解直角三角形1.PPT课件
合集下载
《解直角三角形》数学教学PPT课件(3篇)
b
获取新知
B
对边 a C
c 斜边
b 邻边 A
定义:一般地,直角三角形中,除直角外 还有五个元素,即三条边和两个锐角.由直角三 角形中的已知元素,求出其余未知元素的过程 叫做解直角三角形.
直角三角形中,未知的5个元素之间的关系
B
①三边之间的关系
a
c
a2 b2 c2
C
A
b
已知任意两边可求出第
直角三角形中,未知的5个元素之间的关系
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°, ∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
A
D B
归纳总结
C
┐
AD
BB
A D
CE
┐
提 求解非直角三角形的边角问题,常通过添加适 示
解:∵△ABD是等边三角形,∴∠B=60°.
在Rt△ABC中,AB=2,∠B=60°,
BC
AB cosB
2 1
4,AC
AB
tanB
2
3.
2
△ABC的周长为2+ 2 3 +4=6+ 2 3 .
3.在Rt△ABC中,∠C=90°,tanA= 12 ,△ABC 5
的周长为45cm,CD是斜边AB上的高,求CD的长.(精 确到0.1 cm)
例5 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形
的其他元素.(长度精确到0.01)
获取新知
B
对边 a C
c 斜边
b 邻边 A
定义:一般地,直角三角形中,除直角外 还有五个元素,即三条边和两个锐角.由直角三 角形中的已知元素,求出其余未知元素的过程 叫做解直角三角形.
直角三角形中,未知的5个元素之间的关系
B
①三边之间的关系
a
c
a2 b2 c2
C
A
b
已知任意两边可求出第
直角三角形中,未知的5个元素之间的关系
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°, ∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
A
D B
归纳总结
C
┐
AD
BB
A D
CE
┐
提 求解非直角三角形的边角问题,常通过添加适 示
解:∵△ABD是等边三角形,∴∠B=60°.
在Rt△ABC中,AB=2,∠B=60°,
BC
AB cosB
2 1
4,AC
AB
tanB
2
3.
2
△ABC的周长为2+ 2 3 +4=6+ 2 3 .
3.在Rt△ABC中,∠C=90°,tanA= 12 ,△ABC 5
的周长为45cm,CD是斜边AB上的高,求CD的长.(精 确到0.1 cm)
例5 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形
的其他元素.(长度精确到0.01)
解直角三角形PPT课件(1)
在进行测量时,从下向上看,视线与水平线 的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
视线 铅 直 线
仰角 水平线 俯角 视线来自1、如图,为了测量电线杆的高度AB,在离 电线杆22.7米的C处,用高1.20米的测角仪 CD测得电线杆顶端B的仰角a=22°,求电 线杆AB的高.(精确到0.1米)
=220 1.20 22.7
2、在山脚C处测得山顶A的仰角为45°。问 题如下: 1)沿着水平地面向前300米到达D点,在D点 测得山顶A的仰角为600 , 求山高AB。
A
3x
45° 60°
C
D
x B
2、在山脚C处测得山顶A的仰角为450。问题如下:
变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D点测得山顶A的仰角为600 ,求山高AB。
α
2. 两座建筑 AB及CD,其 地面距离AC为50.4米,从 AB 的顶点 B 测得 CD 的顶 部 D 的仰角 β = 250, 测得 其 底 部 C 的 俯 角 a = 500, 求两座建筑物 AB 及 CD 的 高.(精确到0.1米)
A
C
B
课本P92 例4
(第 2 题)
3.国外船只,除特许外,不得进入我国海洋100海里 以内的区域,如图,设A、B是我们的观察站,A和B 之间的距离为157.73海里,海岸线是过A、B的一条 直线,一外国船只在P点,在A点测得∠BAP=450,同 时在B点测得∠ABP=600,问此时是否要向外国船只 发出警告,令其退出我国海域.
A
D 30°
C E
x x
F B
3、在山顶上处D有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已 知塔高BD=30米,求山高CD。 B α
视线 铅 直 线
仰角 水平线 俯角 视线来自1、如图,为了测量电线杆的高度AB,在离 电线杆22.7米的C处,用高1.20米的测角仪 CD测得电线杆顶端B的仰角a=22°,求电 线杆AB的高.(精确到0.1米)
=220 1.20 22.7
2、在山脚C处测得山顶A的仰角为45°。问 题如下: 1)沿着水平地面向前300米到达D点,在D点 测得山顶A的仰角为600 , 求山高AB。
A
3x
45° 60°
C
D
x B
2、在山脚C处测得山顶A的仰角为450。问题如下:
变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D点测得山顶A的仰角为600 ,求山高AB。
α
2. 两座建筑 AB及CD,其 地面距离AC为50.4米,从 AB 的顶点 B 测得 CD 的顶 部 D 的仰角 β = 250, 测得 其 底 部 C 的 俯 角 a = 500, 求两座建筑物 AB 及 CD 的 高.(精确到0.1米)
A
C
B
课本P92 例4
(第 2 题)
3.国外船只,除特许外,不得进入我国海洋100海里 以内的区域,如图,设A、B是我们的观察站,A和B 之间的距离为157.73海里,海岸线是过A、B的一条 直线,一外国船只在P点,在A点测得∠BAP=450,同 时在B点测得∠ABP=600,问此时是否要向外国船只 发出警告,令其退出我国海域.
A
D 30°
C E
x x
F B
3、在山顶上处D有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已 知塔高BD=30米,求山高CD。 B α
解直角三角形-完整版PPT课件
解成时就已经倾斜, 其塔顶中心点偏离中心线2.1m。1972年地震之 后塔顶中心点偏离垂直中心线增至5.2m,而且 还以每年增加1cm的速度继续倾斜,随时都有 倒塌的危险。经过维修2001年使塔顶中心点偏 离垂直中心线的距离比纠偏前减少了43.8cm。 问题:如果要你根据上述信息,用“塔身中心 线与垂直中心线所成的角θ”来描述比萨斜塔的 倾斜程度,你能完成吗?
解直角三角形
1972年的情形:设塔顶中心店为B,塔身中心线与垂 直中心线的夹角为A,经过点B向垂直中心线引垂线, 垂足为点C.在Rt△ABC中,∠C-90°,BC-5.2m, AB=54.5m,
SinA BC 5.2 0.0954 AB 54.5
利用计算器可得∠A≈5°28′。 类似地,可以求出2001年纠偏后塔身中心线与垂直中 心线的夹角。
解直角三角形
1972年的情形:设塔顶中心店为B,塔身中心线与垂 直中心线的夹角为A,经过点B向垂直中心线引垂线, 垂足为点C.在Rt△ABC中,∠C-90°,BC-5.2m, AB=54.5m,
SinA BC 5.2 0.0954 AB 54.5
利用计算器可得∠A≈5°28′。 类似地,可以求出2001年纠偏后塔身中心线与垂直中 心线的夹角。
解直角三角形PPT课件
正切函数
已知一条直角边和一个锐角,可以利用正切函数求出另一条直角边。例如,已知直角边$a$和锐角$A$,则可以 利用$tan A = frac{a}{b}$求出另一条直角边$b$。
多种方法综合运用
灵活运用勾股定理、正弦、余弦、正切定理及函数,根据题目给出的不同条件,选择合适的 方法进行求解。
注意观察题目中的特殊条件,如等腰直角三角形、含30°角的直角三角形等,这些特殊条件 可以帮助我们更快地找到解题思路。
解直角三角形PPT课 件
目录
CONTENTS
• 直角三角形基本概念与性质 • 勾股定理及其逆定理 • 三角函数定义与性质 • 解直角三角形方法与技巧 • 实际问题中解直角三角形应用举
例 • 总结回顾与拓展延伸
01
直角三角形基本概 念与性质
直角三角形的定义
01
有一个角为90度的三角形称为直 角三角形。
02
直角三角形的两个锐角互余,即 它们的角度和为90度。
直角三角形各元素名称
01
02
03
直角边
直角三角形中两条与直角 相邻的边称为直角边,通 常用a和b表示。
斜边
直角三角形中直角所对的 边称为斜边,用c表示。
锐角
直角三角形中的两个锐角 分别用α和β表示。
直角三角形性质总结
勾股定理
在直角三角形中,斜边的平方等于两直角边的平方和,即 c² = a² + b²。
勾股数及常见类型
勾股数定义
满足勾股定理的三个正整数称为勾股数。
常见类型
常见的勾股数有3-4-5、5-12-13、7-24-25等,还有一类特殊的勾股数,即费 马大定理中的整数解。
03
三角函数定义与性 质
已知一条直角边和一个锐角,可以利用正切函数求出另一条直角边。例如,已知直角边$a$和锐角$A$,则可以 利用$tan A = frac{a}{b}$求出另一条直角边$b$。
多种方法综合运用
灵活运用勾股定理、正弦、余弦、正切定理及函数,根据题目给出的不同条件,选择合适的 方法进行求解。
注意观察题目中的特殊条件,如等腰直角三角形、含30°角的直角三角形等,这些特殊条件 可以帮助我们更快地找到解题思路。
解直角三角形PPT课 件
目录
CONTENTS
• 直角三角形基本概念与性质 • 勾股定理及其逆定理 • 三角函数定义与性质 • 解直角三角形方法与技巧 • 实际问题中解直角三角形应用举
例 • 总结回顾与拓展延伸
01
直角三角形基本概 念与性质
直角三角形的定义
01
有一个角为90度的三角形称为直 角三角形。
02
直角三角形的两个锐角互余,即 它们的角度和为90度。
直角三角形各元素名称
01
02
03
直角边
直角三角形中两条与直角 相邻的边称为直角边,通 常用a和b表示。
斜边
直角三角形中直角所对的 边称为斜边,用c表示。
锐角
直角三角形中的两个锐角 分别用α和β表示。
直角三角形性质总结
勾股定理
在直角三角形中,斜边的平方等于两直角边的平方和,即 c² = a² + b²。
勾股数及常见类型
勾股数定义
满足勾股定理的三个正整数称为勾股数。
常见类型
常见的勾股数有3-4-5、5-12-13、7-24-25等,还有一类特殊的勾股数,即费 马大定理中的整数解。
03
三角函数定义与性 质
解直角三角形-ppt课件
,∴
∴CH = ,
∴AH=
∴AB=2AH=
−
.
=
,∵∠B=30°,
=
,
26.3 解直角三角形
重 ■题型 解双直角三角形
难
例 如图,在 Rt△ABC 中,∠C=90°,D 是 AC 上一
题
型
点,BD=10
,∠BDC=45°,sinA=
,求 AD 的长.
突
∴S
AB·AE= ×4×4 =8 ,
CD·DE= ×5 ×15=
四边形 ABDC=S△CDE-S△ABE=
,
.
(方法二)如图 2,过点 A 作 AF⊥CD 于点 F,过点
B 作 BG⊥AF 于点 G,则∠ABG=30°,
∴AG=
AB=2,BG= − =2 ,
况讨论,求出不同情况下的答案.
26.3 解直角三角形
■方法:运用割补法求不规则图形的面积
方
法
割补法是求不规则图形面积问题的最常用方法,割补法
技
巧 包含三个方面的内容:一是分割原有图形成规则图形;二
点
拨 是通过作辅助线将原有图形补为规则图形;三是分割和补
形兼而有之.
26.3 解直角三角形
例 如图,在四边形 ABDC 中,∠ABD=120°,AB⊥AC,
=
2
=25
26.3 解直角三角形
变式衍生 如图,在Rt△ABC中,∠ACB=90°,D 是 AB
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
《解直角三角形》-完整版PPT课件
整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm
解直角三角形ppt课件
A
60°
30°
B 12 D F
15
解:由点A作BD的垂线交BD的延长线于点F, 垂足为F,∠AFD=90°
由题意图示可知∠DAF=30°设DF= x , AD=2x
AF AD2 DF 2
2x2 x2 3x
A 60°
在Rt△ABF中,
B
DF
tan ABF AF tan 30 3x 30°
视线
铅
仰角
直
线
俯角
水平线
视线
5
例4: 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为 30°,看这栋高楼底部的俯 角为60°,热气球与高楼的水平距 离为120m,这栋高楼有多高(结果精确到0.1m)
仰角
分析:我们知道,在视线与水平线所
B
成的角中视线在水平线上方的是仰角,
视线在水平线下方的是俯角,因此, 在图中,a=30°,β=60°
分析:从飞船上能最
远直接看到的地球上的 点,应是视线与地球相 切时的切点.
如图,⊙O表示地球,点F是 飞船的位置,FQ是⊙O的切线, 切点Q是从飞船观测地球时的最 远点,弧PQ的长就是地面上P、 Q两点间的距离,为计算弧PQ 的长需先求出∠POQ(即a)
F P
Q α O·
3
解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.
灯塔P的南偏东34°方向
34°
上的B处,这时,海轮所
在的B处距离灯塔P有多
B
远? (精确到0.01海里)
10
【方位角】
指南或指北的方向线与目标方向线构成小
于900的角,叫做方位角. 如图:点A在O的北偏东30° 点B在点O的南偏西45°(西南方向)
《解直角三角形的应用》PPT教学课件(第1课时)
10 3
2
10 3 10
∴渔船不会进入危险区.
例题分析
思考:用三角函数求边长,什么情况下需要设未知数、列方程?什么情况下不需要设未知
数,可以直接求?
C
F
北 E
60°
A
F
北 E
30°
60°
是直角三角形的边长
D
不
A
C
2
30°
0
1
B
2
0 已知边
2
2
0
角三角形的边长
B
D
是直
总结分析
用三角函数求边长时的注意事项
随堂练习
2.如图,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并
测得它的俯角为45°,则船与观测者之间的水平距离BC=____
100 米.
解析:由题意知,从A处观测B,其俯角为450,
∴∠BAC=900-450=450,
又AC⊥BC
∴△ABC是等腰直角三角形,
∴BC=AC=100米.
在Rt△AOC中,tan ∠AOC=
∴AC=OC ×tan500 ≈4.5 ×1.9 ≈5.36
∴AB=AC+BC=1.44+5.36=6.8
O
C
D
B
4.5
认识方位角
北
D
E
H
45°
(1)正东,正南,正西,正北
45°
射线OA OB OC OD
东
西
C
射线OE
A (2)西北方向:_________
3
CD
∴ =
=
tan∠
3
BD
2
10 3 10
∴渔船不会进入危险区.
例题分析
思考:用三角函数求边长,什么情况下需要设未知数、列方程?什么情况下不需要设未知
数,可以直接求?
C
F
北 E
60°
A
F
北 E
30°
60°
是直角三角形的边长
D
不
A
C
2
30°
0
1
B
2
0 已知边
2
2
0
角三角形的边长
B
D
是直
总结分析
用三角函数求边长时的注意事项
随堂练习
2.如图,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并
测得它的俯角为45°,则船与观测者之间的水平距离BC=____
100 米.
解析:由题意知,从A处观测B,其俯角为450,
∴∠BAC=900-450=450,
又AC⊥BC
∴△ABC是等腰直角三角形,
∴BC=AC=100米.
在Rt△AOC中,tan ∠AOC=
∴AC=OC ×tan500 ≈4.5 ×1.9 ≈5.36
∴AB=AC+BC=1.44+5.36=6.8
O
C
D
B
4.5
认识方位角
北
D
E
H
45°
(1)正东,正南,正西,正北
45°
射线OA OB OC OD
东
西
C
射线OE
A (2)西北方向:_________
3
CD
∴ =
=
tan∠
3
BD
解直角三角形(共30张)PPT课件
比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。
解直角三角形(优质课)课件pptx
思考题:请思考一下,除了上述提到的领域外,解直角三角形还可以应用于哪些领域?并尝试给出具体的例子。
练习题:请完成以下解直角三角形的练习题,巩固本节课所学的知识。
已知直角三角形的一个锐角为30度,斜边长为10cm,求这个三角形的面积。
一艘船在海上航行,测得前方两个灯塔之间的夹角为60度,且这两个灯塔与船的距离分别为10海里和15海里。求这艘船相对于两个灯塔的位置。
有效数字运算规则回顾
四舍五入法、进一法、去尾法等。
近似计算方法
在保证精度的前提下,尽量简化计算过程,减少计算量。例如,利用近似公式、近似数表等。
技巧
近似计算方法和技巧
06
总结回顾与拓展延伸
03
实际应用中的解直角三角形问题
如测量问题、航海问题、物理问题等,需要将实际问题转化为数学问题,通过建立直角三角形模型进行求解。
一个物体从斜面上滑下,已知斜面的倾角为45度,物体与斜面间的动摩擦因数为0.5。求物体下滑的加速度大小。
01
02
03
04
05
思考题与练习题
THANKS
在直角三角形中,当角度为30°、45°、60°时,可以通过简单的几何关系计算出对应的正弦、余弦、正切值。
特殊角的三角函数关系
掌握特殊角度的三角函数值之间的关系,如 sin(90°-θ) = cosθ,cos(90°-θ) = sinθ 等。
特殊角度三角函数值计算
利用三角函数求未知边长或角度
三边成比例
两个角相等
相似三角形判定定理回顾
01
02
通过相似比求解未知边长或角度
构建相似三角形,利用相似比求解未知量
利用相似三角形的性质,通过已知边长和角度求解未知边长或角度
练习题:请完成以下解直角三角形的练习题,巩固本节课所学的知识。
已知直角三角形的一个锐角为30度,斜边长为10cm,求这个三角形的面积。
一艘船在海上航行,测得前方两个灯塔之间的夹角为60度,且这两个灯塔与船的距离分别为10海里和15海里。求这艘船相对于两个灯塔的位置。
有效数字运算规则回顾
四舍五入法、进一法、去尾法等。
近似计算方法
在保证精度的前提下,尽量简化计算过程,减少计算量。例如,利用近似公式、近似数表等。
技巧
近似计算方法和技巧
06
总结回顾与拓展延伸
03
实际应用中的解直角三角形问题
如测量问题、航海问题、物理问题等,需要将实际问题转化为数学问题,通过建立直角三角形模型进行求解。
一个物体从斜面上滑下,已知斜面的倾角为45度,物体与斜面间的动摩擦因数为0.5。求物体下滑的加速度大小。
01
02
03
04
05
思考题与练习题
THANKS
在直角三角形中,当角度为30°、45°、60°时,可以通过简单的几何关系计算出对应的正弦、余弦、正切值。
特殊角的三角函数关系
掌握特殊角度的三角函数值之间的关系,如 sin(90°-θ) = cosθ,cos(90°-θ) = sinθ 等。
特殊角度三角函数值计算
利用三角函数求未知边长或角度
三边成比例
两个角相等
相似三角形判定定理回顾
01
02
通过相似比求解未知边长或角度
构建相似三角形,利用相似比求解未知量
利用相似三角形的性质,通过已知边长和角度求解未知边长或角度
解直角三角形公开课ppt课件
综合应用举例
具体步骤
根据实际问题建立直角三角形模型,确定已知条件和所求量。然后选择合适的解 法(如已知两边求角、已知两角求边等)进行计算,得出结果并进行检验。
注意事项
在综合应用过程中,需要注意实际问题的背景和限制条件,以及计算结果的合理 性和准确性。同时,还需要掌握多种解法,以便灵活应对不同的问题和情况。
已知两角求边
具体步骤
设已知的两个锐角为α和β,其中α为与已知边相邻的角,β为另一个锐角。则 可以利用正弦函数sin(α) = a/c或余弦函数cos(α) = b/c求解边长a或b,其中c 为斜边。
注意事项
在求解过程中,需要注意角度的单位和范围,以及正弦和余弦函数在不同象限 的正负性。同时,还需要注意已知边与所求边之间的关系,避免出错。
直角三角形两直角边互相 垂直,且斜边是直角边的 平方和的平方根。
直角三角形的元素
包括直角边、斜边和两个 锐角。
解直角三角形的意义
解决实际问题
解直角三角形可以帮助我们解决很多 实际问题,如测量、航海、建筑等。
培养数学思维
为后续学习打下基础
解直角三角形是学习数学的基础,对 于后续学习三角函数、解析几何等具 有重要意义。
力学问题中的解直角三角形
力的分解与合成
在力学中,经常需要将一个力分解为两个或多个分力,或 将多个分力合成为一个力,这时可以利用直角三角形的性 质和三角函数进行计算。
运动学中的问题
在研究物体的运动轨迹、速度、加速度等问题时,可以利 用直角三角形的性质进行求解,如抛物线运动、圆周运动 等。
动力学中的问题
定义、性质、三角函数定义和应用的理解程度等。
学习困难与问题反馈
02
鼓励学生反馈在学习过程中遇到的困难和问题,以便教师及时
《解直角三角形》PPT课件 (公开课获奖)2022年浙教版 (13)
邻两树间的坡面距离是多少米?第二棵树离开地面的高
度是多少米?( (精确到米)
B
解:在Rt△ABC中,∠C=90°
AcBoscAAoA C AsACBc5o.25s40 ≈(米C)
24º 5.5米
A
tanA BC AC
B C ta A .A n C ta 2o n .4 A C 2 .4 (米 )
答:斜坡上相邻两树间的坡面距离是米。
解直角三角形(1)
数学家华罗庚曾经说:“宇宙之大, 粒子之微,火箭之速,化工之巧,地 球之变,日月之繁,无处不用数学。” 这是对数学与生活的精彩描述。在我 们周围处处有数学,时时会碰到数学 问题。
生活中的数学问题
引例:在山坡上种树(从低处往高处种),要求株距
(相邻两树间的水平距离)是米,测得斜坡倾斜角是
例1、如图,在Rt△ABC中,∠C=900,∠A=500,
AB=3,解这个直角三角形。(边长保留2个有效
数字) (求a,b 和∠B)
解:Rt△ABC中
∠B=900-∠A=400 有斜用弦,
A
3
b
sinA a
无斜用切,
AB
B
a
C
∴a=AB×sinA=3×sin500
cosA b AB
宁乘勿除, 取原避中。
24º,求斜坡上相邻两树间的坡面距离是多少米?第二
棵树离开地面的高度是多少米?(精确到米)
B
建立数学模型
24º
A
C
5.5米
5.5米
问题1.在直角三角形中,三边之间具有 怎样的关系?
在直角三角形中,两条直角边的平方 和等于斜边的平方。
B
即:a2+b2=c2
人教版九年级数学下册解直角三角形ppt课件
AD 4 2 2
∴∠ADC=45°, ∴∠ADB=180°-45°=135°.
5.(2018黑龙江大庆龙凤月考)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.根据下列条件解直角三角形. (1)已知a=5,∠B=60°; (2)已知a=5 2 ,b=5 6 .
解析 (1)∵∠C=90°,∠B=60°, ∴∠A=30°, ∵cos B=cos 60°= a = 1 ,a=5,∴c=10,
5
(1)求AB的长; (2)求cos∠BAD的值.
图28-2-1-6
解析 (1)在Rt△ADC中,∵∠C=90°,sin∠ADC= AC = 4,AD=5,∴AC=4.
AD 5
由勾股定理得CD= AD2 -AC2 =3, ∴BC=CD+DB=3+5=8, 在Rt△ABC中,∠C=90°, 由勾股定理得AB= AC2 BC2 = 42 82 =4 5 . (2)∵AD=BD, ∴∠BAD=∠ABD.
知识点一 解直角三角形 1.解直角三角形的定义与边角关系
2.解直角三角形的类型
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.
已知条件
解法
两直角边 斜边、一直角边(如c,a) 一锐角与邻边(如∠A,b) 一锐角与对边(如∠A,a) 斜边与一锐角(如c,∠A)
由tan A= a,求∠A;∠B=90°-∠A;c= a2 b2
点O,AB⊥AC.若AB=8,tan∠ACB= 2,则BD的长是
.
3
图28-2-1-3
答案 20
解析 ∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB
⊥AC,AB=8,tan∠ACB= 2= AB ,∴AC= 3AB=12,∴OA=6,∴BO= OA2 AB2=
∴∠ADC=45°, ∴∠ADB=180°-45°=135°.
5.(2018黑龙江大庆龙凤月考)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.根据下列条件解直角三角形. (1)已知a=5,∠B=60°; (2)已知a=5 2 ,b=5 6 .
解析 (1)∵∠C=90°,∠B=60°, ∴∠A=30°, ∵cos B=cos 60°= a = 1 ,a=5,∴c=10,
5
(1)求AB的长; (2)求cos∠BAD的值.
图28-2-1-6
解析 (1)在Rt△ADC中,∵∠C=90°,sin∠ADC= AC = 4,AD=5,∴AC=4.
AD 5
由勾股定理得CD= AD2 -AC2 =3, ∴BC=CD+DB=3+5=8, 在Rt△ABC中,∠C=90°, 由勾股定理得AB= AC2 BC2 = 42 82 =4 5 . (2)∵AD=BD, ∴∠BAD=∠ABD.
知识点一 解直角三角形 1.解直角三角形的定义与边角关系
2.解直角三角形的类型
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.
已知条件
解法
两直角边 斜边、一直角边(如c,a) 一锐角与邻边(如∠A,b) 一锐角与对边(如∠A,a) 斜边与一锐角(如c,∠A)
由tan A= a,求∠A;∠B=90°-∠A;c= a2 b2
点O,AB⊥AC.若AB=8,tan∠ACB= 2,则BD的长是
.
3
图28-2-1-3
答案 20
解析 ∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB
⊥AC,AB=8,tan∠ACB= 2= AB ,∴AC= 3AB=12,∴OA=6,∴BO= OA2 AB2=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解(1):过A作AC⊥BM,垂足为C,
在Rt△ABC中, ∠B = 30°,
∴AC=
1 2 AB =
21x 240 = 120
∵AC = 120 < 150
M A
C
∴A城受到沙尘暴影响
B
5 由于过度采伐森林和破坏植被,我国部分地区频频遭受
沙尘暴侵袭。近日,A城气象局测得沙尘暴中心在A城的正南方 向240km的B处,以每小时12km的速度向北偏东30°方向移动,
∴A城受到沙尘暴影响的时间为
M
A
F
C
E
180÷12 = 15小时
答:A城将受到这次沙尘暴影响,
B
影响的时间为15小时。
例2、如图,一艘轮船位于灯塔P的北偏东60o方 向,与灯塔P的距离为80海里的A处,它沿正南方 向航行一段时间后,到达位于灯塔P的南偏东45o 方向上的B处.求此时轮船所在的B处与灯塔P的距 离(结果保留根号).
槎溪中学 邹艳红
温故而知新,同学们,准备好了吗?
1、解直角三角形的依据
三边之间的关系
a2+b2=c2(勾股定理); o
两锐角之间的关系 ∠ A+ ∠ B=90
边角之间的关系(锐角三角函数)
a
B
c
b
c a
c
aA b
bC
2、30°45°60°的三角函数值 30° 45° 60°
sinA 1
2
3
300
知识改变命运,运用成就知识,同学们, 试一试,我相信你一定行 !
• 例1.如图,要测量小山上电视塔BC的高度, 在山脚下点A测得:塔顶B的仰角为∠BAD= 40°,塔底C的仰角为∠CAD= 30°,AC= 200米,求电视塔BC的高.(精确到1米)(参 考数据:sin40°≈0.64,cos40°≈0.77, tan40°≈0.84,)
4 由于过度采伐森林和破坏植被,我国部分地区频频
遭受沙尘暴侵袭。近日,A城气象局测得沙尘暴中心在A城的 正南方向240km的B处,以每小时12km的速度向北偏东30° 方向移动,距沙尘暴中心150km的范围为受影响区域。 (1)A城是否受到这次沙尘暴的影响,为什么?
(2)若A城受这次沙尘暴的影响,那么遭受影响的时间有多长?
反思与评价
1、凡是求高(求线段的长)的问题往往可 以借助解直角三角形来解决,如果没有直角 三角形可以设法去构造。
2、对于一些较复杂的问题,如果解一个 直角三角形还不能使问题得以解决,可考虑 解两个直角三角形。
3、如果不能直接通过解直角三角形处理问题, 可以去寻找已知与未知之间的等量关系,借助解 直角三角形建立方程,从而使问题得以解决。
2
2
2
cosA 3 2 1
2
2
2
450
450 ┌ 600 ┌
tanA 3 1
3
3
3、解直角三角形的相关概念
1)仰角、俯角:如图,
在测量时,视线与水平线
所成的角中,视线在水平 线上方的叫 仰角,在水 平线下方叫 俯角 .
视线
铅 仰角 垂 线 俯角
水平线
视线
2)方位角:如图,OA的方 位角为 北偏东30o OB的方位 角为 南偏西45o .
20
600
C
∟
45o
35
解:如图,过E点作CE⊥AD于C.
设BC=x,则EC=BC=x.
在Rt△ACE中,AC= 3 x,
∵AB=AC-BC,
即20= 3 x-x.
解得x=10 3 +10.
∴BD=BC+CD=BC+EF
=10 3+10+35≈45+10×1.732≈62.3(m). 所以小山BD的高为62.3 m.
距沙尘暴中心150km的范围为受影响区域。 (1)A城是否受到这次沙尘暴的影响,为什么?
(2)若A城受这次沙尘暴的影响,那么遭受影响的时间有多长?
解(2):设BM线上的点E、F是与A相距 150km位置,即开始与结束点,由题意得:
∴CE = √AE2 – AC2 = 90
∴EF = 2CE = 2 x 90 = 180
∴AG=AF×sin∠AFG=4 (米) ∴AB=AG+BG=4 +1.5≈8.4
(米)
例2、如图,一艘轮船以每小时20海里 的速度沿正北方向航行,在A处测得
灯塔C在北偏西30º方向,轮船航行2小时后到 B处,在B处测得灯塔C在北偏西45º方向,当 轮船到达灯塔C的正东方向的D处时,求此时 轮船与灯塔C的距离。
=46.16≈46(米).
40o
答:电视塔BC的高约为46米。
30o
AA
}B ?
C DD
40° 174
【变式训练】
如图,在观测点E测得小山上铁塔顶A的仰角 为60°,铁塔底部B的仰角为45°.已知塔高 AB=20m,观察点E到地面的距离EF=35m,求小 山BD的高(精确到0.1m, 3 ≈1.732).
反思与评价
1、凡是求高(求线段的长)的问题往往可 以借助解直角三角形来解决,如果没有直角 三角形可以设法去构造。
2、对于一些较复杂的问题,如果解一个 直角三角形还不能使问题得以解决,可考虑 解两个直角三角形。
3、如果不能直接通过解直角三角形处理问题, 可以去寻找已知与未知之间的等量关系,借助解 直角三角形建立方程,从而使问题得以解决。
400 30o
A
∟
B
}? C
D
解:在Rt△ADC中,∠ADC=90°,
∠CAD=30°,AC=200米. CD=AC·sin30o = 200×0.5=100(米) AD=AC·cos30o ≈ 200×0.87=174(米)
在Rt△ADB中,BD=AD·tan∠40o
≈174×0.84=146.16(米). ∴3B0°C=BD-CD=146.16-100
?
∟
30O
C
45O
CD=1.5米,求这棵树AB的高度(结果 保留两位有效数字, ≈1.732).
解∵四边形DCEF、EBGF是矩形 ∴CE=DF=8米,CD=EF=BG=1.5米
∵∠ADF=30º∠AAGFG=60º
∴∠DAF=30º∴∠AFADF=∠DA3F
∴DF=AF=8米,在R3tΔAF
45°
B南
自主检测
B
2011
A
B
(3)在Rt△ABC中,∠C=90°, sinA= ,BC=6米.
c a
则AB=10米、AC = 8米。
A
bC
1 8
(4)若一斜坡的坡度为1:8,则此斜坡坡角的正
切值为 ______
2h
a b
(5)已知堤坝的横断面是等腰梯形ABCD, 上底CD的宽为a,下底AB的宽为b,坝高为h, 则堤坝的坡度为 _____(用a,b,h表示)