信息论考题及答案

合集下载

信息论考试题及答案

信息论考试题及答案

1.有二元对称信道编码:1)已知信源X,41,4310==p p ,求H(X),H(X|Y),I(X,Y)。

2)求信道容量C 。

解:由题意可知,(X,Y )服从如下的联合分布Y,X0101/21/1211/41/6X 的边际分布是(3/4,1/4),Y 的边际分布是(7/12,5/12))(811.03log 432)41log 4143log 43(log )(210bit p p X H i i i =-=+-=-=∑=)bit (749.07log 1275log 1253log 433252,53(125)71,76(127)|()()|(22210=++--=+====∑=H H i Y X H i Y p Y X H i )bit (062.07log 1275log 12538)|()(),(22=--=-=Y X H X H Y X I )(082.03log 35)31(1)(12bit H p H C =-=-=-=2.最小熵。

求出)(),...,,(21p H p p p H n =最小值是多少,因为p 的范围是在n 维概率向量集合上的最小值是多少?找到所有达到这个最小值时的p。

解:我们希望找到所有的概率向量),...,,(21n p p p p =,让∑-=i ii p p p H log )(达到最小,现在有时等式成立或当且仅当10,0log =≥-i i i p p p ,因此,唯一可能使得H(p)最小化的概率向量是对于某些i 和j 满足.,0,1i j p p j i ≠==这里有n 个这样的向量,比如)1,...,0,0(),0,...,1,0(),0,...,0,1(,此时H(p)的最小值为0。

3.赫夫曼码。

考虑随机变量⎪⎪⎭⎫ ⎝⎛=02.003.004.004.012.026.049.07654321x x x x x x x X (a)求X 的二元赫夫曼码。

信息论试卷含答案资料讲解

信息论试卷含答案资料讲解

《信息论基础》参考答案一、填空题(共15分,每空1分)1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。

2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。

3、三进制信源的最小熵为0,最大熵为32log bit/符号。

4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。

5、当R=C 或(信道剩余度为0)时,信源与信道达到匹配。

6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。

7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。

8、若连续信源输出信号的平均功率为2σ,则输出信号幅度的概率密度是高斯分布或正态分布或()222x f x σ-=时,信源具有最大熵,其值为值21log 22e πσ。

9、在下面空格中选择填入数学符号“,,,=≥≤〉”或“〈”(1)当X 和Y 相互独立时,H (XY )=H(X)+H(X/Y)=H(Y)+H(X)。

(2)()()1222H X X H X =≥()()12333H X X X H X = (3)假设信道输入用X 表示,信道输出用Y 表示。

在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)<H(X)。

二、(6分)若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少。

()1,2640,x f x ⎧≤≤⎪=⎨⎪⎩Q 其它()()()62log f x f x dx ∴=-⎰相对熵h x=2bit/自由度该信源的绝对熵为无穷大。

三、(16分)已知信源1234560.20.20.20.20.10.1S s s s s s s P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用霍夫曼编码法编成二进制变长码;(6分) (2)计算平均码长L ;(4分)(3)计算编码信息率R ';(2分)(4)计算编码后信息传输率R ;(2分) (5)计算编码效率η。

信息论部分习题及解答

信息论部分习题及解答

2-1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求: (1)“3和5同时出现” 这事件的自信息量。

(2)“两个1同时出现” 这事件的自信息量。

(3)两个点数的各种组合(无序对)的熵或平均信息量。

(4)两个点数之和(即2,3,…,12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

解:(1)设X 为‘3和5同时出现’这一事件,则P (X )=1/18,因此 17.418log)(log)(22==-=x p X I (比特)(2)设‘两个1同时出现’这一事件为X ,则P (X )=1/36,因此 17.536log)(log)(22==-=x p X I (比特)(3 ) “两个相同点数出现”这一事件的概率为1/36,其他事件的概率为1/18,则 337.418log181536log366)(22=+=X H (比特/组合)(4)222222111111()[log 36log 18()log 12()log 936181836181811136111()log ]2()log 6 3.44(/)1818365181818H X =++++++++⨯+++=比特两个点数之和(5)两个点数至少有一个为1的概率为P (X )= 11/36 71.13611log)(2=-=X I (比特)2-6设有一离散无记忆信源,其概率空间为⎪⎪⎭⎫⎝⎛=====⎪⎪⎭⎫⎝⎛8/134/124/118/304321x x x x PX该信源发出的信息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032 011 223 210),求:(1) 此信息的自信息量是多少?(2) 在此信息中平均每个符号携带的信息量是多少? 解:(1)由无记忆性,可得序列)(比特/18.87)3(6)2(12)1(13)0(14=+++=I I I I(2)符号)(比特/91.145/==I H 2-9在一个袋中放有5个黑球、10个白球,以摸一个球为一次实验,摸出的球不再放进去。

信息论基础试题及答案

信息论基础试题及答案

信息论基础试题及答案信息论基础试题及答案填空题(每题2分)1、信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的(可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。

(考点:信息论的研究目的)2、电视屏上约有500×600=3×105个格点,按每点有10个不同的灰度等级考虑,则可组成103?10个不同的画面。

按等概计算,平均每个画面可提供的信息量约为(106bit/画面)。

(考点:信息量的概念及计算)3、按噪声对信号的作用功能来分类信道可分为(加性信道)和(乘性信道)。

(考点:信道按噪声统计特性的分类)4、英文电报有32个符号(26个英文字母加上6个字符),即q=32。

若r=2,N=1,即对信源S的逐个符号进行二元编码,则每个英文电报符号至少要用(5)位二元符号编码才行。

(考点:等长码编码位数的计算)5、如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。

(考点:错误概率和译码准则的'概念)6、按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。

(考点:纠错码的分类)7、码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4,2))线性分组码。

(考点:线性分组码的基本概念)8、和离散信道一样,对于固定的连续信道和波形信道都有一个最大的信息传输速率,称之为(信道容量)。

(考点:连续信道和波形信道的信道容量)9、对于一个(n,k)分组码,其最小距离为d,那么,若能纠正t 个随机错误,同时能检测e(e≥t)个随机错误,则要求(d≥t+e+1)。

(考点:线性分组码的纠检错能力概念)判断题(每题2分)1、信源剩余度的大小能很好地反映离散信源输出的符号序列中符号之间依赖关系的强弱,剩余度越大,表示信源的实际熵越小。

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题及答案信息论基础理论与应用考试题一﹑填空题(每题2分,共20分)1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的(可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。

(考点:信息论的研究目的)2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑,则可组成531010⨯个不同的画面。

按等概计算,平均每个画面可提供的信息量约为(610bit /画面)。

(考点:信息量的概念及计算)3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。

(考点:信道按噪声统计特性的分类)4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。

若r=2,N=1,即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位二元符号编码才行。

(考点:等长码编码位数的计算)5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。

(考点:错误概率和译码准则的概念)6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。

(考点:纠错码的分类)7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4,2))线性分组码。

(考点:线性分组码的基本概念)8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()q i i i i H X E P a P a P a =⎡⎤==-⎢⎥⎣⎦∑)。

(考点:平均信息量的定义)9.对于一个(n,k)分组码,其最小距离为d,那么,若能纠正t个随机错误,同时能检测e(e≥t)个随机错误,则要求(d≥t+e+1)。

(考点:线性分组码的纠检错能力概念)10.和离散信道一样,对于固定的连续信道和波形信道都有一个最大的信息传输速率,称之为(信道容量)。

最新《信息论》试题及答案

最新《信息论》试题及答案

期终练习一、某地区的人群中,10%是胖子,80%不胖不瘦,10%是瘦子。

已知胖子得高血压的概率是15%,不胖不瘦者得高血压的概率是10%,瘦子得高血压的概率是5%,则“该地区的某一位高血压者是胖子”这句话包含了多少信息量。

解:设事件A :某人是胖子; B :某人是不胖不瘦 C :某人是瘦子 D :某人是高血压者根据题意,可知:P (A )=0.1 P (B )=0.8 P (C )=0.1 P (D|A )=0.15 P (D|B )=0.1 P (D|C )=0.05而“该地区的某一位高血压者是胖子” 这一消息表明在D 事件发生的条件下,A 事件的发生,故其概率为P (A|D )根据贝叶斯定律,可得:P (D )=P (A )* P (D|A )+P (B )* P (D|B )+P (C )* P (D|C )=0.1 P (A|D )=P (AD )/P (D )=P (D|A )*P (A )/ P (D )=0.15*0.1/0.1=0.15 故得知“该地区的某一位高血压者是胖子”这一消息获得的多少信息量为: I (A|D ) = - logP (A|D )=log (0.15)≈2.73 (bit ) 二、设有一个马尔可夫信源,它的状态集为{S 1,S 2,S 3},符号集为{a 1,a 2,a 3},以及在某状态下发出符号集的概率是(|)k i p a s (i ,k=1,2,3),如图所示(1)求图中马尔可夫信源的状态极限概率并找出符号的极限概率(2)计算信源处在某一状态下输出符号的条件熵H(X|S=j) (j=s 1,s 2,s 3) (3)求出马尔可夫信源熵H ∞解:(1)该信源达到平稳后,有以下关系成立:13212312123()()31()()()4211()()()42()()()1Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E =⎧⎪⎪=+⎪⎨⎪=+⎪⎪++=⎩可得1232()73()72()7Q E Q E Q E ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩3111322133313()()(|)72()()(|)73()()(|)7i i i i i i i i i p a Q E p a E p a Q E p a E p a Q E p a E =========∑∑∑(2)311113222133331(|)(|)log (|) 1.5bit/(|)(|)log (|)1bit/(|)(|)log (|)0bit/k k k kk k k k k H X S p a S p a S H X S p aS p a S H X S p a S p a S ====-==-==-=∑∑∑(符号)(符号)(符号)(3)31()(|)2/7*3/23/7*12/7*06/7iii H Q E H X E ∞==⨯=++=∑(比特/符号)三、二元对称信道的传递矩阵为0.60.40.40.6⎡⎤⎢⎥⎣⎦(1)若P(0)=3/4,P(1)=1/4,求H (X ),H (X|Y )和I (X ;Y )(2)求该信道的信道容量及其最大信道容量对应的最佳输入分布 解:⑴()H X =21()log ()iii p x p x ==-∑=0.75log 750.25log 25--≈0.811(比特/符号)1111212()()(|)()(|)p y p x p y x p x p y x =+=0.75*0.6+0.25*0.4=0.55 2121222()()(|)()(|)p y p x p y x p x p y x =+=0.75*0.4+0.25*0.6=0.45()0.55log0.550.45log0.45H Y =--=≈0.992(比特/符号)122(|)()(|)()(|)0.75(0.6,0.4)0.25(0.4,0.6)(0.6log 0.60.4log 0.4)0.971/H Y X p x H Y x p x H Y x H H =+=⨯+⨯=-+≈(比特符号)(|)()()()(|)()H X Y H XY H Y H X H Y X H Y =-=+-≈0.811+0.971-0.992=0.79 (比特/符号)I (X ;Y )=H (X )-H (X =0.811-0.79=0.021(比特/符号)(2)此信道为二元对称信道,所以信道容量为C=1-H(p)=1-H(0.6)=1-0.971=0.029(比特/符号) 当输入等概分布时达到信道容量四、求信道22042240p p p p εεεεεε⎡⎤-- ⎢⎥-- ⎢⎥⎣⎦的信道容量,其中1p p =-。

信息论测试题及答案

信息论测试题及答案

一、设X 、Y 是两个相互统计独立的二元随机变量,其取-1或1的概率相等。

定义另一个二元随机变量Z ,取Z=YX (一般乘积)。

试计算:1.H (Y )、H (Z );2.H (YZ );3.I (X;Y )、I (Y;Z ); 二、如图所示为一个三状态马尔科夫信源的转移概率矩阵1. 绘制状态转移图;2. 求该马尔科夫信源的稳态分布;3. 求极限熵;三、在干扰离散对称信道上传输符号1和0,已知P (0)=1/4,P(1)=3/4,试求:1. 信道转移概率矩阵P2.信道疑义度3.信道容量以及其输入概率分布 四、某信道的转移矩阵⎥⎦⎤⎢⎣⎡=1.006.03.001.03.06.0P ,求信道容量,最佳输入概率分布。

五、求下列各离散信道的容量(其条件概率P(Y/X)如下:)六、求以下各信道矩阵代表的信道的容量答案一、设X 、Y 是两个相互统计独立的二元随机变量,其取-1或1的概率相等。

定义另一个二元随机变量Z ,取Z=YX (一般乘积)。

试计算:1.H (Y )、H (Z );2.H (XY )、H (YZ );3.I (X;Y )、I (Y;Z ); 解:1. 2i 11111H Y P y logP y log log 2222i i =⎡⎤=-+⎢⎥⎣⎦∑()=-()()=1bit/符号 Z=YX 而且X 和Y 相互独立∴ 1(1)(1)(1)PP X P Y P X ⋅=+=-⋅=-(Z =1)=P(Y=1)= 1111122222⨯+⨯= 2(1)(1)(1)P P X P Y P X ⋅=-+=-⋅=(Z =-1)=P(Y=1)= 1111122222⨯+⨯=故H(Z)= i2i1(z )log (z )i P P =-∑=1bit/符号2.从上式可以看出:Y 与X 的联合概率分布为:H(YZ)=H(X)+H(Y)=1+1=2bit/符号 3.X 与Y 相互独立,故H(X|Y)=H(X)=1bit/符号∴I (X;Y )=H(X)-H(X|Y)=1-1=0bit/符号I(Y;Z)=H(Y)-H(Y|Z)=H(Y)-[H(YZ)-H(Z)]=0 bit/符号二、如图所示为一个三状态马尔科夫信源的转移概率矩阵2. 绘制状态转移图; 2. 求该马尔科夫信源的稳态分布;3. 求极限熵;解:1.状态转移图如右图 2.由公式31()()(|)j iji i p E P E P EE ==∑,可得其三个状态的稳态概率为:1123223313123111()()()()22411()()()2211()()()24()()()1P E P E P E P E P E P E P E P E P E P E P E P E P E ⎧=++⎪⎪⎪=+⎪⎨⎪=+⎪⎪⎪++=⎩1233()72()72()7P E P E P E ⎧=⎪⎪⎪⇒=⎨⎪⎪=⎪⎩3.其极限熵:3i i 13112112111H = -|E =0+0+72272274243228=1+1+ 1.5=bit/7777i P H H H H ∞=⨯⨯⨯⨯⨯⨯∑(E )(X )(,,)(,,)(,,)符号三、在干扰离散对称信道上传输符号1和0,已知P (0)=1/4,P(1)=3/4,试求:2. 信道转移概率矩阵P 2.信道疑义度3.信道容量以及其输入概率分布解:1.该转移概率矩阵为 P=0.90.10.10.9⎡⎤⎢⎥⎣⎦2.根据P (XY )=P (Y|X )⋅P (X ),可得联合概率由P (X|Y )=P(X|Y)/P(Y)可得H(X|Y)=-i jiji j(x y )log x |y =0.09+0.12+0.15+0.035=0.4bit/P P∑,()符号 3.该信道是对称信道,其容量为:C=logs-H=log2-H (0.9,0.1)=1-0.469=0.531bit/符号这时,输入符号服从等概率分布,即01 11()22XP X⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦四、某信道的转移矩阵⎥⎦⎤⎢⎣⎡=1.06.03.01.03.06.0P,求信道容量,最佳输入概率分布。

信息论典型试题及答案

信息论典型试题及答案
第三章
3.1设有一个信源,它产生0,1序列的信息。它在任意时间而且不论以前发生过什么符号,均按P(0) = 0.4,P(1) = 0.6的概率发出符号。
(1)试问这个信源是否是平稳的?
(2)试计算H(X2),H(X3/X1X2)及H∞;
(3)试计算H(X4)并写出X4信源中可能有的所有符号。
解:
(1)这个信源是平稳无记忆信源。因为有这些词语:“它在任意时间而且不论以前发生过什么符号……”
(1)计算接收端的平均不确定性;
(2)计算由于噪声产生的不确定性H(Y/X);
解:(1)
(2)
(3)两个点数的排列如下:
11
12
13
14
15
16
21
22
23
24
25
26
31
32
33
34
35
36
41
42
43
44
45
46
51
52
53
54
55
56
61
62
63
64
65
66
共有21种组合:
其中11,22,33,44,55,66的概率是
其他15个组合的概率是
(4)
参考上面的两个点数的排列,可以得出两个点数求和的概 Nhomakorabea分布如下:
解:
(1)
(2)黑白气象传真图的消息前后有关联时,由其前后的依赖关系可知,黑色白色同时出现的联合概率为:
则信源的联合熵为:
H(X1X2)=1.426bit/symbol
H2(X)=1/2*H(X1X2)=0.713 bit/symbol
(3)上述两种信源的剩余度分别为:

信息论典型试题及答案

信息论典型试题及答案

同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息;(2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2) bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202032),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少? 解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p 此消息的信息量是:bit p I 811.87log =-=(2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。

信息论考题及答案

信息论考题及答案

一、(25分)如果X 和Y 相互独立,证明X 和Y 的熵满足可加性,即 H(Y)H(X)Y)H(X,+= 证明:设P(x,y)=P(x)P(y),则有1H(X,Y)()()logP()()11()()log()()log ()()11()log()log ()()()()xyxyxy xy P x P y x P y P x P y P x P y P x P y P x P y P x P y H X H Y ==+=+=+∑∑∑∑∑二、(50分)联合总体X ,Y 具有如下联合分布。

XY分别计算(1) 联合熵H(X,Y)是多少? (2)边缘熵H(X)和H(Y)是多少?(3)对于每一个y 值,条件熵H(X ︱y)是多少? (4)条件熵H(X ︱Y)是多少? (5)X 和Y 之间的互信息是多少? 解答:(1) H(X,Y)=3.375(2) H(X)=2, H(Y)=1.75(3) H(X|y=1)=2,H(X|y=1)=1.875,H(X|y=1)=1.875, H(X|y=4)=0.5(4)H(X|Y)=1.1264(5)I(X;Y)=H(X)-H(X|Y)=2-1.1264=0.8736 三、(25分)考虑一个差错概率为f=0.15的二进制对称信道。

输入总体为x Ω:{0P =0.9,1p =0.1},假设观察到y=1,请计算(1|1)P x y ==? 解:(1|1)P x y ===(1|1)(1)(1|)()xP y x P x P y x P x ===∑==9.015.01.085.01.085.0⨯+⨯⨯=22.0085.0=0.39一、(25分)如果X 和Y 相互独立,证明X 和Y 的熵满足可加性,即 H(Y)H(X)Y)H(X,+=二、(50分)联合总体X ,Y 具有如下联合分布。

XY分别计算(1) 联合熵H(X,Y)是多少? (2)边缘熵H(X)和H(Y)是多少?(3)对于每一个y 值,条件熵H(X ︱y)是多少? (4)条件熵H(X ︱Y)是多少? (5)X 和Y 之间的互信息是多少?三、(25分)考虑一个差错概率为f=0.15的二进制对称信道。

信息论试题3

信息论试题3

《信息论基础》试卷答案一、填空题(共20分,每空1分)1、通信系统中,编码的主要目的有两个,分别是提高有效性和可靠性。

2、离散无记忆信源存在剩余度的原因是分布不等概。

3、当信源各符号无相关性、等概分布时,信源熵为最大值。

八进制信源的最大熵为3/bit 符号,最小熵为0/bit 符号。

4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。

5、一个事件发生概率为0.125,则自相关量为3bit 。

6、根据信原输出随机序列中随机变量前后之间有无统计依赖性,信原可以分为有记忆信源和无记忆信源。

7、噪声瞬时值的概率密度函数服从高斯分布,同时功率谱密度为均匀分布的噪声称为高斯白噪声。

8、当R=C 或(信道剩余度为0)时,信源与信道达到匹配。

9、若连续信源输出信号的平均功率为2σ,则输出信号幅度的概率密度是高斯分布或正2x -21log 22e πσ。

9,,,=≥≤>”或“〈” (1)()H XY =H(Y)+H(X|Y)H(Y)+H(X)≤(2)假设信道输入用X 表示,信道输出用Y 表示。

在有噪无损信道中, H(X/Y)= 0, H(Y/X)>0,I(X;Y)=H(X)。

二、(6分)若连续信源输出的幅度被限定在【1,3】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少。

解:该信源的相对熵:()h(X)=log b-a log(31)1bit =-=绝对熵为+∞三、(16分)已知信源12345S P 0.250.20.20.20.15s s s s s ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用霍夫曼编码法编成二进制变长码;(4分)(2)计算平均码长—L ;(4分)(3)计算编码信息率R ';(4分)(4)计算编码后信息传输率R ;(2分)(5)计算编码效率η。

(2分)解:(1)霍夫曼编码后的二进制变长码:S1:10, S2:00, S3:00, S4:110, S5:111,S1 0.25S2 0.2S3 0.2S4 0.2S5 0.1501.00.40.35011000.61(2)平均码长:I=0.35*3+0.65*2=2.35码元/符号;(3)编码信息率:R '=—L *logr=2.35*1=2.35 bit/信源符号(4)编码后信息传输率: 111110.25log 0.2log 0.2log 0.2log 0.15log H(s)0.250.20.20.20.15R= 2.35L 0.50.6*2.3220.15*2.7370.982.35++++=+==— (5)编码效率:η =H(s)L—=98%四、(12分)已知一个平均功率受限的连续信号,通过带宽W 10MHz =的高斯白噪声信道,试计算(1)若信噪比为10,信道容量为多少?(4分)(2)若信道容量不变,信噪比降为5,信道带宽为多少?(4分)(3)若信道通频带减为5MHz 时,要保持相同的信道容量,信道上的信号与噪声的平均功率比值应等于多少?(4分)解: (1)根据香农公式:()()67Wlog 1SNR 1010log 110 3.4610C =+=⨯⨯+=⨯ (2)当SNR 5=,()()7Wlog 1SNR Wlog 15 3.4610C =+=+=⨯则 773.4610W 1.33810Hz 2.585⨯==⨯ (3)当带宽减为5MHz ,()()67Wlog 1SNR 510log 1SNR 3.4610+=⨯⨯+=⨯ SNR =120五、(16分)某个信息源发出符号的概率为:12()(),P a P a =3()0.4,P a =假设该信息源发出的符号前后有关联,其依赖关系为:112122321333312133(|);(|);(|);(|);(|);(|);443344P a a P a a P a a P a a P a a P a a ======(1) 画出状态转移图(4分)(2) 计算稳态概率(4分)(3) 计算信源的极限熵(4分)(4) 计算稳态下H1,H2及其对应的剩余度。

信息论复习题及答案

信息论复习题及答案

1.(15分) 彩色电视显象管的屏幕上有5×105 个象元,设每个象元有64种彩色度,每种彩度又有16种不同的亮度层次,如果所有的彩色品种和亮度层次的组合均以等概率出现并且各个组合之间相互独立。

① 计算每秒传送25帧图象所需要的信道容量; ② 如果在加性高斯白噪声信道上信号与噪声平均功率的比值为63,为实时传送彩色电视的图象,信道的带宽应为多大?2.(15分)已知一个信源包含八个符号消息,它们的概率分布如下表,① 该信源每秒钟内发出一个符号,求该信源的熵及信息传输速率。

② 对八个符号作二进制码元的霍夫曼编码,写出各代码组,并求出编码效率。

③ 对八个符号作三进制码元的霍夫曼编码,写出各代码组,并求出编码效率。

3.(15分)一信源产生概率为995.0)0(,005.0)1(==P P 的统计独立二进制数符。

这些数符组成长度为100的数符组。

我们为每一个含有3个或少于3个“1”的源数符组提供一个二进制码字,所有码字的长度相等。

① 求出为所规定的所有源符组都提供码字所需的最小码长。

② 求信源发出一数符组,而编码器无相应码字的概率。

4.(15分) 求下图中DMC 的信道容量。

如果输入分布为{p(x=0)=1/2,p(x=1)=1/4,p(x=2)=1/4),试求输入的信息熵和经过该信道的输入、输出间的平均互信息量。

5.(15分)设二元(7, 4)线性分组码的生成矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000101010011100101100001011G给出该码的一致校验矩阵并写出所有的伴随式和与之相对应的陪集首。

若接收矢量)0001011(=v ,试计算出其对应的伴随式S 并按照最小距离译码准则试着对其译码6.(15分)证明最小错误概率译码与最大似然译码在先验等概的条件下等价。

设M =2且两个消息等概,令)0000(1=x ,)1111(2=x 。

通过信道转移概率p<1/2的信道传输。

信息论 试卷与答案

信息论 试卷与答案
2.简述最大离散熵定理。对于一个有 m 个符号的离散信源,其最大熵是多少?
答:最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
最大熵值为

3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的 概率分布、信道的传递概率间分别是什么关系?
答:信息传输率 R 指信道中平均每个符号所能传送的信息量。信道容量是一个信道所能达到 的最大信息传输率。信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分 布。
一、概念简答题(每题 5 分,共 40 分)
1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同?
答:平均自信息为 表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息
表示从 Y 获得的关于每个 X 的平均信息量,也表示发 X 前后 Y 的平均不确定性减少的量,还 表示通信前后整个系统不确定性减少的量。
概念简答题(每题 5 分,共 40 分) 1. 2. 3.答:信息传输率 R 指信道中平均每个符号所能传送的信息量。信道容量是一个信道所能达到的最大信息 传输率。信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分布。
平均互信息是信源概率分布的∩型凸函数,是信道传递概率的 U 型凸函数。 4. 5 6 7.答:当 R<C 时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。 8. 二、综合题(每题 10 分,共 60 分)
8.什么是保真度准则?对二元信源 求 a>0 时率失真函数的 和 ?
答:1)保真度准则为:平均失真度不大于允许的失真度。
,其失真矩阵

2)因为失真矩阵中每行都有一个 0,所以有 。
二、综合题(每题 10 分,共 60 分) 1.黑白气象传真图的消息只有黑色和白色两种,求:

信息论考试卷及答案解析

信息论考试卷及答案解析

考试科目名称:信息论一. 单选(每空2分,共20分)1.信道编码的目的是(C ),加密编码的目的是(D )。

A.保证无失真传输B.压缩信源的冗余度,提高通信有效性C.提高信息传输的可靠性D.提高通信系统的安全性2.下列各量不一定为正值的是(D )A.信源熵B.自信息量C.信宿熵D.互信息量3.下列各图所示信道是有噪无损信道的是(B )A.B.C.D.4.下表中符合等长编码的是( A )5.联合熵H(XY)与熵H(X)及条件熵H(X/Y)之间存在关系正确的是(A )A.H(XY)=H(X)+H(Y/X)B.H(XY)=H(X)+H(X/Y)C.H(XY)=H(Y)+H(X)D.若X和Y相互独立,H(Y)=H(YX)6.一个n位的二进制数,该数的每一位可从等概率出现的二进制码元(0,1)中任取一个,这个n位的二进制数的自信息量为(C )A.n2B.1 bitC.n bitnD.27.已知发送26个英文字母和空格,其最大信源熵为H0 = log27 = 4.76比特/符号;在字母发送概率不等时,其信源熵为H1 = 4.03比特/符号;考虑字母之间相关性时,其信源熵为H2 = 3.32比特/符号;以此类推,极限熵H=1.5比特/符号。

问若用一般传送方式,冗余度为( B )∞A.0.32B.0.68C .0.63D .0.378. 某对称离散信道的信道矩阵为 ,信道容量为( B )A .)61,61,31,31(24log H C -= B .)61,61,31,31(4log H C -= C .)61,61,31,31(2log H C -= D .)61,31(2log H C -= 9. 下面不属于最佳变长编码的是( D )A .香农编码和哈夫曼编码B .费诺编码和哈夫曼编码C .费诺编码和香农编码D .算术编码和游程编码二. 综合(共80分)1. (10分)试写出信源编码的分类,并叙述各种分类编码的概念和特性。

《信息论》试题及答案

《信息论》试题及答案

期终练习一、某地区的人群中,10%是胖子,80%不胖不瘦,10%是瘦子。

已知胖子得高血压的概率是15%,不胖不瘦者得高血压的概率是10%,瘦子得高血压的概率是5%,则“该地区的某一位高血压者是胖子”这句话包含了多少信息量。

解:设事件A :某人是胖子; B :某人是不胖不瘦 C :某人是瘦子 D :某人是高血压者根据题意,可知:P (A )=0.1 P (B )=0.8 P (C )=0.1 P (D|A )=0.15 P (D|B )=0.1 P (D|C )=0.05而“该地区的某一位高血压者是胖子” 这一消息表明在D 事件发生的条件下,A 事件的发生,故其概率为P (A|D )根据贝叶斯定律,可得:P (D )=P (A )* P (D|A )+P (B )* P (D|B )+P (C )* P (D|C )=0.1 P (A|D )=P (AD )/P (D )=P (D|A )*P (A )/ P (D )=0.15*0.1/0.1=0.15 故得知“该地区的某一位高血压者是胖子”这一消息获得的多少信息量为: I (A|D ) = - logP (A|D )=log (0.15)≈2.73 (bit ) 二、设有一个马尔可夫信源,它的状态集为{S 1,S 2,S 3},符号集为{a 1,a 2,a 3},以及在某状态下发出符号集的概率是(|)k i p a s (i ,k=1,2,3),如图所示(1)求图中马尔可夫信源的状态极限概率并找出符号的极限概率(2)计算信源处在某一状态下输出符号的条件熵H(X|S=j) (j=s 1,s 2,s 3) (3)求出马尔可夫信源熵H ∞解:(1)该信源达到平稳后,有以下关系成立:13212312123()()31()()()4211()()()42()()()1Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E =⎧⎪⎪=+⎪⎨⎪=+⎪⎪++=⎩可得1232()73()72()7Q E Q E Q E ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩3111322133313()()(|)72()()(|)73()()(|)7i i i i i i i i i p a Q E p a E p a Q E p a E p a Q E p a E =========∑∑∑(2)311113222133331(|)(|)log (|) 1.5bit/(|)(|)log (|)1bit/(|)(|)log (|)0bit/k k k kk k k k k H X S p a S p a S H X S p aS p a S H X S p a S p a S ====-==-==-=∑∑∑(符号)(符号)(符号)(3)31()(|)2/7*3/23/7*12/7*06/7iii H Q E H X E ∞==⨯=++=∑(比特/符号)三、二元对称信道的传递矩阵为0.60.40.40.6⎡⎤⎢⎥⎣⎦(1)若P(0)=3/4,P(1)=1/4,求H (X ),H (X|Y )和I (X ;Y )(2)求该信道的信道容量及其最大信道容量对应的最佳输入分布 解:⑴()H X =21()log ()iii p x p x ==-∑=0.75log 750.25log 25--≈0.811(比特/符号)1111212()()(|)()(|)p y p x p y x p x p y x =+=0.75*0.6+0.25*0.4=0.55 2121222()()(|)()(|)p y p x p y x p x p y x =+=0.75*0.4+0.25*0.6=0.45()0.55log0.550.45log0.45H Y =--=≈0.992(比特/符号)122(|)()(|)()(|)0.75(0.6,0.4)0.25(0.4,0.6)(0.6log 0.60.4log 0.4)0.971/H Y X p x H Y x p x H Y x H H =+=⨯+⨯=-+≈(比特符号)(|)()()()(|)()H X Y H XY H Y H X H Y X H Y =-=+-≈0.811+0.971-0.992=0.79 (比特/符号)I(X;Y)=H(X)-H(X|Y)=0.811-0.79=0.021(比特/符号) (2)此信道为二元对称信道,所以信道容量为C=1-H(p)=1-H(0.6)=1-0.971=0.029(比特/符号) 当输入等概分布时达到信道容量四、求信道22042240 p pp pεεεεεε⎡⎤--⎢⎥--⎢⎥⎣⎦的信道容量,其中1p p=-。

信息论考试卷与答案..

信息论考试卷与答案..

考试科目名称:信息论一. 单选(每空2分,共20分)1.一个m位的二进制数的自信息量为(A )A.m bitB.1 bitC.m2mD.22.信源编码的目的是(A )A.提高通信有效性B.提高信息传输的可靠性C.提高通信系统的安全性D.压缩信源的冗余度3.下面属于最佳变长编码的是(C )A.算术编码和游程编码B.香农编码和游程编码C.哈夫曼编码和费诺编码D.预测编码和香农编码4.表中符合即时码的是(A )和(D )5.下列各量可能为负值的是(B )A.自信息量B.互信息量C.信息熵D.平均互信息量6.联合熵H(XY)与熵H(X)及条件熵H(X/Y)之间存在关系错误的是(D )A.H(XY)=H(X)+H(Y/X)B.若X和Y相互独立,H(Y)=H(Y/X)C.H(XY)=H(Y)+H(X/Y)D.H(XY)=H(X)+H(X/Y)7.已知发送26个英文字母(包括空格),其最大信源熵(发送概率相等)为H0 = log27 = 4.76比特/符号;在字母发送概率不等时,其信源熵为H1 = 4.03比特/符号;考虑字母之间相关性时,其信源熵为H2 = 3.32=1.4比特/符号。

问若用一般传送比特/符号;以此类推,极限熵H∞方式,冗余度γ为( B )A.0.58B.0.71C.0.65D.0.298. 某信道传递矩阵为,其信道容量为( D )A .)41log 4143log 43()81,81,41,21(4log ++-=H C B .)41log 4343log 41()81,81,41,21(2log +--=H C C .)41log 4143log 43()81,81,41,21(4log +--=H CD .)41log 4143log 43()81,81,41,21(2log +--=H C9. 下列各图所示信道是对称信道的是( C )A .B .C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8181214181814121PD.二. 综合(共80分)1.(10分)试画出通信系统的模型,并叙述各部分的定义和作用。

信息论试卷含答案

信息论试卷含答案

《信息论基础》参考答案一、填空题(共15分,每空1分)1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。

2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。

3、三进制信源的最小熵为0,最大熵为32log bit/符号。

4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。

5、当R=C 或(信道剩余度为0)时,信源与信道达到匹配。

6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。

7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。

8、若连续信源输出信号的平均功率为2σ,则输出信号幅度的概率密度是高斯分布或正态分布或()222x f x σ-=时,信源具有最大熵,其值为值21log 22e πσ。

9、在下面空格中选择填入数学符号“,,,=≥≤〉”或“〈”(1)当X 和Y 相互独立时,H (XY )=H(X)+H(X/Y)=H(Y)+H(X)。

(2)()()1222H X X H X =≥()()12333H X X X H X = (3)假设信道输入用X 表示,信道输出用Y 表示。

在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)<H(X)。

二、(6分)若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少。

()1,2640,x f x ⎧≤≤⎪=⎨⎪⎩Q 其它()()()62log f x f x dx ∴=-⎰相对熵h x=2bit/自由度该信源的绝对熵为无穷大。

三、(16分)已知信源1234560.20.20.20.20.10.1S s s s s s s P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用霍夫曼编码法编成二进制变长码;(6分) (2)计算平均码长L ;(4分)(3)计算编码信息率R ';(2分)(4)计算编码后信息传输率R ;(2分) (5)计算编码效率η。

信息论习题答案

信息论习题答案

1.设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡4.06.0)(21x x X P X 通过一干扰信道,接收符号为Y = { y 1, y 2 },信道转移矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡43416165,求:(1) 信源X 中事件x 1和事件x 2分别包含的自信息量;(2) 收到消息y j (j=1,2)后,获得的关于x i (i=1,2)的信息量; (3) 信源X 和信宿Y 的信息熵;(4) 信道疑义度H(X/Y)和噪声熵H(Y/X); (5) 接收到信息Y 后获得的平均互信息量。

解: 1) 2) 3) 4) 5)2.设二元对称信道的传递矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32313132(1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)3.黑白气象传真图的消息只有黑色和白色两种,即信源X ={黑,白}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、(25分)如果X 和Y 相互独立,证明X 和Y 的熵满足可加性,即 H(Y)H(X)Y)H(X,+= 证明:设P(x,y)=P(x)P(y),则有
1
H(X,Y)()()log
P()()11()()log
()()log ()()11()log
()log ()()
()()
xy
xy
xy x
y P x P y x P y P x P y P x P y P x P y P x P y P x P y H X H Y ==+=+=+∑∑∑∑∑
二、(50分)联合总体X ,Y 具有如下联合分布。

X
Y
分别计算
(1) 联合熵H(X,Y)是多少? (2)边缘熵H(X)和H(Y)是多少?
(3)对于每一个y 值,条件熵H(X ︱y)是多少? (4)条件熵H(X ︱Y)是多少? (5)X 和Y 之间的互信息是多少? 解答:(1) H(X,Y)=3.375
(2) H(X)=2, H(Y)=1.75
(3) H(X|y=1)=2,H(X|y=1)=1.875,H(X|y=1)=1.875, H(X|y=4)=0.5
(4)H(X|Y)=1.1264
(5)I(X;Y)=H(X)-H(X|Y)=2-1.1264=0.8736 三、(25分)考虑一个差错概率为f=0.15的二进制对称信道。

输入总体为x Ω:{0P =0.9,1p =0.1},假设观察到y=1,请计算(1|1)P x y ==? 解:
(1|1)P x y ===
(1|1)(1)
(1|)()
x
P y x P x P y x P x ===∑=
=
9.015.01.085.01
.085.0⨯+⨯⨯
=22
.0085
.0=0.39
一、(25分)如果X 和Y 相互独立,证明X 和Y 的熵满足可加性,即 H(Y)H(X)Y)H(X,+=
二、(50分)联合总体X ,Y 具有如下联合分布。

X
Y
分别计算
(1) 联合熵H(X,Y)是多少? (2)边缘熵H(X)和H(Y)是多少?
(3)对于每一个y 值,条件熵H(X ︱y)是多少? (4)条件熵H(X ︱Y)是多少? (5)X 和Y 之间的互信息是多少?
三、(25分)考虑一个差错概率为f=0.15的二进制对称信道。

输入总体为
x Ω:{0P =0.9,1p =0.1},假设观察到y=1,请计算(1|1)P x y ==?。

相关文档
最新文档