西南大学《理论力学》复习思考题及答案资料
理论力学思考题习题答案
第一章 质点力学矿山升降机作加速度运动时,其变加速度可用下式表示:⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。
已知升降机的初速度为零。
解 :由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 由加速度的微分形式我们可知dtdv a =代入得 dt T t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫⎝⎛-=002sin 1π 可得 :D T t c T ct v ++=2cos 2ππ(D 为常数)代入初始条件:0=t 时,0=v , 故c T D π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos 2T t T t c v ππ 又因为dtds v =所以 =ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos 2ππ 对等式两边同时积分,可得:⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ 直线FM 在一给定的椭圆平面内以匀角速ω绕其焦点F 转动。
求此直线与椭圆的焦点M 的速度。
已知以焦点为坐标原点的椭圆的极坐标方程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏心率,常数。
解:以焦点F 为坐标原点题1.8.1图则M 点坐标 ⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= ) 又因为()()221cos 111ea e e a r -+-=θ即 ()rer e a --=21cos θ所以()()2222222221211cos 1sin e r e ar r ea --+--=-=θθ故有 ()2222224222sin 1ωθωr e a r e v +-=()2224221e a r e -=ω()()]1211[2222222e r e ar r e a --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω即 ()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)质点作平面运动,其速率保持为常数。
理论力学思考题答案
第一章思考题解答1.1答:平均速度是运动质点在某一时间间隔内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。
在的极限情况,二者一致,在匀速直线运动中二者也一致的。
1.2答:质点运动时,径向速度和横向速度的大小、方向都改变,而中的只反映了本身大小的改变,中的只是本身大小的改变。
事实上,横向速度方向的改变会引起径向速度大小大改变,就是反映这种改变的加速度分量;经向速度的方向改变也引起的大小改变,另一个即为反映这种改变的加速度分量,故,。
这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,是由于速度方向的改变产生的,在空间曲线中,由于恒位于密切面内,速度总是沿轨迹的切线方向,而垂直于指向曲线凹陷一方,故总是沿助法线方向。
质点沿空间曲线运动时, z何与牛顿运动定律不矛盾。
因质点除受作用力,还受到被动的约反作用力,二者在副法线方向的分量成平衡力,故符合牛顿运动率。
有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。
有人也许还会问:某时刻若大小不等,就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来所在的方位,又有了新的副法线,在新的副法线上仍满足。
这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。
1.4答:质点在直线运动中只有,质点的匀速曲线运动中只有;质点作变速运动时即有。
(完整版)理论力学复习题及答案(1).doc
理论力学自测复习题静力学部分一、填空题:(每题 2 分)1、作用于物体上的力的三要素是指力的大小、方向和作用点。
2、当物体处于平衡状态时,作用于物体上的力系所满足的条件称为平衡条件,此力系称为平衡力系,并且力系中的任一力称为其余力的平衡力。
3、力的可传性原理适用于刚体,加减平衡力系公理适用于刚体。
4、将一平面力系向其作用面内任意两点简化,所得的主矢相等,主矩也相等,且主矩不为零,则此力系简化的最后结果为一个合力偶5、下列各图为平面汇交力系所作的力多边形,试写出各力多边形中几个力之间的关系。
A 、r F1 F2 F3 0 、B 、r r rF2 F3 F4 F1 C 、r r r rF1 F4 F3 F2 D 、r r rF1 F2 F3 。
6、某物体只受三个力的作用而处于平衡状态,已知此三力不互相平行,则此三力必并且汇交于一点、共面7、一平面力系的汇交点为A,B 为力系作用面内的另一点,且满足方程∑m=0。
若此力系不B平衡,则其可简化为作用线过 A、B 两点的一个合力。
8、长方形平板如右图所示。
荷载集度分别为q q q q1、2、3 、 4 的均匀分布荷载(亦称剪流)作用在板上,欲使板保持平衡,则荷载集度间必有如下关系:q3=q 1 = q 4 = q 2 。
9、平面一般力系平衡方程的二力矩式为∑F x = 0 、∑ M A = 0 、∑M B = 0,其适用条件是A、 B两点的连线不垂直于 x 轴10、平面一般力系平衡方程的三力矩式为∑M A=0、∑M B=0、∑M C=0,其适用条件是A、B、C三点不共线。
11、正方形平板受任意平面力系作用,其约束情况如下图所示,则其中 a b c f h属于静定问题; d e g属于超静定问题。
12、已知平面平行力系的五个力(下左图示)分别为 F1 = 10N, F2 = 4N,F3 = 8 N,F4 = 8N和 F5 = 10 N,则该力系简化的最后结果为大小 0.4 N·m、顺时针转的力偶。
理论力学复习题答案.doc
一、选择题1、A (4分)2、D (4分)3、B (4分)4、A (4分)二、填空题1、ωml 21,ω231ml 2、2243ωmR , ω223mR 3、 2/15三、判断题1、( × )2、( √ )3、( √ )四、计算题解:分别取CD 和整体为研究对象,列CD 杆平衡方程:02sin ,0=⨯-+⨯⇒=∑a F M a F M B C β (3分) )(5sin 2↑=-=KN aMF F B β(向上) (1分)列整体平衡方程:23sin 43,00sin ,00cos ,02=--++⇒=∑=+⨯-+⇒=∑=+⇒=∑qa Fa a F M M M F a q F F F F F F B A A NB AY Y AX X βββ (7分)将ο30,4,/1,.20,10=====βm a m KN q m KN M KN F 代入方程,联立求解,可得)(35←-=KN F AX (水平向右) , )(4↑=KN F AY (铅直向上), m KN M A .24= (逆时针) (4分)五、计算题解:动点:套筒A动系:固连在O 2B 上 (1分) 作速度平行四边形 (4分)r e a V V V += (2分)s cm V a /40=s rad A O /41=ω (3分)s cm V r /320= (2分)2/340s cm a C = (3分)六、计算题解: AB 作平面运动,以A 为基点,分析B 点的速度。
由图中几何关系得:(4分)(4分)(2分)B A BA =+r r rv v v cot30103cm/s B A v v ==o 20cm/s sin 30A BA vv ==o 1rad sBAAB v lω==方向如图所示。
七、计算题解:用动能定理求运动以杆为研究对象。
由于杆由水平位置静止开始运动,故开始的动能为零,即:01=T (1分)杆作定轴转动,转动到任一位置时的动能为222222181)32(1212121ωωml l l m ml J T O =⎥⎦⎤⎢⎣⎡-+==(1分) 在此过程中所有的力所作的功为ϕsin 6112mgl mgh W ==∑ (1分) 由2112T T W -=∑得22110sin 186ml mgl ωϕ-=23sin g l ωϕ=ω= (2分)将前式两边对时间求导,得:d 3d 2cos d d g t l tωϕωϕ= 3cos 2gl αϕ= (1分)A现求约束反力:质心加速度有切向和法向分量:tcos 4C g a OC αϕ=⋅=n2sin 2C g a OC ωϕ=⋅= (2分) 将其向直角坐标轴上投影得:t n3sin cos sin cos 4Cx C C ga a a ϕϕϕϕ=--=-t n23cos sin (13sin )4Cy C C g a a a ϕϕϕ=-+=-- (2分)由质心运动定理可得;,Cx x Cy y ma F ma F =∑=∑3sin cos 4Ox mgF ϕϕ-= 23(13sin )4Oy mg F mg ϕ--=- (3分)解得:3sin 28Ox mg F ϕ=-2(19sin )4Oy mgF ϕ=+ (2分)一、选择题(每题 4 分,共 16 分)1、A (4分)2、A (4分)3、C (4分)4、C (4分)二、填空题(每空 4 分,共 20 分)1、杆的动量为ωml 21,杆对O 轴的动量矩为ω231ml , 2、 此瞬时小环M 的牵连加速度a e 为 2ωR ,小环M 科氏加速度a C 为 r V ω2 3、夹角θ应该满足的条件是 f φθ2≤三、判断题(每空 3 分,共 9 分)1、( × )2、( √ )3、( √ )四、计算题(共 15 分)解:)(↑=-⨯+⨯=kN 35)22(1M aqa a F a F B ;(5分) )(kN 40←==qa F Cx ,)(↑=-=-=kN 53540B Cy F F F ;(5分))(kN 80←=Ax F ,)(kN5↑=Ay F ,m kN 240⋅=A M (逆时针)。
理论力学课后的习题及答案解析...doc
第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。
其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。
其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学(1.7)--静力学公理和物体受力分析-思考题答案
第一章 静力学公理和物体的受力分析
答 案
1-1
(1)若F1=F2表示力,则一般只说明两个力大小相等,方向相同。
(2)若F1=F2表示力,则一般只说明两个力大小相等,方向是否相同,难以判定。
(3)说明两个力大小、方向、作用效果均相同。
1-2
前者为两个矢量相加,后者为两个代数量相加。
1-3
(1)B处应为拉力,A处力的方向不对。
(2)C、B处力方向不对,A处力的指向反了。
(3)A处力的方向不对,本题不属于三力汇交问题。
(4)A、B处力的方向不对。
受力图略。
1-4
不能。
因为在B点加和力F等值反向的力会形成力偶。
1-5
不能平衡。
沿着AB的方向。
1-6略。
1-7
提示:单独画销钉受力图,力F作用在销钉上;若销钉属于AC,则力F作用在AC上。
受力图略。
理论力学课后习题及答案解析
理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。
其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学思考题2014.11
A C
B (A)
B
(B)
(C)
A P
C
P
B (D)
答: C
2021/6/16
7
100. 试写出各类力系应有的独立平衡方程数。
汇交力系
平面
空间
力偶系
平面
空间
平行力系
平面
空间
一般力系
平面
空间
2021/6/16
8
点的运动学
7-8点沿下图所示的轨迹作减速曲线运动,以下四 种它的速度和加速度的组合,哪一种是可能的?
a An
答:3 2a m/s2
9 2a at 5
an
12 2a 5
2021/6/16
13
圆盘作定轴转动,若某瞬时其边缘上A,B,C三 点的速度,加速度如图所示,则____的运动是不可能 的。
(1)点A,B; (2)点A,C (3)点B,C; (4)点A,B,C。
2021/6/16
答: (1)
14
ve vr
答:vr=b
ve=b
2021/6/16
31
176. 直角弯管OAB在平面内以匀角速度=2(rad/s)
绕O转动,动点M以相对速度vr=20mm/s沿弯管运动, 则图示瞬时动点的牵连加速度ae=____________, 科氏加速度aC=_________,方向表示在图上。
ac
答:ae= 2 b2
P
C
A
B
P
C
A
B
RA
RB
(A)
YC
YC
P
P
XC YA
T RA
T XA
(B)
(C)
XC NB
理论力学思考题一.doc
理论力学思考题(一)一、填空题1、研究运动的三种基本方法是。
2、当刚体运动时,其上任意两点连线的方位始终不变,刚体的这种运动称为。
3、刚体运动上时,其体内或其扩大的部分内有一条固定不动的直线,刚体的这种运动称为。
4.在合成运动中,动点对定坐标系的运动称为;动点对动坐标系的运动称为;动坐标系对定坐标系的运动称为。
5、转动惯量是刚体的量度。
6、单位时间内力所作的功称为。
7、动能是度量物体机械运动的一个物理量,质点动能的表达式为。
8、质点的质量与其在某瞬时速度矢量的乘积,称为质点在该瞬时的。
二、判断正误()1、理论力学研究的内容包括静力学、运动学和动力学三个部分。
()2、将作用于在物体上的力系用另一个与它等效的力系来代替,则这两个力系互为等效力系。
()3、刚体在三个力的作用下处于平衡时三力不一定相交于一点。
()4、应用平衡条件求解未知力的过程中,首先要确定构件受了几个力以及每个力的作用位置和方向,这种分析过程称为物体的受力分析。
()5、作用在刚体上的力,沿其作用线移动时会改变它对刚体的作用效应。
()6、对于力偶,只要保持其力偶矩不变,则调整其力偶臂和力的大小将不改变它对刚的作用效应。
()7、牵连运动为转动时,点的加速度的合成公式为a a=a e+a r()8、在合成运动中,绝对速度是指动点对于固定参考系的速度。
()9、在自然坐标系中,动点的加速度可分解为切向加速度和法向加速度。
( )10、静力学中,力的平移定理是:力平移后力的大小和方向保持不变,但需附加一个力偶,力偶的大小等于原力对平移点的矩。
三、选择填空题:1、在重力场中,质量为100Kg 的物体静止于高10m 处,若取地面处的平面为零势能面,则物体的机械能(取g=10m/s 2)为 。
A 、10000JB 、20000JC 、0D 、1000J2、质点的动量随时间的变化关系为P=100t+2007(Kg.m/s),则系统的合外力F 的大小为 。
A 、50 (N)B 、100 (N)C 、100 t (N)D 、2007 (N)3、质点系的质量m=20Kg ,质心作平面运动的方程是x C =40t 2+1998 (m),y C =30t 2+2005 (m),则质点系所受的合外力是 。
(完整word版)理论力学课后习题及答案解析.docx
理论力学教科书课后习题及解析第一章偶,大小是260Nm,转向是逆时针。
习题 4- 1.求图示平面力系的合成结果,长度单位为m。
习题 4- 3.求下列各图中平行分布力的合力和对于 A 点之矩。
解: (1) 平行力系对 A 点的矩是:解: (1) 取 O 点为简化中心,求平面力系的主矢:取 B 点为简化中心,平行力系的主矢是:求平面力系对O 点的主矩:平行力系对 B 点的主矩是:(2)合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;向 A 点简化的结果是一个力R A和一个力偶M A,且:如图所示;将 R B向下平移一段距离d,使满足:最后简化为一个力R ,大小等于R B。
其几何意义是: R 的大小等于载荷分布的将 R A向右平移一段距离d,使满足:矩形面积,作用点通过矩形的形心。
(2)取 A 点为简化中心,平行力系的主矢是:最后简化为一个力R,大小等于R A。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
平行力系对 A 点的主矩是:列平衡方程:习题 4-4 .求下列各梁和刚架的支座反力,长度单位为m。
解方程组:反力的实际方向如图示。
校核:解: (1) 研究 AB 杆,受力分析,画受力图:结果正确。
(2) 研究 AB 杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:(3) 研究 ABC ,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:列平衡方程:反力的实际方向如图示。
校核:解方程组:结果正确。
反力的实际方向如图示。
校核:结果正确。
习题 4-5 .重物悬挂如图,已知G=1.8kN ,其他重量不计;求铰链 A 的约束反力和杆 BC 所受的力。
列平衡方程:解方程组:解: (1) 研究整体,受力分析(BC 是二力杆),画受力图:反力的实际方向如图示。
列平衡方程:习题 4-8 .图示钻井架,G=177kN ,铅垂荷载P=1350kN ,风荷载 q=1.5kN/m ,水平力 F=50kN ;求支座 A 的约束反力和撑杆CD 所受的力。
西南大学物理学专业理论力学复习
v // r
沿垂直于位矢速度
(1)
v
r , 又因为 v // r
即
5
(2)
r r
r ,即 (3)… v
r
(4)…
dv d ˆ ) d ( r ˆ ˆ ˆ ,垂直位矢方向 i a (r j ) (取位矢方向 i j )…………(1 分) dt dt dt
4
mv2 mv1
力矩与角动量(动量矩)的概念 对点的力矩: M o ( F ) M r F 对点的角动量(动量矩) :M o ( mv ) J r mv 对轴线的力矩或角动量,是在该轴上取一点做为定点,先求根据上面两式求得对该点 力矩和角动量,再投影到该轴上即可(分量式请看书) 。若力与轴线相交或平行,则 该力对轴线没有力矩,利用该结论,可能有力对轴线的力矩与对某轴的力矩相等,因 对其它两轴的力矩为零,即共面力系情况,只可能对垂直于该面的轴线有力矩,所以 对该轴线的力矩等于对该轴线与这个面的交点的力矩,第三章应用定轴转动定理(对 Z 轴的角动量定理)时通常利用到这点。 dJ rF M 角动量定理:微分形式: dt 质点对某定点 的动量矩(角动量)对时间的导数,等于作用力对同一点的力矩。 积分形式 J 2 J 1 Mdt 某过程,角动量的变化量等于外力在该时间段内给予质点的冲量矩
轴上,用分量式才能求解,所以建立合理的坐标系,正确的受力分析,利用初始条件 求解牛顿运动微分方程的分量式(逐次积分法或公式法进行积分,积分常数需由初始 条件决定) ,是该类问题的三大步骤
dvx dvx , y , z , t m x m mv Fx x, y, z, x x dt dx dv dv m y mv y y Fy x, y, z, x , y , z , t y m 自由质点:空间 dt dy dv dv , y , z m z mv z z Fz x, y, z, x , t z m dt dz 平面的:
理论力学思考题
理论力学思考题————————————————————————————————作者: ————————————————————————————————日期:第一章静力学公理和物体的受力分析1-1 说明下列式子与文字的意义和区别:(1)F1= F2(2) F1=F2(3)力F1等效于力F2 。
答:(1)若F1 = F2 ,则一般只说明这两个力大小相等,方向相同。
(2)若F1= F2,则一般只说明两个力大小相等,方向是否相同,难以判定。
(3)力F1等效于力F2,则说明两个力大小相等,方向、作用效果均相同。
1-2 试区别F R= F1+F2和FR=F1 + F2两个等式代表的意义。
答:前者为两个矢量相加,后者为两个代数量相加。
1-3图中各物体的受力图是否有错误?如何改正?(1)(2)(3)(4)答:(1)B处应为拉力,A处力的方向不对;(2)C、B处力方向不对,A处力的指向反了;(3)A处力的方向不对,本题不属于三力汇交问题;(4)A、B处力的方向不对。
(受力图略)1-4 刚体上A 点受力F 作用,如图所示,问能否在B 点加一个力使刚体平衡?为什么? 答:不能;因为力F的作用线不沿AB 连线,若在B 点加和力F 等值反向的力会组成一力偶。
1-5 如图所示结构,若力F作用在B 点,系统能否平衡?若力F 仍作用在B点,但可以任意改变力F的方向,F 在什么方向上结构能平衡? 答:不能平衡;若F 沿着AB 的方向,则结构能平衡。
1-6 将如下问题抽象为力学模型,充分发挥你们的想象、分析和抽象能力,试画出它们的力学简图和受力图。
(1)用两根细绳将日光灯吊挂在天花板上; (2)水面上的一块浮冰;(3)一本打开的书静止放于桌面上; (4)一个人坐在一只足球上。
答:略。
(课后练习)1-7 如图所示,力F 作用于三铰拱的铰链C 处的销钉上,所有物体重量不计。
(1)试分别画出左、右两拱和销钉C 的受力图; (2)若销钉C 属于A C,分别画出左、右两拱的受力图; (3)若销钉C 属于BC ,分别画出左、右两拱的受力图。
(完整word版)理论力学思考题答案
理论力学思考题答案1- 1 (1)若F1=F2表示力,贝「般只说明两个力大小相等,方向相同(2)若F1=F2表示力,则一般只说明两个力大小相等,方向是否相同,难以判定(3)说明两个力大小、方向、作用效果均相同。
1- 2前者为两个矢量相加,后者为两个代数量相加。
1- 3 (1)B处应为拉力,A处力的方向不对。
(2)C、B处力方向不对,A处力的指向反了。
(3)A处力的方向不对,本题不属于三力汇交问题。
(4)A、B处力的方向不对。
1- 4不能。
因为在B点加和力F等值反向的力会形成力偶。
1-5不能平衡。
沿着AB的方向。
1-6 略。
1- 7提示:单独画销钉受力图,力F作用在销钉上;若销钉属于AC,则力F作用在AC上。
受力图略。
2- 1根据电线所受力的三角形可得结论。
2- 2不同。
2- 3(a)图和(b)图中B处约束力相同,其余不同。
2- 4(a)力偶由螺杆上的摩擦力和法向力的水平分力形成的力偶平衡,螺杆上的摩擦力与法向力的铅直方向的分力与F N平衡。
(b)重力P与0处的约束力构成力偶与M平衡。
2-5可能是一个力和平衡。
2-6可能是一个力;不可能是一个力偶;可能是一个力和一个力偶。
2-7 一个力偶或平衡。
2-8(1)不可能;(2)可能;(3)可能;(4)可能;(5)不可能;(6)不可能。
2M C aF 'RA2-9主矢:F RC F RA,平行于B0;主矩: 2 ,顺时针。
2-10正确:B;不正确:A,C, D。
2-11提示:左段OA部分相当一个二力构件,A处约束力应沿OA,从右段可以判别B处约束力应平行于DE3- 1T见(玛2亍昭 %必)=0 ■主矢:码=(峙氏+少) 主矩:亦嗚R+咅脑T-丰(1)能;(2)不能;(3)不能;(4)不能;(5)不能;(6)能。
空间任意力系简化的最终结果为合力、合力偶、力螺旋、平衡四种情况,分 别考虑两个力能否与一个力、一个力偶、力螺旋(力螺旋可以看成空间不确定的 两个力)、平衡四种情况平衡。
理论力学 西南大学
1、关于虚功原理的理解中,错误的是()1.虚功原理是用动力学的概念和方法去解决力学体系静力学的平衡问题,其重要意义当建立复杂的动力学系统的平衡条件时,不考虑约束反力,只考虑主动力。
2.用虚功原理求解学体系静力学的平衡问题可以使问题大简化。
3.虚功原理的缺点是不能求约束反力。
4.虚功是作用在质点上的力(包括约束反力)F在任意虚位移中做的功,对于理想约束,束反力做的虚功为零。
2、一力学系统有两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则系统()1.动量、机械能守恒,但角动量是否守恒不能判定2.动量和角动量守恒,但机械能是否守恒不能判定3.动量、机械能以及对一轴的角动量守恒4.动量守恒,但机械能和角动量是否守恒不能判定3、处于转动参考系中的物体,可能会受到的惯性力有1.以上三者都是2.科里奥利力3.离心惯性力4.转动参考系变角速度转动引起的惯性力4、某空间力系若各力作用线分别平行两固定点的连线,则其独立平衡方程式的最大数目分别为()个1. 52. 33. 24. 45、1.机械能不守恒、角动量守恒2.机械能、角动量都不守恒3.机械能守恒、角动量不守恒4.机械能、角动量都守恒6、如图所示,质量为m的两个物体A, B, 用一根细绳和一根轻弹簧连接并悬于固定点O,开始时系统处于平衡1. 2g, 02. g, 2g3. g, 04. g, g7、下列关于地球自转所产生的影响中,错误的是:1.傅科摆的进动;2.落体偏东;3.右岸冲刷;4.在南半球,低压区形成左旋的气旋,高压区形成右旋的气旋。
8、力系合力在某坐标轴上的投影等于该力系中( )。
1.各分力在该坐标轴上投影的代数和2.各分力的矢量和3.合力在该坐标轴方向的分力4.合力的大小9、下列关于虚位移的说法,错误的是1.稳定约束下,实位移是许多虚位移里面的一个2.虚位移除受到约束的限制外,还要受到运动规律的限制3.对不稳定约束来讲,实位移与虚位移并不一致4.虚位移只能有一个10、在气锤打桩过程中,要求系统动能损失()1.越小越好2.越大越好3.无法确定4.为零11、刚体平动时其上各点轨迹形状()1.不一定一样2.不同3.相同4.大体一样12、虚位移与时间1.有关2.有时有关,有时无关3.无法确定4.无关13、下列哪些约束,不是理想约束1.无滑动的滚动2.不可伸长的绳子连接的质点3.空气阻力4.光滑曲面约束14、关于质点系的内力,下列说法错误的是( )1.一对内力所做功的代数和一定为零.2.内力不会改变质心的速度.3.刚体中所有内力所做功的代数和一定为零.4.内力不改变刚体对质心的角动量15、在牵连运动和相对运动的理解中,下列表述中,正确的是:()1.牵连加速度是由牵连惯性力产生的,科氏加速度是由科氏力产生的。
理论力学思考题习题答案
理论⼒学思考题习题答案第⼀章质点⼒学矿⼭升降机作加速度运动时,其变加速度可⽤下式表⽰:?-=T t c a 2sin1π式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所⾛过的路程。
已知升降机的初速度为零。
解:由题可知,变加速度表⽰为-=T t c a 2sin1π由加速度的微分形式我们可知dtdv a =代⼊得 dt T t c dv ??? ??-=2sin 1π对等式两边同时积分dt T t c dv t v-=002sin 1π可得:D T t c T ct v ++=2cos 2ππ(D 为常数)代⼊初始条件:0=t 时,0=v ,故c T D π2-=即??-+=12cos 2T t T t c v ππ⼜因为dtds v =所以 =ds dt T t T t c??-+12cos 2ππ对等式两边同时积分,可得:ω绕其焦点F 转动。
求此直线与椭圆的焦点M 的速度。
已知以焦点为坐标原点的椭圆的极坐标⽅程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏⼼率,常数。
解:以焦点F 为坐标原点题1.8.1图则M 点坐标 ??==θθsin cos r y r x 对y x ,两式分别求导+=-=θθθθθθcos sin sin cos &&&&&&r r yr r x 故()()22222cos sin sin cos θθθθθθ&&&&&&r r r r y x v ++-=+=222ωr r +=&如图所⽰的椭圆的极坐标表⽰法为()θcos 112e e a r +-=对r 求导可得(利⽤ωθ=&)⼜因为()()221cos 111ea e e a r -+-=θ即 ()rer e a --=21cos θ所以()()2222221211cos 1sin e r e ar r ea --+--=-=θθ故有 ()2222224222sin 1ωθωr e a r e v +-=()2224221e a r e -=ω()()]1211[2222222e r e ar r e a --+--22ωr +()()??--+-?-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω即 ()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)质点作平⾯运动,其速率保持为常数。
理论力学课后习题及答案解析
理论力学课后习题及答案解析第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。
其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。
其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学思考题及解答
第一章 质点力学1.1平均速度与瞬时速度有何不同?在上面情况下,它们一致?1.2 在极坐标系中,r v r =,θθ r v =.为什么2θ r r a r -=而非r ?为什么θθr r a 20+=而非θθr r +?你能说出r a 中的2θ r -和θa 中另一个θ r 出现的原因和它们的物理意义吗? 1.3 在内禀方程中,n a 是怎样产生的?为什么在空间曲线中它总沿着主法线方向?当质点沿空间运动时,副法线方向的加速度b a 等于零,而作用力在副法线方向的分量b F 一般不等于零,这是不是违背了牛顿运动定律呢?1.4 在怎样的运动中只有τa 而无n a ?在怎样的运动中又只有n a 而无τa ?在怎样的运动中既有n a 而无τa ?1.5dtr d与dtdr 有无不同?dtv d 与dtdv 有无不同?试就直线运动与曲线运动分别加以讨论.1.6人以速度v 向篮球网前进,则当其投篮时应用什么角度投出?跟静止时投篮有何不同?1.7雨点以匀速度v 落下,在一有加速度a 的火车中看,它走什么路经?1.8某人以一定的功率划船,逆流而上.当船经过一桥时,船上的渔竿不慎落入河中.两分钟后,此人才发现,立即返棹追赶.追到渔竿之处是在桥的下游600米的地方,问河水的流速是多大? 1.9物体运动的速度是否总是和所受的外力的方向一致?为什么?1.10在那些条件下,物体可以作直线运动?如果初速度的方向和力的方向一致,则物体是沿力的方向还是沿初速度的方向运动?试用一具体实例加以说明.1.11质点仅因重力作用而沿光滑静止曲线下滑,达到任一点时的速度只和什么有关?为什么是这样?假如不是光滑的将如何?1.12为什么被约束在一光滑静止的曲线上运动时,约束力不作功?我们利用动能定理或能量积分,能否求出约束力?如不能,应当怎样去求?1.13质点的质量是1千克,它运动时的速度是k j i v 323++=,式中i 、j 、k 是沿x 、y 、z 轴上的单位矢量。
西南大学《理论力学》复习思考题及答案资料
(0123)《理论力学》复习思考题一、单项选择题1. 某质点在运动过程中,其所属的状态参量位移、速度、加速度和外力中,方向一定相同的是:( )A. 加速度与外力;B. 位移与加速度;C. 速度与加速度;D. 位移与速度。
2. 下面关于内禀方程和密切面的表述中,正确的是( )A. 密切面是轨道的切线和轨道曲线上任意点所组成的平面;B. 加速度矢量a全部位于密切面内;C. 切向加速度在密切面内,法向加速度为主法线方向,并与密切面垂直;D. 加速度和主动力在副法线方向上的分量均等于零。
3. 选出正确的表述:( )A. 牛顿运动定律能成立的参照系叫惯性参照系;B. 牛顿运动定律不能成立的参照系叫非惯性参照系;C. 对于非惯性参照系,只要加上适当的惯性力,牛顿运动定律就“仍然”可以成立;D. 以上三种表述均正确。
4. 研究有心力问题,采用哪一种坐标系最简单?( )A. 直角坐标系;B. 自然坐标系;C. 平面极坐标系;D. 球面坐标系。
5. 下列表述中正确的是:( )A. 对质心的动量矩定理和对固定点的动量矩定理在形式上都是相同的;B. 对质心的动量矩定理和对其它任意点的动量矩定理在形式上都是相同的;C. 对除了质心和固定点的其它任意点的动量矩定理和对固定点的动量矩定理在形式上都是相同的;D. 以上表述均错误。
6. 下列表述中正确的是:()A. 质点组的动量定理中内力不起作用;B. 质点组的动量矩定理中内力不起作用;C. 质点组的动能定理中内力不起作用;D. 以上表述均错误。
7. 下列有关刚体的描述中,错误的是()A. 刚体就是一种特殊的质点组;B.刚体内部任意两质点间距离不因力的作用而发生改变;C. 刚体是一种理想化模型;D. 刚体的形状不变,但大小可以改变。
8. 下列关于地球自转所产生的影响中,错误的是:()A. 落体偏东;B.右岸冲刷;C. 傅科摆的进动;D. 在南半球,低压区形成左旋的气旋,高压区形成右旋的气旋。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(0123)《理论力学》复习思考题一、单项选择题1. 某质点在运动过程中,其所属的状态参量位移、速度、加速度和外力中,方向一定相同的是:( )A. 加速度与外力;B. 位移与加速度;C. 速度与加速度;D. 位移与速度。
2. 下面关于内禀方程和密切面的表述中,正确的是( )A. 密切面是轨道的切线和轨道曲线上任意点所组成的平面;B. 加速度矢量a全部位于密切面内;C. 切向加速度在密切面内,法向加速度为主法线方向,并与密切面垂直;D. 加速度和主动力在副法线方向上的分量均等于零。
3. 选出正确的表述:( )A. 牛顿运动定律能成立的参照系叫惯性参照系;B. 牛顿运动定律不能成立的参照系叫非惯性参照系;C. 对于非惯性参照系,只要加上适当的惯性力,牛顿运动定律就“仍然”可以成立;D. 以上三种表述均正确。
4. 研究有心力问题,采用哪一种坐标系最简单?( )A. 直角坐标系;B. 自然坐标系;C. 平面极坐标系;D. 球面坐标系。
5. 下列表述中正确的是:( )A. 对质心的动量矩定理和对固定点的动量矩定理在形式上都是相同的;B. 对质心的动量矩定理和对其它任意点的动量矩定理在形式上都是相同的;C. 对除了质心和固定点的其它任意点的动量矩定理和对固定点的动量矩定理在形式上都是相同的;D. 以上表述均错误。
6. 下列表述中正确的是:()A. 质点组的动量定理中内力不起作用;B. 质点组的动量矩定理中内力不起作用;C. 质点组的动能定理中内力不起作用;D. 以上表述均错误。
7. 下列有关刚体的描述中,错误的是()A. 刚体就是一种特殊的质点组;B.刚体内部任意两质点间距离不因力的作用而发生改变;C. 刚体是一种理想化模型;D. 刚体的形状不变,但大小可以改变。
8. 下列关于地球自转所产生的影响中,错误的是:()A. 落体偏东;B.右岸冲刷;C. 傅科摆的进动;D. 在南半球,低压区形成左旋的气旋,高压区形成右旋的气旋。
9. 下列说法中,正确的是:()A.摩擦力的虚功总为零。
B. 一维自由质点的拉格朗日函数与哈密顿函数形式上完全相同。
C. 教师用粉笔在黑板上写字,粉笔不做功。
D. 属理想约束的曲面不一定是光滑的。
10. 下列哪种约束不是理想约束?()A.光滑面、B.光滑线、C.刚性杆、D.橡皮筋11. 关于虚功原理的理解中,错误的是()A.虚功是作用在质点上的力(包括约束反力)F在任意虚位移中做的功,对于理想约束,约束反力做的虚功为零。
B. 虚功原理是用动力学的概念和方法去解决力学体系静力学的平衡问题,其重要意义是当建立复杂的动力学系统的平衡条件时,不考虑约束反力,只考虑主动力。
C.虚功原理的缺点是不能求约束反力。
D. 用虚功原理求解学体系静力学的平衡问题可以使问题大简化。
12. 下列说法中,正确的是()A .哈密顿函数是广义坐标、广义动量的函数。
B. 广义坐标、广义动量称为正则变量。
C. 对保守体系,哈密顿函数V T H +=(动能与势能之和)。
D. A 、B 、C 均正确。
13、点的运动速度用 表示。
A 矢量B 标量C 绝对值14、点的加速度在副法线轴上的投影 。
A 可能为零B 一定为零C 一定不为零15、 点作圆周运动,如果知道法向加速度越变越大,点运动的速度 。
A 越变越大B 越变越小C 越变越大还是越变越小不能确定16.两质点以一轻杆连结,在光滑水平面上运动,则描述此二质点运动所需的独立坐标数为( )个(A )1 (B )2 (C )3 (D )417.力的累积效应包括( )(A )冲量、功 (B )力矩、动量矩 (C )速度、加速度 (D )动量、动能18.力场中的力,必须满足的条件是:力是位置的( )函数。
(A )单值、有限、可积 (B )单值、有限、可微(C )单值、无限、可微 (D )单值、无限、可积19.当用欧勒角描述刚体的运动时,可以取值在π2~0范围内的角是( )(A )章动角、进动角 (B )章动角、自转角(C )三个角均可以 (D )自转角、进动角20.下列不属于约束反力的是( )(A )传送带上使物体向前移动的力 (B )放在桌面上的水杯受到的桌面给它的力(C )两电荷之间的库仑力 (D )绷紧的绳内的张力21.地球表面附近形成的贸易风与( )无关(A )地球的自转 (B )地球的公转(C )太阳对地球的热辐射 (D )地球的引力22.当简化中心改变时,( )(A )主矢、主矩均会改变 (B )主矢、主矩均不改变(C )主矢改变,但主矩不变 (D )主矢不变,但主矩改变23.一个在有心力作用下的质点,已知其动能为4.6J ,势能为-5.2J ,则它的运动轨迹为( )(A )椭圆 (B )抛物线 (C )双曲线 (D )无法判断24. 两质量分别为m1和m2的质点,从相距R1处运动到相距R2处,需克服引力做多少功?( )A 、122111()Gm m R R - B 、121211()Gm m R R - C 、1221()Gm m R R - D 、121()m g R R -25、一个质量为m 的物体以初速V 0,抛射角θ=30︒从地面斜向上抛出。
若不计空气阻力,物体落地时,其动量增量的大小和方向为( )。
A 、增量为零,方向保持不变B 、增量的大小等于mV 0,方向竖直向上C 、增量的大小等于mV 0,方向竖直向下D 、增量的大小等于3mV 0,方向水平。
26. 平地上放置一质量为m 的物体。
已知物体与地面间的滑动摩擦系数为μ。
今在力F 作用下,物体向右运动,如图所示。
欲使物体具有最大的加速度,则力与水平方向的夹角θ应符合下列哪一个等式?( )A 、cosθ = 1B 、 sinθ = μC 、 tgθ = μD 、 ctgθ = μ27. 如图示,在距离转轴R 处有一质量为m 的工件,随转台作圆周运动。
该工件与转台间的静摩擦系数为μ0,若使工件在转台上无滑动,则转台的角速度ω为 ( )A. 02g R μ≤B. 03g Rμ≤ C.032g R μ≤ D. 0g R μ≤oRω28. 平面力系向点1简化时,主矢F R =0,主矩M 1≠0,如将该力系向另一点2简化,则( )。
A :F R ≠0,M 2≠0;B :F R =0,M 2≠M 1;C :F R =0,M 2=M 1;D :F R ≠0,M 2=M 1。
29. 在如图所示的装置,已知s = a + bsinωt ,且φ=ωt (其中a 、b 、ω为常数),杆长为l ,若取小球A 为动点,动系固连于物块B ,静系固连于地面,则小球A 的牵连速度的大小为( )。
A 、lωB 、bωcos ωtC 、bωcos ωt + lωcos ωtD 、bωcos ωt + lω30. 圆轮绕固定轴O 转动,某瞬时轮缘上一点的速度为v ,加速度为a ,如图所示。
试问哪些情况是不可能的?( )A 、(a)、(b)B 、(b)、(c)C 、(c)、(d)D 、(a)、(d) 31. 边长为L 的均质正方形平板,位于铅垂平面内并置于光滑水平面上,如图示,若给平板一微小扰动,使其从图示位置开始倾倒,平板在倾倒过程中,其质心C 点的运动轨迹是( )。
A 、半径为L /2的圆弧;B 、抛物线;C 、椭圆曲线;D 、铅垂直线。
32. 下列约束中不属于完整约束的是: ( )A 、稳定约束;B 、 几何约束;va a a av vv O O O O (a) (b) (c) (d) φ A xy B sC、不可解约束;D、不能用等式表示的可解约束33. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中,正确的()A、(1)、(2)是正确的.B、(2)、(3)是正确的.C、只有(2)是正确的.D、只有(3)是正确的.34.下列不属于牛顿第二定律的特点或适用条件的是()。
(A)瞬时性(B)质点(C)惯性系(D)直线加速参考系35.在质心坐标系与实验室坐标系中观测两体问题时,()(A)在质心坐标系中观测到的散射角较大(B)在实验室坐标系中观测到的散射角较大(C)在两种体系中观测到的散射角一样大(D)在两种体系中观测到的散射角大小不确定36.作定点运动的刚体的自由度为()(A)2(B)3(C)4(D)637.“回转半径”概念的引入与()的引入有相似的意图。
(A)矩心(B)重心(C)质心(D)瞬心38..由于科里奥利力的影响,在北半球()(A)会出现东南贸易风(B)会出现西北贸易风(C)河流对右岸冲刷更甚(D)河流对左岸冲刷更甚39.一竖直管绕与其平行的轴匀速转动,其中有一光滑的小球自由下落,则小球受到的惯性力是()(A)惯性离心力和科里奥利力(B)变角速惯性力(C)惯性离心力(D)科里奥利力40.下列关于虚功的说法错误的是()(A)与坐标系选取无关(B)与约束无关(C)是无限小的(D)与过程无关二、填空1. 一质点沿曲线t z t y t x 4,4cos 2,4sin 2===运动,则其速率值为 。
2. 力F为保守力的充要条件可用数学式表达为 。
3.一滑冰运动员质量为62kg ,当他以s m 2滑行时,突然以相对于自身的速率s m 4向正前方的队友抛出一质量为2kg 的物体,则此运动员所做的功为 J 。
4. 质点质量为1kg ,其速度k j i v ˆ3ˆ2ˆ3 ++=s m (k j i ˆ,ˆ,ˆ 分别为沿z y x ,,轴的单位矢量),当它运动至(1,2,3)点时,它对原点和z 轴的矩分别为 , 。
5. 一半径为8cm 的球,今用一与球心相距为2cm 的平面切出一球形帽,则此球形帽的质心到球心的距离为 cm 。
6.均质立方体(边长为a )绕其对角线转动时的回转半径为=k 。
7.一质点质量m ,从高度h 处由静止开始下落,忽略空气阻力和地球自转,则任一高度z 时的拉格朗日函数为 。
8.一个冰面上滑行的冰刀可作这样的简化:将冰刀抽象为以刚性轻杆相连的两个质点,并设两质点质量相等,杆长为l ,当冰刀在冰面上运动时,质心(杆的中点)的速度只能沿杆的方向。
选两质点在冰面上的坐标为(1x ,1y )和(2x ,2y ),则此冰刀的自由度为 ,对质心的约束条件可表示为 或 。
9、一质点在xy 平面运动,运动函数为x=2t ,y=4t2-8。
当t=1s 时,质点的位置矢量为( ) ,速度为( ),加速度为 ( ) 。
(用矢量式表示)10、鼓轮半径R=0.5m ,一物体以质量不计的轻绳缠绕在鼓轮上,绳子与鼓轮之间不打滑。
已知物体的运动方程为x=5t 2(t 以s 计,x 以m 计),则鼓轮转动的角加速度α的大小为( )。