亲核加成

合集下载

亲核加成反应

亲核加成反应
O OH R2 H H OH
+ HN
H H R3
H
H N R2 OH R3 H
- H2O
N R2 O R3
+
RHC R1
-H
RHC CH2 R3R2N R1 RHC CH2NR2R3 R1
如是碱催化,则由碱与活泼氢化合物作用生成碳负离子再和醛与胺形成的加成 产物作用。
O O
+ OH
R1 R1
+ H2O
可以采取其它几种方法制备烯胺。如把酮和仲胺混合后,加入四氯化钛作脱 水剂,很快就能生成烯胺,此方法对于普通的胺和有位阻的胺都适用。
O R1 NR1R2 R1
5
R2
NH + 2 RH2C R3
+ TiCl4
2 RHC
R3
+ 4
R2
NH2Cl
+ TiO2
或把仲胺转化成三甲基硅基衍生物,由于硅具有强烈的亲氧不亲氮的性质, 故能在较温和的条件下形成烯胺。
Z=R,Ar,OH,HZAr,HNCONH2.......
在酸性条件下,质子加到羰基的氧原子上,增加了羰基碳原子上的正电荷,有 利于亲核加成,所以这些反应能被酸所催化。
O
+ H
C
OH
但质子又可以结合反应物H2N-Z,使之失去活性。所以此类反应有一最合适的 PH值,从而使相当一部分羰基化合物质子化,又能使游离的含氮化合物保持一 定的浓度。在这一最合适的PH值下,反应速率最大。
O OH
O
R3
+
H H H
H N R2 R2 N
H
R1
R2R3NCH2CH2COR1
- OH
R3

亲核加成

亲核加成
_ + CH3
NO2
_ + CH3
H H H C C NO2 CH3 NO2
2
碳-碳双键的亲核加成反应
• 亲核试剂对碳-碳双键加成的反应历程: • 反应的第一步是亲核试剂带着一对电子进攻双键 上的一个碳原子,而电子则被集中到另一个双键 碳原子上形成碳负离子,这是慢的一步。第二步 是碳负离子与质子或带正电荷的物质结合形成产 物。
+ E+ C C Nu E C C Nu
3
C C
+ E Nu
• 一些常见得促进亲核加成反应的取代基有: CHO、 COR、COOR、 CN、NO2、 CONH2、SO2R等。 它们通过降低碳-碳双键碳原子上的p电子云密度 来促进亲核试剂的进攻,但更重要的是,这样的 取代基能使生成的碳负离子中间体的负电荷分散 而得到稳定。
C2H5O
-
H O C C C CH3
1)水解 2)加热
O
7
碳-碳三键的亲核加成反应
• 碳-碳三键通常比双键更容易被亲核试剂进攻,而较难被 亲电试剂进攻。这是因为碳-碳三键之间的距离较短,三 键中的电子被束缚的比双键中的紧,所以进攻的亲电试剂 夺取三键中的一个电子较困难。从杂化角度来考虑,三键 碳原子(sp杂化)比双键碳原子(sp2杂化)具有较多的s成分, 因此它与电子的结合力较强,表现出较强的亲电性。
O
NH2NH2
NNH2
NH2NHCONH2
NNCONH2
RSH
• 羰基化合物与醇的反应
• 醛(酮)能与一分子醇加成生成半缩醛(酮)。半缩醛(酮)不稳 定,容易分解成醛(酮)和醇或与另一分子醇进一步缩合, 生成缩醛(酮)。 • 由于缩醛(酮)生成后又可水解成原来的化合物,故可利用 缩醛(酮)生成还保护醛(酮)基。 • 环状缩醛(酮):最常见的是利用羰基化合物和乙二醇反应, 生成二氧戊环化合物,该化合物比烷基缩醛(酮)更加稳定, 可耐大多数碱性及中性的反应条件。

亲核加成反应机理

亲核加成反应机理

亲核加成反应机理一、介绍亲核加成反应是有机化学中一种重要的反应类型。

它通过亲核试剂攻击电荷不饱和的碳原子,形成新的碳-亲核键,并伴随有官能团的转换。

本文将对亲核加成反应的机理进行全面、详细、完整且深入地探讨。

二、亲核加成反应概述亲核加成反应是一类重要的有机化学反应,其主要特点是用亲核试剂攻击双键或三键上的电子,形成新的化学键。

亲核试剂可以是阴离子、中性分子或阳离子。

在亲核加成反应中,亲核试剂通常经历亲核进攻、负离子重排和质子化等阶段。

1. 亲核进攻亲核试剂在亲核加成反应中起到亲核进攻的作用。

通常情况下,亲核试剂具有可用的自由电子对,能与电子不足的碳原子形成新的化学键。

亲核进攻的速率和选择性受到亲核试剂的性质、反应条件和底物的结构等因素的影响。

2. 负离子重排在某些亲核加成反应中,亲核试剂的亲核进攻会导致反应过渡态产生负电荷,形成负离子。

负离子重排是亲核加成反应中的一个重要步骤,可以通过改变碳原子的排列顺序来稳定负离子。

3. 质子化质子化是亲核加成反应中的最后一个阶段,通过给亲核试剂或负离子成员质子化,使反应产物获得更稳定的结构。

质子化通常发生在负离子重排之后。

三、亲核加成反应的分类亲核加成反应可根据亲核试剂和底物的不同进行分类。

下面将对几种常见的亲核加成反应进行介绍。

1. 碱性条件下的亲核加成反应在碱性条件下,亲核试剂通常是醇、酚、胺等带有孤对电子的化合物。

这类亲核试剂能够与电荷不饱和的碳原子形成新的化学键。

碱性条件下的亲核加成反应常用于合成醇、酚、胺等化合物。

2. 酸性条件下的亲核加成反应在酸性条件下,亲核试剂通常是具有孤对电子的阴离子,如卤素离子、亚硫酸根离子等。

酸性条件下的亲核加成反应可以用于合成卤代烷、磺酸酯等化合物。

3. 中性条件下的亲核加成反应在中性条件下,亲核试剂通常是中性分子,如水、醛、酮等。

中性条件下的亲核加成反应常用于合成醇、酮等化合物。

四、亲核加成反应的机理解析1. 碱性条件下的亲核加成反应机理以醇作为亲核试剂为例,碱性条件下的亲核加成反应机理如下:1.酸性条件下,氧上的醇质子化生成质子化醇。

有机化学基础知识点亲核加成反应的机理

有机化学基础知识点亲核加成反应的机理

有机化学基础知识点亲核加成反应的机理亲核加成反应是有机化学中一种重要的反应类型,常见于碳原子与亲核试剂之间的化学反应。

在亲核加成反应中,亲核试剂攻击电子不饱和化合物中的亲电中心,形成化学键。

本文将探讨亲核加成反应的机理,并介绍几种典型的亲核加成反应。

一、机理介绍亲核加成反应的机理通常分为两步:亲核试剂的攻击和中间物的转变。

1. 亲核试剂的攻击亲核试剂(Nu^-)攻击亲电中心(通常是碳原子)是亲核加成反应的第一步。

亲核试剂的正电荷亲密接触到亲电中心,形成一个新的化学键。

亲核试剂的反应活性基团(如氢、氧、卤素等)与亲电中心形成共价键。

2. 中间物的转变中间物的转变是亲核加成反应的第二步。

在中间物转变过程中,通常发生一系列的质子转移、断裂和重组步骤。

这些步骤可能涉及过渡态的形成和裂解,从而改变化合物的结构。

二、典型亲核加成反应案例以下是几种常见的亲核加成反应,以展示亲核加成反应的机理。

1. 酯的水解反应酯的水解反应是一种典型的亲核加成反应。

在碱性条件下,水分子作为亲核试剂攻击酯的羰基碳,在酸催化下进行酯的水解反应。

反应过程中,产生的中间物经过质子转移和断裂反应后,生成酸和醇。

2. 溴代烃的亲核取代反应在碱性条件下,亲核试剂(如氢氧化钠)攻击溴代烃中的溴原子,形成亲核取代产物。

此过程中,亲核试剂中的氧原子攻击溴原子,形成碳氧双键,然后其他基团进行重排,最终生成相应的取代产物。

3. 醛/酮的亲核加成反应醛和酮是常见的亲电中心,可以与亲核试剂发生亲核加成反应。

例如,醛和酮可以与氢氰酸反应形成氰醇化合物。

在这个过程中,氰离子作为亲核试剂攻击醛或酮的羰基碳,形成碳氮键,同时产生一个羟基。

4. 酸催化的醇与双键的加成反应在酸催化下,醇可以与烯烃中的双键发生亲核加成反应。

在反应过程中,醇中的氧原子攻击烯烃的亲电中心,形成一个新的碳氧键。

此外,酸催化也可促进醇与烯烃的异构化反应,产生具有不同结构的化合物。

总结:亲核加成反应是有机化学中常见的反应类型,可以用于合成新的有机分子。

有机化学中的亲核加成与消除反应

有机化学中的亲核加成与消除反应

有机化学中的亲核加成与消除反应亲核加成和消除反应是有机化学中两种重要的反应类型,广泛应用于有机合成、药物化学、材料科学等领域。

本文将对亲核加成和消除反应的概念、机理和应用进行介绍。

一、亲核加成反应亲核加成反应是指亲核剂(也称为亲核物质)与电子不足的亲电试剂发生反应,亲核剂的亲电性中心攻击亲电试剂上的正电子中心,形成新的化学键。

常见的亲核加成反应有醇与卤代烃的反应、醛或酮与亲核试剂的反应等。

1. 醇与卤代烃的反应醇与卤代烃的反应是亲核加成反应中的一种常见类型。

在此反应中,醇中的氧原子攻击卤代烃中的卤原子,生成醚化合物。

例如,乙醇与溴甲烷反应可得到乙基溴化物。

2. 醛或酮与亲核试剂的反应醛或酮与亲核试剂的反应也是亲核加成反应的一种重要类型。

在这类反应中,亲核试剂的亲电性中心攻击醛或酮分子中的羰基碳原子,形成新的化学键。

例如,丁酮与甲胺反应可得到丁酮胺。

二、消除反应消除反应是指一个分子中两个基团之间的共价键发生断裂,形成另外两个分子。

消除反应可以分为酸性消除和碱性消除两种类型。

1. 酸性消除酸性消除是指在酸性条件下,分子中的负电荷离子与负电荷中心形成的碳阳离子相互消除。

酸性消除是有机化学中最常用的消除反应之一。

例如,酮中的α-碳上的氢可以被酸催化的消除剂(如氢气和铂催化剂)去除,生成烯烃。

2. 碱性消除碱性消除是指在碱性条件下,负电中心与负电荷离子形成的碳阴离子相互消除,产生另外两个分子。

例如,醇中的β-羟基在碱性条件下可以消除,生成烯烃。

三、应用亲核加成和消除反应在有机合成中有着广泛的应用。

它们可以用于构建碳-碳和碳-氧化学键,实现分子结构的定向调整和功能的引入。

通过选择不同的反应条件和催化剂,可以实现对化合物结构和立体化学的精确控制。

此外,亲核加成和消除反应还常用于药物化学和材料科学领域。

在药物合成中,这些反应可以用于构建具有特定生物活性的分子骨架。

而在材料科学中,亲核加成和消除反应则被应用于构建高分子聚合物和功能性材料的合成。

第七章 亲核加成反应

第七章 亲核加成反应

高等有机化学第七章亲核加成反应食品学院应用化学系郑福平杨绍祥第七章亲核加成反应一、碳-碳双键的亲核加成反应二、碳-碳三键的亲核加成反应三、羰基亲核加成反应四、羧酸衍生物与亲核试剂的反应五、金属氢化物与羰基的亲核加成反应六、α,β-不饱和羰基化合物的亲核加成反应七、碳-氮重键的亲核加成反应八、分子内的自催化亲核加成反应2一、碳吸电子取代基(一)氰乙基化反应(二)Micheal二、碳C CC正电荷处于p轨道属于杂化碳电负性大,难以容纳正电荷。

叁键比双键易于亲核加成的原因1. 碳原子杂化状态不同。

叁键碳sp杂化,双键碳sp2杂化。

叁键碳s轨道成分多,电子云更靠近原子核,不易给出电子,易接受电子。

2. 亲核加成活性中间体稳定性不同。

决定性作用。

12三、羰基亲核加成反应15(一)羰基的亲核加成反应历程酸除了使羰基质子化外,还能与羰基形成氢键:2注意:不论是酸还是碱催化的反应,控制反应速度的一步都是亲核试剂进攻碳原子这一步,故它们都是亲核加成。

19(二)影响羰基亲核加成反应的因素当(2)2.(3)(三)羰基加成反应中立体化学(四)羰基化合物的亲核加成反应实例1、杂原子亲核试剂的加成除NaHSO外,一般K<1。

3许多羰基化合物与含杂原子亲核试剂发生不同程度的加成。

半缩醛(酮)天然产物中有重要作用。

链状K<1,环状K>1(葡萄糖,开链式占0.003%,主要以α和β-吡喃环式存在。

)31①39醛:第一步负碳离子的生成为速控步骤,第二步为快反应,第一步不可逆。

酮:速控步骤为第二步。

C -进攻酮比进攻醛羰基碳难得多。

碱催化利于有醛的缩合,而不利于酮的缩合。

②四、羧酸衍生物与亲核试剂的反应(二)结构与活性的关系作为酰基化试剂,其活性为:RCOCl>RCOSR'>(RCO)2O>RCOOR>RCONH2 X: 具有-I效应,C-Cl键的极性大。

酯中烷氧基具有+C效应,增大了酰基与烷氧基间的电子云密度,使酰氧键难于断裂。

有机化学—亲核加成

有机化学—亲核加成

H+ H2 O △
CH2-CHCHO OH OH
4. 与含硫亲核试剂的反应
与含硫亲核试剂的反应
• 与亚硫酸氢钠的加成: 与亚硫酸氢钠的加成: • 亚硫酸氢钠可以和 醛 或甲基酮及8个C以下的环酮的羰 甲基酮及 个 以下的 以下的环酮的羰 发生加成反应,产物称为:亚硫酸氢钠加成物。 基发生加成反应,产物称为:亚硫酸氢钠加成物。
H3C
O H CH3CH2MgBr H+ H2O H3C H3C
H CH2CH3
H3C ph
ph
(R)-3-苯基-2-丁酮
与金属炔化物的加成
ONa OH C C≡CR
C O + NaC≡CR
δ+
C C≡CR
H2O
炔醇
例1
O
KOH
OH H 3C C CH 3 C CH
H2 Lindlar Pd
CH3CCH3 + KC≡CH
醇钠
C=O + NaHSO3
- + C O Na SO3H
强酸
C OH SO3Na
α-羟基磺酸 钠盐 羟
强 酸盐
与含硫亲核试剂的反应
• ① 可逆 • ② 醛、脂肪族甲基酮、8个碳以下环酮。 个碳以下环酮。 脂肪族甲基酮、 个碳以下环酮
甲醛 甲基酮 Me3C C O H3C C
6%
反应变慢 Me2HC C
H H : : H +O O C O-
O
H O C
H
C
O H 胞二醇
1)与水的加成
• 甲、乙醛易生成水合物,但难以分离出来。甲醛在水中 乙醛易生成水合物,但难以分离出来。 几乎以水合物存在,长时期放置, 几乎以水合物存在,长时期放置,水合甲醛会聚合成多 聚甲醛, 聚甲醛,如:

第七章 亲核加成反应

第七章 亲核加成反应

高等有机化学第七章亲核加成反应食品学院应用化学系郑福平杨绍祥第七章亲核加成反应一、碳-碳双键的亲核加成反应二、碳-碳三键的亲核加成反应三、羰基亲核加成反应四、羧酸衍生物与亲核试剂的反应五、金属氢化物与羰基的亲核加成反应六、α,β-不饱和羰基化合物的亲核加成反应七、碳-氮重键的亲核加成反应八、分子内的自催化亲核加成反应2一、碳吸电子取代基(一)氰乙基化反应(二)Micheal二、碳C CC正电荷处于p轨道属于杂化碳电负性大,难以容纳正电荷。

叁键比双键易于亲核加成的原因1. 碳原子杂化状态不同。

叁键碳sp杂化,双键碳sp2杂化。

叁键碳s轨道成分多,电子云更靠近原子核,不易给出电子,易接受电子。

2. 亲核加成活性中间体稳定性不同。

决定性作用。

12三、羰基亲核加成反应15(一)羰基的亲核加成反应历程酸除了使羰基质子化外,还能与羰基形成氢键:2注意:不论是酸还是碱催化的反应,控制反应速度的一步都是亲核试剂进攻碳原子这一步,故它们都是亲核加成。

19(二)影响羰基亲核加成反应的因素当(2)2.(3)(三)羰基加成反应中立体化学(四)羰基化合物的亲核加成反应实例1、杂原子亲核试剂的加成除NaHSO外,一般K<1。

3许多羰基化合物与含杂原子亲核试剂发生不同程度的加成。

半缩醛(酮)天然产物中有重要作用。

链状K<1,环状K>1(葡萄糖,开链式占0.003%,主要以α和β-吡喃环式存在。

)31(2)①39醛:第一步负碳离子的生成为速控步骤,第二步为快反应,第一步不可逆。

酮:速控步骤为第二步。

C -进攻酮比进攻醛羰基碳难得多。

碱催化利于有醛的缩合,而不利于酮的缩合。

②四、羧酸衍生物与亲核试剂的反应(二)结构与活性的关系作为酰基化试剂,其活性为:RCOCl>RCOSR'>(RCO)2O>RCOOR>RCONH2 X: 具有-I效应,C-Cl键的极性大。

酯中烷氧基具有+C效应,增大了酰基与烷氧基间的电子云密度,使酰氧键难于断裂。

亲电加成与亲核加成的区别

亲电加成与亲核加成的区别

常见反应类型差异
亲电加成
常见的亲电加成反应包括卤化反应、 硫酸化反应等。这些反应中,烯烃双 键与卤素或硫酸等亲电试剂发生加成 反应,生成相应的卤代烃或硫酸酯等 化合物。
亲核加成
常见的亲核加成反应包括醇醛缩合反 应、酯化反应等。这些反应中,醛、 酮等羰基化合物与醇、羧酸等亲核试 剂发生加成反应,生成相应的醇、酯 等化合物。
两种加成方式的定义与特点
01
亲核试剂通常为负离子或带有负 电荷的基团。
02
反应速率取决于亲核试剂的浓度 和底物的性质。
02
亲电加成反应
反应机理与过程
亲电加成反应通常涉及碳正离子中间体的形成。在反应过程 中,亲电试剂(如卤素、硫酸等)进攻双键或碳碳叁键,形 成正电荷中心,即碳正离子。然后,碳正离子与另一分子中 的亲核试剂发生反应,生成加成产物。
亲核加成
反应过程中,试剂向反应底物的 正电性中心进攻,通过形成新的 键而完成加成的反应方式。
两种加成方式的定义与特点
亲电离子或带有正电荷的基团。
两种加成方式的定义与特点
反应速率取决于亲电试剂的浓度和底物的性质。 亲核加成特点 反应过程中,亲核试剂进攻底物,形成新的键。

酯水解
酯在酸或碱的作用下发生水解 生成相应的酸和醇,这也是一 种典型的亲核加成反应。
卤代烃的水解
卤代烃在酸或碱的作用下发生 水解生成相应的醇和卤化氢, 这也是一种亲核加成反应。
醇与卤化氢的加成
醇与卤化氢发生亲核加成反应 生成相应的卤代烃和水,这也 是一种常用的有机合成方法。
04
亲电加成与亲核加成的区别
影响因素差异
亲电加成
亲电加成反应受电子效应和空间效应等因素影响。电子效应包括诱导效应、共轭效应等,空间效应包括位阻效应 等。这些因素会影响亲电试剂与烯烃双键的结合方式和亲核试剂的进攻方向。

亲核加成

亲核加成

6 羰基的烯醇化及烯胺的烷基化 (1)烯醇化 (2)烯醇的碳烷基化与氧烷基化 烯醇中的氧烷基化较少,而一般是碳烷基化 (3)烯胺的烷基化 选用胺时一般以环状的仲胺较好
可以用合成增碳的酮与二酮.
二,羧酸衍生物的加成反应 羧酸衍生物的酯化与水解是可逆的,酯化与水解有酰氧断裂与
烷氧断裂历程
O 18
R C O H+
HR
如果用两种不同的具有α-H的醛缩合时为混合物,其产物复杂, 合成上意义不大。但无α-H的醛可以与有α-H 的醛发生羟醛缩合。 如:甲醛和乙醛缩合,再通过歧化反应可以生成季戊四醇。
(1)Claisen-Schmidt reaction
其过程是将酮滴加到无α-H的醛中。
_
C6H5 CHO + CH3CH2CHO OH o 10 C
EtONa EtOH
COOC2H5 CH3
O
O
EtONa
4
CH2(COOEt)2 + CH2 CH2
O
O
EtOH
COOEt
合成: 应用庚二酸二乙酯与某种原料合成时可以得到下列产物
O
COOEt
O
O
写出下列反应历程
合成
R L
M HNu
R L
M
Nu
OHSLR3 简单的亲核加成反应 (1)羰基与水形成水合物
H3C C = O + H2O
H
H3C O H C
H OH
A 对于多数醛酮平衡偏向左边,故醛的水合物多不稳定,
它们容易脱水而生成醛酮。
B 甲醛在水中可以完全变成水合物,但不易分离。
C 含吸电子基的羰基化合物其水合物比较稳定.如:三氯乙
Michael加成反应 (1)定义 活泼次甲基的阴碳离子向α,β不饱和羰基或不饱和羧 酸衍生物等共轭体系进行的共轭加成称为Michael加 成

亲核加成反应

亲核加成反应
CH3 R1 N R2 CH3 Si CH3 + RH2C R3 RHC R3 H3C O NR1R2 H3C CH3 Si OH
+
烯胺的β碳原子具有较强的亲核性,与卤代烃、卤代酮、卤代酸酯或酰氯等 发生反应时,烯胺的β碳原子发生烷基化、酰基化。烷基化或酰基化的产物 水解后即脱去仲胺,恢复原来的羰基。由于烯胺是由醛(酮)与仲胺生成, 这样实际上是通过生成烯胺从而活化醛(酮)上的α碳原子,达到了在醛 (酮)的α位上进行烷基化与酰基化的目的。 用烯胺进行烃基化时,一般需要采用活泼的烃基化试剂,如卤化苄、α-卤代 酮及α-卤代酸酯等。
冰片(内型) 0.4% 14%
而对于碳桥一边位阻较小的降樟脑,情况则不同。体积大的还原剂主要从位阻 较小的外侧进攻,得到外型降冰片,若采用体积小的还原剂,则得到内型降冰 片。
O OH H H
+
OH
降樟脑
外型降冰片
内型降冰片
结论:对于取代环己酮的还原,当空间位阻突出时,反应按反应物的优势构象, 试剂主要从空间位阻较小的一侧对羰基进行加氢,得到的产物主要是两个可能 的差向异构醇中较不稳定的一个。当试剂的体积小,空间位阻不突出时,试剂 则倾向于从空间位阻较大的一侧发生反应,得到的产物主要是较稳定的差向异 构醇。 (3)羟醛缩合反应的立体化学 一般的混合羟醛缩合,常产生两种立体选择性。 赤型产物是指α-取代烷基与β-羟基在同一边的异构体。 苏型的则是α-取代烷基与β-羟基分别在两边。 为使混合羟醛缩合达到良好的立体选择性甚至立体专一性的目的,通常将醛 (酮)预先制成含锂、硼、锡、锗、钛等的烯醇盐,然后与另一分子的醛(酮) 反应。
N N
+
N N N N
-N2,
NH

亲核加成反应分析

亲核加成反应分析
R1
O + HNu
R2
R1
OH
R2
Nu
(1)α碳为手性碳的醛(酮)羰基加成的立体化学
Cram规则与Cornforth规则:反应中亲核试剂总是优先从空间位阻较小的方向 进攻羰基,对应于这种加成的反应物优势构象所导致的产物为主要产物。
Cram规则一:如果醛(酮)的羰基与手性碳原子直接相连,手性碳原子上所
羰基所连接的基团空间位阻或空间张力愈大,则羰基的反应活性愈基碳原子为SP2杂化,键 角为120°,而加成产物中原羰基碳原子变成了SP3杂化,键角为109°28′, 基团体积大,加成后必然张力增加也大,使亲核加成难以进行。
(3)溶剂的影响
羰基加成的立体化学
连接的另外三个基团分别以L、M、S表示,假定作用物起反应时的构象是羰基
处在M、S之间,Nu-优先从位阻小的S一边进攻羰基,这样生成的产物为主要
产物。
O
S
主要产物
M
次要产物
RL
Cram规则二:当醛(酮)的手性碳原子上连有一个羟基或氨基等可以和羰基 氧原子形成氢键的基团,Nu-将从含氢键的环空间阻碍较小的一边进攻羰基, 这样的加成产物为主要产物。
a键的醇。
内侧
H O
H
Me3C
外侧
Me3C
H H
H
O
三仲丁基硼氢化锂
Me3C
H H
OH
H
+ Me3C
H H
H OH
H
H
H
93%
7%
当用体积小的试剂如硼氢化钠、氢化铝锂还原4-叔丁基环己酮时,主要产物则 为羟基处于e键的反式醇。
这是由于生成的反式醇与顺式醇经过下面两种过渡态:

亲核加成反应

亲核加成反应

R2C C C R R' R O
质子转移到碳上比氧慢,
H R2C C C R R' R OH
R2C C C R R' R O
HO R2C C C R
R' R
Micheal 加成旳反应体系:
底物: R CH CH Z
Z: 含杂原子旳不饱和键且与双键共轭旳基团
CH2 CH C H CH2 CH C R CH2 CH C OR
酸和亲电试剂攻
打富有子旳氧
-活泼H旳反应 (1)烯醇化 (2) -卤代(卤仿反应) (3)醇醛缩合反应
δO-
CC
δ+
H
H
醛旳氧化
碱和亲核试剂攻打缺电子旳碳 (亲核加成) 氢化还原
1. 羰基上旳加成反应
羰基中旳碳氧双键因为电负性O > C,所以π电子云
不是对称地分布在碳和氧之间,而是接近氧旳一端,因为
1.对手性脂肪酮旳加成
R
CO R'
+ Nu
R
Nu
C
R'
O
R
O
C
R'
Nu
3、当羰基与手性碳原子相连时,Nu从两面攻打旳 几率就不一定相等,加成后引入第二个手性碳原子, 生成旳两个非对映体旳量也不一定相等。
Nu旳攻打方向主要取决于α-手性碳原子上各 原子(原子团)体积旳相对大小。即其加成方向有 一定旳规律。
OH
AC B OH
Nu A C B + HA
OH
羰基质子化,能够提升羰基旳反应活性,
羰基质子化后,氧上带有正电荷,很不稳定, π电子发生转移,使碳原子带有正电荷。
决定反应速率旳一步,是Nu -攻打中心碳原子旳 一步。

《亲核加成反应》课件

《亲核加成反应》课件

许多药物都是通过亲核加成反 应合成的,例如格列卫等,这 些药物对癌症等疾病的治疗具 有重要作用。
亲核加成反应还可以合成各种 农药,如杀虫剂、杀菌剂等, 这些农药对农业生产和植物保 护具有重要作用。
亲核加成反应与其他反应的串联
与氧化反应的串联
在亲核加成反应之后,往往需要进一步进行氧化反应以得到所需的产物。例 如,在合成己二酸二乙酯时,需要先进行亲核加成反应生成半酯,然后再进 行氧化反应得到己二酸二乙酯。
亲核加成反应的立体化学
区域选择性
在亲核加成反应中,进攻试剂首先与底物形成过渡态,然后 发生电子转移形成产物。由于过渡态的形状和能量与进攻试 剂和底物的立体结构有关,因此不同立体结构的进攻试剂和 底物在反应中具有不同的区域选择性。
对称性和立体化学
在双分子亲核加成反应中,进攻试剂和底物可以以两种不同 的方式相互结合,形成两种不同的过渡态。这两种过渡态具 有不同的能量和稳定性。因此,反应的立体化学性质取决于 进攻试剂和底物的对称性和立体结构。
如威尔金森催化剂、查尔酮催化 剂等,可以活化亲电试剂和亲核 试剂,促进亲核加成反应。
亲核加成反应的影响因素
电子效应
亲核试剂的电子云密度越高,越有利于亲核 加成反应。
空间效应
亲核试剂和亲电试剂的空间位阻会影响反应速率。
溶剂效应
溶剂的极性和介电常数会影响亲核加成反应 速率。
亲核加成反应的动力学模型
双分子亲核加成反应
亲核试剂和亲电试剂相互接近,形成过渡态,然后发生电子 转移,最后形成产物。
单分子亲核加成反应
亲核试剂首先与自身形成过渡态,然后发生电子转移,最后 形成产物。
04
亲核加成反应的应用与拓展
亲核加成反应在有机合成中的应用

化学反应中的亲核加成反应机理研究

化学反应中的亲核加成反应机理研究

化学反应中的亲核加成反应机理研究化学反应是研究原子之间发生的转化和变化的科学领域。

亲核加成反应是一类常见的化学反应,其机理研究对于解释反应细节和优化化学合成具有重要意义。

本文将重点讨论亲核加成反应的机理研究,探究其在化学领域中的应用和意义。

一、亲核加成反应概述亲核加成反应是指亲核试剂通过共用电子对的方式与亲电试剂发生反应,形成新的化学键。

亲核试剂通常是具有孤对电子的化合物,如氨、醇、胺、卤素等,而亲电试剂则是带有正电荷或部分正电荷的分子,如卤代烃、酰卤等。

在亲核加成反应中,亲核试剂攻击亲电试剂的部分正电荷中心,形成一个新的共价键。

二、亲核加成反应的机理亲核加成反应的机理可以分为以下几个步骤:亲核试剂的攻击、亲电试剂的离去、质子转移和生成产物。

1. 亲核试剂的攻击亲核试剂通过其孤对电子攻击亲电试剂。

亲电试剂中的部分正电荷可以吸引亲核试剂,使其接近并进行反应。

这一步骤是亲核加成反应的关键环节。

2. 亲电试剂的离去亲核试剂攻击亲电试剂后,形成一个新的化学键。

在这个过程中,亲电试剂原来的化学键发生了断裂,从而产生一个具有正电荷的离去基团。

离去基团离开后,反应的原子间距离会有所变化。

3. 质子转移在亲核加成反应中,质子转移是常见的步骤之一。

它可以帮助调整反应物的电荷和立体结构,使反应进行得更加顺利。

质子的转移通常涉及到酸碱中心的变化。

4. 生成产物经过亲核试剂的攻击、亲电试剂的离去和质子转移等步骤后,最终会形成一个新的化学键,并生成产物。

产物的结构和性质取决于反应物的选择和反应条件的控制。

三、亲核加成反应的应用和意义亲核加成反应在化学合成中具有广泛的应用和意义。

1. 合成有机化合物亲核加成反应可以用于合成各种有机化合物,例如醇、酮、醛、酸等。

通过选择不同的反应物和反应条件,可以实现不同的合成目标,并得到具有特定结构和性质的化合物。

2. 研究反应机理亲核加成反应的机理研究有助于揭示反应发生的细节和规律,深入理解化学反应的本质。

《亲核加成反应》课件

《亲核加成反应》课件

要点二
产率
亲核加成反应的产率取决于反应条件和底物的性质。 优化反应条件可以提高产率,同时选择合适的底物也 可以提高产率。
04
亲核加成反应的应用
有机合成中的亲核加成
醛、酮的亲核加成反应
在有机合成中,亲核加成反应可用于制备醇、醛和酮等化合物, 例如与氢氰酸、醇钠等亲核试剂的反应。
合成有机硅化合物
亲核加成反应可用于合成有机硅化合物,例如氯硅烷与醇或胺的反 应,生成相应的硅氧烷或硅氮烷。
06
亲核加成反应的最新研 究进展
新反应与新应用
烯烃的加成
研究新的催化剂和反应条件,提高烯烃加成的选择性和 效率,探索其在有机合成和工业生产中的应用。
羰基化合物的加成
探索羰基化合物的亲核加成反应,开发新的反应类型和 合成策略,为药物分子和材料分子的合成提供新的途径 。
理论计算与模拟研究
反应机理研究
合成其它化合物
亲核加成反应还可用于合成其它化合物,例如与羧酸的反应生成羧 酸酯,与氨或胺的反应生成酰胺或氨基甲酸酯等。
生物学中的亲核加成
01
生物体内的化学反应
在生物体内,许多化学反应需要亲核催化,例如DNA和RNA的合成、
激素的合成、氨基酸的合成等。
02
酶的作用
酶在许多生物学过程中起着关键作用,包括亲核加成反应。例如,激酶
利用理论计算和模拟方法,研究亲核加成反应的微观 机理和动力学过程,揭示反应过程中的关键步骤和影 响因素。
反应活性预测
通过理论计算,预测不同底物的反应活性,为实验设 计和优化提供指导。
研究前景与展望
绿色合成方法
发展环境友好的催化剂和反应条件,降低亲核加成反应的能 耗和废弃物产生,为绿色化学的发展做出贡献。

《亲核加成反应》课件

《亲核加成反应》课件

总结词
未来,亲核加成反应的发展将更加注重绿色、高效、可 持续性。
详细描述
随着环保意识的不断提高和化学工业的发展,对亲核加 成反应的效率和环保性的要求也将越来越高。未来,需 要继续研究和开发新型催化剂和绿色合成方法,以推动 亲核加成反应的发展。同时,还需要解决反应过程中可 能出现的各种问题,如副反应、废物处理等,以满足可 持续发展的要求。
羧酸类底物在亲核加成反应中,与亲核试剂反应后生成酯类化合物 ,该类化合物具有较高的稳定性和较低的反应活性。
立体化学在亲核加成反应中的应用
立体化学
在亲核加成反应中,立体化学是一个重要的概念。它涉及到反应过程中空间构型 的变化以及反应速率与空间构型的关系。
手性
手性是立体化学中的一个重要概念。它是指一个物体不能与其镜像相重合的特性 。在亲核加成反应中,手性底物与手性亲核试剂的反应可以产生手性产物。
04
亲核加成反应的实验技术 与操作技巧
实验装置与操作流程
实验装置
包括反应器、温度计、搅拌器、冷凝器等 主要部件,以及必要的辅助设备和安全设 施。
VS
操作流程
包括反应物准备、反应器清洗、加料、反 应温度控制、产物分离和纯化等步骤。
反应条件的优化与控制
反应温度
温度对反应速率和产物质量有重要影响,需根据 反应物的性质和实验要求选择合适的反应温度。
亲核加成反应的催化剂与 促进剂
金属催化剂
01
02
03
铝催化剂
如AlCl3、AlBr3等,可通 过Friedel-Crafts反应引 发亲核加成反应。
锌催化剂
如ZnCl2、ZnBr2等,常 用于加成到烯烃或炔烃上 。
铁催化剂
如FeCl3、FeBr3等,可 促进碳碳双键的亲核加成 反应。

亲核加成反应

亲核加成反应

1. 重要的亲核加成反应(1) 加氰化氰 醛、脂肪族甲基酮和含8个碳以下的脂环酮都可以加氰化氢,生成氰醇(α-羟基腈)。

CO CHCNα-羟基腈实验证明碱对这个反应的影响颇大。

例如,丙酮和氰化氢作用,不加任何催化剂,3至4小时内只有50%的丙酮起反应;当加入一滴氢氧化钠溶液,反应在两分钟内完成。

若加入酸,反应速度减慢;加入较多的酸,放置几个星期也不反应;因为氢氰酸是弱酸,酸或碱的存在将直接影响它的电离平衡。

+H+--C O H HHNCN+加入碱,平衡向右移动,CN -的浓度增加;加入酸,平衡向左移动,CN -的浓度降低。

这些事实说明在丙酮与氰化氢的反应中起决定作用的是CN -本身的性质和浓度。

醛、酮加氰化氢的反应是可逆的,亲核试剂是CN -,其历程可以表示如下:反应分两步进行,第一步是CN -进攻羰基碳,生成氧负离子中间体。

这是个慢步骤,也是决定速度的步骤。

第二步是氧负离子中间体和质子结合,形成氰醇,这是个快步骤。

醛、酮和氰化氢直接加成反应的产率较好,但是氰化氧有剧毒,且挥发性大(沸点26.5℃)。

使用起来不安全。

为了避免反应中直接使用氰化氢,一般采用醛或酮与氰化钾(钠)的水溶液混合,然后加入无机酸,使氰化氢一旦生成立即和醛或酮作用。

.但在加酸时应控制溶液的pH 值,使之始终偏于碱性(pH ≌8),以利于反应的进行。

醛、酮加氰化氢在有机合成中很有实用价值。

它是增长碳链的一种方法;此外加成物含有双官能团,是一类较活泼的化合物,可进一步转化为多种其它化合物。

例如:CH 3CH 3CH 2CH 3CH 3CH3CH 333)2CCH 2NH 2CH 33CO H O H O+C H C O O HNCNCO CCHO C H +O,Δα-甲基丙烯酸甲酯(90%) α-甲基丙烯酸甲酯是合成有机玻璃——聚α-甲基丙烯酸甲酯的单体。

C R R R`δ+O H ()+--慢快C H H NCN +R`)H (-C R O CN R`)H ((2)加亚硫酸氢钠 大多数醛、脂肪族甲基酮和8个碳以下的脂环酮与亚硫酸氢钠饱和溶液(40%)加成,生成白色的α-羟基磺酸钠晶体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 炔烃的亲核加成
定义:亲核试剂进攻炔烃的不饱和键而引起的加成 反应称为炔烃的亲核加成。
常用的亲核试剂有: ROH(RO-)、HCN(-CN)、RCOOH(RCOO-)
碱,150-180oC
1. CHCH + HOC2H5
聚合,催化剂
[ CH2-CH]n
CH2=CHOC2H5 粘合剂
OC2H5
炔烃亲核加成的区域选择性:优先生成稳定的碳负离子。
第七章 亲核加成
(nucleophilic Addition)
反应类型:
烯烃的亲核加成反应 炔烃的亲核加成 羰基的亲核加成 羧酸衍生物与亲核试剂的反应 金属氢化物与羰基加成反应 α,β-不饱和羰基化合物的加成反应 碳-氮的亲核加成反应
一.烯烃的亲核加成反应
当烯烃连有吸电子基团时易发生亲核加成反应
产物中基团拥挤程度增大。
R 越大,妨碍Nu进攻C原子。
角张力缓解:
OH C N
O H C NK = 1 0 0 0 0
sp2杂化,键角应为120°, 实际为60°, 角张力较大; 反应中,键角由60°转化为109°28 ′, 角张力得 到缓解。
O + H C N
C O N HK = 1 0 0 0
O
O H
ACB O H
ACB+HN u O H
N uH
N u
ACBA ACB+H A
O H
O H
羰基质子化,可以提高羰基的反应活性,
羰基质子化后,氧上带有正电荷,很不稳定, π电子发生转移,使碳原子带有正电荷。
决定反应速率的一步,是Nu -进攻中心碳原子的 一步。
酸除了活化羰基外,还能与羰基形成氢键:
典型应用?
底物: RCHCHZ
Z: 含杂原子的不饱和键且与双键共轭的基团
C H 2 C HCHC H 2 C HCRC H 2 C HCO R
O
O
O
C H 2 C HCNC H 2 C HN O 2
试剂:能够产生C- 的试剂:
C H 2C O O E t2 C H 3C O C H 2C O O E t N C C H 2C O O E t R C H 2N O 2
C NC N
氰乙基化反应
C H 2 C H C N C 6 H 5 O HC 6 H 5 O C H 2 C H 2 C N C H 2 C H C N N H 3 二 苯 胺 H 2 N C H 2 C H 2 C N
H 2 N C H 2 C H 2 C N H 2 O H 2 N C H 2 C H 2 C O O H
Michael 加成反应:
碳负离子对于缺电子的C=C双键的加成反应称为迈 克尔加成,其中双键碳原子与吸电子基如羧基直接相连构 成共轭体系。
R R2C C C R RO
R 2CCCR R ' RO
R 2CCCR R ' RO
HO
H R2C C C R R2C C C R
R' R OH
R' R
Micheal 加成的反应体系:
Y
C
O
当羰基与具有+I或+C的基团直接相连时, 由于增加了中心碳原子的电子云密度,故
使反应活性降低。
当Y: CC, C C,Ph时,基团具有+C效应,
羰基活性降低。
C H 3C H O H C NC H H 3CO C H N K > 104
P h C H O H C N
H O H C
K = 2 1 0
CN
人造羊毛(腈纶)
三、羰基的亲核加成反应
一 反应机理
O慢 O
碱催化: Nu A C B A C B
Nu
O
OH
A
C
B
H 或E+
ACB
Nu
Nu
① 试剂进攻羰基上C原子,生成氧负离子的一步
是决定反应速率的一步。
② 为使亲核试剂的负电荷裸露出来,增加亲核性,
常需碱催化:HNu+B Nu+HB
酸催化:
ACB HA-A ACB
C H 3 C H 2
C H 3 C H 2 C N
(( C C H H 3 3 )) 3 3 C C COH C N(( C C H H 3 3 )) 3 3 C C C O C H NK < < 1
Nu
R CO
R'
R
O
C Nu R'
sp2杂化 平面三角型
sp3杂化 四面体
键角:120° 109°28 ′
C H 3C H O+H 2O C H 3C H (O H )2 K ≈1 C H 3C H O+H C N C H 3C H O H K ≈104
C N
③ 空间效应
具有较小体积的亲核试剂,利于反应进行。
Et C OHCN Et2COH
Et
2. CHCH + CH3COOHZn (OAc)2
150-180oC
CH2=CH-OOCCH3
聚合,催化剂
[ CH2-CH]n
H2O
OOCCH3 乳胶粘合剂
[ CH2-CH]n OH
现代胶水
3. CHCH + HCN CuCl2H2O, 70oC
CH2=CH -CN
聚合,催化剂
[ CH2-CH]n
反应机理:
Y CC
EN u
Y CC E Nu
YCC
N u
Eቤተ መጻሕፍቲ ባይዱ
E
Y CC
Nu
Y: C H O C O R C O O R C O N H 2 C NN O 2 SO 2R
举例:
H P h CC
P h C N
-C N
P hC HC _ P C h NH _ C -N C NP hC HH CP h
C N
P h C N
CCl3CHOH2OCl3H CCO O H H
Cl
Cl C Cl HC H
OH O
① Cl3C 是强吸电子基团,使 羰基带有更多的正电荷;
② 产物中形成分子内氢键,使 产物稳定,平衡向右移动。
(2) 空间效应
与羰基相连的基团空间效应越大,越不利于反应进行。
C H 3COH C N C H 3CO HK > 1
δ
δ
C O H Cl
都使羰基活化。
质子性溶剂也起到同样作用:
δ
δ
C O H Sol
二. 影响羰基加成反应活性的因素
1. 底物
H C O H > R C H O > R C O C H 3 > R C O R > C 6 H 5 C O R 反应活性取决于羰基的中心碳原子带有正电
荷的多少。
(1) 电子效应
这里,角张力缓解程度不大。
角张力:当分子内的键角 由于某种原因偏离正常键 角时会产生张力,这种张 力称为角张力。
2. 试剂的亲核性
① 对于同一羰基化合物,试剂的亲核性越强, 反应的平衡常数越大。
C>N > O>X
试剂的亲核性依次减弱
如: CH3 >NH2 >OH
② 试剂的可极化度越大,则利于亲核加成 反应的进行。
相关文档
最新文档