第9章方差分析与回归分析习题答案

合集下载

第九章 复习-方差分析及回归分析

第九章  复习-方差分析及回归分析


s
n j X . j nቤተ መጻሕፍቲ ባይዱ X ij nX 0
j 1 i 1
因此得知SA的自由度是 s -1.
由(1.3),(1.6)及Xij的独立性得知
X ~ N ( , / n)
2
s j 1
(1.14)
E ( S A ) E[ n j X .2j nX 2 ]
j 1
s
(1.13) 可以计算 E( S E ) (n s) 2. SA的统计特性. 它是s个变量 n j ( X . j X )
2
的平方和,且仅有一个线性约束条件:

j 1 s j 1
s
nj

nj ( X. j X ) nj ( X. j X )
j 1 s nj
i 1

( X ij X . j ) 2 / 2 ~ 2 (n j 1)
i 1
nj
(1.11)中各项独立,根据 分布的可加性,得 s
2
S E / 2 ~ 2 ( ( n j 1))
j 1
即S E / 2 ~ 2 ( n s ),
n n j (1.12)
j
Xij - μj可以看成是随机误差. 记为Xij - μj =εij ,
则Xij 可以写为
Xij = μj +εij
εij ~N(0, ζ2),各ε
ij独立
(1.1)
i=1,2,…,nj , j=1,2,…,s
(1.1)称为单因素方差分析的数学模型.
方差分析的任务
X i1 ~ N (1 , 2 ), X i 2 ~ N (2 , 2 ),..., X is ~ N ( s , 2 ) I. 检验s个总体

第9章-方差分析与线性回归

第9章-方差分析与线性回归
2
Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.

第9章 方差分析

第9章 方差分析



Dependent List:weight Factor:fodder Contrasts选项: 多项式比较(AD与BC比较和AC与BD比较) Post Hoc选项: 均值多重比较LSD和Tamhane’s T2 ,一致性子集 检验Duncan(各种方法的使用条件-方差齐或不齐) Options选项:Descriptive描述统计量,Homogeneity-ofvariance方差齐次性检验,Means plot均值分布图 结果除了方差分析表,还有很多选项相应的结果 结论:四种饲料对猪体重增加的作用有显著性差异,还可得知 ABCD四种饲料对猪平均体重增加多少(越来越多)。

9.3.2 单因变量多因素方差分析的菜单和选择项
菜单:Analyze->General Linear Model-> Univariate 选项:


选择分析模型Model: 默认全模型Full Factorial:包括所有因素变量的主效应、所有 协变量的主效应、所有因素与因素的交互效应,不包括协变量与 其他因素的交互效应。 自定义模型Custom:主效应(Main effects及其因素变量)、交 互变量(有交互效应维数之分) 选择分解平方和的方法(默认为TYPE III) Include Intercept in model:系统默认截距包括在回归模型中。 选择对照方法Contrasts 选择分布图形Plots 选择多重比较分析Post Hoc 保存运算结果的选择项Save 选择输出项Options

零假设H0:组间均值无显著性差异(即四种饲料对 猪体重增加的平均值无显著性差异);
9.2.2--9.2.3 单因素方差分析的选择项和例子
使用选择项的单因素方差分析:

应用回归分析-第9章课后习题答案

应用回归分析-第9章课后习题答案

应⽤回归分析-第9章课后习题答案第9章含定性变量的回归模型思考与练习参考答案9.1 ⼀个学⽣使⽤含有季节定性⾃变量的回归模型,对春夏秋冬四个季节引⼊4个0-1型⾃变量,⽤SPSS 软件计算的结果中总是⾃动删除了其中的⼀个⾃变量,他为此感到困惑不解。

出现这种情况的原因是什么?答:假如这个含有季节定性⾃变量的回归模型为:tt t t kt k t t D D D X X Y µαααβββ++++++=332211110其中含有k 个定量变量,记为x i 。

对春夏秋冬四个季节引⼊4个0-1型⾃变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到⼀次观测值,则样本设计矩阵为:=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,显然,(X,D)中的第1列可表⽰成后4列的线性组合,从⽽(X,D)不满秩,参数⽆法唯⼀求出。

这就是所谓的“虚拟变量陷井”,应避免。

当某⾃变量x j 对其余p-1个⾃变量的复判定系数2j R 超过⼀定界限时,SPSS 软件将拒绝这个⾃变量x j 进⼊回归模型。

称Tol j =1-2j R 为⾃变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。

也就是说,当2j R >0.9999时,⾃变量x j 将被⾃动拒绝在回归⽅程之外,除⾮我们修改容忍度的默认值。

=k βββ 10β=4321ααααα⽽在这个模型中出现了完全共线性,所以SPSS软件计算的结果中总是⾃动删除了其中的⼀个定性⾃变量。

9.2对⾃变量中含有定性变量的问题,为什么不对同⼀属性分别建⽴回归模型,⽽采取设虚拟变量的⽅法建⽴回归模型?答:原因有两个,以例9.1说明。

⼀是因为模型假设对每类家庭具有相同的斜率和误差⽅差,把两类家庭放在⼀起可以对公共斜率做出最佳估计;⼆是对于其他统计推断,⽤⼀个带有虚拟变量的回归模型来进⾏也会更加准确,这是均⽅误差的⾃由度更9.3 研究者想研究采取某项保险⾰新措施的速度y对保险公司的规模x1和保险公司类型的关系(参见参考⽂献【3】)。

管理统计学刘金兰答案

管理统计学刘金兰答案

管理统计学刘金兰答案【篇一:管理统计学-刘金兰-第九章及复习题答案】t>*9-1 在相关分析中,对两个变量的要求是(A)。

(单选题) a.都是随机变量 b. 都不是随机变量 c. 其中一个是随机变量,一个是常数。

d. 都是常数。

*9-2 在建立与评价了一个回归模型以后,我们可以( d )。

(单选题) a. 估计未来所需要样本的容量。

b. 计算相关系数与判定系数。

c. 以给定因变量的值估计自变量的值。

d. 以给定自变量的值估计因变量的值。

9-3 对两变量的散点图拟合最好的回归线必须满足一个基本条件是( d )。

(单选题) a. c. ??y??yi?i?最大 b. ?y?i?最大d. ?y2??yi?i?最小?yii??y?i?最小?y2*9-4 如果某地区工人的日工资收入(元)随劳动生产率(千元/人时)的变动符合简单线性方程y=60+90x,请说明下列的判断中正确的有(AC)(多选) a.当劳动生产率为1千元/人时,估计日工资为150元;b.劳动生产率每提高1千元/人时,则日工资一定提高90元;c.劳动生产率每降低0.5千元/人时,则日工资平均减少45元;d.当日工资为240元时,劳动生产率可能达到2千元/人。

*9-5 变量之间的关系按相关程度可分为(b Cd )(多选) a.正相关 b.不相关 c.完全相关 d.不完全相关*9-6 简单线性回归分析的特点是:(Ab )。

(多选题) a. 两个变量之间不是对等关系 b. 回归系数有正负号 c. 两个变量都是随机的d. 利用一个方程两个变量可以互相推算 e.有可能求出两个回归方程 *9-7 一元线性回归方程中的回归系数b可以表示为(BC)。

(多选题) a. 两个变量之间相关关系的密切程度 b. 两个变量之间相关关系的方向 c. 当自变量增减一个单位时,因变量平均增减的量d. 当因变量增减一个单位时,自变量平均增减的量 e.回归方程的拟合优度*9-8 回归分析和相关分析的关系是( aBe )。

应用统计学(第九章 协方差分析)

应用统计学(第九章 协方差分析)
➢ 均积与均方具有相似的形式,也有相似的性质: 一个变量的总平方和与自由度可按变异来源进行剖分,
从而求得相应的均方; 两个变量的总乘积和与自由度也可按变异来源进行剖分
而获得相应的均积; 把两个变量的总乘积和与自由度按变异来源进行剖分并
获得获得相应均积的方法称为协方差分析。
在随机模型的方差分析中,根据均方MS和期望均方的关 系,可以得到不同变异来源的方差组分的估计值;
b* SP / SP
e
ex
回归关系的显著性可用F检验或t检验,这时误差项目回
归自由度dfeU=1,回归平方和:
U SS b*SP SP2 / SP
e
ey
e
e
ex
误差项离回归平方和:
Q SS U SS SP2 / SS
e
ey
Байду номын сангаасey
ey
e
ex
离回归自由度:
df df df k(n 1) 1
矫正平均数的计算
yi.(xx..) yi . by / x ( xi . x..)
矫正平均数的多重比较
LSD0.05=0.8769, LSD0.01 =1.1718 食欲添加剂配方1、2、3号与对照比较, 其矫正50 日 龄平均重间均存在极显著的差异,配方1、2、3号的矫正50 日龄平均重均极显著高于对照。
回归关系的显著性检验:
变异来源 df 误 差回 归 1 误差离回归 43 误 差 总 和 44
SS 47.49 37.59 85.08
MS 47.49 0.87
F 54.32**
F0.01 7.255
F检验表明,误差项回归关系极显著,表明哺乳仔猪 50 日龄重与初生重间存在极显著的线性回归关系

方差分析与回归分析习题答案精修订

方差分析与回归分析习题答案精修订

方差分析与回归分析习题答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第九章 方差分析与回归分析习题参考答案1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显着影响.(0.05(2,9) 4.26F =,0.01(2,9)8.02F =)解:r=3,12444n n 321=++=++=n n ,T=120 ,12001212022===n T C 计算统计值?7228.53,38A A A e e SS f F SS f ==≈……方差分析表结论:由于0.018.53(2,9)8.02,A F F ≈>=故果树品种对产量有特别显着影响.2.2700=10.523.56=≈结论: 由以上方差分析知,进器对火箭的射程有特别显着影响;燃料对火箭的射程有显着影响. 3.为了研究某商品的需求量Y 与价格x 之间的关系,收集到下列10对数据:2231,58,147,112,410.5,i i i i i i x y x y x y =====∑∑∑∑∑(1)求需求量Y 与价格x 之间的线性回归方程; (2)计算样本相关系数;(3)用F 检验法作线性回归关系显着性检验. 解:引入记号10, 3.1,5.8n x y ===∴需求量Y 与价格x 之间的线性回归方程为(2)样本相关系数32.80.955634.3248l r-==≈≈- 在0H 成立的条件下,取统计量(2)~(1,2)Ren S FF n S -=-计算统计值22(32.8)15.967.66,74.167.66 6.44R xy xx e yy R S l l S l S ==-≈=-≈-=故需求量Y 与价格x 之间的线性回归关系特别显着.4. 随机调查10个城市居民的家庭平均收入(x)与电器用电支出(y)情况得数据(单位:千元)如下:(1) 求电器用电支出y 与家庭平均收入x 之间的线性回归方程; (2) 计算样本相关系数; (3) 作线性回归关系显着性检验;(4) 若线性回归关系显着,求x =25时, y 的置信度为的预测区间. 解:引入记号10,27,1.9n x y ===∴电器用电支出y 与家庭平均收入x 之间的线性回归方程为(2)样本相关系数 0.9845l r==≈在0H 成立的条件下,取统计量(2)~(1,2)Rn S FF n S -=-e计算统计值2243.6354 5.37,5.54 5.370.17xy xx yy s l l s l s ==≈=-≈-=R e R故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. 相关系数检验法 01:0;:0H R H R =≠故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. (4) 因为0xx =处,0y 的置信度为1α-的预测区间为其中00.025垐 1.42640.123225 1.6536,(8) 2.31,0.1458y t σ=-+⨯====代入计算得当x =25时, y 的置信度为的预测区间为。

统计学第九章 相关与回归分析

统计学第九章  相关与回归分析

第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。

具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。

Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。

当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。

这种关系,称为具有不确定性的相关关系。

变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。

116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。

按相关的方向可分为正相关和负相关。

按相关的形式可分为线性相关和非线性相关。

按所研究的变量多少可分为单相关、复相关和偏相关。

三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。

回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。

只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。

四、相关图相关图又称散点图。

它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。

《统计学》课后练习题答案

《统计学》课后练习题答案
3.3汇总统计表
3.4统计图的规范
3.5如何用Excel做统计图
习题
一、单项选择题
1.统计表的结构从形式上看包括()、横行标题、纵栏标题、数字资料四个部分。(知识点3.1答案:D)
A.计量单位B.附录C.指标注释D.总标题
2.如果统计表中数据的单位都一致,我们可以把单位填写在()。(知识点3.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
9.()表示事物的质的特征,是不能以数值表示的。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
10.在出勤率、废品量、劳动生产率、商品流通费用额和人均粮食生产量五个指标中,属于数量指标的有几个()。(知识点:1.7答案:B)
1.统计调查方案的主要内容是( )( )( )( )( )。(知识点2.2答案:ABCDE)
A.调查的目的B.调查对象C.调查单位D.调查时间E.调查项目
2.全国工业普查中( )( )( )( )( )。(知识点2.2答案:ABCE)
A.所有工业企业是调查对象B.每一个工业企业是调查单位C.每一个工业企业是报告单位
频数f
(棵)
频率
(%)
向上累积
向下累积
频数(棵)
频率(%)
频数(棵)
频率(%)
80-90
8
7.3
8
7.3
110
100.0
90-100
9
8.2
17
15.5
102
92.7
100-110

《医学统计学》习题解答(最佳选择题和简答题)

《医学统计学》习题解答(最佳选择题和简答题)

《医学统计学》习题解答(最佳选择题和简答题)孙振球主编.医学统计学习题解答. 第2版. 北京:人民卫生出版社2005目录第二章计量资料的统计描述 (2)第三章总体均数的估计与假设检验 (3)第四章多个样本均数比较的方差分析 (6)第五章计数资料的统计描述 (7)第六章二项分布与Poisson分布 (9)第七章χ2检验 (11)第八章秩和检验 (13)第九章回归与相关 (14)第十章统计表与统计图 (17)第十一章多因素试验资料的方差分析 (19)第十二章重复测量设计资料的方差分析 (19)第十五章多元线性回归分析 (20)第十六章logistic回归分析 (22)第十七章生存分析 (23)第二十五章医学科学研究设计概述 (26)第二十六章观察性研究设计 (26)第二十七章实验研究设计 (28)第二十七章临床试验研究设计 (29)第二章 计量资料的统计描述(注:题号上有“方框” 的简答题为基本概念,下同)第三章总体均数的估计与假设检验简答题:第四章多个样本均数比较的方差分析简答题:第五章计数资料的统计描述简答题:第六章二项分布与Poisson分布简答题:第七章χ2检验简答题:1. 说明χ2检验的用途2. 两个样本率比较的u检验与χ2检验有何异同?3. 对于四格表资料,如何正确选用检验方法?4. 说明行×列表资料χ2检验应注意的事项?5. 说明R×C表的分类及其检验方法的选择。

第八章秩和检验简答题:5. 两独立样本比较的Wilcoxon秩和检验,当n1>10或n2-n1>10时用u检验,这时检验是属于参数检验还是非参数检验,为什么?6. 随机区组设计多个样本比较的Friedman M 检验,备择假设H1如何写?为什么?第九章回归与相关简答题:第十章统计表与统计图简答题:5. 统计表与统计图有何联系和区别?6. 茎叶图与频数分布图相比有何区别,有何优点?第十一章多因素试验资料的方差分析一、简答题1. 简述析因试验与正交试验的联系与区别。

第9章 方差分析与正交试验设计

第9章 方差分析与正交试验设计
SSB ( s 1) FB 在H 0 B为真时 SSE (r 1)( s 1) FB F ( s 1, (r 1)( s 1))
由上面讨论,我们找到了一种检验H0A和H0B方法: 选取统计量 SSA (r 1) SSB (s 1) FA FB SSE (r 1)(s 1) SSE (r 1)(s 1) H0A拒绝域为
i 1 j 1 r ni

X ij i ij ij 1 i ni 1 N 1 ij , N j 1
ni
N (0, )
2

i 1 j 1
r
ni
ij
n
i 1 i
r
i

X i i i
r ni i 1 j 1
r
X
r ni i 1 j 1
SSE (i ij i i )2 ( ij i )2
SSR ni ( i i )2
SST ( i ij )2
i 1 j 1
i 1 r
ni
并且
E (SSE ) E ( ( ij i )2 ) (ni 1) 2 ( N r ) 2
本例中灯丝的品种, 我们称之为因子,而选取了 四个品种,我们之为因子的四个水平.这种情况,我们 称为单因子四水平试验.对这种试验的分析称为单 因子方差分析.一般单因子r水平试验数据可列表如 下
水平水平 A1 A2
Ar
试验结果
x11 , x12 , , x1n1 x21 , x22 , , x2n2
A A1(不施氮肥) A2(施50公斤氮肥) B B1(不施磷肥) 300kg 400kg B2(施50公斤磷肥) 450kg 700kg

线性回归分析与方差分析.ppt

线性回归分析与方差分析.ppt
下面说明这一检验的方法.
若假设Y=a+bx+ 符合实际,则b不应为零 因为如果b=0,则Y=a+ 意味着Y与x无关
所以Y=a+bx是否合理,归结为对假设:
H0: b=0 H1 : b 0
进行检验
下面介绍检验假设H0的二种常用方法.
1.t检验法
若H0成立,即b=0,由定理7.1知,

~ N (0,1)
yˆ0 aˆ bˆx0
作为y0的预测值.可以证明
T
y0 yˆ0
~ t(n 2)
n ˆ
n2
1 1 n
(x0 x)2
n
(xi x)2
i1
从而可得
P | T | t (n 2) 1
2
所以,给定置信概率 1 ,Y0的置信区间为
( y0 (x0 ), y0 (x0 ))
其中
第九章 线性回归分析与方差分析
第一节 一元线性回归分析 第二节 可线性化的非线性回归 第三节 多元线性回归简介 第四节 方差分析
第一节 一元线性回归分析
在许多实际问题中,我们常常需要研究多 个变量之间的相互关系。 一般来说,变量之间的关系可分为两类: 一类是确定性关系,确定性关系是指变量之间的关 系可以用函数关系来表达,例如电流I电压V电 阻R之间有关系式V=IR。 另一类是非确定性关系,有些变量之间的关系是非 确定性的关系,这种关系无法用一个精确的函数 式来表示。
直线附近.但各点不完全在一条直线上,这是由于Y
还受到其他一些随机因素的影响.
这样,Y可以看成是由两部分叠加而成,一部
分是x的线性函数a+bx,另一部分是随机因素引起的
误差 ,即
y
Y=a+bx+

回归分析试题答案

回归分析试题答案

诚信应考 考出水平 考出风格浙江大学城市学院2011 — 2012 学年第一学期期末考试卷《 回归分析 》开课单位: 计算分院 ;考试形式:开卷(A4纸一张);考试时间:2011年01月6日; 所需时间: 120 分钟一.计算题(10分。

)1,考虑过原点的线性回归模型1,1,2,...,i i i y x i n βε=+=误差1,...,n εε仍满足基本假定。

求1β的最小二乘估计。

并求出1β 的期望和方差,写出1β的分布。

1221111111121,1,2,...,ˆ()()2()0ˆi i i nni i i i i i ni i i i ni ii nii y x i n Q y yy x Qy x x x yxβεββββ======+==-=-∂=--=∂=∑∑∑∑∑解:第1页共 6 页二. 证明题(本大题共2小题,每小题7分,共14分。

)1,证明:(1)22()1var()[1]i i xxx x e n L σ-=--(2)2211ˆˆ()2n i ii y y n σ==--∑是2σ的无偏估计。

011111122ˆˆˆ()()1()()1var()var[()()]()1var()var((()))()12cov[,(())](1(i i i i i nn i i j j jj j xx ni i i j j j xx ni i j j j xx ni i j j j xxe y y y x x x x y y x x y n L x x e y x x y n L x x y x x y n L x x y x x y n L x n ββσσ======-=----=----=-+--=++---+-=++∑∑∑∑∑解(1):222122222221212211)()1())2()()()11(12()]()1[1]1ˆˆ(2)()(())21ˆ[()]2()111var()[1]2212n i i j j xx xxi i xx xxi xx ni i i ni i i n n i i i i xx x x x x x L n L x x x x n L n L x x n L E E y y n E y y n x x e n n n L n σσσσσ=====----+--=++-+-=--=--=---==----=-∑∑∑∑∑22(11)n σσ--=三.填空题.(每空2分,共46分)1.为了研究家庭收入和家庭消费的关系,通过调查得到数据如下:6.22893,29.12349,43008,97.29,5422=====∑∑∑xy yxy x1)用最小二乘估计求出线性回归方程的参数估计值0ˆβ= 。

第九章方差分析及回归分析

第九章方差分析及回归分析
的点估计及均值差的置信水平为0.95的置信 区间。
解:2 SE /(n r) 0.000016
1 x1 0.242, 2 x2 0.256, 3 x3 0.262 x 0.253
1 x1 x 0.011, 2 x2 x 0.003
2019/11/8
1
例1 设有三台机器,用于生产规格相同的铝 合金薄板。取样,测量薄板的厚度精确至千 分之一厘米。得结果如下表所示。
铝合金板的厚度
机器1
机器2
机器3
0.236
0.257
0.258
0.238
0.253
0.264
0.248
0.255
0.259
0.245
0.254
0.267
0.243
0.261
SE ( X i1 X1)2
( X is X s )2
i 1
i 1
nj
(Xij X j )2 / 2 ~ 2 (nj 1)
i1
由 2分布的可加性知
s
SE / 2 ~ 2 ( (nj 1)) j 1
SE / 2 ~ 2(n s)
因F0.05(2,12) 3.89 32.92,
故在水平0.05下拒绝H0 , 认为各台机器生产的 薄板厚度有显著差异。
2019/11/8
23
(五)未知参数的估计
不管H0是否为真,ˆ 2

SE nr

2的无偏估计。
拒绝还是接受H0,需要作出两总体N (i , 2)和N (k , 2),
( Xij Xi.)( Xi. X )
i1 j1
i1

回归分析练习题及参考答案

回归分析练习题及参考答案

回归分析练习题及参考答案求:(1)⼈均GDP 作⾃变量,⼈均消费⽔平作因变量,绘制散点图,并说明⼆者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)求出估计的回归⽅程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归⽅程线性关系的显著性(0.05α=)。

(6)如果某地区的⼈均GDP 为5000元,预测其⼈均消费⽔平。

(7)求⼈均GDP 为5000元时,⼈均消费⽔平95%的置信区间和预测区间。

解:(1)可能存在线性关系。

(2)相关系数:(3)回归⽅程:734.6930.309y x=+回归系数的含义:⼈均GDP没增加1元,⼈均消费增加0.309元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型⾮标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003⼈均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: ⼈均消费⽔平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%⼈均GDP对⼈均消费的影响达到99.6%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

模型摘要模型R R ⽅调整的R ⽅估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), ⼈均GDP(元)。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F 检验:回归系数的检验:t 检验注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型⾮标准化系数标准化系数t 显著性B 标准误 Beta1(常量) 734.693 139.540 5.2650.003 ⼈均GDP (元)0.3090.0080.99836.4920.000a. 因变量: ⼈均消费⽔平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(6)某地区的⼈均GDP 为5000元,预测其⼈均消费⽔平为 734.6930.30950002278.693y =+?=(元)。

方差分析习题答案

方差分析习题答案

方差分析习题答案【篇一:方差分析习题】lass=txt>班级_______ 学号_______ 姓名________ 得分_________一、单项选择题1、方差分析所要研究的问题是() a、各总体的方差是否相等 b、各样本数据之间是否有显著差异 c、分类型自变量对数值型因变量的影响是否显著 d、分类型因变量对数值型自变量是否显著2、组间误差是衡量因素的不同水平(不同总体)下各样本之间的误差,它()a、只包含随机误差b、只包含系统误差c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差3、组内误差() a、只包含随机误差b、只包含系统误差 c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差4、在单因素方差分析中,各次实验观察值应()a、相互关联b、相互独立c、计量逐步精确d、方法逐步改进5、在单因素方差分析中,若因子的水平个数为k,全部观察值的个数为n,那么()a、sst的自由度为n b 、ssa的自由度为k c、 sse的自由度为n-k-1 d、sst的自由度等于sse的自由度与ssa的自由度之和。

6、在方差分析中,如果拒绝原假设,则说明()a、自变量对因变量有显著影响b、所检验的各总体均值之间全部相等c、不能认为自变量对因变量有显著影响d、所检验的各样本均值之间全不相等7、在单因素分析中,用于检验的统计量f的计算公式为() a、ssa/sseb、ssa/sst c、msa/msed、mse/msa8、在单因素分析中,如果不能拒绝原假设,那么说明组间平方和ssa () a、等于0 b、等于总平方和c、完全由抽样的随机误差所决定d、显著含有系统误差9、ssa自由度为()a、r-1b、n-1c、n-rd、r-n二、实验分析题1、某公司采用四种颜色包装产品,为了检验不同包装方式的效果,抽样得到了一些数据并进行单因素方差分析实验。

实验依据四种包装方式将数据分为4组,每组有5个观察值,用excel中的数据分析工具,在0.05的显著水平下得到如下方差分析表:方差分析(1)填表:请计算表中序号标出的七处缺失值,并直接填在表上。

回归分析答案

回归分析答案

试验设计作业1、下表为小麦栽培试验的产量结果(kg),随机区组设计,小区计产面积为12m2,试作分析。

在表示最后结果时需化为每亩产量(kg)。

假定该试验为一完全随机设计,试分析后将其试验误差与随机区组时的误差作一比较,看看划分区组的效果如何?处理区组ⅠⅡⅢⅣA 6.2 6.6 6.9 6.1B 5.8 6.7 6.0 6.3C 7.2 6.6 6.8 7.0D 5.6 5.8 5.4 6.0E 6.9 7.2 7.0 7.4F 7.5 7.8 7.3 7.6 完全随机设计的程序如下:data li_1;do i=1 to 6;do j=1 to 4;input x@@;output;end;end;cards;6.2 6.6 6.9 6.15.86.7 6 6.37.2 6.6 6.8 75.6 5.8 5.4 66.97.2 7 7.47.5 7.8 7.3 7.6;proc anova;class i;model x=i;means i;run;SAS输出结果如下: Sum ofSource DF Squares Mean Square F Value Pr > F Model 5 8.97208333 1.79441667 20.87 <.0001 Error 18 1.54750000 0.08597222Corrected Total 23 10.51958333R-Square Coeff Var Root MSE x Mean0.852893 4.406415 0.293210 6.654167Source DF Anova SS Mean Square F Value Pr > F i 5 8.97208333 1.79441667 20.87 <.0001随机区组设计的程序如下:data li_3;do i=1 to 6;do j=1 to 4;input x@@;output;end;end;cards;6.2 6.6 6.9 6.15.86.7 6 6.37.2 6.6 6.8 75.6 5.8 5.4 66.97.2 7 7.47.5 7.8 7.3 7.6;proc anova;class i j;model x=i j;run;结果如下:Sum ofSource DF Squares Mean Square F Value Pr > F Model 8 9.24333333 1.15541667 13.58 <.0001 Error 15 1.27625000 0.08508333Corrected Total 23 10.51958333R-Square Coeff Var Root MSE x Mean0.878679 4.383576 0.291690 6.654167Source DF Anova SS Mean Square F Value Pr > Fi 5 8.97208333 1.79441667 21.09 <.0001j 3 0.27125000 0.09041667 1.06 0.3943结果分析:随机区组设计的误差要小一些。

第九章 方差分析与实验设计

第九章 方差分析与实验设计

第十章 方差分析与实验设计一、填空题1、在方差分析中所要检验的对象称为 。

2、在方差分析中所要检验的对象称为 ,其不同表现称为 。

3、从两个总体中分别抽取17n =和26n =的两个独立随机样本。

经计算得到下面的方差分析表:其中“A ”单元格内的结果是_________________。

4、在方差分析中,设因素的水平个数为k ,全部观测值的个数为n ,总平方和的自由度为 。

5、在方差分析中,设用于检验的行因素为R ,列因素为C ,行因素有k 个水平,列因素有r 个水平,并假设两个因素没有交互作用,残差平方和的自由度是____________。

6、在单因素方差分析中,涉及到两个变量,一个是 ,另一个是 。

7、完全随机化实验设计,必须符合 要求,必须符合 原则。

8、接受“处理”的对象或实体称为 。

9、搜集样本的计划称为 。

10、在方差分析中用于检验的统计量是 。

11、从三个总体中选取了4个观测值,得到组间方差平方和SSA=536,组内平方和SSE=828,组间均方与组内均方分别为 和 。

二、单项选择题1、在方差分析中,设用于检验的行因素为R ,列因素为C ,并假设两个因素没有交互作用,用于检验因素R 的统计量是 ( )。

A 、 SSR F SSC =B 、MSR F MSC = C 、MSR F MSE =D 、MSRF MST= 2、在双因素方差分析中,度量两个分类自变量对因变量影响的统计量是2R ,其计算公式为 ( )。

A 、2SSR SSC R SST +=B 、2MSR MSC R MST += C 、2SSR R SST =D 、2SSC R SST=3、一次涉及因子A 的4个水平与因子B 的3个水平以及3次重复的因子试验得到的结果为SST=280,SSA=26,SSB=23,SSAB=175,在0.05α=的显著性水平下,检验因子A 的显著性,即检验假设0H :因子A 不显著,得到的结论是( )。

现代心理与教育统计学 张厚粲 课后习题答案

现代心理与教育统计学 张厚粲 课后习题答案

现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。

6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。

7、这两列变量的等级相关系数为0.97。

8、上表中成绩与性别有很强的相关,相关系数为0.83。

9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。

10、测验成绩与教师评定之间有一致性,相关系数为0.87。

11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。

12、肯德尔一致性叙述为0.31。

第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。

第9章方差分析与一元回归分析

第9章方差分析与一元回归分析

第九章 方差分析与一元线性回归分析
[系统(条件)误差]:
概率统计
在方差分析中,凡是由于试验因素的变异而引起的 试验结果的差异,称为“系统误差”或“条件误差”.
[随机(试验)误差]:
在试验中,当我们把所有能控制的试验条件都控 制在固定的状态下,进行多次重复试验,所得的的试 验结果也不会完全一致,仍存在一定程度的差异.
r ni
ST
( Xij X )2
i1 j1
r ni
SE
( Xij Xi )2
i1 j1
r ni
r
SA
( Xi X )2 ni (Xi X )2
i1 j1
i1
ST反映了样本的总变动幅度. SE反映了为从r个总体中选取一个容量为ni的样本所进行的 重复试验而产生的误差. S A反映了从各不同水平总体中取出的各个样本之间的差异.
r i1
1 ni
(
ni j 1
X ij
)2
1 n
(
r i1
ni
Xij )2
j 1
概率统计
第九章 方差分析与一元线性回归分析
概率统计
(3) 若令Y aX b (a 0),有Y aX b SY2 a2SX2
Y
1 n
n i 1
Yi
1 n
n i 1
(aX i
b)
1 n
n
aX i
i 1
第九章 方差分析与一元线性回归分析
教学要求
1.掌握单因素试验的方差分析 2.掌握一元线性回归分析 学时 4- 6
概率统计
第九章 方差分析与一元线性回归分析
第一节、方差分析
一、方差分析的基本原理 二、单因素方差分析的方法 三、单因素方差分析的步骤 四、双因素方差分析的方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 方差分析与回归分析习题参考答案
1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显着影响. (0.05(2,9) 4.26F =,0.01(2,9)
8.02F =)
34
2
11
1310ij i j x ===∑∑
解:r=3,
12444n n 321=++=++=n n , T=120 ,120012
1202
2===n T C
3
4
2
211
131********(1)1110110T ij T i j SS x C S n s ===-=-==-=⨯=∑∑或S
322.1112721200724(31)429724A i A A i SS T C S s ==-=-==-=⨯⨯=∑或S
3872110=-=-=A T e SS SS SS
计算统计值722
8.53,
389
A A A e e SS f F SS f =
=≈……
方差分析表
结论:由于0.018.53(2,9)8.02,
A F F ≈>=故果树品种对产量有特别显着影响.
2.
..180x =
43
2
11
2804ij i j x ===∑∑
解:22..4,3,12,180122700l
m n lm C x n =======
43
2211
28042700104(1)119.45
104T ij T i j S x C S n s ===-=-==-=⨯≈∑∑&&或 422
.1
12790270090(1)331090
3A i A A i S x C S m l s ==-=-==-≈⨯⨯=∑或322
.1
12710.5270010.5(1)8 1.312510.5
4B j B B j S x C S l m s ==-=-==-≈⨯=∑或1049010.5 3.5e T A B S S S S =--=--=
计算统计值90310.52
51.43,93.56 3.56
A A
B B A
B e e e e S f S f F F S f S f =
=≈==≈
结论: 由以上方差分析知,进器对火箭的射程有特别显着影响;燃料对火箭的射程有显着影响. 31,58,147,112,410.5,i i i i i i x y x y x y =====(1)求需求量Y 与价格x 之间
的线性回归方程; (2)计算样本相关系数;
(3)用F 检验法作线性回归关系显着性检验.
⎪⎪⎭

⎝⎛====56.10)9,1(,26.11)8,1(12.5)9,1(,32.5)8,1(01.001.005.005.0F F F F
解:引入记号
10, 3.1,
5.8n x y ===
()()14710 3.1 5.832.8xy i i i i l x x y y x y nx y =--=-=-⨯⨯=-∑∑ 2
222()11210 3.115.9xx i i l x x x nx =-=-=-⨯=∑∑
22
()(1)9 1.766715.9xx i x l x x n s =-=-≈⨯≈∑或
2
222()410.510 5.874.1yy i i l y y y ny =-=-=-⨯=∑∑
22()(1)98.233374.1yy i y l y y n s =-=-≈⨯≈∑或
ˆ(1)
b
Q 32.8ˆˆ2.06, 5.8 2.06 3.112.1915.9xy xx l a y bx l -==≈-=-≈+⨯≈ ∴需求量Y 与价格x 之间的线性回归方程为
ˆy
ˆˆ12.19 2.06a bx x =+≈-
(2)样本相关系数
32.8
0.955634.3248
l r -=
=
≈≈-
01(3)
:0;:0H b H b =≠
在0H 成立的条件下,取统计量(2)~(1,2)R
e
n S F
F n S -=
-
计算统计值
2
2(32.8)15.967.66,
74.167.66 6.44
R xy xx e yy R S l l S l S ==-≈=-≈-=
0.01(2)867.666.4484.05(1,8)11.26R e F n S S F =-≈⨯≈>=
故需求量Y 与价格x 之间的线性回归关系特别显着.
∑∑∑∑∑=====6.556,
64.41,
7644,
19,
27022i
i
i
i
i
i
y
x y
x
y
x
(1) 求电器用电支出y 与家庭平均收入x 之间的线性回归方程; (2) 计算样本相关系数; (3) 作线性回归关系显着性检验;
(4) 若线性回归关系显着,求x =25时, y 的置信度为的预测区间. 解:引入记号
10,
27, 1.9n x y ===
()()556.61027 1.943.6xy i i i i l x x y y x y nx y =--=-=-⨯⨯=∑∑
2
222()76441027354xx i i l x x x nx =-=-=-⨯=∑∑
22
()(1)939.3333
354xx i x l
x x n s =-=-≈⨯≈∑或
2
222()41.6410 1.9 5.54
yy i i l y y y ny =-=-=-⨯=∑∑
22()(1)90.4716 5.54yy i y l y y n s =-=-≈⨯=∑或
ˆ(1)
b
Q 43.6ˆˆ0.1232, 1.90.123227 1.4264354xy xx l a y bx l ==≈=-≈-⨯≈- ∴电器用电支出y 与家庭平均收入x 之间的线性回归方程为
ˆy
ˆˆ 1.42640.1232a bx x =+≈-+ (2)样本相关系数
0.9845l r =
=

01(3)
:0;:0F H b H b =≠检验法
在0H 成立的条件下,取统计量(2)~(1,2)R
n S F
F n S -=
-e
计算统计值
2
243.6354 5.37,
5.54 5.370.17
xy xx yy s l l s l s ==≈=-≈-=R e R
(2)n s F s -=
R
e
0.018 5.370.17252.71(1,8)11.26F ≈⨯≈>=
故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着.
相关系数检验法
01:0;:0H R H R =≠
0.01||0.9845(8)0.765r r =>=由
故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. (4) 因为0x
x =处,0y 的置信度为1α-的预测区间为
2
0垐((2)y t n ασ±-
其中
00.025垐 1.42640.123225 1.6536,
(8) 2.31,0.1458y t σ=-+⨯====
代入计算得当x =25时, y 的置信度为的预测区间为
(1.65360.355)(1.2986,2.0086).=m。

相关文档
最新文档