典型机械的振动监测与诊断

合集下载

轧钢机械振动监测与故障诊断分析论文

轧钢机械振动监测与故障诊断分析论文

轧钢机械的振动监测与故障诊断分析【摘要】轧钢机械作为轧钢厂中至关重要的设备,通过其运行状态的振动监测和故障诊断能够及时发现轧钢机械的运行故障先兆,避免意外事故的发生,确保轧钢机械安全、可靠运行。

本文主要对轧钢机械振动监测测点的选择、监测的方法、监测周期的选择进行了探讨,并根据振动监测技术地对轧钢机械的常见故障进行了相应的诊断与分析。

【关键词】轧钢机械;振动监测;故障诊断轧钢机械是轧钢厂中至关重要的机械设备,是一种大型的旋转机械。

人们在长期的实践与观察中发现,轧钢机械在发生故障之前会有异常的振动表现出来。

因此,为了及时发现轧钢机械的运行故障先兆,避免意外事故的发生,需要对轧钢机械的重点部位,如旋转轴、齿轮传动件、联轴器、滑动和滚动轴承等进行动态振动监测和故障诊断,以便准确地掌握故障发生的原因,从而更好地维护和检修轧钢机械设备,提高轧钢机械设备的使用率,确保轧钢机械安全、可靠运行。

1.轧钢机械的振动监测1.1测点的选择由于轧钢机械在运行时其转速处于不恒定状态中,功率则在空载与满负荷周期间不断地波动,因而可能出现的故障类型也相对较多。

因此检测设备、点检时间、点检方式及测点的选择对于故障诊断的正确性有着至关重要的作用。

为了确保监测数据具有一定的可比性,在测定数据时需要遵循以下的原则进行操作:第一,每次测量机器的工况需保持一致,且所使用的测量仪器及测量方法都应保持一致。

第二,每次需在同一点测点进行测量,这样不会由于激振源到测点的传递函数不同,而造成测量的结果存在很大的差距。

第三,测量的参数应保持一致,通常而言,频率超过1000hz的振动,其数据采集器的输出参数应以加速度为主,频率在100-1000hz范围内的振动,其数据采集器的输出参数应以速度为主,而频率在10-100hz范围内的振动,其数据采集器的输出参数应以位移为主。

在监测振动的过程中,轧钢机械的监测结果受测点的影响,因此在选择测点时应把握以下原则:第一,测点宜选择在信号反应相对敏感的部位,如机座,轴承座等部位。

振动测试与分析报告

振动测试与分析报告

振动测试与分析报告摘要:振动测试与分析是一种重要的技术手段,可以用于评估和优化机械设备的性能和可靠性。

本报告通过对某台机械设备的振动测试与分析,探讨其振动特性、故障诊断以及优化方案,为设备运营和维护提供科学依据。

一、引言振动测试与分析在现代机械设备的研发、生产和维护中起着至关重要的作用。

通过监测机械设备的振动信号,可以有效评估其工作状态和性能,并提前发现潜在的故障。

本次振动测试与分析的目的是对某台机械设备的振动特性进行深入研究,以提供相关的优化方案和建议。

二、实验装置及方法本次实验选取了一台工业用离心泵作为研究对象。

实验装置主要由振动传感器、数据采集设备和分析软件组成。

在进行振动测试之前,首先对设备进行了详细的检查和维护,确保设备正常运行。

然后,将振动传感器安装在设备的关键位置,并通过数据采集设备将振动信号采集下来。

三、振动特性分析通过对振动信号进行频域分析和时域分析,可以获得机械设备的振动特性。

频域分析可以将振动信号转换为频谱图,从而确定振动信号的主要频率成分。

时域分析可以获得振动信号的时间变化特征,包括振动的幅值、相位等。

通过对实验数据的分析,我们得到了离心泵在不同工况下的振动特性,并与设备的设计参数进行对比。

四、故障诊断分析振动信号中的异常振动往往与设备的故障有关。

根据振动信号的频谱图和时域特征,可以判断设备是否存在故障,并定位具体的故障位置。

本次实验中,经过振动信号的分析,我们发现离心泵在高速运行时出现了明显的振动异常。

进一步的故障诊断分析表明,该异常是由设备轴承的磨损引起的。

五、优化方案与建议针对离心泵存在的振动问题,我们提出了几种优化方案和建议。

首先,应对设备轴承进行维护和更换,以避免由于磨损而引起的振动问题。

其次,可以通过增加附加的减振装置来减少设备的振动。

此外,优化设备的结构设计和制造工艺也是减少振动的有效手段。

六、结论通过振动测试与分析,我们深入研究了某台离心泵的振动特性以及故障诊断。

机械设备典型故障的振动特性

机械设备典型故障的振动特性

机械设备典型故障的振动特性1. 引言机械设备在正常运行过程中,可能会出现各种故障,其中振动故障是一种常见的故障类型。

振动特性是用来描述机械设备振动状态的重要参数,通过对振动特性的分析,可以确定故障的类型和严重程度,并采取相应的维修措施。

本文将介绍机械设备典型故障的振动特性,包括离心机械设备的不平衡振动、齿轮传动的故障振动、轴承的故障振动以及主轴的故障振动。

2. 离心机械设备的不平衡振动离心机械设备的不平衡振动是一种常见的故障类型。

当离心机械设备的转子存在不平衡时,会导致设备产生振动。

不平衡振动的特点是振动频率较低,振动幅值较大。

不平衡振动的振动特性可以通过振动传感器进行监测和分析。

常见的振动特性参数包括振动幅值、振动频率和相位。

3. 齿轮传动的故障振动齿轮传动是机械设备中常用的传动方式之一,但是在使用过程中会出现齿轮的故障,导致振动增大。

齿轮传动的故障振动可以分为齿轮啮合故障和轴承故障两种情况。

•齿轮啮合故障振动:齿轮啮合故障会导致传动系统产生周期性振动,其频率与齿轮的啮合频率有关。

常见的齿轮啮合故障包括齿轮齿面磨损、齿轮齿面脱落等。

•轴承故障振动:轴承是机械设备中常见的零部件之一,当轴承出现故障时,会导致传动系统产生高频振动。

轴承故障的振动特点包括高频率、小幅度的振动,振动信号中常含有谐波成分。

轴承是机械设备中常见的关键零部件之一,其故障会导致设备振动增大。

轴承的故障振动可以分为内圈故障、外圈故障和滚动体故障三种情况。

•内圈故障振动:内圈故障会导致轴承产生低频振动,其振动频率一般较低,并且振动幅值较大。

•外圈故障振动:外圈故障会导致轴承产生高频振动,其振动频率一般较高,并且振动幅值较小。

•滚动体故障振动:滚动体故障会导致轴承产生特定频率的振动,其频率与滚动体的旋转频率有关。

主轴是机械设备中常见的关键部件之一,其故障会导致设备振动增大。

主轴的故障振动特点与轴承的故障振动类似,包括低频振动、高频振动以及特定频率的振动。

状态监测与故障诊断技术 第三章 振动监测技术

状态监测与故障诊断技术 第三章 振动监测技术

第三章振动监测技术第一节机械振动基础一、引言在机械设备的状态监测和故障诊断技术中,振动监测是普遍采用的基本方法。

当机械内部发生异常时,一般都会随之出现振动加大和工作性能的变化。

因此,根据对机械振动信号的测量和分析,不用停机和解体方式,就可对机械的劣化程度和故障性质有所了解。

另外,振动的理论和测量方法都比较成熟,且简单易行。

机械振动:表示机械系统运动的位移、速度、加速度量值的大小随时间在其平均值上下交替重复变化的过程。

机械振动可分为确定性的振动和随机振动两大类,前者可用下列简单的数学解析式表示,即d=D(t) (3-1)式中d-振动位移,它是时间t的函数。

随机振动不能用此式来描述,其振动波形呈不规则的变化,可用概率统计的方法来描述。

在机械设备的状态监测中,常遇到的振动多为周期振动、准周期振动、窄频带随机振动和宽频带随机振动等,以及其中几种的组合。

读者可以通过图3-1了解各种振动的特征。

二、简谐振动简谐振动是机械振动中最简单最基本的振动形式。

图3-2所示由弹簧系数为K和质量为M所组成的质量弹簧系统。

若拉下重锤,当自然长度达到D时放开,则重锤即作周期性的上下振动。

此时如取时间t为横轴,则重锤在任何时间的位置便可用图中实线的正弦波表示。

这样位移d对时间t形成了可以用正弦曲线表示的振动,这种简单的可用正弦表示的周期振动称为简谐振动,它表示为d=Dsin(2π/T*t+) (3-2)式中 D-最大振幅,又称峰值,2D称为双峰值,其单位为mm或μm(μm=10的-3立方mm);T-振动的周期,即再现相同振动状态的最小时间间隔,单位为秒(s)。

振动周期的倒数称为振动频率,单位为赫兹(Hz)即f=1/T (Hz) (3-3)频率f又可用角频率来表示,即ω=2π/T(rad/s) (3-4)ω和f的关系为ω=2πf(rad/s)(3-5)f=ω/2π (Hz)将式(3-4)代入式(3-2)可得d=Dsin(ωt+φ) (3-6)此处令ч=ωt+φ(3-7)式中ч-简谐和振动的相位,是时间t的函数,弧度(rad);φ-初始相位;ω-角速度,rad/s。

振动监测参数及标准

振动监测参数及标准

机械设备振动监测参数及标准一、振动诊断标准的制定依据1、振动诊断标准的参数类型通常,我们用来描述振动的参数有三个:位移、速度、加速度。

一般情况下,低频振动采用位移,中频振动采用速度,高频振动采用加速度。

诊断参数在选择时主要应根据检测目的而选择。

如需要关注的是设备零部件的位置精度或变形引起的破坏时、应选择振动位移的峰值,因为峰值反映的是位置变化的极限值;如需关注的是惯性力造成的影响时,则应选择加速度,因为加速度与惯性力成正比;如关注的是零件的疲劳破坏则应选择振动速度的均方根值,因为疲劳寿命主要取决于零件的变形能量与载荷的循环速度,振动速度的均方根值正好是它们的反映。

2、振动诊断标准的理论依据各种旋转机械的振动源主要来自设计制造、安装调试、运行维修中的一些缺陷和环境影响。

振动的存在必然引起结构损伤及材料疲劳。

这种损伤多属于动力学的振动疲劳。

它在相当短的时间产生,并迅速发展扩大,因此,我们应十分重视振动引起的疲劳破坏。

美国的齿轮制造协会(AGMA)曾对滚动轴承提出了一条机械发生振动时的预防损伤曲线,如下图所示。

图中可见,在低频区(10Hz 以下),是以位移作为振动标准,中频(10~1000Hz )是以速度作为振动标准,而在高频区(1KHz 以上)则以加速度作为振动标准。

理论证明,振动部件的疲劳与振动速度成正比,而振动所产生的能量与振动的平方成正比。

由于能量传递的结果造成了磨损好其他缺陷,因此,在振动诊断判定标准中,是以速度为准比较适宜。

而对于低频振动,,主要应考虑由于位移造成的破坏,其实质是疲劳强度的破坏,而非能量性的破坏。

但对于1KHz 以上的高频振动,则主要考虑冲击脉冲以及原件共振的影响。

3、振动诊断标准的分类根据标准制定方法的不同,振动诊断标准通常分为三类。

1)绝对判断标准它是根据对某类设备长期使用、观察、维修与测试后的经验总结,并在规定了正确的方法后制定的,在使用时必须掌握标准的适用范围和测定方法。

振动的监测方法和监测方法

振动的监测方法和监测方法

振动监测方法1、常规监测设备正常运转时,使用笔式测振仪检测设备旋转部位的振动值,主要是振动速度,测量轴向、垂直方向和水平方向的振速并记录作为参考值。

岗位巡检人员在日常检测发现测量值发生变化时,通常先检查连接部件是否松动,能停机的设备可检查轴对中、轴承游隙或轴承与轴和轴承座的配合间隙等,不能停机的设备则使用振动频谱仪进行精密检测,分析振动频谱,找出是否为动平衡原因或其他原因。

据有关资料统计,利用简易诊断仪器可以解决设备运行中50%的故障。

由此可见,简易诊断在设备管理与维修中具有重要作用。

2、精密监测精密监测是通过振动频谱仪检测设备振动频谱图,分析各频率对应的振动速度分量,如某一频率的振动速度分量超限,可对比常见振动故障识别表判断故障点。

振动频率的计算:设备运转部位的工频振动频率(HZ)=转速(r∕min)∕60,如某风机的转速为960r∕min,则其工频振动频率为16HZo工频振动频率通常称为转动频率。

振动监测技术常用的振动监测方法有波形、频谱、相位分析及解调分析法。

频谱图显示振动信号中的各种频率成分及其幅值,不同的频率成分往往与一定的故障类别相关。

波形图是对振动信号在时域内进行的处理,可从波形图上观察振动的形态和变化,波形图对于不平衡、松动、碰摩类故障的诊断非常重要。

双通道相位分析通过同时采集两个部位的振动信号,从相位差异中可以对相关故障进行有效的鉴别。

解解是提取低幅值、高频率的冲击信号,通过包络分析,给出高频冲击信号及其谐频,此技术在监测滚动轴承故障信号方面较为有效。

1、不平衡转子小平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。

结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。

转子不平衡的主要振动特征:⑴振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动;⑵波形为典型的正弦波;⑶振动频率为工频,水平与垂直方向振动的相位差接近90。

发电机组的振动监测与故障诊断

发电机组的振动监测与故障诊断

发电机组的振动监测与故障诊断振动监测是发电机组运行过程中非常重要的一项工作,它可以有效地帮助我们了解发电机组的运行状态,及时发现和解决潜在的故障问题。

本文将介绍振动监测的基本原理和方法,并探讨如何通过振动信号来进行故障诊断。

一、振动监测的基本原理发电机组在运行过程中会产生各种振动信号,这些信号可以反映出发电机组的运行状态和各部件的工作情况。

振动监测的基本原理是通过安装振动传感器来采集振动信号,并将信号转化为电信号进行处理和分析。

振动信号可以分为两类:机械振动信号和电子振动信号。

机械振动信号是由发电机组内部运行过程中产生的机械振动引起的,比如转子不平衡、轴承故障等。

电子振动信号是由电器故障或电磁干扰引起的,比如绝缘损坏、接触不良等。

二、振动监测的方法1. 实时监测:通过振动传感器将振动信号实时采集并传输到监测系统,对振动信号进行分析,及时发现异常情况,并及时采取措施进行维修和保养。

2. 定期检测:定期使用振动仪器检测发电机组的振动情况,比如每月进行一次振动检测,可以有效地了解发电机组的运行状态,并及时发现潜在的故障问题。

3. 长期驻点监测:将振动传感器长期安装在发电机组上,通过采集连续不断的振动信号,了解发电机组的长期运行情况,为后续的故障诊断提供重要数据支持。

三、振动信号的故障诊断振动信号的故障诊断是通过对振动信号的分析和处理,来判断发电机组是否存在故障,并确定具体的故障类型和程度。

常用的故障诊断方法包括:1. 时域分析:通过对振动信号在时域上的波形进行分析,判断是否存在周期性故障,比如转子不平衡、轴承故障等。

2. 频域分析:通过对振动信号在频域上的频谱进行分析,得到频域特征参数,来识别故障类型,比如齿轮间隙、电机磁场不均匀等。

3. 振动信号模式识别:通过建立故障模式库,将不同故障类型的振动信号进行分类和归档,根据振动信号的特征进行匹配,从而确定故障类型。

四、振动监测与故障诊断的意义振动监测与故障诊断可以帮助我们及时发现和解决发电机组存在的潜在故障问题,避免故障发生对发电机组造成严重损害。

机械振动信号分析与故障诊断的研究进展

机械振动信号分析与故障诊断的研究进展

机械振动信号分析与故障诊断的研究进展一、引言机械振动信号分析与故障诊断是现代工程领域中重要的研究方向之一。

随着工程技术的发展和智能化水平的提高,传感器和数据采集技术的进步为机械设备振动信号的分析和故障诊断提供了更为全面和精确的手段。

本文将针对机械振动信号分析与故障诊断的研究进展进行探讨,分析其现状和发展趋势。

二、振动信号分析技术1. 频域分析频域分析是对机械振动信号进行谱分析,通过将振动信号从时域转换到频域,可以观察到信号中不同频率成分的能量分布情况。

常见的频域分析方法包括傅里叶变换、功率谱分析和相关函数等。

这些方法可以快速、准确地提取振动信号的特征值,有助于判断机械设备的运行状态和可能的故障。

2. 时间域分析时间域分析是对机械振动信号在时域上进行分析,主要通过观察信号的波形、幅值和周期等特征来判断机械运行的稳定性和故障情况。

脉冲响应、自相关函数和互相关函数等是常用的时间域分析方法。

该方法可以反映振动信号的瞬态特征,有助于检测和分析机械设备的异常振动。

三、故障诊断方法1. 特征提取特征提取是基于振动信号的特征参数,通过提取和分析信号中的频率、振幅、相位和能量等特征,以发现和识别故障信号的出现。

常用的特征参数包括峰值、峭度、峰值因子、裕度因子等。

通过有效地提取特征参数,可以准确地识别机械设备的故障类型和程度。

2. 模式识别模式识别是将振动信号与预先建立的模式进行对比,通过对比分析,确定信号的相似性和相异性,从而判断机械设备的状态。

常用的模式识别方法包括人工神经网络、支持向量机和模糊聚类等。

这些方法可以根据已知的振动信号模式进行学习和预测,提高故障诊断的准确性和稳定性。

四、应用案例机械振动信号分析与故障诊断在工程实践中具有广泛的应用。

以机械设备故障诊断为例,通过对振动信号的采集和分析,可以实时监测设备的运行状况,并提前发现潜在的故障隐患。

例如,在风力发电机组中,通过对叶片振动信号的分析,可以判断叶片的偏差或破损情况,及时进行维修和更换,保证发电机组的正常运行。

机械振动检测分析报告

机械振动检测分析报告

机械振动检测分析报告机械振动检测分析报告摘要:本报告通过对某机械设备的振动检测分析,对其运行状态进行评估和故障诊断。

通过振动参数的分析,得出机械设备目前处于正常运行状态,但存在轻微的振动异常情况。

建议采取相关措施进行维护和修复,以防止可能的故障。

一、引言机械设备的振动检测是一种常用的方法,可以通过监测和分析设备的振动参数,评估其运行状态,并及时发现可能存在的故障。

本次振动检测分析旨在对某机械设备进行评估和故障诊断。

二、实验方法采用无线振动传感器对机械设备进行振动监测,传感器将振动信号传输到数据采集系统进行分析。

通过测量和分析振动信号的频率、幅值、相位等参数,评估设备的运行状况。

三、实验结果1. 频率分析:对振动信号进行频域分析,得到设备各频率分量的幅值和频率。

结果显示,设备主要振动频率集中在A频段(0-100Hz),且幅值较小,符合正常运行状况。

2. 时域分析:对振动信号进行时域分析,得到设备振动信号的整体波形。

结果显示,设备振动信号的波形基本为周期性变化,波峰和波谷相对平稳,无明显的突变或异常情况。

3. 幅值分析:对振动信号的幅值进行统计和分析,得到设备的振动幅值变化情况。

结果显示,设备的振动幅值变化较小,基本在正常范围内。

四、讨论根据振动检测的结果分析,机械设备目前处于正常运行状态,但存在轻微的振动异常情况。

这可能是由于设备的磨损、松动或接触不良等原因所引起的。

这种轻微的振动异常可能会逐渐加剧并引发故障,因此应采取相关措施进行维护和修复。

建议采取以下措施进行设备维护和修复:1. 定期检查设备的零部件,对松动或磨损的部件进行紧固或更换;2. 检查设备的轴承,确保其润滑良好;3. 清洁设备的滚轮或齿轮,确保其表面平整、无异物;4. 检查设备的电气连接,确保接触良好。

五、结论通过对某机械设备的振动检测分析,本报告评估了设备的运行状态,并发现了轻微的振动异常情况。

建议采取相应的维护和修复措施,以防止可能的故障发生。

浅析机械故障诊断与振动监测技术

浅析机械故障诊断与振动监测技术

费用也 比较 高 ,需要精密 的仪器 ,要 由经 过专 门培训 的工 程师来进行 ,
因此 只有在重要 的设备上进行 。根据有关数据统计 ,简易诊断仪器可以
解决设备运行 中 50%的故障。由此可见 ,简易诊断在设 备维护和管理起
到非 常重 要 的作 用 。
为确保全 系统设备 的正常运行 ,在 大型企业中 ,有两项技术必须执 行 ,一是有效地监视机器状况 ,即 :“设备监测技术”。二是 精确 的诊 断方
进行精密诊断 ,通过精密诊断 ,不仅要确定故 障是 否的确存在 ,并且 ,当
存在故障时 ,还需诊断出它的位置 ,原因及 程度。
2.设备振 动故障分 析 有引起设 备振动故 障最 常见 的四大 故障 :不平衡 、不对 中、机械松
动和轴承故障。
2.1不 平 衡
所谓不 平衡 即是质量 和几何 中心 线不重 合所 导致 的一种故 障状
方 向振动较大 ,比如垂直方 向的振 动远 大于水 平方向 ;水平与垂直方 向 的相位 差为 O。或 180。(而不平 衡故障 中水平 与垂直方 向的相位差约为
90。1。此 时 ,测量应 向下移 到设备底脚 、基础平板和混凝土基础上 ,比较
不 同位置振动在工频(或转速频率)处 的幅值 、相位 。如果两个 位置的振 动幅值和相位存在着很大差别 ,则说 明有相对运动 ,这可 以帮助寻找松
而且还 要对设备 故障 的部 位 、原 因和 程度做 出估计 。故称 为精密 诊
断 。
目前比较普及 的还是简 易诊断(状 态监测),而精密诊 断在生产 中运 用得 比较少 ,而且 主要用 于高精尖设备上 。这表明简易诊断比较实用 而
且方便 实用 ,而精密诊断还处于探索 阶段且不够成熟 。另外精密诊断的

机械振动信号分析与故障诊断方法研究

机械振动信号分析与故障诊断方法研究

机械振动信号分析与故障诊断方法研究近年来,机械设备的故障诊断成为了许多企业和工厂关注的焦点。

通过对机械振动信号的分析,可以帮助工程师们快速准确地判断设备的状态,提前预防和修复故障,从而提高设备的可靠性和运行效率。

本文将介绍机械振动信号分析与故障诊断的一些常用方法与技术,并探讨其应用前景和挑战。

首先,机械振动信号分析是一种非常重要的故障诊断方法。

通过监测和分析机械振动信号,可以获得机械设备的振动特征信息,从而判断设备是否存在故障。

常见的机械振动信号分析方法包括时域分析、频域分析和时频域分析。

时域分析主要通过观察振动信号的波形和幅值变化来判断故障;频域分析则通过将振动信号转换为频率谱,从中提取频率和振幅信息,用于故障判断;时频域分析结合了时域和频域的优势,可以观察振动信号的瞬时特征和频率特征的变化,更精确地判断故障原因。

其次,故障诊断方法的研究也在不断发展和创新。

近年来,机器学习和人工智能等技术的应用为故障诊断带来了新的可能性。

通过对大量机械振动信号的数据进行训练和学习,可以建立模型来预测和判断故障。

例如,采用深度学习算法的卷积神经网络可以自动提取振动信号中的特征,并进行准确的故障识别和分类。

此外,还有一些基于模型的方法,通过建立机械设备的数学模型,利用模型预测与实际振动信号进行对比,诊断故障。

这些新的方法和技术可以更好地结合振动信号分析,提高故障诊断的准确度和效率。

然而,机械振动信号分析与故障诊断仍面临一些挑战。

首先,振动信号的特征提取和故障判断仍然是一个复杂的问题。

振动信号可能受到多种因素的影响,如温度、湿度、负载等,这些因素会干扰信号的分析和判断。

因此,如何准确地提取与故障相关的振动特征,成为了一个需要进一步研究的问题。

其次,大规模振动信号的数据处理和存储也是一个挑战。

机械设备在运行过程中会产生大量的振动信号数据,如何有效地处理和存储这些数据,是一个需要解决的问题。

综上所述,机械振动信号分析与故障诊断是目前研究和应用较为广泛的领域之一。

机器状态监测与诊断振动状态监测第1部分:总则(摘选)(二)

机器状态监测与诊断振动状态监测第1部分:总则(摘选)(二)
5 .. 轴 的 绝对 运 动 . 63 2
劳 寿命 损耗 ( 见 c 参 .
3。 )

1 —— 就地信号适配器 2 ——到信 号处理器 3 ——轴 4 ——轴振触头
6 — 机 器结 构 — 5 一 埙性 传感 器 —
在 需 要 测 量 扭 转 振 动 时 , 常 是 在 通
安装 在 对 机 器 的
3 — 可 选 用 的传 感 器 方 向 —
5 — 非 接 触 式 传 感 器 —
计算机 , 汽轮发 电 将
机 组轴 上若 干部 位处 5
动态力有足够的
灵 敏度 的 位置 。
图 6 使用非接触式传感器 的相对运动
测 量 系 统 示 意 图
得到的机械信 息 ..
轴 自由端装扭振仪器测量扭振角速度 ,扭振角速度信 轴 自由端或轴 中部的齿 轮和装在 固定结构上的电磁传
号可 南电路积分得 到扭振位移幅值 ;
— —
旋转机器扭转振动的例行监测 目前还不普遍 。 也许将来会较 频率地使用 , 特别是对于监测变频交流驱动的机器。典型应用 于 少数发电厂 , 对大型汽轮发电机组扭转动力学和输电网络 中电气 振荡相互作用的剧烈程度进行深入的研究。 这包括监测 由于电网
无 论 用 哪 种 测 量 类 型 ,都 要 求 用 数 学 模 拟 将 在 某 个 选 定 位
置得到 的测量信息转换为所关心 的其他位置 的响应估计 。一般 来说 , 机械测量转换为应 力响应和疲劳寿命 损耗是很 复杂的 , 需
要 用 更 先 进 的分 析 方 法 。
注: 使用 的软硬件 系统 和扭转振动分 析在许 多技术 文献 中说明 , 本
器 内最 危 险部 位 的疲

机械设备故障诊断与监测的常用方法

机械设备故障诊断与监测的常用方法

机械设备故障诊断与监测的常用方法机械设备在生产和运行过程中,由于各种原因,可能会出现各种故障,如振动过大、温度过高、噪声增大等问题。

为了及时发现设备故障,保证生产的连续性和稳定性,必须对机械设备进行故障诊断和监测。

机械设备故障诊断和监测的常用方法有振动分析法、红外热像技术、超声波检测技术、油液分析法和信号处理技术等。

一、振动分析法振动分析法是一种常用的机械设备故障诊断和监测方法,通过对机器振动信号的采集和分析,可以获取机器的振动状态、振幅、频率等信息,从而判断机器是否存在故障。

振动分析法的具体实施需要使用一些特殊的设备,如振动传感器、振动分析仪、计算机等。

在使用过程中,首先需要对机器进行振动数据采集,将采集到的振动信号传输到振动分析仪上进行分析,得到机器的振动参数。

然后,通过比较分析数据和标准数据,判断设备是否存在故障,并进行相应的维护处理。

二、红外热像技术红外热像技术是一种非接触、不破坏、高效、快速的故障监测方法,它可以实时监测机械设备的温度变化,从而判断设备是否存在异常热点和温度过高等问题。

红外热像技术需要使用专门的红外热像仪进行实施,首先对机器各部位进行红外探测,获得机器表面的温度分布图像。

然后,对比标准图像,判断机器是否存在异常情况,如异常热点、局部温度过高等问题,并对机器进行相应的维护处理。

三、超声波检测技术超声波检测技术是一种高频检测技术,可以检测机械设备内部的微小缺陷和故障,如裂纹、异物、气泡等。

检测过程中,超声波探头发射高频超声波,通过检测设备内部声波的反射、漏泄等信号,判断设备是否损坏或故障。

油液分析法是一种基于油液状态的故障监测方法,通过对机器工作液体的采样和检测,可以判断设备是否存在故障和异常状态。

油液分析法主要是检测机器油液中的金属、水分、污染物等指标,并通过分析数据比对,判断机器是否存在问题。

五、信号处理技术信号处理技术是一种先进的机器诊断和监测方法,主要利用数字信号处理、模糊逻辑、神经网络等专业技术,对机器信号进行分析和处理。

旋转机械的振动监测与诊断

旋转机械的振动监测与诊断
⑥未按规程检修,破坏了机器原有的配合性质和精度
• 4、操作运行 ①过程/工艺参数(如介质的温度、压力、流量、负荷等)
偏离设计值,机器运行工况不正常
②机器在超转速、超负荷下运行,改变了机器的工作特性
③运行点接近或落入临界转速区
④润滑或冷却不良 ⑤转子局部损坏或结垢 ⑥启停机或升降速过程操作不当,暖机不够,热 膨胀不均 匀或在临界区停留时间过久������ • 5、机器劣化 ①长期运行,转子挠度增大或动平衡劣化 ②转子局部损坏、脱落或产生裂纹 ③零部件磨损、点蚀或腐蚀等 ④配合面受力劣化,产生过盈不足或松动等,破 坏了配合性质和精度 ⑤机器基础沉降不均匀,机器壳体变形
旋转机械转速一般都较高,对故障诊断技术的要求就特别 迫切,如汽轮发电机、压缩机、风机、大型轧钢机等。旋 转机械正朝着大型、高速和自动化方向发展,这对提高安 全性和可靠性,对发展先进的状态监测与故障诊断技术, 提出了迫切的要求。进而形成了近年来国内外广泛的旋转 机械振动监测和故障诊断技术。
机械振动
旋转机械的振动 监测与诊断
主要内容
旋转机械的振动及故障概论 旋转机械的监测参数
旋转机械振动故障分析常 用方法
旋转机械的典型故障及其诊 断方法
1、旋转机械的振动及故障概论
旋转机械的定义 旋转机械是指主要功能由旋转运动来完成的机械,尤其是 指主要部件作旋转运动的、转速较高的机械。
旋转机械覆盖了动力、电力、化工、冶金、机械制造等重 要工程领域。
指轴系转子之间的连接对中程度,它与各轴承 之间的相对位置有关,不对中故障是旋转机械的 常见故障之一。 5’ 温度
轴瓦温度反映轴承运行情况。 6’ 润滑油压
反映滑动轴承油膜的建立情况。
返回
3、旋转机械振动故障分析常用方法

机械系统的振动信号分析与诊断

机械系统的振动信号分析与诊断

机械系统的振动信号分析与诊断一、引言在工业生产中,机械设备的故障是不可避免的。

为了保证设备的正常运行和减少意外停机时间,振动信号分析与诊断成为了一种非常重要的技术手段。

本文将介绍机械系统的振动信号分析与诊断的原理、方法和应用,并探讨其在实际生产中的重要性。

二、振动信号的产生原理振动信号是由机械系统运动时产生的,其波形特征反映了机械部件的运动状态。

振动信号的产生主要有以下几个方面的原理:摩擦振动、冲击振动、噪声振动和共振振动。

摩擦振动是由于机械部件之间的接触面摩擦而引起的,主要体现在运动副的摩擦部分。

冲击振动是由于机械部件在过程中突然发生位移或速度变化而引起的,如传动链中的冲击。

噪声振动是由外界环境产生的,如电机的噪声振动。

共振振动是由于机械系统的固有频率与外界激励频率相近而引起的,如桥梁共振。

三、振动信号的特征参数振动信号的特征参数是对振动信号进行分析和诊断的基础。

常见的振动信号特征参数有振幅、频率、相位和能量等。

振幅是振动信号的振动幅度,反映了振动的大小。

频率是振动信号的周期性波动中,单位时间内重复出现几次,反映了振动信号的周期性。

相位是振动信号的波形特征,表示波形的起伏变化情况。

能量是振动信号的能量密度,反映了振动信号的强弱。

通过对振动信号的特征参数分析,可以了解机械系统的运动状态、故障原因和严重程度。

四、振动信号分析与诊断的方法振动信号分析与诊断的方法有很多种,常见的有时域分析、频域分析和时频域分析。

时域分析是指对振动信号进行时间序列统计分析,包括振动信号的波形、峰值、均值等参数,通过观察波形变化和峰值的大小来判断机械系统的运动状态。

频域分析是指对振动信号进行频谱分析,从频谱图中得到具体频率和幅值信息,来判断机械系统的共振情况和频率分布。

时频域分析是将时域分析和频域分析相结合,综合考虑振动信号的时域和频域信息,更全面地分析和诊断机械系统的振动信号。

五、振动信号分析与诊断的应用振动信号分析与诊断广泛应用于各个工业领域中,如航空航天、汽车制造、石油化工等。

典型机械的振动监测与诊断

典型机械的振动监测与诊断
1.5μm。3个月后再测量,同一处的最大峰值已是2.83μm,达
到泵安全运行的报警值。拆机修理发现一异物缠绕在叶轮上,
改变了质心。清除异物,工频处幅值仅为0.97μm,振幅明显
减小,泵运行正常。
返回
转子不对中
旋转机械一般是由多根转子所组成的多转子
系统,转子间一般采用刚性或半挠性联轴节联接。
由于制造、安装及运行中支承轴架不均匀膨胀、
趋势分析
停机门限值
280
240
报警门限值
200
160
120
80
40
0
1
2
3
4
5
6
7
8
9
10
日期 d
趋势分析是把所测得的特征数据值和预报值按一定的时间顺
序排列起来进行分析。这些特征数据可以是通频振动、1X振幅、
2X振幅、0.5X振幅、轴心位置等,时间顺序可以按前后各次采样、
按小时、按天等。
瀑布图
350
座不圆;轴圆度误差大;热裂纹发展,旋转爬
行;微动磨损和胶着现象的发展。
2.内、外圈内表面有轴向裂纹
发生旋转爬行或微动磨损
3.内、外圈上有周向裂纹
轴承座变形;装配不均匀;过载
4.动圈(内圈或外圈)端面上有径向裂纹
动圈运转期间与轴承座或轴肩发生碰撞或摩擦
5.滚子轴承座圈上挡边断裂
挡边上装配压力分布不均匀;装配时锤击力过
标准(m)
转速( r/min)
≤1000
1500
3000
3600
≥6000
轴承上
75
50
25
21
12
轴上
(靠近轴承)
150
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型机械的振动监测与诊断

旋转机械发生振动的主要原因及其比率
(以钢铁工业为例)

第三章 典型机械的振动监测与诊断
§3.1 转子系统的监测与诊断 §3.2 滚动轴承的监测与诊断 §3.3 齿轮(箱)的监测与诊断

§3.1 转子系统的监测与诊断
一、转子系统的异常现象 二、转子系统的简易诊断 三、转子系统的精密诊断

轴承松动产生更多的方波,多于正弦波,并 形成更多的谐波

•轴承松动的特征:
•1X的径向振动谐波大; •当松动严重时,产生更多的方波,多于正弦波,并形成更多的 谐波,甚至在极端情况下会产生半谐波(1.5,2.5,3.5等)。

松动的故障诊断
波形出现许多毛刺。 谱图中噪声水平高。 出现精确2X,3X…等成分,最高可达16X。 松动结合面两边,振幅有明显差别。
下运行时,通过各台机械的同一部位进行测定和互相比较 来掌握其劣化程度的方法。


•大 型 旋 转 机 械 振 动 标 准

以轴承振动位移峰峰值作评定标准
• 水电部汽轮机组振动标准(双振峰)
•转速/rpm
•1500 •3000

•标准/mm

•优
•良 •合格
•30
•50
•70
•20
•30
•50


•一、滚动轴承发生的异常现象
•损伤的轴承表面

•疲劳剥落(点蚀) 滚动体在滚道上由于
反复承受载荷,工作到一定时间后,首先在接 触表面一定深度处形成裂纹(该处的剪应力最 大),然后逐渐发展到接触表面,使表层金属 呈片状剥落下来,形成剥落凹坑,这种现象称 为疲劳剥落。疲劳剥落使轴承在工作时发生冲 击性振动。在正常工作条件下,疲劳剥落是轴 承失效的主要原因。


•返回

•判断标准的确定
•绝对判断标准:是根据对某类机械长期使用、观察、维
修与测试后的经验总结,并由企业、行业协会或国家颁布 ,作为一标准供工程实践使用。
•相对判断标准:是对机器的同一部位定期测定,并按时
间先进行比较,以正常情况下的值为初始值,根据实测值与 该值的比值来判断的方法。
•类比判断标准:是指数台同样规格的机械在相同条件

不对中振动的特征

不对中的特征
•波形特征:总体模样类似正弦波
•2X •频谱特征:存在较大的2X转频的频率分量
•1

•不对中的危害
•振动值变大 •轴承失效 •密封失效 •联轴节磨损 •效率降低 •能量损失 •过热

•良好的不对中
减少生产损失 延长设备的生产时间 减少轴承和密封失效 减少设备的振动 减少联轴节的磨损 降低维修成本
•返回

•三、转子系统的精密诊断
不平衡 不对中
松动

不平衡
旋转机械最常见的故障
• 由于设计、制造、安装中转子材质不均匀、 结构不对称、加工和装配误差等原因和由于机器 运行时结垢、热弯曲、零部件脱落、电磁干扰力 等原因而产生质量偏心。
• 转子旋转时,质量不平衡将激起转子的振动 。


不平衡的分类:

•一、转子系统的异常现象
低频:不平衡、不对中(不同轴)、松动、润滑油起泡 中频:压力脉动、通过叶片时的振动 高频:空穴作用、流体噪声振动

•返回

•二、转子系统的简易诊断
诊断对象(设备)的选定 测定参数选定 测定点的选定 测定周期的确定 判断标准的确定 简易诊断实例

•测定参数选定


趋势分析
• 趋势分析是把所测得的特征数据值和预报值按一定的时间 顺序排列起来进行分析。这些特征数据可以是通频振动、1X振 幅、2X振幅、0.5X振幅、轴心位置等,时间顺序可以按前后各次 采样、按小时、按天等。


瀑布 图
•利用瀑布图可以判断机器的临界转速、振动原因和阻尼大小



相邻的加固表面 (结构松动) 基础面 (结构松动)

只在松动方向振幅很大(垂直的或水平的)

•结构松动特征:
•1X、2X径向振动大(经常2X较大),也有可能有较小3X径向振动; •可能只在松动方向振幅很大 (垂直的或水平的); •很容易发现邻近表面上的背景振动; •低速运动的研究是诊断此类状态的有效工具。
发生振动. 但是,如果力很小或没有,可能只增大很少的
振动量. 为了明白这一点, 假设一台理想的机器 – 没有
任何机械故障,没有任何振动. 现在松动固定地脚的螺钉
,. . . 什么也没发生因为没有力会把机器抬高离开基础
.
许多位置会发生影响振动测量的松动:
轴承 / 转轴 (轴承松动)
轴承 /支架 (轴承松动) 轴承的内部裂纹 (轴承松动)
如伴有光滑压痕,则是由于过载所致,或安 装时承受较大冲击载荷,或过大的过盈量; 如伴有粗糙压痕,则是微动磨损所致。
强力安装,过载或润滑不足,间隙过小,生 锈。
7.推力轴承滚道上有偏心分布的点蚀凹坑 装配偏心或加载偏心

故障 形式
故障现象
1.内、外圈上有贯穿裂纹
故障原因
冲击载荷过大;配合太紧;装配不匀称;轴承 座不圆;轴圆度误差大;热裂纹发展,旋转爬 行;微动磨损和胶着现象的发展。

不对中的故障诊断
出现2X频率成分。
轴心轨迹成香蕉形或8字形。
振动有方向性。
•MO
轴向振动一般较大。
•MI •PI •PO
•电机
•水泵

•2X频率 •1X频率
•叶片通 •过频率




•返回

松动

松动不是振动源而是放大器. 这意味着当部件松
动时, 无论产生的力有多大,都会很容易使受影响的部件

•轴向很小 •1X频率(垂直) •1X频率(水平) •轴向很小 •1X频率(垂直) •1X频率(水平)





一台射流泵正常运转时在工频(1800r/min)处幅值最大,达
1.5μm。3个月后再测量,同一处的最大峰值已是2.83μm,达
到泵安全运行的报警值。拆机修理发现一异物缠绕在叶轮上,
•机械部离心鼓风机和压缩机振动标准
•标准
mm •主轴轴
承 •齿轮轴

•≤3000
•50 •
•转速 ( r/min)
•≤6500
•≤10000
•>1000 0-16000
•≤40
•≤30 •≤20
•≤40
•≤40 •≤30

•IEC汽轮机振动标准
•标准(mm )
•转速( r/min)
•≤1000 •1500 •3000 •3600 •≥6000
✓ 振动频率和转速频率一致,转速频率的高次 谐波幅值很低,时域波形接近正弦波; ✓ 刚性转子不平衡产生的离心力与转速的平方 成正比,而在轴承座测得的振动随转速增加 而加大,但不一定与转速的平方成正比,这 是由于轴承与转子之间的非线性所致; ✓ 在临界转速附近,振幅出现峰值,且相位在 临界转速前后相差近180°。
2.内、外圈内表面有轴向裂纹
发生旋转爬行或微动磨损
裂 3.内、外圈上有周向裂纹
轴承座变形;装配不均匀;过载
纹 4.动圈(内圈或外圈)端面上有径向裂纹 动圈运转期间与轴承座或轴肩发生碰撞或摩擦
和 5.滚子轴承座圈上挡边断裂 断
挡边上装配压力分布不均匀;装配时锤击力过 大
裂 6.保持架开裂或断裂


•返回

•测定点的选定

旋转机械振动分析征兆变化一般规律

旋转机械振动分析征兆变化一般规律




•返回

•测定周期的确定
与设备劣化速度有关:劣化缓慢--〉采用较长周期
劣化变快--〉缩短测定周期
劣化加剧--〉连续实时测定
高速旋转机械:汽轮压缩机、汽轮机--〉每日测定 一般旋转机械:水泵、风扇、鼓风机--〉每周测定

不平衡振动的特征

•不平衡的特征
不平衡的波形特征:类似正弦波
•1X
•不平衡的频谱特征:转频能量占主要成分

•不平衡故障的危害
•1、加大了设备振动水平; •2、加大了设备轴承的负载; •3、加速了设备轴承的磨损、失效。

不平衡的故障诊断
波形为简谐波,少毛刺。 轴心轨迹为圆或椭圆。 1X频率为主。 轴向振动不大。 振幅随转速升高而增大。 过临界转速有共振峰。

故障 形式
故障现象
故障原因
1.滚道表面无光泽
磨 2.滚道表面有光亮带 粒 3.滚动体磨损痕迹不规则 磨 4.滚道、滚动体与保持架接触部位磨损 损 5.滚道与滚动体松动
润滑不良,轴承中有粗糙研磨物 轴承中有细小研磨物 研磨引起振动 润滑不良;有异物落入;生锈 润滑不良,过滤不良,研磨颗粒进入,由 磨损引起松动。

•平行不对中
D
D D
D
•角度不对中
D
D D
D
•组合不对中
D
D
D D

•完全对中
•角度不对中
•平行不对中

转轴中心线在联轴 器处相交。注意联 轴器无位移,并且 轴承的径向和轴向 位移大。
转轴中心线在轴承 处相交。 注意到联 轴器径向位移大, 轴承径向位移小, 轴向位移大。

•角度不对中的特征:
•1、1X rpm轴向振动大, 可能在 2X & 3X有谐波. •2、2X rpm 轴向可能和1X 的轴向同样大或更大. •3、径向振动在1X, 2X 和 3X可能比轴向振幅小. •4、径向振动取决于转轴中心线在何处与装配中心线相交。 •通过联轴器的轴向相位变化明显 (> 60°)。
相关文档
最新文档