实验六:遗传算法求解TSP问题实验分析

合集下载

TSP问题求解实验报告

TSP问题求解实验报告

TSP问题求解(一)实验目的熟悉和掌握遗传算法的原理,流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。

(二)实验原理巡回旅行商问题给定一组n个城市和俩俩之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短。

TSP问题也称为货郎担问题,是一个古老的问题。

最早可以追溯到1759年Euler提出的骑士旅行的问题。

1948年,由美国兰德公司推动,TSP成为近代组合优化领域的典型难题。

TSP是一个具有广泛的应用背景和重要理论价值的组合优化问题。

近年来,有很多解决该问题的较为有效的算法不断被推出,例如Hopfield神经网络方法,模拟退火方法以及遗传算法方法等。

TSP搜索空间随着城市数n的增加而增大,所有的旅程路线组合数为(n-1)!/2。

在如此庞大的搜索空间中寻求最优解,对于常规方法和现有的计算工具而言,存在着诸多计算困难。

借助遗传算法的搜索能力解决TSP问题,是很自然的想法。

基本遗传算法可定义为一个8元组:(SGA)=(C,E,P0,M,Φ,Г,Ψ,Τ)C ——个体的编码方法,SGA使用固定长度二进制符号串编码方法;E ——个体的适应度评价函数;P0——初始群体;M ——群体大小,一般取20—100;Ф——选择算子,SGA使用比例算子;Г——交叉算子,SGA使用单点交叉算子;Ψ——变异算子,SGA使用基本位变异算子;Т——算法终止条件,一般终止进化代数为100—500;问题的表示对于一个实际的待优化问题,首先需要将其表示为适合于遗传算法操作的形式。

用遗传算法解决TSP,一个旅程很自然的表示为n个城市的排列,但基于二进制编码的交叉和变异操作不能适用。

路径表示是表示旅程对应的基因编码的最自然,最简单的表示方法。

它在编码,解码,存储过程中相对容易理解和实现。

例如:旅程(5-1-7-8-9-4-6-2-3)可以直接表示为(5 1 7 8 9 4 6 2 3)(三)实验内容N>=8。

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。

遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。

本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。

2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。

其基本原理可以概括为:选择、交叉和变异。

(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。

(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。

交叉算子的选择及实现方式会对算法效果产生很大的影响。

(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。

通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。

3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。

(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。

(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。

(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。

b. 计算适应度:根据适应度函数,计算每个个体的适应度值。

c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。

d. 交叉操作:对父代进行交叉操作,生成新的个体。

e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。

利用遗传算法求解TSP问题

利用遗传算法求解TSP问题

利⽤遗传算法求解TSP问题⼀、摘要TSP问题是指给定平⾯上N个点及每点的坐标,求⼀条路径,遍历所有的点并回到起点,使这条路径长度最⼩。

TSP问题是⼀个组合优化问题。

该问题可以被证明具有NPC计算复杂性。

因此,任何能使该问题的求解得以简化的⽅法,都将受到⾼度的评价和关注。

遗传算法是⼈⼯智能⽅法的⼀种,⽤于求解各种传统⽅法不⽅便求解或耗时很长的问题。

下⾯给出遗传算法求解TSP问题的步骤。

在传统遗传算法求解TSP的基础上,提出了⼀种新的编码⽅式,并且讨论了⼀种优化⽅法的可⾏性。

本次实验的程序⾸先在matlab上验证了基本的算法,然⽽由于matlab运⾏较慢,故⼜移植到C++平台上,经过测试,实验结果良好。

⼆、算法实现遗传算法的实现主要包括编码、选择、交叉、编译、将个体放⼊新种群这么⼏个步骤,经过很多代的编译求解,以逼近最优解。

下⾯讨论每⼀个步骤的实现,其中编码⽅式是我在考虑了传统编码⽅式不利于计算的缺点下,重新设计的⼀种全新的编码⽅式。

编码在传统TSP问题中,编码可以直接采⽤⼆进制编码或⾃然编码的形式,⽐如直接把城市转化成(2,5,4,1,3,6)的形式,表⽰从2到5到4到1到3到6最后回到起点。

但是在求解TSP问题时,如果直接采⽤此种编码⽅式,会导致在交叉或变异时出现冲突的情况。

如(2,5,4,1,3,6)和(3,5,6,1,2,4)交换后变成了(2,5,6,1,2,6)和(3,5,4,1,3,4),显然路径出现了冲突的现象,传统的解决⽅式是通过逐步调整的⽅法来消除冲突,但是这种⽅法增加了编码的复杂度,不利于问题的求解,根据问题的特点,提出了采⽤⼀种插⼊序号的编码⽅式。

假设6个城市(1,2,3,4,5,6)现在有编码(1,1,2,2,1,3),让第n个编码表⽰n放在第⼏个空格处。

那么⽣成路径的规则是⾸先取1放在第⼀个(1),然后取2放在第⼀个空格处(2,1),然后取3放在第⼆个空格处(2,3,1),然后取4放在第⼆个空格处(2,4,3,1)然后取5放在第⼀个空格处(5,2,4,3,1)最后取6放在第3个空格处(5,2,6,4,3,1)。

(完整word版)遗传算法求解TSP问题实验报告

(完整word版)遗传算法求解TSP问题实验报告

人工智能实验报告实验六遗传算法实验II一、实验目的:熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。

二、实验原理:旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。

假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。

路径的选择目标是要求得的路径路程为所有路径之中的最小值。

TSP问题是一个组合优化问题。

该问题可以被证明具有NPC计算复杂性。

因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。

遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。

它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。

这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。

后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。

群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。

要求利用遗传算法求解TSP问题的最短路径。

三、实验内容:1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。

2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。

4、上交源代码。

四、实验报告要求:1、画出遗传算法求解TSP问题的流程图。

2、分析遗传算法求解不同规模的TSP问题的算法性能。

规模越大,算法的性能越差,所用时间越长。

3、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

用于求解TSP问题的遗传算法改进

用于求解TSP问题的遗传算法改进

用于求解TSP问题的遗传算法改进遗传算法是一种常用于解决旅行商问题(TSP)的优化算法。

TSP问题是指在给定一组城市和其之间的距离,找到一条最短路径,使得每个城市只访问一次并最终返回起始城市。

传统的遗传算法在解决TSP问题时存在一些缺点,例如收敛速度慢、易于陷入局部最优解等问题。

对遗传算法进行改进以提高求解TSP问题的效果和效率尤为重要。

改进初始化的方法。

传统的遗传算法一般采用随机生成的方法来初始化种群,但这样会导致种群的多样性不足、容易陷入局部最优解。

可以采用相邻交换法、插入法等启发式方法来生成初始化种群,增加种群的多样性,有助于全局搜索。

改进交叉和变异的操作。

传统的遗传算法中,交叉和变异操作一般是均匀随机进行的,但这样可能会导致交叉和变异带来的新个体的子路径中出现重复的城市,从而违反了TSP问题的约束条件。

可以采用部分映射交叉(PMX)等方法来保证交叉后子路径不会出现重复的城市,同时保持了种群的多样性;可以采用2-opt、3-opt等局部搜索方法来修复变异带来的子路径中出现的重复的城市,提高种群的质量。

可以引入自适应权重的选择策略。

传统的遗传算法中,选择策略一般是基于个体适应度的排序或轮盘赌选择的。

但这种选择策略可能会导致选择压力过大或过小,使种群收敛速度过快或过慢。

可以采用自适应权重的选择策略,根据种群适应度的分布情况动态调整选择概率,使得适应度较高的个体能够更有机会被选中,增加种群的多样性,提高全局搜索能力。

可以引入一些启发式的局部搜索方法。

传统的遗传算法中,局部搜索往往仅在变异操作中进行,但这样可能局部搜索的范围有限,难以跳出局部最优解。

可以在种群进化的过程中,根据种群的适应度情况,选择某些个体进行局部搜索,以进一步改善个体的质量。

对于求解TSP问题的遗传算法改进,可以从初始化方法、交叉和变异操作、选择策略和局部搜索等方面进行改进,以提高算法的效果和效率。

通过引入合适的启发式方法,增加种群的多样性,改善交叉和变异的操作,优化选择策略,加强局部搜索,可以有效地提高遗传算法在求解TSP问题中的性能。

TSP问题的遗传算法求解

TSP问题的遗传算法求解

TSP问题的遗传算法求解一、问题描述假设有一个旅行商人要拜访N个城市,要求他从一个城市出发,每个城市最多拜访一次,最后要回到出发的城市,保证所选择的路径长度最短。

二、算法描述(一)算法简介遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解。

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择个体,并借助于自然遗传学的遗传算子(geneticoperators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

(摘自百度百科)。

(二)遗传算子遗传算法中有选择算子、交叉算子和变异算子。

选择算子用于在父代种群中选择进入下一代的个体。

交叉算子用于对种群中的个体两两进行交叉,有Partial-MappedCrossover、OrderCrossover、Position-basedCrossover等交叉算子。

变异算子用于对种群中的个体进行突变。

(三)算法步骤描述遗传算法的基本运算过程如下:1.初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P2.个体评价:计算种群P中各个个体的适应度3.选择运算:将选择算子作用于群体。

以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代4.交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉5.变异运算:在变异概率的控制下,对群体中的个体两两进行变异,即对某一个体的基因进行随机调整6.经过选择、交叉、变异运算之后得到下一代群体P1。

遗传算法求解TSP的研究

遗传算法求解TSP的研究
建。 所以, 由M i c h a l e w i c z 和郭涛根据以上两类算子的优缺
最原始的遗传算法中, 仅仅包含三种最基本 的遗传算
点进行了结合, 得到了 一种比较适合 的算子, 这种算子叫做 子, 也就是选择算子、 交叉算子和变异算子, 这种最原始的 I n v e r — O v e r , 这种算子能够容易获取, 查找领域宽, 它的基 遗传算法工作的过程是非常简单的, 并且较为人们学习, 它 本思路 是 : 旅行 商问题的核心 参数是城市之间的边, 却不 也是其他的后来发展的遗传算法 的祖辈。 是这些城市的具地理位 置。 ( 1 ) 最原始的遗传算法的组成部分。 遗传算法中最基本
个体与一组向量对应 , 而此 向量又与一条可行路径 一一对 个体 的适应性的得分为0 或者是大于0 的数。 所 以, 我们必
应。 这样的编码方式不仅缩小了 种群规模 , 占用较 少内存,
须确定自适应性与遗传的概率的之间的正确规则。
作者简介: 周敏 ( 1 9 9 1 -) , 男, 湖南醴 陵人 , 研 究方向: 计算机 自 动化与智能传感器。
只有那些 能适应环 境的变 异类 型才 能生存下来 , 产生后
代, 而那些与环境不相适应 的变异类型将可能被淘汰。 在
它的工作效率比较高, 但也有 自身的缺点, 就是具有一定的 自然环 境中, 每种 生物都有 自己的适 应能力, 适应能力的
随机性 , 从而实现不 了对 团体中的个别的消息进行再次构 不同揭示了不同生物 的繁衍能力。
最优解。
3 算法理论分析
2 国内外研 究现状
达 尔文著名 的自然 选择 学说 , 是遗传 算法 的来 源理
目 前对遗传算法 的研究大部分是从算子 出发, 提 出各 论 , 该算法是一种迭代搜索算法。 达尔文的自然选择学说 生物 的变 异一般不是定向的, 而自然选择是定向的, 种杂交算子, 但这些算子一般在实际使用中需要花费较 大 认为: 的工作量, 比如 已有 的O X , P M X , S S X , E R X , C S E X 和D P X 等。 还有其他一种变异算子, 这种变异算子 以颠倒作为基 石,

遗传算法求解TSP问题

遗传算法求解TSP问题

遗传算法求解TSP问题实验六遗传算法求解TSP问题⼀、实验⽬的熟悉和掌握遗传算法的原理、流程和编码策略,并利⽤遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。

⼆、实验内容1、参考实验系统给出的遗传算法核⼼代码,⽤遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。

2、对于同⼀个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

3、增加1种变异策略和1种个体选择概率分配策略,⽐较求解同⼀TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。

4、上交源代码。

三、遗传算法求解TSP问题的流程图四、遗传算法求解不同规模的TSP问题的算法性能(1)遗传算法执⾏⽅式说明:适应度值计算⽅法:当前路线的路径长度●个体选择概率分配⽅法:适应度⽐例⽅法●选择个体⽅法:轮盘赌选择●交叉类型:PMX交叉●变异类型: 两点互换变异(2)实验模拟结果:图1-1(3)分析由图1-1可知,遗传算法执⾏时间随着TSP问题规模的增⼤⽽增⼤,并且⼤致为线性增长。

五、不同参数下的计算结果对⽐最⼤迭代步数:100交叉概率:0.85变异概率:0.15如表1-1或3-1-0-9-2-4-8-5-7-6,注意到这是⼀圈,顺时针或者逆时针都可以。

当种群规模为10,20时,并没有找到最优解。

(2)交叉概率对算法结果的影响实验次数:15种群规模:25最⼤迭代步数:100变异概率:0.15实验结果:在该情况下,交叉概率过低将使搜索陷⼊迟钝状态,得不到最优解。

种群规模:25最⼤迭代步数:100交叉概率:0.85实验结果:⼜表1-3可知,当变异概率过⼤或过低都将导致⽆法得到最优解。

注:(2)(3)的实验数据与(1)的实验数据不同,详见附录。

六、不同变异策略和个体选择概率分配策略对算法结果的影响(1)两点互换变异与插⼊变异的⽐较:●试验次数(CASNUM):10●城市数(POINTCNT):10●种群规模(POPSIZE):100●最⼤迭代步数(GENERATIONS):100●交叉概率(PC):0.85●变异概率(PM):0.15●选择个体⽅法:轮盘赌选择●交叉类型:PMX交叉●个体选择概率分配⽅法:适应度⽐例⽅法a.变异类型: 两点互换变异b.变异类型: 插⼊变异分析:两点互换变异20次模拟中,4次得到⾮最优解;⽽插⼊变异只有2次;插⼊变异的最好适应度平均值⽐两点互换变异⼩0.14755,最差适应度平均值和总的适应度平均值都⽐两点互换下,并且在Release下,运⾏时间前者⽐后者快218.3ms。

遗传算法求解TSP问题报告

遗传算法求解TSP问题报告

遗传算法求解TSP问题实验报告一、实验要求:以旅行商问题(TSP)为例做模拟进化搜索技术实验,并提交实验研究报告。

二、实验思路:bool fnCreateRandomGene(); //产生随机基因bool fnGeneAberrance(); //基因变异bool fnGeneMix(); //基因交叉产生新的个体测试并淘汰适应度低的个体bool fnEvalAll(); //测试所有基因的适应度int fnEvalOne(T &Gene); //测试某一个基因的适应度void Crossover( int nFatherA, int nFatherB);void fnDispProbability(); //显示每个个体的权值Crossover()——两染色体的交叉实现输入参数:1、nFatherA 父染色体A2、nFatherB 父染色体B3、nMode 交叉方式返回值:空注:现有交叉方式1、常规交叉方式,该方式比《现代计算方法》(邢文训等编著)p178给出的“非常规码的常规交配法”稍复杂些。

书中只随机选择一个交配位,两个后代交配位之前的基因分别继承双亲的交配位之前的基因。

本程序中,是随机选择两个不相同的交配位,后代在这两个交配位之间继承双亲在这两个交配位之间的基因如父A 1 2 3 | 4 5 6 7 | 8 9 10父B 4 7 8 | 3 2 5 9 | 1 6 10子A 8 3 2 | 4 5 6 7 | 9 1 10子B 1 4 6 | 3 2 5 9 | 7 8 102、贪心交叉方式(Greedy Crossover),具体算法可参见谢胜利,等.求解TSP问题的一种改进的遗传算法[J].计算机工程与应用,2002(8):58~245.三、实验代码:#include <fstream>#include<iostream>#include <vector>#include <algorithm>#include<math.h>#include <time.h>#include <stdlib.h>#include "def.h"#include "TSP.h"void main(){ifstream input_file;ofstream output_file;time_t time1,time2;int _GENERATION_AMOUNT;int times;int _CITY_AMOUNT=-1;int ii,j,k;std::vector<double> x;std::vector<double> y;char readfile[50];const char* writefile="tsp.txt";double tempx[10000],tempy[10000];cout<<"打开城市坐标文件:";cin>>readfile;input_file.open(readfile);if(!input_file){cout<<"打开错误!";return;}cout<<"读入城市坐标........"<<endl;while(1){if(!input_file.eof()){_CITY_AMOUNT++;input_file>>tempx[_CITY_AMOUNT]>>tempy[_CITY_AMOUNT];if(tempx[_CITY_AMOUNT]<0||tempy[_CITY_AMOUNT]<0){cout<<"文件格式有误!";return;}}elsebreak;}if( _CITY_AMOUNT==-1){cout<<"文件格式有误!";return;}input_file.close();_CITY_AMOUNT=_CITY_AMOUNT+1;x.reserve(_CITY_AMOUNT);y.reserve(_CITY_AMOUNT);lpCityDistance.reserve(_CITY_AMOUNT*_CITY_AMOUNT);for(k=0;k<_CITY_AMOUNT;k++){x[k]=tempx[k];y[k]=tempy[k];}cout<<"已存入的城市信息为:"<<endl;for(ii=0;ii<_CITY_AMOUNT;ii++)cout<<"第"<<ii+1<<"个城市"<<"("<<x[ii]<<","<<y[ii]<<")"<<endl;lpCityDistance.clear();for(k=0;k<_CITY_AMOUNT;k++){lpCityDistance[k*_CITY_AMOUNT+k]=0;for(j=k+1;j<_CITY_AMOUNT;j++){lpCityDistance[k*_CITY_AMOUNT+j]=lpCityDistance[j*_CITY_AMOUNT+k] =sqrt((x[k]-x[j])*(x[k]-x[j])+(y[k]-y[j])*(y[k]-y[j]));}}cout<<"输入进化代数:"<<endl;cin>>times;cout<<"输入种群大小:(大于城市个数小于10000)"<<endl;cin>> _GENERATION_AMOUNT;while(_GENERATION_AMOUNT>=10000||_GENERATION_AMOUNT<_CITY_AMOUNT){cout<<"种群数输入错误!请重新输入(大于城市个数小于10000)"<<endl;cin>> _GENERATION_AMOUNT;}Csga<_CONTAINER, _CONTAINER_P> CUnit(times,_GENERATION_AMOUNT,_CITY_AMOUNT); //初始化time1=time(NULL);//开始遗传算法if(!CUnit.fnCreateRandomGene()) //产生随机基因//产生随机的基因{exit(0);}//循环基因编译,杂交,淘汰过程CUnit.fnEvalAll(); //测试所有基因的适应度for ( int i = 0; i<times; ++i ){//CUnit.fnDispProbability();//显示每个个体的权值CUnit.fnGeneAberrance(); //基因变异//基因变异//CUnit.fnDispProbability();//显示每个个体的权值CUnit.fnGeneMix();//交叉产生新的个体测试并淘汰适应度低的个体//基因杂交CUnit.fnEvalAll(); //测试所有基因的适应度// 每隔_DISP_INTERV AL显示一次结果if ( (i+1)%_DISP_INTERV AL == 0 || i == 0){cout << "第" << i+1 << "代" <<endl;CUnit.fnDispProbability();CUnit.fnDispHistoryMin();}}CUnit.fnDispHistoryMin();time2=time(NULL);cout<<"\n\n计算用时为:"<<difftime(time2,time1)<<"s"<<endl;}四、实验结果:。

遗传算法解决TSP问题

遗传算法解决TSP问题

遗传算法解决TSP问题姓名:学号:专业:问题描叙TSP问题即路径最短路径问题,从任意起点出发(或者固定起点),依次经过所有城市,一个城市只能进入和出去一次,所有城市必须经过一次,经过终点再到起点,从中寻找距离最短的通路。

通过距离矩阵可以得到城市之间的相互距离,从距离矩阵中的到距离最短路径,解决TSP问题的算法很多,如模拟退火算法,禁忌搜索算法,遗传算法等等,每个算法都有自己的优缺点,遗传算法收敛性好,计算时间少,但是得到的是次优解,得不到最有解。

算法设计遗传算法属于进化算法的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异。

数值方法求解这一问题的主要手段是迭代运算。

一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。

遗传算法很好地克服了这个缺点,是一种全局优化算法。

生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。

这是自然环境选择的结果。

人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。

一些学者从生物遗传、进化的过程得到启发,提出了遗传算法。

算法中称遗传的生物体为个体,个体对环境的适应程度用适应值(fitness)表示。

适应值取决于个体的染色体,在算法中染色体常用一串数字表示,数字串中的一位对应一个基因。

一定数量的个体组成一个群体。

对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代遗传算法计算程序的流程可以表示如下:第一步准备工作(1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。

通常用二进制编码。

(2)选择合适的参数,包括群体大小(个体数M )、交叉概率PC和变异概率Pm。

(3)确定适应值函数f (x)。

f(x)应为正值。

第二步形成一个初始群体(含M个个体)。

在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。

第三步对每一染色体(串)计算其适应值fi,同时计算群体的总适应值。

用遗传算法解决TSP问题

用遗传算法解决TSP问题

用遗传算法解决TSP问题设计思路:1.初始化城市距离采用以城市编号(i,j=1代表北京,=2代表上海,=3代表天津,=4代表重庆,=5代表乌鲁木齐)为矩阵行列标的方法,输入任意两个城市之间的距离,用矩阵city表示,矩阵中的元素city(i,j)代表第i个城市与第j个城市间的距离。

2.初始化种群通过randperm函数,生成一个一维随机向量(是整数1,2,3,4,5的任意排列),然后将其赋给二维数组group的第一列,作为一个个体。

如此循环N次(本例生成了50个个体),生成了第一代种群,种群的每个个体代表一条路径。

3.计算适应度采用的适应度函数为个体巡回路径的总长度的函数。

具体为adapt(1,i)=(5*maxdis-dis) (1) 在式(1)中,adapt(1,i)表示第i个个体的适应度函数,maxdis为城市间的最大距离,为4077km,dis为个体巡回路径的总长度,这样定义的适应度,当路经越短时适应度值越大。

在适应度值的基础上,给出的计算个体期望复制数的表达式为adaptnum(1,i)=(N* adapt(1,i)/ sumadapt) (2) 其中,sumadapt为种群适应度之和。

4.复制采用优秀个体的大比例保护基础上的随机数复制法。

具体做法为在生成下一代个体时,先将最大适应度对应的路径个体以较大的比例复制到下一代,然后再用随机数复制法生成下一代的其他个体。

其中,有一个问题必须考虑,即若某一次生成的随机数过大,结果能复制一个或极少个样本。

为了避免这一情况,采用了限制措施,即压低了随机数的上限。

5.交叉采用的方法为按步长的单点交叉,为随机选择一对样本,再随机选择一个交叉点位置,按一定的步长进行交叉点的选择。

选择一个步长而不是将其设为1,是因为若某一位置处的城市代码因为进行了交叉而发生了改变,则其经过该处的两个距离都会改变。

这种交叉兼有遗传和变异两方面的作用,因为若交叉点处的城市编号都相同,则对两个个体而言交叉后样本无变化,否则样本有变化。

遗传算法求解TSP问题的具体方法及其时间复杂性研究

遗传算法求解TSP问题的具体方法及其时间复杂性研究

遗传算法求解TSP问题的具体方法及其时间复杂性研究邢冲(上海交通大学计算机系学号5010339138)摘要:首先介绍遗传算法解决TSP问题的基因表示方法以及相应的几种交叉变异方法。

然后研究不同的方法与参数设置对于路径最优解,路径平均值以及所用处理器时间的影响,主要研究方向是在尽可能短的时间内求出TSP问题的次优解。

得出结论:使用路径基因表示法,选择较大的变异率(0.3左右),使用倒置变异算法进行求解,能够得到较好的次优值(处理器时间:2000,100个城市,大致可以达到相距最优值1%-2%的效果),同时速度比较快。

此研究针对那些只需次优解,但对时间要求比较高的问题有一定指导意义。

关键字 :遗传算法TSP 联赛排序次优解时间复杂度引言:TSP(Travelling Salesman Problem) 是一个著名的NP组合优化问题. 旅行商需要以尽可能少的路程遍历所有城市,回到出发点.TSP具有很大的广泛性,无论是城市交通问题,航空问题,还是集成电路制造问题都需要解决相应的TSP 问题.对于TSP问题,穷举的时间复杂度为N!(N为城市数量) , 随着N增加时间以指数级增加,对于如今的硬件技术这样的时间复杂度是难以接受的. 而利用遗传算法(GA)求解TSP是个不错的选择.GA是一种模拟生命进化的算法;它利用适者生存的进化原则,通过演化逐步逼近问题的最优解.本文将讨论使用GA求解TSP 问题的各种具体方法和及其参数设置的影响.1.基因的表示方法TSP问题可以选择城市序列作为基因。

首先对城市进行编号,比如10个城市0,1,……,9旅行序列:4-1-2-3-0-5-9-8-7-6则基因为(4 ,1, 2, 3, 0, 5, 9, 8, 7, 6)。

这样的表示方法需要解决交叉的问题,普通的交叉方法会引起不合理的基因,比如父代一:(0,1,2,3,4,5,6,7,8,9)父代二:(9,8,7,1,2,3,4,5,6,0)子代的可能结果:(一点交叉,交叉位置假设5)(0,1,2,3,4,3,4,5,6,0)(9,8,7,1,2,5,6,7,8,9)这样的子代结果显然是不符合TSP问题要求的,而且这样方法使得不合理基因在子代中占绝对优势比例,为了解决这一问题,尝试以下两种方法:改变基因编码,使用Grefenstette等提出的一种新的巡回路线编码(以下简称G法)。

《改进遗传算法及其在TSP问题中的应用》范文

《改进遗传算法及其在TSP问题中的应用》范文

《改进遗传算法及其在TSP问题中的应用》篇一一、引言遗传算法是一种基于生物进化原理的迭代搜索算法,具有全局搜索和自适应调整的特性,被广泛应用于组合优化问题。

旅行商问题(Traveling Salesman Problem,TSP)是典型的组合优化问题之一,旨在寻找访问一系列城市并返回起点的最短路径。

本文旨在探讨改进遗传算法在TSP问题中的应用,以提高算法的效率和准确性。

二、遗传算法概述遗传算法通过模拟自然进化过程,不断迭代产生新的解集,并逐步逼近最优解。

算法主要包括编码、初始化、选择、交叉和变异等操作。

在TSP问题中,遗传算法的编码通常采用整数编码方式,表示各个城市的排列顺序。

算法通过不断优化种群中的个体,最终得到最优解。

三、改进遗传算法针对传统遗传算法在TSP问题中可能存在的局限性,本文提出以下改进措施:1. 初始化策略优化:采用多种初始化方法结合的方式,提高初始解的质量和多样性,以避免陷入局部最优解。

2. 选择策略优化:引入多种选择策略,如轮盘赌选择、锦标赛选择等,以更好地平衡全局搜索和局部搜索。

3. 交叉和变异操作优化:采用多种交叉和变异操作,如部分匹配交叉、均匀变异等,以增强算法的搜索能力和适应性。

4. 适应度函数优化:针对TSP问题,设计更加精确的适应度函数,以更好地反映解的质量和优化目标。

四、改进遗传算法在TSP问题中的应用将改进后的遗传算法应用于TSP问题,可以得到更加优秀的解。

具体步骤如下:1. 对问题进行编码:采用适当的编码方式,将TSP问题转化为遗传算法可以处理的形式。

2. 初始化种群:采用多种初始化方法结合的方式生成初始种群。

3. 评估适应度:根据适应度函数计算每个个体的适应度。

4. 选择、交叉和变异操作:根据优化后的选择策略、交叉和变异操作生成新的种群。

5. 迭代优化:重复步骤3-4,直到满足终止条件(如达到最大迭代次数或解的质量达到要求)。

五、实验结果与分析为了验证改进遗传算法在TSP问题中的有效性,我们进行了多组实验。

遗传算法求解TSP问题实验报告

遗传算法求解TSP问题实验报告

一、 实验目的加深对逻辑程序运行机理的理解,掌握MATLAB 语言的特点、熟悉其编程环境,同时为后面的人工智能程序设计做好准备。

1、熟悉MATLAB 语言编程环境的使用;2、了解MATLAB 语言中常量、变量的表示方法;3、了解利用MATLAB 进行事实库、规则库的编写方法;二、 实验环境计算机 哈尔滨工程大学计算机学院实验室三、 预习要求实验前应阅读实验指导书,了解实验目的、预习MATLAB 语言的相关知识。

四、 实验内容1、学习使用MATLAB ,包括进入MATLAB 主程序、编辑源程序、修改环境目录、退出等基本操作。

2、在MATLAB 集成环境下调试运行简单的MATLAB 程序,如描述亲属关系的MATLAB 程序或其他小型演绎数据库程序等。

五、 实验方法和步骤步骤一 针对TSP 问题,确定编码。

可采用十进制编码法,对城市进行编号,每个城市分别用1到n 之间不同的整数表示,n 个整数的一个排列就代表了旅行商问题。

步骤二 针对TSP 问题,适应度函数可定义为:其中d (ci ,ci+1)表示相邻城市之间的距离。

步骤三 针对TSP 问题,确定交叉规则。

对于采用整数编码表示的染色体,可以有以下交叉规则:(1)常规交叉法 ∑=+=n i i i c c d s f 11),(1)(设有父代1和父代2,交配后产生子代1和子代2。

随机选取一个交配位,子代1交配位之前的基因选自父代1交配位之前的基因,交配位之后的基因,从父代2中按顺序选取那些没有出现过的基因。

子代2也进行类似的处理。

交叉位(黑色所示为交叉位)父代1: 1 2 3 4 5 6 7 8父代2: 5 2 1 7 3 8 6 4子代1: 1 2 3 4 5 7 8 6子代2: 5 2 1 7 3 4 6 8步骤四确定变异规则,以下三种变异规则可任选一种。

(1)基于位置的变异:该方法随机地产生两个变异位,然后将第二个变异位上的基因移动到第一个变异位之前。

2023年基于遗传算法求解TSP问题实验报告

2023年基于遗传算法求解TSP问题实验报告

基于遗传算法求解TSP问题班级, 学号, 姓名摘要: 巡回旅行商问题(TSP)是一种组合优化方面旳问题, 从理论上讲, 使用穷举法不仅可以求解TSP问题, 并且还可以得到最优解。

不过, 运用穷举法所花费旳时间巨大旳, 当问题旳规模很大时, 穷举法旳执行效率较低, 不能满足及时旳需要。

遗传算法是计算机科学人工智能领域中用于处理最优化旳一种搜索启发式算法, 是进化算法旳一种。

该算法通过模拟生物学交叉、变异等方式, 是目前向最优解旳方向进化, 因此使用于TSP问题旳求解。

关键词: 人工智能;TSP问题;遗传算法本组组员: 林志青, 韩会雯, 赵昊罡本人分工:掌握遗传算法旳基本原理, 编写遗传算法中部分匹配交叉、循环交叉和循序交叉旳详细实现过程。

1 引言旅行商问题, 即TSP问题, 是一种最优解旳求解问题。

假设有n个都市, 并且每个都市之间旳距离已知, 则怎样只走一遍并获得最短途径为该问题旳详细解释。

对于TSP问题旳处理, 有穷举法、分支限界法等求解方式, 该文章重要简介遗传算法求解过程。

遗传算法简称GA, 在本质上是一种求解问题旳高效并行全局搜索措施。

遗传算法从任意一种初始化旳群体出发, 通过随机选择、交叉和变异等遗传操作, 使群体一代一代旳进化到搜索空间中越来越好旳区域, 直至抵达最优解。

在遗传算法中, 交叉操作为重要操作之一, 包括部分匹配交叉、循环交叉和次序交叉等。

2 算法原理与系统设计执行遗传算法, 根据需要设定对应旳交叉因子、变异因子和迭代次数, 并选择对应旳交叉算法,当程序图形显示并运算时会得到目前旳最优解, 判断与否获得最终旳最优解, 若已得到所需成果, 则停止运行, 否则继续执行。

详细流程图如下所示:部分匹配交叉(PMX): 先随机生成两个交叉点, 定义这两点间旳区域为匹配区域, 并互换两个父代旳匹配区域。

如下图所示:父代A: 872 | 130 | 9546父代B: 983 | 567 | 1420互换后变为:temp A: 872 | 567 | 9546temp B: 983 | 130 | 1420对于 temp A.tempB中匹配区域以外出现旳数码反复, 要根据匹配区域内旳位置逐一进行替代。

TSP、MTSP问题遗传算法详细解读及python实现

TSP、MTSP问题遗传算法详细解读及python实现

TSP、MTSP问题遗传算法详细解读及python实现写在前⾯遗传算法是⼀种求解NPC问题的启发式算法,属于仿⽣进化算法族的⼀员。

仿⽣进化算法是受⽣物⾏为启发⽽发明的智能优化算法,往往是⼈们发现某种⽣物的个体虽然⾏为较为简单,但⽣物集群通过某种原理却能表现出智能⾏为。

于是不同的⼈研究不同的⽣物⾏为原理,受到启发⽽发明出新的仿⽣进化算法。

⽐如免疫优化算法,蚁群算法,模拟退⽕算法等,这些算法以后也会简单介绍。

本⽂的主题是遗传算法,该算法也是受到⽣物⾏为启发。

物竞天择,适者⽣存,优胜劣汰,是该优化算法的核⼼思想。

笔者在业务中需要⽤到遗传算法求解TSP问题,但是⽹上能查找到的资料对遗传算法的讲解不够通俗易懂,往往上来就是遗传变异交叉,对于我这样的初学者来说有点不知所云,于是不得不直接看源码,⼀⾏⼀⾏地理解代码的意思,才弄懂了原理。

这种⽅法对于初学者和编程基础薄弱者颇为困难,⽽且费时费⼒,苦不堪⾔。

同时,由于读者可能熟练掌握的是不同的语⾔,因此若代码是某⼀种语⾔编写的,那么掌握其他语⾔的读者很可能难以吸收,浪费了资源。

此外,⽹上关于TSP问题的资料很多,但是关于MTSP问题的资料却凤⽑麟⾓。

因此有了创作本⽂的意图,旨在⽤最通俗详尽的语⾔深⼊浅出地解释遗传算法解TSP、MTSP问题的原理及应⽤遗传算法解TSP问题原理⼀、TSP问题旅⾏商问题,即TSP问题(Traveling Salesman Problem)⼜译为旅⾏推销员问题、货郎担问题,是数学领域中著名问题之⼀。

假设有⼀个旅⾏商⼈要拜访n个城市,他必须选择所要⾛的路径,路径的限制是每个城市只能拜访⼀次,⽽且最后要回到原来出发的城市。

路径的选择⽬标是要求得的路径路程为所有路径之中的最⼩值。

想要求解出TSP问题的最优解,⽬前唯⼀的⽅法是穷举出所有的路径。

然⽽,路径的数量级是n!,也就是⽬标点数量的阶乘。

当n为14时,n!已经⼤于800亿。

当n更⼤,为30,40 时,更是天⽂数字,即使计算机⼀秒钟计算⼀亿次,其求解时间也远⼤于我们的寿命。

遗传算法解决旅行商问题(TSP)

遗传算法解决旅行商问题(TSP)

遗传算法解决旅⾏商问题(TSP)这次的⽂章是以⼀份报告的形式贴上来,代码只是简单实现,难免有漏洞,⽐如循环输⼊的控制条件,说是要求输⼊1,只要输⼊⾮0就⾏。

希望会帮到以后的同学(*^-^*)⼀、问题描述旅⾏商问题(Traveling-Salesman Problem,TSP)。

设有n个互相可直达的城市,某推销商准备从其中的A城出发,周游各城市⼀遍,最后⼜回到A城。

要求为该旅⾏商规划⼀条最短的旅⾏路线。

⼆、⽬的为了解决旅⾏商问题,⽤了遗传算法,模拟染⾊体的遗传过程,进⾏求解。

为了直观的更有⽐较性的观察到程序的运⾏效果,我这⾥程序⾥给定了10个城市的坐标,并计算出其任意两个的欧⽒距离,10个点的位置排布见图1。

程序的理想最优距离为20.485281,即绕三⾓形⼀圈,⽽且路程起点不固定,因为只要满⾜点围着三⾓形⼀圈即为最短距离,最优解。

所以问题转换为,求图中10 个点的不重复点的闭环序列的距离最⼩值。

图 1三、原理1、内部变量介绍程序总体围绕了遗传算法的三个主要步骤:选择--复制,交叉,变异。

给定了10个种群,即10条染⾊体,每条染⾊体都是除⾸位外不重复的点组成,⾸尾相同保证路线是闭合的,所以⼀条染⾊体包含11个点。

种群由⼀个结构体group表⽰,内含城市的序列int city[11]、种群的适应度double fit、该种群适应度占总群体适应度的⽐例double p,和为了应⽤赌轮选择机制的积累概率 double jlleigailv。

程序还包括⼀个始终记录所有种群中的最优解的城市序列数组groupbest[11],记录最优解的适应度,即最⼤适应度的变量 double groupbestfit。

种群的最⼤繁衍代数设置为1000,⽤户能够输⼊繁衍代数,但必须在1000以内。

10个点的不同排列序列有10!种,即3628800中排列可能,其中各代之间可能产⽣重复,不同种群间也会出现重复,学⽣觉得1000左右应该能验证程序的性能了,就定为1000。

遗传算法求解TSP问题

遗传算法求解TSP问题

遗传算法求解TSP问题1、遗传算法前⼀篇遗传算法的基本内容在之前的博客已经应⽤过了之前遗传算法解决的是函数优化问题,即求解最⼤值或最⼩值问题;此次要解决的是组合优化问题中的TSP问题,即旅⾏商问题。

这边先介绍⼀下TSP问题TSP问题(Traveling Salesman Problem),即旅⾏商问题,⼜译为旅⾏推销员问题、货郎担问题,是数学领域中著名问题之⼀。

假设有⼀个旅⾏商⼈要拜访n个城市,他必须选择所要⾛的路径,路径的限制是每个城市只能拜访⼀次,⽽且最后要回到原来出发的城市。

路径的选择⽬标是要求得的路径路程为所有路径之中的最⼩值。

简单地说,TSP问题就是要找到图中的最短哈密尔顿回路,即全局最短路径。

然后遗传算法可以模仿⽣物进化,然后可以找到⼀个近似最优解,但其不⼀定是全局最优解。

2、实验原理1)产⽣初始种群;随机⽣成N个个体作为初始群体popm,随机选择⼀个种群;2)适应度函数;个体评价计算P(t)中各个个体的适应度,遗传算法在进化搜索中基本不利⽤外部信息,仅以适应度函数为依据,利⽤种群中每个个体的适应度值来进⾏搜索。

TSP的⽬标是路径总长度为最短3)选择运算;将使适应度较⼤(优良)个体有较⼤的存在机会,⽽适应度较⼩(低劣)的个体继续存在的机会也较⼩。

简单遗传算法采⽤赌轮选择机制4)交叉运算将交叉算⼦作⽤于群体;5)变异运算将变异算⼦作⽤于群体,并通过以上运算得到下⼀代群体P(t + 1);6)终⽌条件输出解。

3、代码实现1.city.m:随机⽣成N个城市的坐标并保存2.plot_route.m:实现连点画图3.染⾊体的路程代价函数 mylength.m4.适应度函数fit.m5.交叉操作函数 cross.m6.变异函数 Mutation.m7.main函数3、结果分析调整参数并分析运⾏结果(1)对于city_25.mat⽂件中的城市序列,参数ITER=2000,m=2,Pc=0.8,Pm=0.05保持不变,调整种群个数M的值,观察其结果变化:M=50M=100M=500由运⾏结果可知当M=100时得到TSP的最短路径长度均⼩于M=50和M=500运⾏得出的最短路径长度。

遗传算法在优化问题中的应用案例分析

遗传算法在优化问题中的应用案例分析

遗传算法在优化问题中的应用案例分析引言:遗传算法,是一种模拟生物进化过程的优化算法,已被广泛应用于各类优化问题中。

通过模拟物种的自然选择、遗传交叉和变异等过程,遗传算法能够寻找到问题的最优解,特别适用于复杂问题和无法使用传统算法求解的问题。

本文将通过介绍两个应用案例,详细阐述遗传算法在优化问题中的应用。

案例一:旅行商问题旅行商问题(Traveling Salesman Problem,TSP)是一个经典的优化问题,其目标是寻找一条路线,使得旅行商能够只访问一次每个城市,并且最后回到起点的路径总长度最短。

在实际应用中,TSP可以应用于旅游规划、电路板布线等领域。

遗传算法在解决TSP问题中,可以通过建立一个染色体表示城市的访问顺序,以及定义适应度函数评估路径的优劣程度。

染色体的交叉和变异操作模拟了城市间的信息交流和突变情况,以此不断优化路径。

通过多代进化,遗传算法能够找到问题的优化解。

以TSP问题为例,研究表明遗传算法在寻找较短路径上具有较好的性能,能够找到接近全局最优解。

案例二:机器学习中的参数优化机器学习算法中存在大量超参数(Hyperparameters),如学习率、网络拓扑结构等,这些超参数的选择直接影响算法的性能。

超参数的优化是一个非常具有挑战性的问题,传统的网格搜索方法因其组合爆炸的问题而效率低下。

遗传算法通过自适应搜索和进化过程,能够高效地找到最优或接近最优的超参数组合。

以神经网络为例,遗传算法能够通过调整网络的结构(如隐藏层数量和每层的神经元个数)、学习率、优化器等超参数,来优化网络的性能。

通过在每一代中评估网络在验证集上的性能,遗传算法根据适应度函数的评估结果,对染色体(超参数组合)进行选择、交叉和变异操作,以实现超参数的优化。

实验结果表明,遗传算法在优化神经网络超参数时能够显著提升模型的性能。

结论:遗传算法在优化问题中的应用已经得到广泛的研究和应用,尤其在复杂问题和传统算法无法求解的问题上表现出较好的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六:遗传算法求解TSP问题实验一、实验目的熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。

用遗传算法对TSP问题进行了求解,熟悉遗传算法地算法流程,证明遗传算法在求解TSP问题时具有可行性。

二、实验内容参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。

对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。

1. 最短路径问题所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。

在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。

遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。

假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。

这就是旅行商问题。

旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。

由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。

假设每个城市和其他任一城市之间都以欧氏距离直接相连。

也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。

2. 遗传算法遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。

其假设常描述为二进制位串,位串的含义依赖于具体应用。

搜索合适的假设从若干初始假设的群体集合开始。

当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。

每一步,根据给定的适应度评估当前群体的假设,而后使用概率方法选出适应度最高的假设作为产生下一代的种子。

下面介绍几个遗传算法的几个基本概念:(1)染色体(Chromosome):在使用遗传算法时,需要把问题的解编成一个适合的码子。

这种具有固定结构的符号串既是染色体,符号串的每一位代表一个基因。

符号串的总位数成为染色体的长度,一个染色体就代表问题的一个解,每个染色体也被称为一个个体。

(2)群体(Population):每代所产生的染色体总数成为群体,一个群体包含了该问题在这一代的一些解的集合。

(3)适应度(Fitness):对群体中每个染色体进行编码后,每个个体对应一个具体问题的解,而每个解对应于一个函数值。

该函数值即适应函数,就是衡量染色体对环境适应度的指标,也是反映实际问题的目标函数在前一代群体的基础上产生新一代群体的工作成为遗传操作,基本的遗传操作有:(1)选择(Select):按一定的概率从上代群体中选择M对个体作为双亲,直接拷贝到下一代,染色体不发生变化。

(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。

用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。

如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。

遗传算法原型:GA(Fitness,Fitness_threshold,p,r,m)Fitness:适应度评分函数,为给定假设赋予一个评估分数Fitness_threshold:指定终止判据的阈值p:群体中包含的假设数量r:每一步中通过交叉取代群体成员的比例m:变异率初始化群体:P←随机产生的p个假设评估:对于P中的每一个h,计算Fitness(h)当[maxFitness(h)]<Fitness_threshold,做产生新的一代Ps:(1)选择:用概率方法选择P的(1-r)p个成员加入Ps.从P中选择假设hi的概率用下面公式计算:(2)交叉:根据上面给出的,从P中按概率选择r(p/2)对假设.对于每对假设<h1,h2>,应用交叉算子产生两个后代.把所有的后代加入Ps(3)变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反(4)更新:P←Ps(5)评估:对于P中的每个h计算Fitness(h)从P中返回适应度最高的假设3. TSP问题的遗传算法设计与实现对于n个城市的问题,每个个体即每个解的长度为n,用s行, t列的pop矩阵,表示初始群体,s表示初始群体的个数,t为n+1,矩阵的每一行的前n个元素表示城市编码,最后一个元素表示这一路径的长度。

城市的位置可以手动输入,使用一个N×N矩阵D存储,D(i,j)代表城市i和城市j之间的距离。

D(i,j)=sqrt((Xi-Xj).^2+(Yi-Yj).^2)。

在TSP的求解中,可以直接用距离总和作为适应度函数。

个体的路径长度越小,所得个体优越,距离的总和越大,适应度越小,进而探讨求解结果是否最优。

选择就是从群体中选择优胜个体、淘汰劣质个体的操作,它是建立在群体中个体适应度评估基础上。

这里采用方法是最优保存方法。

本实例中交叉采用部分匹配交叉策略,先随机选取两个交叉点,然后将两交叉点中间的基因段互换,将互换的基因段以外的部分中与互换后基因段中元素冲突的用另一父代的相应位置代替,直到没有冲突。

变异操作是以变异概率Pm对群体中个体串某些基因位上的基因值作变动,若变异后子代的适应度值更加优异,则保留子代染色体,否则,仍保留父代染色体。

这有助于增加种群的多样性,避免早熟收敛(非全局最优)。

判断结束准则是固定指定了迭代的次数当算法达到迭代次数时,算法结束,输出当前的最优解。

在根据适配值计算并选择的时候,记录下来的当前最优值,在变异后加入跟新的群体,保证新的迭代循环中TSP解越来越好(不会变差)。

在选择的一种操作是拿最优的K个替换最差的K个个体,本例是按适配值选择,并使群体数目变少,当每次变异操作后,产生随机路径补充群体是群体数目不变,再次循环,一定程度上防止因初始群体的选择问题而陷入局部最优。

4. TSP问题的遗传算法的具体步骤解最短路径的遗传算法如下:Generate[p(n)];表示程序开始时要首先产生一个群体,群体个数为nEvaluate[p(h)];表示计算每个个体适应度,h是种群中的一个个体Repeat roof Generations times;重复下面的操作,直到满足条件为止Select p(h) from p(n-1);表示从前一代群体中选择一对双亲,用于交叉、变异操作,P(n)代表第n代群体Crossover and mutation p(n);进行交叉和变异操作Learning[p(n)];自学习过程Evaluate[p(h)];计算新生成的种群中每个个体的适应度End;具体流程图如下所示:流程图5.遗传算法求解不同规模的TSP问题的算法性能(1)遗传算法执行方式说明:●适应度值计算方法:当前路线的路径长度●个体选择概率分配方法:适应度比例方法●选择个体方法:轮盘赌选择●交叉类型:PMX交叉●变异类型: 两点互换变异(2)实验模拟结果:图1-1(3)分析由图1-1可知,遗传算法执行时间随着TSP问题规模的增大而增大,并且大致为线性增长。

五、不同参数下的计算结果对比(1)种群规模对算法结果的影响实验次数:10最大迭代步数:100交叉概率:0.85变异概率:0.15表1-1如表1-1所示,显然最短路径为25.1652m,最优路径为1-0-9-1-3-6-7-5-8-4-2或3-1-0-9-2-4-8-5-7-6,注意到这是一圈,顺时针或者逆时针都可以。

当种群规模为10,20时,并没有找到最优解。

(2)交叉概率对算法结果的影响 实验次数:15 种群规模:25 最大迭代步数:100 变异概率:0.15 实验结果:表1-2(注:红色表示非最优解)在该情况下,交叉概率过低将使搜索陷入迟钝状态,得不到最优解。

(3)变异概率对算法结果的影响实验次数:10种群规模:25最大迭代步数:100交叉概率:0.85实验结果:表1-3又表1-3可知,当变异概率过大或过低都将导致无法得到最优解。

注:(2)(3)的实验数据与(1)的实验数据不同,详见附录。

六、不同变异策略和个体选择概率分配策略对算法结果的影响(1)两点互换变异与插入变异的比较:●试验次数(CASNUM):10●城市数(POINTCNT):10●种群规模(POPSIZE):100●最大迭代步数(GENERATIONS):100●交叉概率(PC):0.85●变异概率(PM):0.15●选择个体方法:轮盘赌选择●交叉类型:PMX交叉●个体选择概率分配方法:适应度比例方法a.变异类型: 两点互换变异表1-4两点互换变异程序结果b.变异类型: 插入变异表1-5插入变异程序结果分析:两点互换变异20次模拟中,4次得到非最优解;而插入变异只有2次;插入变异的最好适应度平均值比两点互换变异小0.14755,最差适应度平均值和总的适应度平均值都比两点互换下,并且在Release下,运行时间前者比后者快218.3ms。

可见在该条件下(交叉概率,变异概率,种群规模等),插入变异比两点互换变异的算法效果要好。

(2)个体选择分配策略●试验次数(CASNUM):10●城市数(POINTCNT):10●种群规模(POPSIZE):100●最大迭代步数(GENERATIONS):100●交叉概率(PC):0.85●变异概率(PM):0.15●选择个体方法:轮盘赌选择●交叉类型:PMX交叉●变异类型: 两点互换变异a.个体选择概率分配方法:适应度比例方法同表1-4b.个体选择概率分配方法:非线性排序方式表1-6非线性排序方式程序结果分析:个体选择概率分配方式采用非线性排序方式时,程序运行结果非常糟糕。

相关文档
最新文档