受关注,而新能源材料作为这些能源的核心组成部分,其研究和应用将为新能源技术的发展提供强有力支撑。
另一方面,随着科技的不断进步,新能源材料领域也在不断涌现出各种创新材料。
比如,具有高效能量转化率和稳定性的光催化材料、高能量密度和长循环寿命的电池材料等,都是当前研究的热点。
这些新材料的研究不仅可以推动新能源技术的创新,也有助于解决能源存储和利用方面的难题。
未来,新能源材料的发展趋势将主要体现在以下几个方面:首先,新能源材料将更加注重材料本身的性能和稳定性。
随着新能源技术的商业化进程加快,对材料的稳定性、成本效益等方面的要求也将越来越高。
其次,新能源材料的研究将更加跨学科化。
新能源技术的发展需要材料学、物理学、化学等多个学科的共同努力,不同学科之间的融合将为新能源材料的研究带来更多可能性。
再次,新能源材料的开发将更加注重实际应用。
材料的研究不仅需要追求基础科学的突破,更需要关注材料在实际应用中的表现,以满足不同场景下的需求。
总的来说,新能源材料的发展前景广阔,趋势也逐渐清晰。
未来的发展将离不开对新能源材料性能的不断提升和跨学科合作的深化,相信在多方合作的推动下,新能源材料必将迎来更加辉煌的发展前景。
新能源材料论文
新能源材料论文新能源材料是指在能源产业中广泛应用的材料,如太阳能电池材料、燃料电池材料、锂离子电池材料等。
随着世界能源危机的日益严重以及对环境污染的担忧,新能源材料的研究和开发变得尤为重要。
本文将介绍太阳能电池材料、燃料电池材料和锂离子电池材料的研究现状和发展趋势。
太阳能电池材料是利用光电效应将太阳能转化为电能的材料。
目前常用的太阳能电池材料包括单晶硅、多晶硅、铁蓝石等。
其中,单晶硅具有高转换效率和稳定性,但成本较高。
多晶硅成本较低,但效率稍低。
铁蓝石是一种新型太阳能电池材料,具有高效率和较低成本的优势,但目前还存在一些挑战,如稳定性和制备工艺等。
未来,太阳能电池材料的研究方向主要集中在提高转换效率、降低成本和提高稳定性方面。
燃料电池材料是指用化学反应将化学能转化为电能的材料。
燃料电池能直接将氢与氧气反应产生电能,且排放物为水,具有环保和高效的特点。
燃料电池材料主要包括氢氧化钴、负载型贵金属催化剂等。
目前,燃料电池材料研究的主要问题是提高催化剂的活性和稳定性,降低贵金属的使用量和成本。
未来,燃料电池材料的发展方向主要集中在研究非贵金属催化剂、提高催化剂的稳定性和活性等方面。
锂离子电池材料是指用锂离子在正负极之间进行电荷和放电的材料,广泛应用于移动电子设备和电动车等领域。
锂离子电池材料主要包括正极材料、负极材料和电解质材料。
目前,常用的锂离子电池材料有锂铁磷酸盐、锰酸锂、氧化钴等。
锂离子电池材料的研究重点主要集中在提高能量密度、延长循环寿命和降低成本等方面。
未来,锂离子电池材料的发展方向主要包括研究新型正负极材料、提高电解质的导电性和稳定性等。
总之,新能源材料的研究和开发对于解决能源危机和环境问题具有重要意义。
太阳能电池材料、燃料电池材料和锂离子电池材料作为新能源领域的重要组成部分,目前正面临着一些挑战和机遇。
未来的发展方向主要包括提高转换效率和稳定性、降低成本和寿命等。
希望通过持续的研究和创新,能够推动新能源材料的发展,实现可持续能源的利用和环境保护的目标。
新能源材料与能源转化技术毕业论文
新能源材料与能源转化技术毕业论文作为新能源科学与工程专业的研究领域,新能源材料与能源转化技术在解决全球能源问题、推动可持续发展以及减少环境污染方面具有重要意义。
本论文将对新能源材料与能源转化技术的发展现状、应用领域以及未来前景进行深入探讨。
第一章:引言1.1 研究背景1.2 研究目的与意义第二章:新能源材料的概述与分类2.1 光伏材料2.1.1 单晶硅材料2.1.2 多晶硅材料2.1.3 可撒型薄膜太阳能电池材料2.2 燃料电池材料2.2.1 氢氧化物燃料电池(Alkaline Fuel Cell, AFC)2.2.2 聚合物电解质膜燃料电池(Polymer Electrolyte Membrane Fuel Cell, PEMFC)2.2.3 固体氧化物燃料电池(Solid Oxide Fuel Cell, SOFC)2.3 锂离子电池材料2.3.1 正极材料2.3.2 负极材料2.3.3 电解质材料第三章:能源转化技术的研究进展与应用3.1 光伏发电技术3.1.1 单晶硅太阳能电池3.1.2 薄膜太阳能电池3.1.3 多结太阳能电池3.2 燃料电池技术3.2.1 聚合物电解质膜燃料电池应用3.2.2 固体氧化物燃料电池应用3.2.3 燃料电池发电系统3.3 锂离子电池技术3.3.1 锂离子电池在电动车领域的应用3.3.2 锂离子电池在储能领域的应用第四章:新能源材料与能源转化技术的挑战与未来展望4.1 挑战4.1.1 成本4.1.2 储能技术4.1.3 可持续性4.2 未来展望4.2.1 新型材料的开发4.2.2 能源转化效率的提高4.2.3 可再生能源的推广与应用第五章:结论5.1 主要研究成果5.2 存在的问题与不足5.3 进一步研究的方向与建议参考文献以上是对新能源材料与能源转化技术的毕业论文大纲的一个示范。
在正式写作时,可以进一步扩展每个章节的内容,并引用相关的文献和实验数据,以支持论文的论述。
新能源材料的研究报告进展及其应用论文
新能源材料的研究进展及其应用摘要:新能源材料是指支撑新能源开展的、具有能量储存和转换功能的功能材料或构造功能一体化材料。
新能源是降低碳排放、优化能源构造、实现可持续开展的重要途径,新能源材料是引导和支撑新能源开展的重要根底,对新能源的开展发挥了重要作用,一些新能源材料的创造催生了新能源系统的诞生。
在新能源系统中得到了大量应用。
主要介绍目前在新能源开展过程中发挥重要作用的锂离子电池关键材料、相变储热材料及储氢材料等新能源材料的现状应用及存在问题。
关键词:新能源;储热;储氢Progress in Research of Green EnergyMaterials Abstract: New energy materials refers to the functional material or structure function integrationmaterial supporting the development of new energy, with energy storage and conversion function.Utilizing green energy is one of the ways to decrease carbon em ission, optimize energy structure and realizesustainable development. New energy materials are important for guiding and supporting the development of new energyand are extensively used in the new energy systems. Current status and existing problems of some new energy materialsthatplay important roles in the developing process of new energy, such as relatedmaterials for batteries, and hydrogen energy and fuel cells, phase change thermal storage materials and hydrogen storage materialsare briefly introduced. Key words:new energy; thermal storage;hydrogen storage引言新能源和再生清洁能源技术是21世纪世界经济开展中最具有决定性影响的5个技术领域之一。
新能源材料论文
新能源材料展观当今世界,随着人类对传统资源如煤矿等的过度开采和利用,引发了一些环境污染问题,也引起了社会各界人士的广泛关注,如今,能源问题已成为全球关注的重大问题。
各大国在经济竞争的同时,也在竞争着对新能源的开发及利用。
因而,为了使人类更加合理地利用自然资源,同时也为了国家的可持续发展,新能源材料的研发已经成为国家科技战略的基本内容。
新能源是指传统能源之外的各种能源形式,主要包括太阳能、地热能、风能、海洋能以及由可再生能源衍生出的生物燃料和氢所产生的能量。
新能源材料是指实现新能源的转化和利用以及发展新能源技术中所要用到的关键材料。
新能源材料主要包括:太阳能电池材料、镍氢电池材料、锂离子电池材料、反应堆核能材料。
一、光伏材料太阳能光伏材料是目前我国正大力发展的新能源材料。
光伏材料是能将太阳能直接转换成电能的材料。
光伏材料又称太阳电池材料,只有半导体材料具有这种功能。
可做太阳电池材料的材料有单晶硅、非晶硅、多晶硅、GaAs、GaAlAs、InP、CdS、CdTe等。
其中单晶硅、多晶硅、非晶硅材料已实现批量生产。
二、反应堆核能材料反应堆核能材料以铀、氘、氚为代表。
其中铀是高能量的核燃料,1千克铀可供利用的能量相当于燃烧2050吨优质煤。
三、镍氢电池材料镍氢电池是现代电子产品中使用最为广泛的绿色环保电池之一,具有单体容量大、放电特性平稳、通用性强、发热量小等优点。
缺点是体积大、自身重量大。
汽、东风电动车辆股份有限公司和长安汽车等单位在其开发的混合动力轿车、混合动力客车中,大多使用了镍氢动力电池。
四、锂离子电池材料锂离子电池的优点有:工作电压高;比能量高;循环寿命长;自放电小;记忆效应小;对环境无污染。
我们平时所使用的手机电池、笔记本电池都是锂离子电池,锂离子电池产业在我国也发展得十分繁荣。
新能源材料的研发是全球科研的趋势,作为当代大学生,应当抓住这个机遇,积极投身新能源事业,通过提高新能源的技术工艺,克服生产难关,来达到绿色、环保、和谐的科技创新之路。
以新能源为主题的论文:《新能源:引领未来的绿色力量》
《新能源:引领未来的绿色力量》摘要:本文深入探讨了新能源的重要性、种类、发展现状以及面临的挑战与机遇。
通过对新能源在可持续发展、环境保护和经济增长等方面的作用进行分析,强调了加快新能源发展的紧迫性和必要性。
同时,提出了促进新能源发展的策略和建议,以推动全球向绿色、可持续的能源未来迈进。
关键词:新能源;可持续发展;环境保护;能源转型一、引言随着全球经济的快速发展和人口的不断增长,对能源的需求也日益增加。
然而,传统的化石能源面临着资源枯竭、环境污染等诸多问题,已无法满足人类可持续发展的需求。
在这种背景下,新能源的开发和利用成为了全球关注的焦点。
新能源具有清洁、可再生、高效等特点,被认为是引领未来的绿色力量,将在能源转型、环境保护和经济发展等方面发挥重要作用。
二、新能源的重要性(一)可持续发展的需要传统化石能源的有限性和不可再生性决定了其无法满足人类长期的能源需求。
而新能源,如太阳能、风能、水能等,是可再生能源,取之不尽、用之不竭,能够为人类提供可持续的能源供应,保障经济社会的可持续发展。
(二)环境保护的要求化石能源的燃烧会产生大量的污染物,如二氧化碳、二氧化硫、氮氧化物等,对大气、水和土壤造成严重污染,导致全球气候变化、酸雨、雾霾等环境问题。
新能源在使用过程中几乎不产生污染物,对环境友好,能够有效减少环境污染,保护生态环境。
(三)经济增长的新动力新能源产业是一个新兴的产业,具有巨大的发展潜力。
新能源的开发和利用可以带动相关产业的发展,如新能源设备制造、新能源技术研发、新能源工程建设等,创造大量的就业机会,促进经济增长。
三、新能源的种类(一)太阳能太阳能是最常见的新能源之一,通过太阳能电池板将太阳光转化为电能。
太阳能具有资源丰富、分布广泛、清洁无污染等优点,是未来能源发展的重要方向之一。
(二)风能风能是利用风力发电机将风能转化为电能。
风能资源丰富,分布广泛,且成本相对较低。
随着风力发电技术的不断进步,风能在全球能源结构中的比重也在逐渐增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚合物太阳能电池及材料概述
摘要:近年来随着对能源的极大需求,太阳能电池市场显示出了可观的发展前景。
而聚合物太阳能电池材料基于其合成工艺简单、易加工、易成膜及电池制作方便等优点,引起了广大学者的广泛关注。
本文主要对聚合物太阳能电池及材料,以及聚合物太阳能电池原理和聚合方法进行了阐述,并对太阳能电池光电转换效率及相关材料的发展进行了展望。
关键词:聚合物;太阳能电池;光电转化效率
近年来,随着全球能源需求量的逐年增加及一次性能源的逐渐枯竭,人们把眼光投向了氢能、太阳能等可再生能源。
而太阳能是一种清洁、高效和永不衰竭的新能源,是未来最有希望的能源之一。
同时,由于太阳能光伏发电具有安全可靠、无污染、制约少、故障率低、且维护简便等诸多优点,从而为人类大规模利用太阳能开辟了广阔的前景。
而通过有效的现代技术,如真空镀膜、分子组装等技术所制备的柔性聚合物太阳能电池器件,成本低廉、合成工艺简单、容易加工和成膜、电池制作的结构可多样化。
基于以上优点,聚合物太阳能电池材料的开发和研究引起了广大科学者的广泛关注。
1 聚合物太阳能电池工作原理
聚合物太阳能电池的基本工作原理与无机太阳能电池相似,概括的说是基于半导体异质结(p—n结) 或金属/半导体界面附近的光生伏特效应(Photovohaic Effect)。
具体过程为:在光照下,给体和受体分子被激发至各自的激发态,即电子从最高占有分子轨道(HOMO)激发到最低未占有分子轨道(LUMO),从而产生了电子一空穴对(激子)。
然后,给体中的光生电子快速的转移至受体,同时受体中的光生空穴快速的转移至给体。
这个转移过程在几个皮秒内完成,从而有效地阻止了光激发元的发光复合,导致了高效的电荷分离。
这样,在外场作用下,电子和空穴分别向阳极和阴极迁移,运动形成了光电流。
2 聚合物太阳能电池材料
2.1 电子给体材料
常见的电子给体材料主要有聚对苯撑乙烯类(PPV)、聚芴类(PF)、聚噻吩类(PT)等。
2.1.1 聚对苯撑乙烯(PPV)及其衍生物
聚对苯乙烯类电子给体材料具有易于合成、性能比较稳定等特点。
目前常用的PPV材料主要有2一甲氧基一5一(2一己基己氧基)一1,4一对苯撑乙烯(MEH—PPV)和聚[2一甲氧基一5一(3’,7’一二甲基一辛氧基)]对苯撑乙烯(MDMO—PPV),该类材料具有较好溶解性和较强的吸收峰。
2.1.2 聚芴(vr)及其衍生物
聚芴及其衍生物具有较高的热和化学稳定性,并通过在9位上引入柔性烷基的方法,可以提高聚芴的溶解性,从而获得较好的薄膜。
但通常过程下,聚芴具有较大的带隙,若通过偶联共聚的方法在主链中引入杂环、多芳环或芳杂环,则合成得到的窄带隙芴基共聚物的发射光谱在可见光范围内,从而使得该类材料在聚合物太阳能电池方面有了很大的应用。
因此,聚芴类聚合物材料是近十年来研究的较为深入和广泛的共轭聚合物之一。
2.1.3 聚噻吩(Pr)及其衍生物
聚噻吩化合物具有类似芳香环的结构,且环境稳定性好、具有良好的溶解性、成膜性好、具有很高的迁移率和光谱响应等特点,是做光伏电池的理想材料。
而且可通过简单的主链上的取代反应来修饰聚合物改变其性能,使其带隙降低,从而得到与太阳光谱相匹配的窄带隙聚合物。
目前研究最广的是不同取代基的噻吩以及并噻吩基聚合物,如聚3一己基噻吩(P3HT) 、PTPTB 、PDDBT、PDDTI等。
除以上几种聚合物外,聚吡咯(PPy) 、聚苯胺等共轭聚合物作为电子给体材料的研究也较为广泛。
但由于该类聚合物的共轭性能和电荷传输的性能较差,因此得到的太阳能光伏器件的能量转换效率较低。
2.2 电子受体材料
富勒烯衍生物是目前研究最多的电子受体材料。
原因在于富勒烯分子为叮r电子共轭体系,具有较高的表面能,易吸收电子,且从激子中产生的电子可在富勒烯网络结构中传输。
然而,未加修饰的富勒烯分子的溶解性较差、易聚集,成膜性较差。
因此,为提高其溶解性,一般采用在富勒烯分子上接枝的方法。
最常见的是[6,6]一PCBM。
通过增加聚合物薄膜中富勒烯组分的比例的方法,从而提高太阳能电池的转换效率。
另外,C加和C 一样,也可与共轭聚合物(如聚对苯撑乙烯衍生物、聚噻吩衍生
物等)共混形成电池的活性层,因此也是很好的电子受体材料。
3.展望
虽然聚合物太阳能电池的光电转换效率已经达到了6%左右,但是与成熟的无机太阳能电池相比,聚合物太阳能电池的光谱匹配、光电性能及稳定性方面还较低。
因此,要想获得光谱响应和光电转换效率较好的聚合物太阳能电池需从以下几点着手:(1)形成聚合物材料的单体具有较大的刚性结构,且易通过烷基化等方式提高其溶解性;(2)在聚合物中引入窄带隙的共轭单元,从而增加共轭程度,降低带隙;(3)开发新的电子受体聚合物材料等。