模拟电路实验波形发生器7

合集下载

波形发生器实验

波形发生器实验

本科生实验报告课程名称:模拟电子技术实验A 实验名称:波形发生器实验学院:专业班级:学生姓名:学号:实验时间:实验地点:指导教师:实验原理:1. RC桥式正弦波振荡器(文氏电桥振荡器)图5-12-1所示为RC桥式正弦波振荡器。

其中,RC串、并联电路构成正反馈支路,同时兼作选频网络,R1、R2、Rp、二极管等元件构成负反馈和稳幅环节。

调节电位器Rp,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现稳幅。

VD1、VD2 采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

Rs的接人是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率起振的幅值条件其中,,ra为二极管正向导通电阻。

调整反馈电阻Rf(调Rp),使电路起振,且波形失真最小。

如果不能起振,则说明负反馈太强,应适当加大Rf。

如果波形失真严重,则应适当减小Rf。

改变选频网络的参数C或R,即可调节振荡频率。

一般采用改变电容C作频率量程切换,而调节R作量程内的频率细调。

2.方波发生器方波发生器是一种能够直接产生方波或矩形波的非正弦信号发生器。

实验原理如图5-12-2所示。

它是在滞回比较器的基础上,增加了一个RF、CF组成积分电路,把输出电压经RF。

CF反馈到集成运放的反相输人端,运放的输出端引入限流电阻Rs和两个背靠背的稳压管用于双向限幅。

电路振荡频率为其中方波的输出幅值3.三角波和方波发生器如图5-12-3所示,电路由同相滞回比较器A1和反相积分器A2构成。

比较器A1输出的方波经积分器A2积分可得到三角波Uo, Uo 经电阻R为比较器A1提供输入信号,形成正反馈,即构成三角波、方波发生器。

图5-12-4所示为方波、三角波发生器输出波形图。

由于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性大大改善。

滞回比较器的國值电压,电路震荡频率,方波幅值,三角波幅值调节Rp可以改变振荡频率,改变比值会可调节三角波的幅值。

电路实验七(波形发生器电路分析)

电路实验七(波形发生器电路分析)

实验名称:实验七波形发生器电路分析班级:学号:姓名:指导教师:成绩:评阅时间:1. 实验目的及实验设备(1)掌握典型矩形波发生电路的工作原理,研究输出波形占空比与元件参数的关系。

(2)掌握典型三角波波发生电路的工作原理,研究输出波形与元件参数的关系。

(3)实验设备:PC及Multisim仿真软件。

2. 实验原理(1)矩形波产生电路设某一时刻输出电压uO=+UZ,则同相输入端电位uP=+UT。

uO通过R3对电容C正向充电,如图中箭头所示。

反相输入端电位uN随时间t增长而逐渐升高,当t趋近于无穷时,uN趋于+UZ;一旦uN=+UT,再稍增大,uO就从+UZ跃变为-UZ,与此同时uP从+UT跃变为-UT。

随后,uO又通过R3对电容C放电,如图中箭头所示。

反相输入端电位uN随时间t增长而逐渐降低,当t趋近于无穷时,uN趋于-UZ;一旦uN=-UT,再稍减小,uO 就从-UZ跃变为+UZ,与此同时,uP从-UT跃变为+UT,电容又开始正向充电。

上述过程周而复始,电路产生了自激振荡,其中矩形波的周期为T=2RCln(1+2R1/R2)。

(2)三角波发生电路下图将方波电压作为积分运算电路的输入,在积分运算电路的输出就得到三角波电压。

在实用电路中,将方波发生电路中的RC充、放电回路用积分运算电路来取代,滞回比较器和积分电路的输出互为另一个电路的输入,如下图所示。

其虚线左边为同相输入滞回比较器,右边为积分运算电路。

滞回比较器输出为方波,经积分运算电路后变换为三角波,波形如下图所示。

振荡频率为,调节电路中R1、R2、R3的阻值和C的容量,可以改变振荡频率。

而调节R1和R2的阻值,可以改变三角波的幅值。

3、实验内容:(1)如矩形波产生电路原理描述中所示电路图,如果取C=10uF,自行确定其他元件参数,设计周期为20ms 的矩形波电路,并用示波器观测验证。

(2)如三角波产生电路原理描述中所示电路图,取Uz=7V,R1=R2=20KΏ,C=0.1uF, R4=5 KΏ, 试计算输出三角波的频率,并用示波器观测验证。

波形发生电路实验报告总结.docx

波形发生电路实验报告总结.docx

专业:实验报告姓名:学号:日期:课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:实验名称:波形发生器电路分析与设计实验类型:电路实验同组学生姓名:一、实验目的和要求:桥式正弦振荡电路设计1.正弦波振荡电路的起振条件。

2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出波形的影响。

3.选频电路参数变化对输出波形频率的影响。

4.学习正弦振荡电路的仿真分析与调试方法。

B.用集成运放构成的方波、三角波发生电路设计1.掌握方波和三角波发生电路的设计方法。

2.主要性能指标的测试。

3.学习方波和三角波的仿真与调试方法。

二、实验设备:示波器、万用表模电实验箱三、实验须知:1. RC桥式正弦波振荡电路,起振时应满足的条件是:闭环放大倍数大于3,即 R f >2R1,引入正反馈3. RC桥式正弦波振荡电路的振荡频率:RC桥式正弦波振荡电路,稳定振荡时应满足的条件是:电路中有非线性元件起自动稳幅的作用4. RC桥式正弦波振荡电路里C的大小:f01/(2π RC)C5. RC桥式正弦波振荡电路R1 的大小:6. RC桥式正弦波振荡电路 R2 的大小:R1=15kΩR2=Ω7.RC桥式正弦波振荡电路是通过哪几个8.波形发生器电路里 A1的输出会不会元器件来实现稳幅作用的随电源电压的变化而变化答:配对选用硅二极管,使两只二极答:A1输出不会改变,电源电压的变管的特性相同,上下对称,根据振荡化通过选频网络调节,不影响放大和幅度的变化,采用非线性元件来自动稳幅环节改变放大电路中负反馈的强弱,以实现稳幅目的8.波形发生器电路里v01的输出主要由谁9.波形发生器电路里, R 和 C的参数大决定,当电源电压发生变化时,它会小会不会影响 v0的输出波形答:发生变化吗会影响,而且 v o的频率和幅值都由答:由两只二极管决定,电源电压变RC决定,因为 R和 C的回路构成选频化时, V 不会变化网络o1四、实验步骤:A. RC桥式正弦波振荡电路:原理图:1.PSpice 仿真波形:示波器测量的波形:T=616us,v pp,v RMS667mV根据实际波形,比较实际数据和理论数据之间的差异:理论周期为650us,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求2.改变R2的参数(减小或增大R2),使输出v0从无到有,从正弦波直至削顶,分析出现这三种情况的原因和条件。

模电实验波形发生器实验报告

模电实验波形发生器实验报告

模电实验波形发生器实验报告模电实验波形发生器实验报告实验名称:模拟电路波形发生器设计与制作实验目的:1.了解正弦波、方波、三角波等基本波形的特性及产生方法;2.掌握模拟电路的基本设计方法和制作技巧;3.加深对电路中各元件的认识和使用方法;4.提高实际操作能力和动手能力。

实验原理:波形发生器是一种模拟电路,在信号发生领域具有广泛的应用。

常见的波形发生器包括正弦波发生器、方波发生器、三角波发生器等。

正弦波发生器:正弦波发生器是一种周期性信号发生器,通过正弦波振荡电路产生高精度的正弦波信号。

常见的正弦波振荡电路有RC,LC和晶体振荡管等。

我们使用的正弦波发生器为Wien桥电路。

方波发生器:方波发生器属于非线性信号发生器,根据输入信号的不同,可以分为单稳态脉冲发生器、双稳态脉冲发生器和多谐振荡器等。

我们使用的方波发生器为双稳态脉冲发生器。

三角波发生器:三角波发生器是一种周期信号发生器,通过将一个线性变化的信号幅度反向后输入到一个比例放大电路中,就可以得到三角波信号。

我们使用的三角波发生器为斜率发生器。

实验步骤:1.按照电路原理图连接电路;2.打开电源,调节电压并测量电压值;3.调节电位器,观察波形在示波器上的变化;4.分别测量各波形的频率和幅值,并记录实验数据;5.将实验结果进行比较分析。

重点技术:1.电路连接技巧;2.相关工具的正确使用方法;3.电路元器件的选择和使用;4.测量和计算实验数据的方法。

注意事项:1.实验中使用电源时应注意电压值和电流值,避免短路和电源过载现象的发生;2.连接电路时应注意电路的接线和连接端子的位置,避免短路和错误连接的情况;3.在实验中应注意对电路元器件的选择和使用,确保电路的正常工作;4.测量和计算实验数据时应认真仔细,避免计算错误和实验数据异常的情况。

实验结论:通过本次实验,我们成功设计和制作了正弦波发生器、方波发生器和三角波发生器。

在实验过程中,我们掌握了模拟电路的基本设计方法和制作技巧,加深了对电路中各元件的认识和使用方法,并提高了实际操作能力和动手能力。

波形发生器实验报告 模电波形发生器实验报告

波形发生器实验报告 模电波形发生器实验报告

波形发生器实验报告模电波形发生器实验报告精品文档,仅供参考波形发生器实验报告模电波形发生器实验报告实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。

应用写作给出的定义如下科技实验报告是描述、记录某个科研课题过程和结果的一种科技应用文体。

下面是本站为大家带来的[波形发生器实验报告],希望能帮助到大家!波形发生器实验报告第一部分设计内容一、任务利用运算放大器设计并制作一台信号发生器,能产生正弦波、方波、三角波、锯齿波等信号,其系统框图如图所示。

二、要求1不使用单片机,实现以下功能:(1)至少能产生正弦波、方波、三角波、锯齿波四种周期性波形;在示波器上可以清晰地看清楚每种波形。

20分(2)输出信号的频率可通过按钮调节;(范围越大越好)20分(3)输出信号的幅度可通过按钮调节;(范围越大越好)20分(4)输出信号波形无明显失真;10分(5)稳压电源自制。

10分(6)其他2种扩展功能。

20分信号发生器系统框图第二部分方案比较与论证方案一、以555芯片为核心,分别产生方波,三角波,锯齿波,正弦波电路配置如图1所示图1此方案较简单,但是产生的频率不够大最后输出正弦波时,信号受干扰大。

方案二由简单的分立元件产生,可以利用晶体管、LC振荡回路,积分电路的实现方波三角波,正弦波的产生。

此方案原理简单但是调试复杂,受干扰也严重。

方案三、采用集成运放如(LM324)搭建RC文氏正弦振荡器产生正弦波,正弦波的频率,幅度均可调,再将产生的正弦波经过过零比较器,实现方波的输出,再由方波到三角波和锯齿波。

此方案电路简单,在集成运放的作用下,可以较容易的测到所需的波形。

通过调整参数可以得到较完美的波形。

实际设计过程采用方案三,基本原理如图2所示基本设计原理框图(图2)第三部分:电路原理及电路设计电路的构成:1、正弦波采用RC桥式振荡器(如图3), RC 串并联网络是正反馈网络,Rf 和R1为负反馈网络。

模拟电子技术课程设计波形发生器

模拟电子技术课程设计波形发生器

烟台南山学院模拟电子技术课程设计题目波形发生器姓名:孙道坤所在学院:计算机与电气自动化学院所学专业:自动化班级自动化1202学号 201202022021指导教师:刘新红完成时间: 2013年12月模电课程设计任务书一、基本情况学时:40学时学分:1学分课程设计代码:07120102适应班级:电气工程、自动化二、进度安排本设计共安排1周,合计40学时,具体分配如下:实习动员及准备工作:2学时总体方案设计:4学时查阅资料,讨论设计:24学时撰写设计报告:8学时总结:2学时教师辅导:随时三、基本要求1、课程设计的基本要求模电课程设计是在学习完模拟电子技术课程之后,按照课程教学要求,对学生进行综合性训练的一个实践教学环节。

主要是培养学生综合运用理论知识的能力,分析问题和解决问题的能力,以及根据实际要求进行独立设计的能力。

初步掌握模拟电子线路的安装、布线、焊接、调试等基本技能;熟练掌握电子电路基本元器件的使用方法,训练、提高读图能力;掌握组装调试方法。

其中理论设计包括总体方案选择,具体电路设计,选择元器件及计算参数等,课程设计的最后要求是写出设计总结报告,把设计内容进行全面的总结,若有实践条件,把实践内容上升到理论高度。

2、课程设计的教学要求模电课程设计的教学采用相对集中的方式进行,以班为单位全班学生集中到设计室进行。

做到实训教学课堂化,严格考勤制度,在实训期间累计旷课达到6节以上,或者迟到、早退累计达到8次以上的学生,该课程考核按不及格处理。

在实训期间需要外出查找资料,必须在指定的时间内方可外出。

课程设计的任务相对分散,每3名学生组成一个小组,完成一个课题的设计。

小组成员既有分工、又要协作,同一小组的成员之间可以相互探讨、协商,可以互相借鉴或参考别人的设计方法和经验。

但每个学生必须单独完成设计任务,要有完整的设计资料,独立撰写设计报告,设计报告雷同率超过50%的课程设计考核按不及格处理。

四、设计题目及控制要求设计制作一台能产生方波、三角波和正弦波的波形发生器。

模拟电子技术实验-波形发生电路

模拟电子技术实验-波形发生电路

实验: 波形发生电路一、 实验目的1.掌握RC 桥式正弦波振荡电路的原理与设计方法;2.加深理解矩形波和方波-三角波发生电路的工作原理与设计方法;3.了解运放转换速率对振荡波形跳变沿的影响。

二、实验仪器名称及型号KeySight E36313A 型直流稳压电源,KeySight DSOX3014T 型示波器/信号源一体机。

模块化实验装置。

本实验将使用三种集成运放:µA741、LM324和TL084,它们的引脚如图1所示,LM324和TL084的引脚排列完全相同。

87654321µA741+Vcc -VccOUT OA2NC 141312114321LM324(TL084)1098765V-4OUT 4IN-4IN+3OUT3IN-3IN+图1 741A 、LM324和TL084的引脚图三、实验内容1.RC 桥式正弦波振荡电路(SPOC 实验)(1)设计RC 桥式正弦波振荡电路,要求振荡频率为1.6kHz ,输出波形稳定并且无失真。

其中集成运放可采用µA741、LM324或TL084,简要写出设计过程,绘制或截取电路原理图。

电阻R1.R2与电容C1、C2构成串并联选频网络,电阻R3、R4、RP 构成负反馈网络,VD1和VD2用于限幅作用稳定波形,当R1=R2=R,C1=C2=C 时,串并联选频网络的相频特性和幅频特性分别为,相频特性为,,根据,题目要求f=1.6kHz,取参数R1=R2=10kΩ,C1=C2=0.01μF,R3=R4=5.1kΩ,R p=10kΩ。

(2)学习SPOC实验操作视频,将示波器的两个通道分别接在u o端和u f端,缓慢调节电位器R W,使电路产生正弦振荡,在确保两个通道的正弦波不失真的前提下将输出幅度调得尽量大些,记录输出u o的峰-峰值U opp和输入u f的峰-峰值U fpp。

U opp= 18.1V ;U opp= 6.1V ;(3)正反馈系数F u的测定。

模拟电路实验报告——波形发生器

模拟电路实验报告——波形发生器

模拟电路实验报告RC波形发生器电路一.实验设计1.首先需要一个可以产生方波、矩形波、锯齿波、三角波四种波形的电路,分析后可以得知mooc中给出的锯齿波电路(右图)便可以产生这四种波形。

2.根据公式T=2(R PN+R)R/R,可知欲改变信号的频率,可以得到三412种改变信号频率的方法。

{1>①在AB两点间串联一个滑动变阻器②在CD两点间串联一个滑动变阻器③在B点添加一个滑动变阻器改变分压2>①由公式η=(R PP+R)/(R PN+R)可知若在AB两点间添加滑动变阻44器,则会在改变信号的频率的同时改变信号的占空比,所以不可以在AB两点间串联一个滑动变阻器。

②由公式V OM=(R*V)/R可知若在CD两点间添加一个滑动变阻器,1Z2则会在改变信号的频率的同时改变信号的幅值。

所以也不可以在CD 两点间串联一个滑动变阻器。

③所以只有在B点添加一个滑动变阻器改变分压以此来改变信号的频率是可行的,由此改动电路如下。

3>为保证分压只与滑动变阻器有关,故在在R7后连接一个电压跟随器,并将R和R减小以提高信号的频率,最终电路图如下。

84O二.实验步骤1 2 3 >严格按照最终电路连接好。

>示波器 A 通道两端接在 A 点与地,B 通道两端接在 O 点与地。

>分别将 R 和 R 调整到 0%与 100%,记录下四组照片,这便是锯79齿波与矩形波的图像。

>将 R 和 R 调整到 50%,记录下这组照片,这便是三角波与方波 的图像。

三.理论分析 4 7 9 1 . 理论分析>锯齿波与矩形波(占空比最低):由公式η=(R PP +R 调整到 0%时(既 R PP =0Ω时),占空比最低。

当 R 调整到 0%时,分的电压最小,此时信号的周期最小, 频率最高。

当 R 调整到 100%时,分的电压最大,此时信号的周期最大, 频率最低。

>锯齿波与矩形波(占空比最高):由公式η=(R PP +R 调整到 100%时(既 R PN =0Ω时),占空比最高。

模电课程设计-波形发生器(130619)

模电课程设计-波形发生器(130619)

模电课程设计-波形发生器()院系:电子工程系姓名:巫金生学号:设计项目名称:波形发生器实验所属课程:模拟电子技术教程设计实验室(中心):模拟电子实验室指导教师:郭彩萍设计完成时间:2013 年06 月19目录本实验主体报告分为5个部分1、成员介绍…………………………….2、波形发生器功能介绍………………………3、原理图、PCB图及参数计算……………….4、仿真结果…………………………………….5、心得体会…………………………………….6、参考文献……………………………………..Ps:如有纰漏,敬请谅解- 2 -知行合一行胜于言太原工业学院 第 - 9 - 页 共 9 页一.成员介绍: ①、刘毅②、董敏 ③、崔宇 ④、巫金生二.波形发生器功能介绍: 此波形发生器由两个LM358 集成运算放大器及其周边电路构成,可以发生方波、三角波、锯齿波和正弦波。

①方波:利用输入端的RC 自激振荡电路,反相输入迟滞电路而形成,反馈网路增加一个电位器以调节占空比。

正向输入端连接一个电位器可以调节方波的频率。

输出电路利用一个5V 双向稳压管接地来稳幅。

②三角波:以方波为输入信号,输入到积分电路。

同时为了提高三角波的负载能力并且减少方波频率对三角波幅值的影响,将积分电路的输出反馈给滞回比较器的输入。

通过改变方波的频率改变三角波的频率。

③锯齿波:以方波为输入信号,利用二极管的单向导电性是积分电路中C 充放电的回路不同,输入到一并联的二极管模块再输入到积分电路,以调节锯齿波的斜率。

为减少对其他电路的干扰,这里为并联的二极管设计了一个与其并联的开关,当想要输出三角波的时候开关闭合,并联二极管模块短路;当想要输出锯齿波的时候开关断开,接通并联二极管电路。

正弦波:实际是一个一阶反相输入的低通滤波器。

在积分电路中的电容上并联一个电阻来降低通带放大倍数。

三.原理图、PCB 及参数计算 1、原理图:2、PCB图:3、模块详细分析⑴、自激震荡部分:- 2 -知行合一行胜于言太原工业学院第 - 9 - 页 共 9 页没有接通时,0c V =,滞回比较器0z V V =+,则集成运放同相输入端212*i zR V V R R =+,同时0z V V =+给C 充电,使R V 由0上升,在R V >i V 之前,0z V V =+不变;当R V >i V 时,0V 跳变到z V -。

模拟电子技术实验:集成运算放大器的基本应用─波形发生器

模拟电子技术实验:集成运算放大器的基本应用─波形发生器

实验九 集成运算放大器的基本应用(Ⅳ)─ 波形发生器 ─一、实验目的1、 学习用集成运放构成正弦波、方波和三角波发生器。

2、 学习波形发生器的调整和主要性能指标的测试方法。

二、实验原理由集成运放构成的正弦波、方波和三角波发生器有多种形式,本实验选用最常用的,线路比较简单的几种电路加以分析。

1、 RC 桥式正弦波振荡器(文氏电桥振荡器)图11-1为RC 桥式正弦波振荡器。

其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。

调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。

D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率2πRC1f O起振的幅值条件1fR R ≥2 式中R f =R W +R 2+(R 3 // r D ),r D — 二极管正向导通电阻。

调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。

如不能起振,则说明负反馈太强,应适当加大R f 。

如波形失真严重,则应适当减小R f 。

改变选频网络的参数C 或 R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

图11-1 RC 桥式正弦波振荡器2、方波发生器由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。

图11-2所示为由滞回比较器及简单RC 积分电路组成的方波—三角波发生器。

它的特点是线路简单,但三角波的线性度较差。

主要用于产生方波,或对三角波要求不高的场合。

电路振荡频率式中 R 1=R 1'+R W ' R 2=R 2'+R W "方波输出幅值 U om =±U Z三角波输出幅值调节电位器R W (即改变R 2/R 1),可以改变振荡频率,但三角波的幅值也随之变化。

Verilog期末实验报告—波形发生器

Verilog期末实验报告—波形发生器

一、实验目的使用Verilog 软件编写四种波形任意发生器的源代码,用modelsim 软件进行仿真测试,进一步强化Verilog ,modelsim 软件的编程能力为进一步的编程学习打下良好的基础。

二、实验原理该任意波形发生器要实现三个功能:(1)通过计数器并结合拼接操作产生四种波形正弦波,方波,三角波1,三角波形的5位数据地址。

(2).设定ROM 中对应波形地址地址的8位数值,将所有波形数值存储到ROM 中。

(3).设定2位的波形选择开关端口。

2bit 00000~00111 01000~01111 3bit data[7:0] 10000~1011111000~11111图 1整体设计方案四种波形要在一个周期内等间隔取8个点,定义对应的数据,下图为示意图,由于编程序需要,数据会进行相应的修改。

图2 四种波形一个周期内的取样示意图地址发生器(0-7)正弦波方波三角波1三角波2cl re 波形选择 1-11正弦方波三角波1三角波2y xx88yyx1四种波形数据地址对应的数据的存储器ROM根据示意图,由于实际情况需要,将正弦波平移至x轴以上,并将所有波形的峰峰值取大100倍。

下表1是ROM存储器三、实验内容任意波形发生器verilog程序代码:module wave(data,clk,add1,reset);//顶层模块端口定义output[7:0]data;input clk,reset;input[1:0] addr1;Wire[1:0] addr1;wire clk,reset;//输入输出变量定义ADDR 4(addr,clk,addr1,reset);//地址发生器模块调用rom 1(addr,data);//ROM存储器模块调用endmodulemodule ADDR(addr,clk,addr1,reset);output[4:0] addr;input clk,reset;wire clk,reset;reg[2:0] addr2;wire[1:0] addr1;reg[4:0] addr;initial addr2=3'b000; //定义计数初值always @(posedge clk or posedge reset)//每当有clk,或reset信号开启程序beginif(reset)beginaddr2<=0;//同步复位addr<=0;endelse if(addr2>=7)//addr2计数至7时,addr2复位beginaddr2<=0;endelsebeginaddr2<=addr2+1;//addr2由0至7计数addr<={addr1,addr2};//addr1与addr2地址拼接为addr的最终地址endendendmodulemodule rom(addr,data);//数据存储器模块input[4:0] addr;output[7:0] data;function[6:0] romout;//定义函数,存储32个波形取样点地址的数据input[4:0] addr;reg[4:0] addr;wire[7:0] data;case(addr)//根据不同地址,得到不同数据。

波形发生器设计实验报告(推荐阅读)

波形发生器设计实验报告(推荐阅读)

波形发生器设计实验报告(推荐阅读)第一篇:波形发生器设计实验报告波形发生器设计实验报告一、设计目的掌握用99SE软件制作集成放大器构成方波,三角波函数发生器的设计方法。

二、设计原理波形发生器:函数信号发生器是指产生所需参数的电测试信号的仪器。

按信号波形可分为正弦信号、函(波形)信号、脉冲信号和随机信号发生器等四大类。

而波形发生器是指能够输出方波、三角波、正弦波等多种电压波形的信号源。

它可采用不同的电路形式和元器件来实现,具体可采用运算放大器和分立元件构成,也可用单片专用集成芯片设计。

设计原理图:三、设计元件电阻:R1 5.1K、R2 8.2K、R3 680、R4 3K、R5 39KR6 1K、R7 39K、R8 39K 电容:C 1uF 运算放大器:U1A LM324、U1B LM324 二极管:D1 3.3V、D23.3V 滑动变阻器:RW1 10K 接口:CON3 地线、GND四、设计步骤大概流程图1、打开99SE,建立Sch文件。

绘制原理图。

绘制原理图时要注意放大器的引脚(注意引脚上所对应的数字)和二极管的引脚(注意原理图和PCB中的引脚参数是否一致)。

元件元件库代码电阻:RES2 滑动变阻器:POT2电容:CAP 放大器:OPAMP 二极管:ZENER3 元件封装代码电阻: AXIAL0.4 滑动变阻器:VR5 放大器:DIP14二极管:DIODE0.4 电容:RB.2/.42、生成网络表格本步骤可完成建立材料清单(可执行report中的Bill of Material)、电器规则检查(Tools中ERC)、建立网络表(Design中Create Netlist,点击OK即可)3、PCB文件的设置建立PCB文件单双面板设置:Design中Options进行设置单双面板,及面板大小(8cm*7cm)建立原点(Edit中Origin中的set)并在KeepOutLayer层中制板4、引入网络表执行Design中Load Nets载入网络表,屏幕弹出对话框,点击Browse按钮选择网络表文件(*net),载入网络表,单机Execute,便成功引入网络表。

波形发生器设计实验报告

波形发生器设计实验报告

波形发生器设计实验报告一、实验目的(1)熟悉555型集成时基电路结构、工作原理及其特点。

(2)掌握555型集成时基电路的基本应用。

(3)掌握由555集成型时基电路组成的占空比可调的方波信号发生器。

二、实验基本原理555电路的工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。

但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。

此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。

由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体。

555芯片管脚介绍555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。

其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。

用555定时器组成的多谐振荡器如图所示。

接通电源后,电容C2被充电,当电容C2上端电压Vc升到2Vcc/3时使555第3脚V0为低电平,同时555内放电三极管T导通,此时电容C2通过R1放电,Vc下降。

当Vc下降到Vcc/3时,V0翻转为高电平。

电容器C2放电所需的时间为t,R1,C,ln2pL2 ( 1-1)当放电结束时,T截止,Vcc将通过R1,R2,R3向电容器C2充电,Vc由Vcc/3 上升到2Vcc/3所需的时间为t,(R1,R2,R3)Cln2,0.7(R1,R2,R3)CpH22 (1-2)当Vc上升到2Vcc/3时,电路又翻转为低电平。

波形发生器(实验重点)

波形发生器(实验重点)

充电过程发生在恒定电流下,而放电 过程发生在恒定电压下,从而形成锯 齿波。
03
波形发生器的实验重点
波形发生器的调整与校准
调整信号源
校准频率
根据实验需求,选择合 适的信号源,如正弦波、
方波、三角波等。
确保波形发生器的输出 频率准确,以满足实验
要求。
调整幅度和偏置
根据实验需要,调整输 出信号的幅度和偏置参
在实验过程中,应注意观察和记录波 形的变化,如波形失真、噪声等。
将波形发生器的输出信号连接到示波 器上,调整示波器的垂直灵敏度和扫 描速度,以便观察和记录波形。
在操作过程中,应避免随意更改实验 参数或断开连接线,以免对实验结果 造成影响或损坏设备。
实验结果分析与总结
01
根据实验记录的数据和波形,分 析不同波形在不同频率和幅度下 的变化规律和特点。
数。
校准相位
确保输出信号的相位准 确,以满足实验要求。
波形发生器的输出信号质量分析
01
02
03
04
信号稳定性
分析输出信号的稳定性,确保 信号在长时间内保持稳定。
信号失真度
测量输出信号的失真度,以确 保信号质量符合实验要求。
信号噪声水平
评估输出信号的噪声水平,以 确保信号纯净度。
信号线性度
分析输出信号的线性度,以确 保信号在幅度变化时保持线性
方波发生器的工作原理
方波发生器利用比较器或门电 路产生方波信号,其输出信号 的占空比为50%。
当输入信号在阈值上下波动时, 比较器会输出高电平或低电平 信号,从而形成方波。
方波发生器的输出频率取决于 电路的反馈系数和阈值电压。
三角波发生器的工作原理
三角波发生器通常由RC电路和 比较器组成,其输出信号是介于

电子模拟波形发生器设计研究实验报告

电子模拟波形发生器设计研究实验报告

电子模拟波形发生器设计研究实验报告摘要波形发生器是用来产生一种或多种特定波形的装置,这些波形通常有正弦波、方波、三角波、锯齿波,等等。

以前,人们常用模拟电路来产生这种波形,其缺点是电路结构复杂,所产生的波形种类有限。

随着单片机技术的发展,采用单片机电路产生各种波形的方法已变的越来越普遍。

虽然,可能产生的波形会呈微小的阶梯状,但是,只要设计得当,这一问题可以得到一定的解决。

本设计使用的是555_virtual构成的发生器,可产生三角波、方波、正弦波等多种特殊波形和任意波形,波形的频率可用程序控制改变本设计制作的波形发生器,可以输出多种标准波形,如方波、正弦波、三角波、锯齿波等。

1设计的目的及任务1.1课程设计的目的1.1.1利用所学微机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。

1.1.2本次课程设计是以微机为基础,设计并开发能输出多种波形(正弦波、三角波、锯齿波、方波、梯形波等)且频率、幅度可变的函数发生器。

1.1.3掌握各个接口芯片的功能特性及接口方法,并能运用其实现一个简单的微机应用系统功能器件。

1.1.4在平时的学习中,我们所学的知识大都是课本上的,在机房的练习大家也都是分散的对各个章节的内容进行练习。

因此,缺乏一种系统的设计锻炼。

在课程所学结束以后,这样的课程设计十分有助于学生的知识系统的总结到一起。

1.1.5通过这几个波形进行组合形成了一个函数发生器,使得我对系统的整个框架的设计有了一个很好的锻炼。

这不仅有助于大家找到自己感兴趣的题目,更可以锻炼大家微机知识的应用。

1.2设计任务和要求1.2.1设计要求:设计并仿真能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。

输出波形频率范围为0.02HZ~20HZ且可连续调。

各种波形幅值均连续可调。

设计电路所需的直流电源。

写出设计报告1.2.2方案论证,确定总体电路原理方框图及原理图。

1.2.3单元电路设计,元器件选择。

波形发生电路 实验报告

波形发生电路 实验报告

.实验报告课程名称:电路与模拟电子技术实验 指导老师: 张冶沁 成绩: 实验名称:波形发生器电路分析与设计 实验类型: 电路实验 同组学生姓名: A.RC 桥式正弦振荡电路设计 1.正弦波振荡电路的起振条件。

2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出 波形的影响。

3.选频电路参数变化对输出波形频率的影响。

4.学习正弦振荡电路的仿真分析与调试方法。

B.用集成运放构成的方波、三角波发生电路设计 1.掌握方波和三角波发生电路的设计方法。

2.主要性能指标的测试。

3.学习方波和三角波的仿真与调试方法。

示波器、万用表 模电实验箱1. RC 桥式正弦波振荡电路,起振时应满足的条件是: 闭环放大倍数大于3,即R f >2R 1,引入正反馈 RC 桥式正弦波振荡电路,稳定振荡时应满足的条件是: 电路中有非线性元件起自动稳幅的作用3.RC 桥式正弦波振荡电路的振荡频率: =0f 1/(2πRC)4.RC 桥式正弦波振荡电路里C 的大小:=C 0.01uF5.RC 桥式正弦波振荡电路R1的大小: R1= 15k Ω 6.RC 桥式正弦波振荡电路R2的大小: R2= 21.5k Ω 7.RC 桥式正弦波振荡电路是通过哪几个元器件来实现稳幅作用的? 答:配对选用硅二极管 ,使两只二极管的特性相同,上下对称,根据振荡幅度的变化,采用非线性元件来自动改变放大电路中负反馈的强弱,以实现稳幅目的8.波形发生器电路里A1的输出会不会随电源电压的变化而变化?答:A1输出不会改变,电源电压的变化通过选频网络调节,不影响放大和稳幅环节 专业: 姓名: 学号: 日期:地点:8.波形发生器电路里01v的输出主要由谁决定,当电源电压发生变化时,它会发生变化吗?答:由两只二极管决定,电源电压变化时,V o1不会变化9.波形发生器电路里,R和C的参数大小会不会影响v的输出波形?答:会影响,而且v o的频率和幅值都由RC决定,因为R和C的回路构成选频网络A.RC桥式正弦波振荡电路:原理图:1.PSpice仿真波形:示波器测量的波形:T=616us,=ppv 1.88V,=RMSv667mV根据实际波形,比较实际数据和理论数据之间的差异:理论周期为650us,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求v从无到有,从正弦波直2.改变R2的参数(减小或增大R2),使输出至削顶,分析出现这三种情况的原因和条件。

实验 波形发生器电路

实验   波形发生器电路

实验波形发生器电路一、实验目的和要求要求掌握RC正弦波振荡器电路、方波和三角波发生电路的电路结构与计算机仿真设计方法。

二、实践内容或原理图6.1.1 运算放大器组成的RC桥式正弦波振荡器1.运算放大器组成的RC桥式正弦波振荡器图6.1.1为RC桥式正弦波振荡器。

其中RC串、并联电路构成正反馈支路,同时兼作选频网络,R1、R2、RP及二极管等元件构成负反馈和稳幅环节。

调节电位器RP,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现稳幅。

VD1、VD2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

R3的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率2πRC 1f O =,其中R =R 4=R 5,C=C 1=C 2。

在振荡频率f 0,31=F 。

要起振,必须,3>A 即,311o F oU R R R U <⋅⋅+也就是要,21R R F >其中R f =R P +R 2+(R 3//r D ),r D 为二极管正向导通电阻。

调整反馈电阻R f (调RP ),使电路起振,且波形失真最小。

因为,101k R =,20)//(153k r R R R D P F >++=而,21.2//21.2//3k r k r R D D <=故,8.2k R P >所以如不能起振,则说明负反馈太强,应适当加大R f 即加大P R 。

如波形失真严重,则应适当减小R f 即减小P R 。

改变选频网络的参数C 或R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

点击示波器,可以看见RC 桥式正弦波振荡器的输出波形,从开始仿真到起振可以通过示波器观察到起振全过程。

即首先把示波器面板中的V/Div 调到较小位置,然后随着输出电压的增大逐渐将V/Div 调到合适位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1.8 波形发生器
实验目的 实验器件 实验原理 实验内容 实验报告 预习与思考题
实验目的
1.学习用集成运放构成正弦波、方波和三角 波发生器。 2.学习波形发生器的调整和主要性能指标 的测试方法。
实验器件
EEL-07组件 示波器 交流毫伏表 数字频率计。 集成运放 uA741
实验原理
桥式正弦波振荡器(文氏电桥振荡器) 桥式正弦波振荡器(文氏电桥振荡器) 方波发生器 三角波和方波发生器
如把迟滞比较器和积分器首尾相接形成正反馈闭环系统,如图1.8-3 所示,则比较器输出的方波经积分器积分到三角波,三角波又触发 比较器自动翻转形成方波,这样即可构成三角波、方波发生器。由 于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性 大大改善。电路的振荡频率为
fo = R2 4 R1C f ( R f +的方波发生器和三角波发生器,一般均包括比较器和积 分器两大部分。图1.8-2所示为由迟滞比较器及简单积分电路组成的方 波—三角波发生器,它的特点是线路简单,但三角波的线性度较差。主 要用于产生方波,或对三角波要求不高的场合。该电路的振荡频率为:
fo = 1 2 R f C f ln(1 + R2 ) R1
预习与思考题
1.复习有关正弦波振荡器、三角波及方波发生器 的工作原理,并估算图1.8-1、1.8-2、1.8-3电路的 振荡频率。 2.为什么在正弦波振荡电路中要引入负反馈支 路?为什么要增加二极管和?它们是怎样稳幅的? 3.电路参数变化对图1.8-2、1.8-3产生的方波和 三角波频率及电压幅值有什么影响? 或者,怎样改 变图1.8-2、1.8-3电路中方波及三角波的频率及幅 值?
桥式正弦波振荡器(文氏电桥振荡器) 桥式正弦波振荡器(文氏电桥振荡器)
桥式正弦波振荡器(文氏电桥振荡器) 桥式正弦波振荡器(文氏电桥振荡器)
图1.8-1为桥式正弦波振荡器。其中串、并联电路构成正反馈支路,同时 兼作选频网络,、、及二极管等元件构成负反馈和稳幅环节。调节电位 器,可以改变负反馈深度,以满足振荡的振幅条件和改善波形,利用两 个反向并联二极管、正向电阻的非线性特性来实现稳幅。、采用硅管(温 度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。的 接入是为了削弱二极管非线性的影响,以改善波形失真。该电路的振荡 频率为:
(1.8-6)
′ U om = ±U z
其方波的幅值为
(1.8-7) 而三角波的幅值则为
U om = R1 Uz R2
(1.8-8) 调节可以改变振荡频率,改变比值可调节三角波的幅值。
三角波和方波发生器
实验内容
桥式正弦波振荡器 方波发生器 三角波和方波发生器
实验报告
1.正弦波发生器。 ①列表整理实验数据,画出波形,把实测频率与理论值进行比较。 ②根据实验分析振荡器的振幅条件。 ③讨论二极管D1、D2 的稳幅作用。 2.方波发生器。 ①列表整理实验数据,在同一坐标纸上,按比例画出方波和三角波的波 形图(标出时间和电压幅值)。 ②分析变化时,对波形的幅值及频率的影响。 ③讨论DZ的限幅作用。 3.三角波和方波发生器。 ①整理实验数据,把实测频率与理论值进行比较。 ②在同一坐标纸上,按比例画出三角波及方波的波形,并标明时间和电 压幅值。 ③分析电路参数变化对输出波形频率及幅值的影响。
fo = 1 2πRC
(1.8-1) (1.8-2)
而起振的幅值条件为:
RF ≥2 R1
式中,为二极管正向导通电阻。 调整反馈电阻(调),使电路起振,且波形失真最小。如不能起振, 则说明负反馈太强,应适当加大;如波形失真严重,则应适当减小。图 1.8-2 改变选频网络的参数或,即可调节振荡频率。一般采用改变电容作频 率量程切换,而调节作量程内的频率细调。
(1.8-3) 式中,,。方波的输出幅值为
U om = ±U z
(1.8-4)
而三角波的幅值为 (1.8-5) 调节电位器 (即改变),可以改变振荡频率,但三角波的幅值随之变化。 如要互不影响,则可通过改变 (或)来实现振荡频率的调节
U om = R2 Uz R1 + R2
方波发生器
三角波和方波发生器
相关文档
最新文档