2019-2020学年湖北省武汉市洪山区上期七年级期末数学试卷(图片版无答案)
湖北省武汉市洪山区2019-2020学年七年级上学期期末数学试题(word无答案)
湖北省武汉市洪山区2019-2020学年七年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 从2019年8月1日开始,温州市实行垃圾分类,以下是几种垃圾分类的图标,其中哪个图标是轴对称图形()A.B.C.D.(★) 2 . 下列各组线段,能构成三角形的是( )A.B.C.D.(★) 3 . 下列式子正确的是()A.B.C.D.(★) 4 . 若分式,则的值为()A.B.C.D.(★) 5 . 如图,在Rt△ABC中,∠BCA=90°,∠A=30°,CD⊥AB,垂足为点D,则AD与BD 之比为()A.2∶1B.3∶1C.4∶1D.5∶1(★) 6 . 已知点与点关于轴对称,那么的值为( )A.B.C.D.(★) 7 . 如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A.B.C.D.(★) 8 . 如图,在△ ABC中, AB的垂直平分线交 AB于点 D,交 BC于点 E,若 BC=7, AC=6,则△ ACE的周长为()A.8B.11C.13D.15(★★★★) 9 . 某种产品的原料提价,因而厂家决定对产品进行提价,现有种方案:①第一次提价,第二次提价;②第一次提价,第二次提价;③第一次、第二次提价均为.其中和是不相等的正数.下列说法正确的是( )A.方案①提价最多B.方案②提价最多C.方案③提价最多D.三种方案提价一样多(★★) 10 . 如图,已知为等腰三角形, ,将沿翻折至为的中点, 为的中点,线段交于点,若,则()A.B.C.D.二、填空题(★) 11 . 一个边形,从一个顶点出发的对角线有______条,这些对角线将边形分成了______个三角形,这个边形的内角和为__________.(★) 12 . 华为手机上使用的芯片, ,则用科学记数法表示为__________(★★) 13 . 已知,,,为正整数,则_________.(★) 14 . 若是完全平方公式,则__________.(★) 15 . 已知,其中为正整数,则__________.(★★) 16 . 如图,长方形的面积为,延长至点,延长至点,已知,则的面积为(用和的式子表示)__________.三、解答题(★) 17 . (1)计算:(2)分解因式:(★) 18 . 先化简,再求值:,其中(★★) 19 . 解方程:.(★★) 20 . 按要求作图(1)已知线段和直线,画出线段关于直线的对称图形;(2)如图,牧马人从地出发,先到草地边某一处牧马,再到河边饮马,然后回到处.请画出最短路径.(★★★★) 21 . 如图1,已知中内部的射线与的外角的平分线相交于点.若.(1)求证:平分;(2)如图2,点是射线上一点,垂直平分于点,于点,连接,若,求.(★★) 22 . 用分式方程解决问题:元旦假期有两个小组去攀登- -座高h米的山,第二组的攀登速度是第- -组的a倍.(1)若,两小组同时开始攀登,结果第二组比第一组早到达顶峰.求两个小组的攀登速度.(2)若第二组比第一组晚出发,结果两组同时到达顶峰,求第二组的攀登速度比第一组快多少? (用含的代数式表示)(★★★★) 23 . 已知在等边三角形的三边上,分别取点.(1)如图1,若,求证: ;(2)如图2,若于点于于,且,求的长;(3)如图3,若,求证: 为等边三角形.(★★★★★) 24 . 如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒.(1)求的值;(2)当为何值时,(3)如图2,在第一象限存在点,使,求.。
2019-2020学年湖北省武汉市武昌区七年级(上)期末数学试卷(含答案)
2019-2020学年湖北省武汉市武昌区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)四个有理数﹣,﹣1,0,1,其中最小的是()A.B.﹣1C.0D.12.(3分)一个数的相反数是它本身,则这个数为()A.0B.1C.﹣1D.±13.(3分)中国设计并制造的“神威•太湖之光”是世界上首台峰值运算速度超过每秒十亿亿次的超级计算机,其核心是完全由中国自主研发的40960块高性能处理器.40960用科学记数法表示为()A.0.4096×105B.4.096×104C.40.96×103D.4096×104.(3分)如图是由若干个相同的小正方体搭成的几何体,从上面看这个几何体,得到的平面图形是()A.B.C.D.5.(3分)下列说法正确的是()A.2πR的系数是2 B.2xy的次数是1次C.是多项式D.x2+x﹣2的常数项为26.(3分)如果x=3是方程3x+a=4+x的解,则a的值为()A.1B.﹣1C.2D.﹣27.(3分)下列运算中正确的是()A.﹣2a﹣2a=0 B.3a+4b=7ab C.2a3+3a2=5a5D.3a2﹣2a2=a28.(3分)我国古代有一问题:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果设快马x天可追上慢马,下面所列方程中正确的是()A.240x=150(x+12)B.150x=240(x+12)C.240x=150(x﹣12)D.150x=240(x﹣12)9.(3分)有理数m,n在数轴上的位置如图所示,化简|m﹣n|+|m+n|的结果为()A.2n B.﹣2n C.2m D.﹣2m10.(3分)如图,D、E顺次为线段AB上的两点,AB=19,BE﹣DE=7,C为AD的中点,则AE﹣AC的值为()A.5B.6C.7D.8二、填空题(本题共6小题,每小题3分,共18分)11.(3分)比﹣3℃低6℃的温度是℃.12.(3分)计算:18°36′=°.13.(3分)如果a n+1b n与﹣3a2m b3是同类项,则n m的值为.14.(3分)若一个角的补角比它的余角的还多55°,则这个角为°.15.(3分)点A、B、C在直线l上,AB=2BC,M、N分别为线段AB、BC的三等分点,BM=AB,BN=BC,则=.16.(3分)如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是C1,最小正方形的周长是C2,则=.三、解答题(共8小题,共72分)17.(8分)计算:(1)6﹣(﹣2)+(﹣3)﹣5 (2)﹣(﹣2)2﹣[2+0.4×(﹣)]÷()218.(8分)解方程:(1)3x+7=32﹣2x(2).19.(8分)先化简,再求值:2(a3﹣2b2)﹣(a﹣2b)﹣(a﹣3b2+2a3),其中a=﹣3,b=﹣2.20.(8分)某校七年级(1)(2)(3)(4)四个班的学生在植树节这天共植树(x+5)棵.其中(1)班植树x 棵,(2)班植树的棵数比(1)班的2倍少40棵,(3)班植树的棵数比(2)班的一半多30棵.(1)求(1)(2)(3)班共植树多少棵?(用含x的式子表示)(2)若x=40,求(4)班植树多少棵?21.(8分)如图,点O在直线AB上,∠BOD与∠COD互补,∠BOC=3∠EOC.(1)若∠AOD=24°,则∠DOE的度数为.(2)若∠AOD+∠BOE=110°,求∠AOD的度数.22.(10分)公园门票价格规定如表:购票张数1~50张50~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?23.(10分)已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧.(1)若AB=18,DE=8,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式=,则=.24.(12分)已知∠AOB=120°,∠COD=40°,OM平分∠AOC,ON平分∠BOD(图中的角均大于0°且小于180°).(1)如图1,求∠MON的度数;(2)若OD与OB重合,OC从图2中的位置出发绕点O逆时针以每秒10°的速度旋转,同时OD从OB的位置出发绕点O顺时针以每秒5°的速度旋转,旋转时间为t秒.①当8<t<24时,试确定∠BOM与∠AON的数量关系;②当0<t<26且t≠时,若|∠MON﹣∠COD|=∠AOB,则t=.2019-2020学年湖北省武汉市武昌区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【解答】解:∵﹣1<﹣<0<1,∴四个有理数﹣,﹣1,0,1,其中最小的是﹣1.故选:B.2.【解答】解:一个数的相反数是它本身,则这个数为0.故选:A.3.【解答】解:将40960这个数用科学记数法表示为4.096×104.故选:B.4.【解答】解:从上面看的平面图形是:有3列,从左到右正方形的个数分别为:2、1、1,故选:C.5.【解答】解:A、2πR的系数是2π,故原题说法错误;B、2xy的次数是2次,故原题说法错误;C、是多项式,故原题说法正确;D、x2+x﹣2的常数项为﹣2,故原题说法错误;故选:C.6.【解答】解:将x=3代入3x+a=4+x,∴9+a=7,∴a=﹣2,故选:D.7.【解答】解:(A)原式=﹣4a,故A错误,(B)3a与4b不是同类项,故B错误,(C)2a3与3a2不是同类型,故C错误,故选:D.8.【解答】解:设快马x天可追上慢马,则慢马跑了(x+12)天,依题意,得:240x=150(x+12).故选:A.9.【解答】解:根据题意得:m<0<n,且|m|>|n|,∴m﹣n<0,m+n<0,则原式=n﹣m﹣m﹣n=﹣2m,故选:D.10.【解答】解:∵AB=19,设AE=m,∴BE=AB﹣AE=19﹣m,∵BE﹣DE=7,∴19﹣m﹣DE=7,∴DE=12﹣m,∴AD=AB﹣BE﹣DE=19﹣(19﹣m)﹣(12﹣m)=19﹣19+m﹣12+m=2m﹣12,∵C为AD中点,∴AC=AD=×(2m﹣12)=m﹣6.∴AE﹣AC=6,故选:B.二、填空题(本题共6小题,每小题3分,共18分)11.【解答】解:根据题意列得:﹣3﹣6=﹣9(℃),则比﹣3℃低6℃的温度是﹣9℃.故答案为:﹣912.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.13.【解答】解:∵a n+1b n与﹣3a2m b3是同类项,∴2m=n+1,n=3,解答m=2,n=3,∴n m=32=9.故答案为:914.【解答】解:设这个角为x,则补角为180°﹣x,余角为90°﹣x,由题意得:180°﹣x=(90°﹣x)+55°,解得:x=20°.故答案为:2015.【解答】解:如图1,∵AB=2BC,∴BC=AB,∵BM=AB,BN=BC=AB,∴MN=BM﹣BN=AB,∴==;如图2,∵AB=2BC,∴BC=AB,∵BM=AB,BN=BC=AB,∴MN=BM+BN=AB+AB=AB,∴==1,综上所述,=或1,故答案为:或1.16.【解答】解:设最小的正方形的边长为a,正方形A的边长为x.则正方形B的边长为x+a,正方形C的边长为2x+3a,正方形E的边长为x﹣a,正方形D的边长为x+(x﹣a)=2x﹣a,正方形F的边长为x+2a,正方形G的边长为3x﹣2a,正方形H的边长为(3x﹣2a)+(x﹣a)﹣[a+(x+2a)]=3x﹣6a,正方形K的边长为(3x﹣2a)+(3x﹣6a)=6x﹣8a,因为最大的正方形的边长相等,所以6x+3a=6x﹣8a+3x﹣2a+2x﹣a,所以5x=14a,即x=a所以C1=9x﹣14a=a,C2=4a,所以==,故答案为.三、解答题(共8小题,共72分)17.【解答】解:(1)原式=6+2﹣3﹣5=0;(2)原式=﹣4﹣(2﹣1)×4=﹣4﹣4=﹣8.18.【解答】解:(1)方程移项合并得:5x=25,解得:x=5;(2)去分母得:7﹣14y=9y+3﹣63,移项合并得:23y=67,解得:y=.19.【解答】解:原式=2a3﹣4b2﹣a+2b﹣a+3b2﹣2a3=﹣b2+2b﹣2a,当a=﹣3,b=﹣2时,原式=﹣4﹣4+6=﹣2.20.【解答】解:(1)x+2x﹣40+(2x﹣40)+30=x+2x﹣40+x﹣20+30=(4x﹣30)棵.故(1)(2)(3)班共植树(4x﹣30)棵;(2)(x+5)﹣(4x﹣30)=x+5﹣4x+30=(x+35),当x=40时,原式=20+35=55.故(4)班植树55棵.21.【解答】解:(1)∠BOD与∠COD互补,∠BOD+∠AOD=180°,∴∠AOD=∠COD=24°,∴∠BOC=180°﹣∠AOD﹣∠COD=180°﹣24°﹣24°=132°,∵∠BOC=3∠EOC.∴∠EOC=132°÷3=44°,∴∠DOE=∠COD+∠COE=24°+44°=68°,故答案为:68°.(2)∵∠AOD+∠BOE=110°,∠AOD+∠BOE+∠DOE=180°,∴∠DOE=180°﹣110°=70°,∵∠BOC=3∠EOC,∠AOD=∠COD,∴∠DOE=70°=∠AOE+(110°﹣∠AOE),解得:∠AOE=30°,22.【解答】解:(1)设(1)班有x人,则15x+13(102﹣x)=1422解得:x=48答:(1)班有48人,(2)班有54人.(2)1422﹣102×11=300(元)答:两个班联合购票比分别购票要少300元.(3)七(1)班单独组织去游园,如果按实际人数购票,需花费:48×15=720(元),若购买51张票,需花费:51×13=663(元),∵663<720,∴七(1)班单独组织去游园,直接购买51张票更省钱.23.【解答】解:(1)AC=2BC,AB=18,DE=8,∴BC=6,AC=12,①如图,∵E为BC中点,∴CE=3,∴CD=5,∴AD=AB﹣DB=18﹣11=7;②如图,Ⅰ、当点E在点F的左侧,∵CE+EF=3,BC=6,∴点F是BC的中点,∴CF=BF=3,∴AF=AB﹣BF=18﹣3=15,∴AD=AF=5;Ⅱ、当点E在点F的右侧,∵AC=12,CE+EF=CF=3,∴AF=AC﹣CF=9,∴AF=3AD=9,∴AD=3.综上所述:AD的长为3或5;(2)∵AC=2BC,AB=2DE,满足关系式=,Ⅰ、当点E在点C右侧时,如图,设CE=x,DC=y,则DE=x+y,∴AB=2(x+y)AC=AB=(x+y)∴AD=AC﹣DC=x+yBC=AB=(x+y)∴BE=BC﹣CE=y﹣x∴AD+EC=x+y∵2(AD+EC)=3BE∴2(x+y)=3(y﹣x)解得,17x=4y,∴===.Ⅱ、当点E在点A左侧时,如图,设CE=x,DC=y,则DE=y﹣x,∴AB=2(y﹣x)AC=AB=(y﹣x)∴AD=DC﹣AC=x﹣yBC=AB=(y﹣x)∴BE=BC+CE=y+x∴AD+EC=x﹣y∵2(AD+EC)=3BE∴2(x﹣y)=3(y+x)解得,11x=8y,∴==.故答案为或.24.【解答】解:(1)∵∠AOB=120°,∠COD=40°,∴∠AOC=120°﹣∠BOC,∠BOD=40°﹣∠BOC,∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC=(120°﹣∠BOC),∠BON=∠BOD=(40°﹣∠BOC)∴∠MON=∠MOC+∠BOC+∠BON=60°+20°=80°;(2)①当8<t≤20时,如图1,则∠AOM=∠AOC=(10t﹣80°)=5t﹣40°,∠BON=∠BOD=5t=t,∴∠BOM=∠AOB+∠AOM=120°+5t﹣40°=5t+80°,∠AON=∠AOB+∠BON=120°+t,∴2∠AON﹣∠BOM=240°+5t﹣5t﹣80°=160°;当20<t<24时,如图2,则∠BOM=360°﹣(∠AOM+∠AOB)=360°﹣(5t﹣40°+120°)=280°﹣5t,∠AON=∠AOB+∠BON=120°+t,∴2∠AON+∠BOM=2(120°+t)+(280°﹣5t)=520°,综上,当8<t≤20时,2∠AON﹣∠BOM=160°;当20<t<24时,2∠AON+∠BOM=520°,②若∠COD=180°,则t=s,若∠MON=180°,则t=s,当0<t<时,如图3,∠MON=∠AOM+∠BON+∠AOB=∠AOC+∠BOD+∠AOB=(10t﹣80°)+×5t+120°=t+80°,∠COD=10t+40°+5t=15t+40°,∵|∠MON﹣∠COD|=∠AOB,∴|(t+80°)﹣(15t+40°)|=,∴t=,或t=(舍去),当时,如图4,∠MON=∠∠AOC+∠BOD+∠AOB=(10t﹣80°)+×5t+120°=t+80°,∠C0D=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t﹣120°=320°﹣15t,∵|∠MON﹣∠COD|=∠AOB,∴|(t+80°)﹣(320°﹣15t)|=,∴t=12,或t=(舍去),当时,如图5,∠MON=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t﹣120°=280°﹣t,∠C0D=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t﹣120°=320°﹣15t,∵|∠MON﹣∠COD|=∠AOB,∴|(﹣t+280°)﹣(320°﹣15t)|=,∴t=(舍去),或t=(舍去),综上,t=或12.故答案为或12.。
武汉市洪山区七年级上期末数学试卷及答案解析
第 1 页 共 15 页2020-2021学年武汉市洪山区七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是( )A .2B .﹣1C .﹣3D .﹣4 2.(3分)若12x 2a+b y 3与53x 6y a−b 的和是单项式,则a +b =( )A .﹣3B .0C .3D .63.(3分)将正方体展开需要剪开的棱数为( )A .5条B .6条C .7条D .8条 4.(3分)已知2x n +1y 3与13x 4y 3是同类项,则n 的值是( )A .2B .3C .4D .55.(3分)买一个足球需m 元,买一个篮球需n 元,则买4个足球和7个篮球共需( )元.A .11mnB .28mnC .4m +7nD .7m +4n6.(3分)下列说法错误的是( )A .若a =b ,则ac =bcB .若b =1,则ab =aC .若a c =b c ,则a =bD .若(a ﹣1)c =(b ﹣1)c ,则a =b7.(3分)下列说法正确的是( )A .过一点可以画两条直线B .平面上AB 两点间的距离是线段ABC .棱柱的每一条棱都相等D .若A ,B ,C 三点在同一条直线上,线段AC =BC ,则点C 是线段AB 的中点8.(3分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .x−82=x+123B .2x +8=3x ﹣12C .x−83=x+122D .x+82=x−1239.(3分)如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0、2、4、6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时针方向环绕在。
湖北省武汉市洪山区、江岸区2019-2020学年七年级上学期期末数学试卷 (含解析)
湖北省武汉市洪山区、江岸区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.一天早晨的温度是−7℃,中午的温度比早晨上升了11℃,那么中午的温度是()A. 11℃B. 18℃C. 4℃D. −4℃2.下列计算中,正确的是()A. 5a2b−4a2b=a2bB. 2b2+3b3=5b5C. 6a3−2a3=4D. a+b=ab3.下面的图形中是正方体的展开图的是().A. B. C. D.4.下列各式中,是3x2y的同类项的是()A. 3a2bB. −2xy2C. x2yD. 3xy5.设长方形的长为xcm,宽为ycm,则长方形的周长为()A. (x+y)cmB. (2x+y)cmC. 2(x+y)cmD. xycm6.下列说法错误的是()A. 若xa =ya,则x=y B. 若x2=y2,则−4x2=−4y2C. 若−14x=6,则x=−32D. 若6=−x,则x=−67.下列说法中,正确的是()A. 线段没有长度B. M,N两点间的距离就是指线段MNC. 直线没有端点D. 两条相同端点的射线连接在一起就是一条直线8.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A. x10−860=x8−560B. x10−860=x8+560C. x10+860=x8−560D. x10+8=x8+59.与数轴上的点建立一一对应关系的是()A. 全体有理数B. 全体整数C. 全体自然数D. 全体实数10.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A. 65°B. 70°C. 75°D. 80°二、填空题(本大题共6小题,共18.0分)11.90°−39°32′=______ .12.将20180000用科学记数法表示为______.13.如果一个角与它的余角之比为1:2,那么这个角为______ 度.14.关于x的方程3x5−2k+k=0是一元一次方程,则方程的解是______.15.已知a、b、c都是有理数,且满足|a|a +|b|b+|c|c=1,那么4+|abc|abc=______.16.若点M是线段AB的中点,N是线段AM的中点,若图中所有线段的和是20cm,则AN的长是______cm.三、计算题(本大题共1小题,共10.0分)17.一元一次方程的应用:某商场开展优惠促销活动,将甲种商品六折岀售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,请直接写出商场销售甲、乙两种商品各一件时是赢利还是亏损了?具体金额是多少?四、解答题(本大题共7小题,共62.0分)18.计算:(1)12−(−18)+(−7)−15;(2)−22+|5−8|+27÷(−3)×13.19.解下列方程:(1)5x−3=3x−9(2)x+13=1−2x+1420.先化简,再求值:3x2−[6xy+2(x2−y2)]−3(y2−2xy),其中x=−2,y=3.21.某工人安装一批机器,若每天安装4台,预计若干天完成,安装这批机器的2后,改用新方法安3装,工作效率提高到原来的1.5倍,因此比预计时间提前一天完工,问:这批机器有多少台?预计几天完成?22.如图,已知线段AB,a,b.(1)用尺规按下列要求作图;①延长线段AB到C,使BC=a;②延长线段BA到D,使AD=b;(2)在(1)的条件下,若AB=4cm,a=3cm,b=5cm,且点E为CD的中点,求线段AE的长度.23.如图,OM是∠AOB的平分线,射线OC在∠BOM内部,∠AOC=90°,ON是∠COB的平分线.(1)若∠COB=30°,求∠MON的度数;(2)若∠COB=n°,求∠MON的度数.24.在多项式3x+xy−20y2+5y−34x3−9中,a表示这个多项式的项数,b表示这个多项式中三次项的系数.在数轴上点A与点B所表示的数恰好可以用a与b分别表示.有一个动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)a=______,b=_______,线段AB=______个单位长度;(2)点P所表示数是___________(用含t的多项式表示);(3)求当t为多少时,线段PA的长度恰好是线段PB长度的三倍?-------- 答案与解析 --------1.答案:C解析:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.根据题意列出算式,计算即可得到结果.解:根据题意得:−7+11=4(℃),则中午的温度是4℃.故选C.2.答案:A解析:本题主要考查的是合并同类项,掌握同类项的定义和合并同类项法则是解题的关键.依据合并同类项法则判断即可.解:A、5a2b−4a2b=a2b,正确;B、不是同类项不能合并,故B错误;C、6a3−2a3=4a3,故C错误;D、不是同类项不能合并,故D错误.故选:A.3.答案:B解析:本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.根据正方体展开图的11种形式对各小题分析判断即可得解.解:A、D中有4个正方形是“田字形”,不是正方体展开图;C、少了一个面,不是正方体展开图;不符合正方体展开图;B、属于正方体展开图的1−4−1型,符合正方体展开图;故选B.4.答案:C解析:解:A、字母不同不是同类项,故A不符合题意;B、相同字母的指数不同不是同类项,故B不符合题意;C、3x2y的同类项的是x2y,D、相同字母的指数不同不是同类项,故D不符合题意;故选:C.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.答案:C解析:解:根据题意得:长方形的周长为:2(x+y),故选:C.根据“长方形的周长=2(长+宽)”,列出代数式,即可得到答案.本题考查列代数式,正确掌握长方形的周长公式是解题的关键.6.答案:C解析:解:A、两边都乘以a,故A正确;B、两边都乘以−4,故B正确;C、左边乘以−4,右边除以−4,故C错误;D、两边都除以−1,故D正确;故选:C.根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立,可得答案.本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立.7.答案:C解析:本题主要考查的是直线、射线、线段,两点间的距离的有关知识,由题意对给出的各个选项进行逐一分析即可.解:线段有长度,故A错误;M,N两点间的距离就是指线段MN的长度,故B错误;直线没有端点,故C正确;两条相同端点的射线连接在一起不是一条直线,故D错误.故选C.8.答案:C解析:解:设她家到游乐场的路程为xkm,根据题意得:x10+860=x8−560.故选:C.设她家到游乐场的路程为xkm,根据时间=路程÷速度结合“若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟”,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.答案:D解析:[分析]根据定义可知与数轴上的点建立一一对应关系的是全体实数,选出相应的选项即可.[详解]解:∵与数轴上的点建立一一对应关系的是全体实数故选D.[点评]本题考查了实数的定义与数轴,解决本题的关键是掌握数轴与实数关系是一一对应的.10.答案:A解析:解:∵OD平分∠AOC,∠AOC=50°,∴∠COD=∠AOD=12∠AOC=12×50°=25°,∴∠COE=∠DOE−∠COD=90°−25°=65°.故选A.首先由角平分线定义求得∠COD的度数,然后根据∠COE=∠DOE−∠COD即可求得∠COE的度数.本题考查了角平分线的性质,以及角度的计算,正确理解角平分线的定义是关键.11.答案:50°28′解析:解:90°−39°32′=50°28′.故答案为:50°28′.根据度、分、秒是60进制进行计算即可得解.本题考查了度、分、秒的换算,关键在于度分秒是60进制.12.答案:2.018×107解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:20180000=2.018×107,故答案为:2.018×107.13.答案:30解析:本题考查了余角和补角的应用,用了方程思想.设这个角为x°,根据题意得出2x=90−x,求出即可.解:设这个角为x°,则2x=90−x,解得:x=30,故答案为:30.14.答案:x=−23解析:本题考查一元一次方程的定义和一元一次方程的解法,解题的关键是正确理解一元一次方程的定义.据一元一次方程的定义得到k的值,再代入方程即可求出答案.解:∵3x5−2k+k=0是关于x的一元一次方程,∴5−2k=1,∴k=2,∴方程为3x+2=0,∴x=−2 3故答案为x=−23.15.答案:3解析:本题主要考查的是绝对值的性质,代数式求值,求得a、b、c中负数的个数是解题的关键.首先依据|a|a +|b|b+|c|c=1,可确定出a、b、c中负数的个数,然后可确定出|abc|abc的值,最后进行计算即可.解:∵|a|a +|b|b+|c|c=1,∴a、b、c中有1个负数,∴|abc|abc=−1,∴4+|abc|abc=4+(−1)=3.故答案为3.16.答案:2013解析:解:如图,∵点M是线段AB的中点,N是线段AM的中点,∴AN=NM=12AM=12BM=13BN=14AB,∴AM=BM=2AN,BN=3AN,AB=4AN,又∵图中所有线段的和是20cm,∴AN+MN+BM+AM+BN+AB=20,∴AN+AN+2AN+2AN+3AN+4AN=20,解得AN=2013cm故答案为:2013.依据点M是线段AB的中点,N是线段AM的中点,可得AN=NM=12AM=12BM=13BN=14AB,再根据图中所有线段的和是20cm,即可得到AN+MN+BM+AM+BN+AB=20,进而得出AN 的长.本题主要考查了两点间的距离,平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.17.答案:解:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(1400−x)元,根据题意得:0.6x+0.8(1400−x)=1000,解得:x=600,∴1400−x=800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据题意得:(1−25%)a=(1−40%)×600,(1+25%)b=(1−20%)×800,解得:a=480,b=512,∴1000−a−b=1000−480−512=8.答:商场在这次促销活动中盈利,盈利了8元.解析:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(1400−x)元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入1000−a−b中即可找出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.答案:解:(1)原式=12+18−7−15=30−22=8;=−4+3−3=−4.(2)原式=−4+3−9×13解析:本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算,即可得到结果.19.答案:解:(1)2x=−6,x=−3;(2)4(x+1)=12−3(2x+1)4x+4=12−6x−34x+6x=12−3−410x=5x=0.5解析:(1)移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.答案:解:3x2−[6xy+2(x2−y2)]−3(y2−2xy)=3x2−(6xy+2x2−2y2)−3y2+6xy=3x2−6xy−2x2+2y2−3y2+6xy=x2−y2,当x=−2,y=3时,原式=(−2)2−32=4−9=−5.解析:此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.21.答案:解:设预计x天完成,由题意得4x=4×23x+4×1.5(x−23x−1),解得x=9,4×9=36(台).答:这批机器有36台,预计9天完成.解析:本题主要考查了一元一次方程的应用,解题的关键是要读懂题目的意思并根据题目给出的条件找出合适的等量关系列出方程,再求解.可设预计x天完成,根据“等量关系:机器的台数是一定的”列出方程求解即可.22.答案:解:(1)如图,(2)∵AB=4cm,a=3cm,b=5cm,∴DC=4+3+5=12(cm),∵E为CD的中点,∴DE=6cm,∴AE=DE−AD=6−5=1(cm).解析:此题主要考查了两点之间距离,正确画出图形是解题关键.(1)直接利用圆规截取得出C点位置,在射线BA上截取线段AD,即可解答;(2)结合AB=4cm,a=3cm,b=5cm,且E为CD的中点,得出AE的长求出答案.23.答案:解:(1)∵∠AOC=90°,∠COB=30°,∴∠AOB=∠AOC+∠COB=90°+30°=120°,∵OM是∠AOB的平分线,ON是∠COB的平分线,∴∠MOB=12∠AOB,∠NOB=12∠COB,∴∠MON=∠MOB−∠NOB=60°−15°=45°;(2)当∠AOC=90°,∠COB=n°时,∴∠MON=∠MOB−∠NOB=12(90+n)°−12n°=45°.解析:本题主要考查角的计算和角平分线的定义等知识点的理解和掌握.(1)根据∠AOC=90°,∠COB=30°,可得∠AOB=∠AOC+∠COB=90°+30°=120°,再利用OM 是∠AOB的平分线,ON是∠COB的平分线,即可求得答案;(2)根据∠MON=∠MOB−∠NOB,又∠AOC=90°,∠COB=n°,由(1)可得出答案.24.答案:解:(1)6;−34;40;(2)6−2t;(3)线段PA的长度恰好是线段PB长度的三倍时,①当点P在A和B之间,由题意得,2t=3[6−2t−(−34)],解得:t=15.②当点P在A和B之间外,由题意得,2t=3[−6+2t+(−34)],解得:t=30.答:当t=15或30时,线段PA的长度恰好是线段PB长度的三倍.解析:本题考查多项式的项数,次数,数轴上两点间的距离.(1)根据多项式的项数和次数的定义即可得到答案;(2)根据路程=速度×时间,向左运动即为减法就可以得到答案;(3)根据数轴上两点之间的距离等于较大的数减去较小的数,即可列出方程,即可求出t的值.解:(1)这个多项式有6项,故a=6,三次项的系数为−34,故b=−34,点A和点B的距离为6−(−34)=40,故答案为6;−34;40;(2)点P运动的路程为2t,则点P表示的数为6−2t,故答案为6−2t;(3)见答案.。
武汉市2019-2020学年七年级上学期期末数学试题(I)卷
武汉市2019-2020学年七年级上学期期末数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列各等式的变形中,等式的性质运用正确的是()B.由,得A.由,得C.由,得D.由,得2 . 六边形一共有对角线的条数为()A.6B.7C.8D.93 . 下列说法正确的是()A.如果,那么B.和的值相等C.与是同类项D.和互为相反数4 . 2019年河北省高考人数为55.96万人,则55.96万人用科学记数法表示为()人A.B.C.D.5 . 如图,中,,,BD、CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,分别交AB、AC于E、F,则的周长为()A.12B.13C.14D.156 . 某班分两组志愿者去社区服务,第一组20人,第二组26人.现第一组发现人手不够,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A.20=2(26﹣x)B.20+x=2×26C.2(20+x)=26﹣x D.20+x=2(26﹣x)7 . 的相反数是()A.B.C.-5D.58 . -的倒数是()A.B.C.D.-9 . 下列说法正确的是()A.调查某班学生的身高情况,适采用抽样训查B.对端午节期间市场上粽子质量情况的调查适合采用全面调查C.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D.“若互为相反数,则”,这一事件是必然事件10 . 下面几何体的截面图可能是圆的是()A.正方体B.棱柱C.圆锥D.三棱锥二、填空题11 . 单项式的系数是_____,多项式的次数是_____.12 . 若|-x|=4,则x=____;若|x-3|=0,则x=____;若|x-3|=1,则x=____.13 . 若三个互不相等的有理数既可表示为1,a+b,a的形式,又可表示为0,,b的形式,则12a2﹣5ab=_____.14 . 平方等于81的数是__________;15 . 计算:=.16 . 如图,直线L:y=x+1交y轴于点A1,在x轴正方向上取点B1,使OB1=OA1;过点B1作A2B1⊥x轴,交L于点A2,在x轴正方向上取点B2,使B1B2=B1A2;过点B2作A3B2⊥x轴,交L于点A3,在x轴正方向上取点B3,使B2B3=B2A3;…记△OA1B1面积为S1,△B1A2B2面积为S2,△B2A3B3面积为S3,…则S2019等于_____.17 . 观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.18 . 如果是方程的解,那么的值是_____.19 . 若化简(x+1)(2x+m)的结果中x的一次项系数是-5,则数m的值为_____.三、解答题20 . 滴滴公布了新的滴滴快车计价规则,车费由“总里程费+总时长费”两部分构成,不同时段收费标准不同,具体收费标准如下表,如果车费不足起步价,则按起步价收费.时间段里程费(元/千米)时长费(元/分钟)起步价(元)06:00-10:00 1.800.8014.0010:00-17:00 1.450.4013.0017:00-21:00 1.500.8014.0021:00-6:000.800.8014.00(1)小明早上7:10乘坐滴滴快车上学,行车里程6千米,行车时间10分钟,则应付车费多少元?(2)小云17:10放学回家,行车里程2千米,行车时间12分钟,则应付车费多少元?(3)下晚自习后小明乘坐滴滴快车回家,20:45在学校上车,由于堵车,平均速度是千米/小时,15分钟后走另外一条路回家,平均速度是千米/小时,10分钟后到家,则他应付车费多少元?21 . 如图所示是由若干个相同的小立方块堆成的几何体从上面看到的形状图,小正方形中的数字表示在该位置上小立方块的个数,请你画出从正面、左面看到的这个几何体的形状图.22 . 甲乙两队进行拔河比赛,标志物先向甲队方向移动0.5m,后向乙队方向移动了0.8m,相持一会后又向乙队方向移动0.5m,随后向甲队方向移动了1.5m在一片欢呼声中,标志物再向甲队方向移动1.2m.若规定只要标志物向某队方向移动2m,则该队即可获胜,那么现在甲队获胜了吗?用计算说明理由.23 . (1)计算:(2)计算:[(x+y)2-(x-y)2]÷(2xy)24 . 滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?25 . 开展阳光体育运动,掌握运动技能,增强身体素质.某校初二年级五月开展了周末一小时兴趣锻炼活动,项目包括:篮球技能、排球技能、足球技能、立定跳远、50米跑,每个同学只选一项参与.王老师为了解学生对各种项目的参与情况,随机调查了部分学生参与哪一类项目(被调查的学生没有不参与的),并将调查结果制成了如下的两个统计图(不完整)请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出足球项目在扇形统计图中所占圆心角的度数;(3)若该中学初二年级有名学生,请估计该校初二学生参与球类项目的人数.26 . 先化简再求值:(1)3(x2-2x-1)-4(3x-2)+2(x-1),其中x=﹣3;(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab,其中a=1,b=.27 . 列方程解应用题:2019年年底某高铁即将开通,以前小红回老家只能坐绿皮车,车速才60km/h,但某高铁开通之后,车速可以达到240km/h.这样就能早到4.5小时.请问提速后小红回老家需要多长时间?28 . 光在反射时,光束的路径可用图(1)来表示,叫做入射光线,叫做反射光线,从入射点引出的一条垂直于镜面的射线叫做法线,与的夹角叫入射角,与的夹角叫反射角.根据科学实验可得:.则图(1)中与的数量关系是:____________理由:___________;生活中我们可以运用“激光”和两块相交的平面镜进行测距.如图(2)当一束“激光”射入到平面镜上、被反射到平面镜上,又被平面镜反射后得到反射光线.(1)若反射光线沿着入射光线的方向反射回去,即,且,则______,______;(2)猜想:当______时,任何射到平面镜上的光线经过平面镜和的两次反射后,入射光线与反射光线总是平行的.请你根据所学过的知识及新知说明.。
2020-2021学年武汉市洪山区七年级上学期期末数学试卷(附解析)
2020-2021学年武汉市洪山区七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. a6+a6=2a12B. 2−2÷25×28=32ab2)⋅(−2a2b)3=a3b3C. a2⋅(−a)7⋅a11=−a20D. (−122.2020年11月10日8时12分,“奋斗者”号创造了10909米的中国载人深潜新纪录,标志着我国在大深度载人深潜领域达到世界领先水平.将10909用科学记数法表示为()A. 1.0909×105B. 109.09×102C. 0.10909×105D. 1.0909×1043.下列四个图中,是三棱柱的平面展开图的是()A. B. C. D.4.方程3x+1=m+4的解是x=2,则m值是()A. 2B. 5C. 3D. 15.若2a2m b4和−a6b n−2是同类项,则m、n的值是()A. m=3,n=6B. m=3,n=−6C. m=1,n=6 D. m=6,n=426.下列说法正确的是()A. 经过已知一点有且只有一条直线与已知直线平行B. 两个相等的角是对顶角C. 互补的两个角一定是邻补角D. 直线外一点与直线上各点连接的所有线段中,垂线段最短7.如图,李强和同事驾驶快艇执行巡逻任务,他们从岛屿A处向正南方向航行到B处时,向右转60°航行到C处,再向左转80°继续航行,此时快艇的航行方向为()A. 南偏东20°B. 南偏东80°C. 南偏西20°D. 南偏西80°8.王大爷有3.5亩地用来种植玉米和水稻,其中种植玉米用地x亩,种植水稻用地比玉米用地少25%.求种植玉米和水稻各用地多少亩?可列方程()A. x−25%x=3.5B. x+x+25%x=3.5C. x+25%x=3.5D. x+x−25%x=3.59.−2的绝对值是()D. −|−2|A. 2B. −2C. −1210.知∠AOB=28°,∠AOC=14°,OD为∠BOC的平分线,则∠BOD的度数为()A. 7°B. 14°C. 21°D. 7°或21°二、填空题(本大题共6小题,共18.0分)11.已知|a|=2,|b|=5,且|a−b|=b−a,则a b=______.12.如图,下列推理正确的是______.①∵直线AB,CD相交于点E(如图1),∴∠1=∠2;②∵∠ABD=∠EBC=90°(如图2),∴∠1=∠2;③∵OB平分∠AQC(如图3),∴∠1=∠2;④∴∠1=28.3°,∠2=28°3′(如图4),∴∠1=∠2.13.方程(b−3)b+2015=1的解是b=______ .14.根据图提供的信息,可知一个暖水瓶的价格是______元.15.如图,O是直线AB上的一点,OC是∠AOB的平分线,∠COD=36°24′,则∠BOD的度数是______。
人教版2019-2020学年湖北省武汉市七年级(上)期末数学试卷解析版
人教版2019-2020学年湖北省武汉市七年级(上)期末数学试卷班级姓名座号得分一、选择题(共10小题,每小题3分,共30分)1.(3分)四个有理数﹣3、﹣1、0、2,其中比﹣2小的有理数是()A.﹣3 B.﹣1 C.0 D.22.(3分)﹣5的绝对值为()A.﹣5 B.5 C.﹣D.3.(3分)改革开放40年来,我国贫困人口从1978年的7.7亿人减少到2017年的30460000人,30460000用科学记数法表示为()A.0.3046×108B.3.046×107C.3.46×107D.3046×1044.(3分)下列图形中可以作为一个正方体的展开图的是()A.B.C.D.5.(3分)单项式2a3b2c的次数是()A.2 B.3 C.5 D.66.(3分)若x=﹣2是关于x的方程2x+a=3的解,则a的值为()A.1 B.﹣1 C.7 D.﹣77.(3分)下列运算中正确的是()A.2a+3b=5ab B.a2b﹣ba2=0 C.a3+3a2=4a5D.3a2﹣2a2=18.(3分)长江上有A、B两个港口,一艘轮船从A到B顺水航行要用时2h,从B到A(航线相同)逆水航行要用时3.5h.已知水流的速度为15km/h,求轮船在静水中的航行速度是多少?若设轮船在静水中的航行速度为xkm/h,则可列方程为()A.(x﹣15)×3.5=(x+15)×2B.(x+15)×3.5=(x﹣15)×2C.=D.(x+15)×2+(x﹣15)×3.5=19.(3分)有理数a、b、c在数轴上对应的位置如图所示,且﹣b<a,则下列选项中一定成立的是()A.ac<0 B.|a|>|b| C.b>﹣a D.2b<c10.(3分)如图,点B、D在线段AC上,BD=AB=CD,E是AB的中点,F是CD的中点,EF=5,则AB的长为()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)2﹣(﹣6)=.12.(3分)36°45′=°.13.(3分)若单项式3x m﹣5y2与x3y2的和是单项式,则常数m的值是.14.(3分)若∠A与∠B互为补角,并且∠B的一半比∠A小30°,则∠B为°.15.(3分)已知点A、B、C在直线l上,AB=a,BC=b,AC=,则=.16.(3分)如图,下列各正方形中的四个数之间具有相同的规律,根据此规律,第n个正方形中,d=2564,则n的值为.三、解答题(共8题,共72分)17.(8分)计算:(1)(﹣3)+6+(﹣8)+4(2)(﹣1)7×2+(﹣3)2÷918.(8分)解方程:(1)8x﹣4=6x﹣8(2)﹣2=19.(8分)先化简,再求值:5(3x2y﹣xy2)﹣(xy2+3x2y),其中x=1,y=﹣1.20.(8分)甲地的海拔高度是h米,乙地的海拔高度比甲地海拔高度的3倍多20米,丙地的海拔高度比甲地海拔高度的2倍少30米(1)三地的海拔高度和一共是多少米?(2)乙地的海拔高度比丙地海拔高度高多少米?21.(8分)如图,点O在直线AB上,∠AOC与∠COD互补,OE平分∠AOC.(1)若∠BOC=40°,则∠DOE的度数为;(2)若∠DOE=48°,求∠BOD的度数.22.(10分)甲组的4名工人12月份完成的总工作量比这个月人均额定工作量的3倍少1件,乙组的6名工人12月份完成的总工作量比这个月人均额定工作量的5倍多7件.如果甲组工人这个月实际完成的人均工作量比乙组这个月实际完成的人均工作量少2件,那么这个月人均额定工作量是多少件?23.(10分)点C在线段AB上,BC=2AC.(1)如图1,P、Q两点同时从C、B出发,分别以1cm/s、2cm/s的速度沿直线AB向左运动①在P还未到达A点时,的值为;②当Q在P右侧时(点Q与C不重合),取PQ中点M,CQ的中点N,求的值;(2)若D是直线AB上一点,且|AD﹣BD|=CD,则的值为.24.(12分)已知∠AOB=120°(本题中的角均大于0°且小于180°)(1)如图1,在∠AOB内部作∠COD.若∠AOD+∠BOC=160°,求∠COD的度数;(2)如图2,在∠AOB内部作∠COD,OE在∠AOD内,OF在∠BOC内,且∠DOE=3∠AOE,∠COF =3∠BOF,∠EOF=∠COD,求∠EOF的度数;(3)射线OI从OA的位置出发绕点O顺时针以每秒6°的速度旋转,旋转时间为t秒(0<t<50且t≠30),射线OM平分∠AOI,射线ON平分∠BOI,射线OP平分∠MON.若∠MOI=3∠POI,则t=秒.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由题意可得:﹣3<﹣2<﹣1<0<2,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣5的绝对值为5,故选:B.【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:30460000=3.046×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【解答】解:A.不可以作为一个正方体的展开图,B.不可以作为一个正方体的展开图,C.可以作为一个正方体的展开图,D.不可以作为一个正方体的展开图,故选:C.【点评】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.5.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式2a3b2c的次数是:3+2+1=6.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.6.【分析】把x=﹣2代入方程得到关于a的方程,求得a的值即可.【解答】解:把x=﹣2代入方程得﹣4+a=3,解得:a=7.故选:C.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.7.【分析】根据同类项的定义和合并同类项的法则解答.【解答】解:A、2a与3b不是同类项,不能合并,故本选项错误.B、原式=0,故本选项正确.C、a3与3a2不是同类项,不能合并,故本选项错误.D、原式=a2,故本选项错误.故选:B.【点评】考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.8.【分析】设轮船在静水中的航行速度为xkm/h,则轮船顺水航行的速度为(x+15)km/h,轮船逆水航行的速度为(x﹣15)km/h,由路程=速度×时间结合A,B两个港口之间距离不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设轮船在静水中的航行速度为xkm/h,则轮船顺水航行的速度为(x+15)km/h,轮船逆水航行的速度为(x﹣15)km/h,依题意,得:2(x+15)=3.5(x﹣15).故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.【分析】根据两个数的正负以及加减乘除法法则,对每个选择作出判断,得正确结论.【解答】解:由图可知,a<b<c,且﹣b<a,∴ac>0,|a|<|b|,b>﹣a,2b不一定<c,故选:C.【点评】考查了数轴上点的表示的数的正负及实数的加减乘除法的符号法则.解决本题的关键是牢记实数的加减乘除法则.10.【分析】设BD=x,求出AB=3x,CD=4x,求出BE=AB=1.5x,DF=2x,根据EF=5得出方程1.5x+2x﹣x=5,求出x即可.【解答】解:设BD=x,则AB=3x,CD=4x,∵线段AB、CD的中点分别是E、F,∴BE=AB=1.5x,DF=2x,∵EF=5,∴1.5x+2x﹣x=5,解得:x=2,故AB=3×2=6.故选:B.【点评】本题考查了求两点之间的距离,能根据题意得出方程是解此题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】根据有理数减法的法则计算即可.【解答】解:2﹣(﹣6)=2+6=8,故答案为:8【点评】此题考查有理数减法,关键是根据有理数减法的法则解答.12.【分析】根据1°=60′,1′=60″进行计算即可.【解答】解:36°45′=36.75°,故答案为:36.75.【点评】本题考查了度分秒的换算,掌握1°=60′,1′=60″是解题的关键.13.【分析】同类项是指相同字母的指数要相等.【解答】解:根据题意可得:m﹣5=3,解得:m=8,故答案是:8.【点评】本题考查同类项的概念,解题的关键是根据同类项的概念列出方程求出m,本题属于基础题型.14.【分析】根据互为补角的和等于180°,然后根据题意列出关于∠A、∠B的二元一次方程组,求解即可.【解答】解:根据题意可得:,解得:∠A=80°,∠B=100°,故答案为:100【点评】本题考查了互为补角的和等于180°的性质,根据题意列出二元一次方程组是解题的关键.15.【分析】分C点在A的左边和C点在A的左边两种情况讨论即可求解.【解答】解:C点在A的左边,b﹣=a,b=a,=;C点在A的左边,b+=a,b=a,=2.故答案为:或2.【点评】考查了两点间的距离,注意分两种情况进行讨论求解.16.【分析】由已知图形得出c=(﹣1)n•2n﹣1,a=2c=(﹣1)n•2n,b=a+4=(﹣1)n•2n+4,根据d=a+b+c=5×(﹣1)n•2n﹣1+4=2564求解可得.【解答】解:由题意知c=(﹣1)n•2n﹣1,a=2c=(﹣1)n•2n,b=a+4=(﹣1)n•2n+4,d=a+b+c=(﹣1)n•2n+(﹣1)n•2n+4+(﹣1)n•2n﹣1=5×(﹣1)n•2n﹣1+4,由题意知5×(﹣1)n•2n﹣1+4=2564,解得:n=10,故答案为:10.【点评】本题考查了数字变化规律型题.关键是由特殊到一般,找出数字算式运算规律.三、解答题(共8题,共72分)17.【分析】(1)先化简,再计算加减法即可求解;(2)先算乘方,再算乘除,最后算加法即可求解.【解答】解:(1)(﹣3)+6+(﹣8)+4=﹣3+6﹣8+4=﹣11+10=﹣1;(2)(﹣1)7×2+(﹣3)2÷9=﹣1×2+9÷9=﹣2+1=﹣1.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.【分析】(1)移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)8x﹣4=6x﹣8,8x﹣6x=﹣8+4,2x=﹣4,x=﹣2;(2)﹣2=,2(x+1)﹣8=x﹣3,2x+2﹣8=x﹣3,2x﹣x=﹣3﹣2+8,x=3.【点评】考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.19.【分析】先去括号、合并同类项化简原式,再将x和y的值代入计算可得.【解答】解:原式=15x2y﹣5xy2﹣xy2﹣3x2y=12x2y﹣6xy2,当x=1,y=﹣1时,原式=12×12×(﹣1)﹣6×1×(﹣1)2=﹣12﹣6=﹣18.【点评】本题主要考查整式的加减﹣化简求值,解题的关键是掌握整式的加减混合运算顺序和运算法则.20.【分析】(1)甲地的海拔高度是h米,乙地的海拔高度(3h+20)米,丙地的海拔高度(2x+30)米,求和即可.(2)根据“乙地的海拔高度﹣丙地海拔高度”列式.【解答】解:(1)甲地的海拔高度是h米,则乙地的海拔高度(3h+20)米,丙地的海拔高度(2h+30)米,所以h+(3h+20)+(2h+30)=6h+50(米)答:三地的海拔高度和一共是(6h+50)米.(2)依题意得:(3h+20)﹣(2h+30)=h﹣10(米).答:(1)三地的海拔高度和一共是(6h+50)米.(2)乙地的海拔高度比丙地海拔高度高(h﹣10)米.【点评】此题考查了一元一次方程的应用以及列代数式,弄清题意,找准题中的等量关系是解题的关键.21.【分析】(1)根据互补的关系和邻补角以及角平分线的定义解答即可;(2)根据互补的关系和角平分线的定义列出方程解答即可.【解答】解:(1)∵点O在直线AB上,∠BOC=40°,∴∠AOC=140°,∵∠AOC与∠COD互补,∴∠COD=40°,∵OE平分∠AOC,∴∠EOC=70°,∴∠DOE=30°;故答案为:30°;(2)∵点O在直线AB上,∴∠AOC与∠BOC互补,∵∠AOC与∠COD互补,∴∠BOC=∠COD,∵OE平分∠AOC,∴∠AOE=∠EOC,设∠BOD为x,可得:2(48°+x)+x=180°,解得:x=28°,∴∠BOD=28°.【点评】此题考查补角问题,关键是根据互补的关系和邻补角以及角平分线的定义解答.22.【分析】清楚甲组工人这个月实际完成的人均工作量=乙组这个月实际完成的人均工作量﹣2件是解本题的关键.【解答】解:设这个月人均额定工作量是x件依题意列方程(3x﹣1)÷4=(5x+7)÷6﹣2解得x=7答:这个月人均额定工作量是7件【点评】此题主要考查了一元一次方程的应用,如何发现题目中的等量关系,(即甲组工人这个月实际完成的人均工作量比乙组这个月实际完成的人均工作量少2件),并根据该等量关系建立一元一次方程,同学们找到题目中的等量关系就不会惧怕该类试题了.23.【分析】(1)由线段的和差关系,以及QB=2PC,BC=2AC,即可求解;(2)设AC=x,则BC=2x,∴AB=3x,D点分四种位置进行讨论,①当D在A点左侧时,②当D 在AC之间时,③当D在BC之间时,④当D在B的右侧时,结合图形求解.【解答】解:(1)①AP=AC﹣PC,CQ=CB﹣QB,∵BC=2AC,P、Q速度分别为1cm/s、2cm/s,∴QB=2PC,∴CQ=2AC﹣2PC=2AP,∴=.故答案为.②MN=MQ﹣NQ=PQ﹣CQ=(PQ﹣CQ)=PC ∵PC=QB,∴MN=×QB=QB,∴=.(2)∵BC=2AC.设AC=x,则BC=2x,∴AB=3x,①当D在A点左侧时,|AD﹣BD|=BD﹣AD=AB=CD,∴CD=6x,∴==;②当D在AC之间时,|AD﹣BD|=BD﹣AD=CD,∴2x+CD﹣x+CD=CD,x=﹣CD(不成立),③当D在BC之间时,|AD﹣BD|=AD﹣BD=CD,∴x+CD﹣2x+CD=CD,CD=x,∴==;④当D在B的右侧时,|AD﹣BD|=AB=CD,∴CD=6x,∴==.综上所述,的值为或或.故答案为或或.【点评】本题考查线段的和差问题,距离与绝对值的关系,动点问题.画好线段图,分类讨论是解决本题的关键.24.【分析】(1)利用角的和差进行计算便可;(2)设∠COD=2x°,∠AOE=y°,∠BOF=z°,通过角的和差列出方程组解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.【解答】解:(1)∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD∵∠AOD+∠BOC=160°且∠AOB=120°∴∠COD=160﹣∠AOB=160°﹣120°=40°;(2)设∠COD=2x°,∠AOE=y°,∠BOF=z°,则∠EOF=7x°,∠DOE=3y°,∠COF=3z°,∴,①×4﹣②,得x=12°,∴∠EOF=7x=84°;(3)i).若旋转角度小于180°时,当OI在∠AOB内部时,有∠MON=∠MOI+∠NOI=(∠AOI+∠BOI))=∠AOB=×120°=60°,当OI不在∠AOB内部时,有∠MON=∠MOI﹣∠NOI=(∠AOI﹣∠BOI)=∠AOB═×120°=60°,故在旋转过程中,旋转角度小于180°时,恒有∠MON=60°,∵∠MON=3∠IOP,∴∠IOP=20°,①当0<t≤10时,有∠MOI=∠MOP﹣∠IOP,即3t=30﹣20,∴t=;②当10<t<30时,有∠MOI=∠MOP+∠IOP,即3t=30+20,∴t=;ii).若旋转角度大于180°时,∠MON=∠MOI+∠ION=∠AOI+∠BOI=(∠AOI+∠BOI)=(360°﹣∠AOB)=120°,∵∠MON=3∠IOP,∴∠IOP=40°,①当30<t≤40时,有∠MOI=∠MOP+∠IOP,即(360﹣6t)=60+40,∴t=(舍去);④当40<t<50时,有∠MOI=∠MOP﹣∠IOP,即(360﹣6t)=60﹣40,∴t=(舍去).故答案为:或.【点评】本题是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.。
2019-2020学年湖北省武汉市七年级上学期期末考试数学模拟试卷及答案解析
2019-2020学年湖北省武汉市七年级上学期期末考试
数学模拟试卷
一.选择题(共10小题,满分30分,每小题3分)
1.某地一天夜晚的平均气温为﹣3℃,白天的平均气温比夜晚高5℃,则这一天该地白天的平均气温为()
A.8℃B.﹣2℃C.2℃D.﹣8℃
2.若x=﹣2是关于x的方程3x﹣k+1=0的解,则k的值为()
A.﹣5B.﹣1C .D.5
3.若单项式与2xy4是同类项,则式子(1﹣a)2019=()A.0B.1C.﹣1D.1 或﹣1
4.如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,不仅可以容纳更多的游人,而且延长了游客观光的时间,增加了游人的路程,用你所学的数学的知识能解释这一现象的是()
A.经过一点有无数条直线B.两点确定一条直线
C.两点之间,线段最短D.直线最短
5.下列等式变形,正确的是()
A.如果x=y ,那么=
B.如果ax=ay,那么x=y
C.如果S=ab,那么a =
D.如果x=y,那么|x﹣3|=|3﹣y|
6.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()
A.5B.6C.7D.8
7.一个几何体由若干个相同的正方体组成,它从正面和上面看到的图形如图所示,则这个
第1 页共19 页。
武汉市2019-2020学年七年级上学期数学期末考试试卷(I)卷
武汉市2019-2020学年七年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·新乡期末) 随着我国金融科技不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2684亿元.将数据“2684亿”用科学记数法表示()A .B .C .D .2. (2分) (2018七上·云梦月考) 下列说法中,错误的有()① 是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
A . 1个B . 2个C . 3个D . 4个3. (2分) (2019七上·来宾期末) 下列方程中,是一元一次方程的是A .B .C .D .4. (2分)在式子中,单项式共有()A . 5 个B . 4 个C . 3 个D . 2 个 .5. (2分) (2019九上·福田期中) 如图所示的几何体的左视图是()A .B .C .D .6. (2分)如图所示,点O在直线PQ上,OA是∠QOB的平分线,OC是∠POB的平分线,那么下列说法错误的是()A . ∠AOB与∠POC互余B . ∠POC与∠QOA互余C . ∠POC与∠QOB互补D . ∠AOP与∠AOB互补7. (2分) (2018七上·鄞州期中) 已知|a|=3,|b|=5,且ab<0,那么a+b的值等于()A . 8B . ﹣2C . 8或﹣8D . 2或﹣28. (2分) (2017七上·灌云月考) 文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板()A . 赚了5元B . 亏了25元C . 赚了25元D . 亏了5元9. (2分)已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A . – 6B . –3C . – 4D . –510. (2分)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为xcm的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大()A . 7B . 6C . 5D . 4二、填空题 (共8题;共8分)11. (1分) (2018七上·安达期末) -0.5的绝对值是________,相反数是________,倒数是________。
2019-2020学年湖北省武汉市洪山区、江岸区七年级(上)期末数学试卷(含解析)
2019-2020学年湖北省武汉市洪山、江岸区七年级(上)期末数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.武汉市元月份某一天早晨的气温是﹣3℃,中午上升了8℃,则中午的气温是()A.﹣5℃B.5℃C.3℃D.﹣3℃2.下面计算正确的()A.﹣3x﹣3x=0 B.x4﹣x3=xC.x2+x2=2x4D.﹣4xy+3xy=﹣xy3.下列图形中,不是正方体展开图的是()A.B.C.D.4.下列各式是同类项的是()A.2x和2y B.a2b和ab2C.π和4 D.mn2和m35.一个长方形的花园长为a,宽为b,如果长增加x,那么新的花园面积为()A.a(b+x)B.b(a+x)C.ab+x D.a+bx6.下列说法错误的是()A.若a=b,则ac=bc B.若ac=bc,则a=bC.若=,则a=b D.若a=b,则=7.下列说法中正确是()A.四棱锥有4个面B.连接两点间的线段叫做两点间的距离C.如果线段AM=BM,则M是线段AB的中点D.射线AB和射线BA不是同一条射线8.小明骑自行车到学校上学,若每小时骑15千米,可早到10分钟,若每小时骑13千米,则迟到5分钟,设他家到学校的路程为x千米,下列方程正确的是()A.B.C.D.9.正方形纸板ABCD在数轴上的位置如图所示,点A,D对应的数分别为1和0,若正方形纸板ABCD绕着顶点顺时针方向在数轴上连续翻转,则在数轴上与2020对应的点是()A.A B.B C.C D.D10.一副三角板ABC、DBE,如图1放置,(∠D=30°、∠BAC=45°),将三角板DBE绕点B逆时针旋转一定角度,如图2所示,且0°<∠CBE<90°,则下列结论中正确的个数有()①∠DBC+∠ABE的角度恒为105°;②在旋转过程中,若BM平分∠DBA,BN平分∠EBC,∠MBN的角度恒为定值;③在旋转过程中,两块三角板的边所在直线夹角成90°的次数为2次;④在图1的情况下,作∠DBF=∠EBF,则AB平分∠DBF.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.48°48′﹣41°42'=.12.2019年10月18日﹣10月27日在中国武汉举行第七届世界军人运动会,“聚志愿力量,铸军运辉煌”,全体武汉市民积极投身志愿服务工作,志愿者人数约为201000,用科学记数法表示为.13.一个角的补角是这个角余角的3倍,则这个角是度.14.若﹣4x3m﹣2+2m=0是关于x的一元一次方程,那么这个方程的解为.15.已知有理数a,b满足ab<0,|a+b|=﹣a﹣b,4a+b﹣3=|b﹣a|,则a+b的值为.16.已知线段AB和线段CD在同一直线上,线段AB(A在左,B在右)的长为a,长度小于AB的线段CD(D 在左,C在右)在直线AB上移动,M为AC的中点,N为BD的中点,线段MN的长为b,则线段CD的长为(用a,b的式子表示).三、解答题(共72分)17.(8分)计算:(1)﹣6×4﹣(2.5)÷(﹣0.1)(2)(﹣2)3﹣22﹣|﹣|×(﹣4)218.(10分)解方程:(1)8﹣3(3x+2)=6 (2)﹣1=19.(6分)先化简,再求值:已知A=4x2y﹣5xy2,B=3x2y﹣4xy2,当x=﹣2,y=1时,求2A﹣B的值.20.(8分)用A型和B型机器生产同样的产品,已知5台A型机器一天的产品装满8箱后还剩4个,7台B 型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱装多少个产品?21.(8分)如图,已知线段AB=8.(1)按要求作图:反向延长线段AB至C,使得BC=3AB.(2)在(1)的条件下,取BC的中点D,求AD的长,22.(10分)武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,乙种服装每件进价为元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?23.(10分)已知∠AOB=150°,OD为∠AOB内部的一条射线(1)如图(1),若∠BOC=60°,OD为∠AOB内部的一条射线,∠COD=∠BOC,OE平分∠AOB,求∠DOE 的度数.(2)如图(2),若OC、OD是∠AOB内部的两条射线,OM、ON分别平分∠AOD,∠BOC,且∠MOC≠∠NOD,求(∠AOC﹣∠BOD)/(∠MOC﹣∠NOD)的值.(3)如图(3),C1为射线OB的反向延长线上一点,将射线OB绕点O顺时针以6°/s的速度旋转,旋转后OB对应射线为OB1,旋转时间为t秒(0<t≤35),OE平分∠AOB1,OF为∠C1OB1的三等分线,∠C1OF=∠C1OB1,若|∠C1OF﹣∠AOE|=30°,直接写出t的值为.24.(12分)已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.1.【解答】解:﹣3+8=5(℃)∴中午的气温是5℃.故选:B.2.【解答】解:A、﹣3x﹣3x=﹣6x,错误;B、x4与x3不是同类项,不能合并,错误;C、x2+x7=2x2,错误;D、﹣4xy+6xy=﹣xy,正确;故选:D.3.【解答】解:A、C、D可组成正方体;B不能组成正方体.故选:B.4.【解答】解:A、所含字母不相同,不是同类项;B、相同字母的指数不相同,不是同类项;C、π和4是同类项;D、所含字母不尽相同,不是同类项.故选:C.5.【解答】解:长增加x,则长为x+a,面积为:b(a+x),故选:B.6.【解答】解:A、∵a=b,∴ac=bc,正确,故本选项不符合题意;B、当c=0时,不能有ac=bc得出a=b,错误,故本选项符合题意;C、∵=,D、∵a=b,故选:B.7.【解答】解:A、四棱锥有5个面,故不符合题意;B、连接两点间的线段的长度叫做两点间的距离,故不符合题意;C、如果点M在线段AB上且线段AM=BM,则M是线段AB的中点,故不符合题意;D、射线AB和射线BA不是同一条射线,正确,故符合题意,故选:D.8.【解答】解:设他家到学校的路程为x千米,依题意,得:+=﹣.故选:A.9.【解答】解:当正方形在转动第一周的过程中,1所对应的点是A,2所对应的点是B,3所对应的点是C,4所对应的点是D,∴四次一循环,∴2020所对应的点是D,故选:D.10.【解答】解:设旋转角度为x°,①当x>45°时,∠DBC+∠ABE=(x+60)°+(x﹣45)°=(2x+15)°>105°,于是此小题结论错误;②∠MBN=∠DBC﹣∠DBM﹣∠CBN=∠DBC﹣∠DBA﹣∠CBE=(60+x)°﹣(15+x)°﹣x°=52.5°,于是此小题的结论正确;③当旋转30°时,BD⊥BC,当旋转45°时,DE⊥AB,当旋转75°时,DB⊥AB,则在旋转过程中,两块三角板的边所在直线夹角成90°的次数为5次,于是此小题结论错误;④当BE在∠DBE外时,如下图所示,综上,正确的结论个数只有1个,故选:A.11.【解答】解:48°48′﹣41°42'=7°6′.故答案为:7°6′.12.【解答】解:201000,用科学记数法表示为2.01×105.故答案为:2.01×105.13.【解答】解:设这个角为x,由题意得,180°﹣x=3(90°﹣x),则这个角是45°,故答案为:45.14.【解答】解:∵﹣4x3m﹣2+2m=0是关于x的一元一次方程,∴3m﹣3=1,即方程为﹣4x+2=0,故答案为:x=0.5.15.【解答】解:∵有理数a,b满足ab<0,|a+b|=﹣a﹣b,∴a+b<0,∴b﹣a<0,∴4a+b﹣3=a﹣b,∴a+b==,∵4a+b﹣3=|b﹣a|,∴a=>0(这种情况不存在),故答案为:.16.【解答】解:∵M为AC的中点,N为BD的中点,∴MA=MC=AC,BN=DN=BD.线段AB(A在左,B在右)的长为a,∴分以下8种情况说明:①当DC在AB左侧时,如图1,=BD﹣(DC+CM)即2MN=BD﹣8DC﹣AC∴2MN=AB﹣DC,②当点D与点A重合时,如图2,MN=MC+CN=AC+BD﹣DC2MN=DC+AB﹣2DC∴CD=AB﹣2MN=a﹣7b;③当DC在AB内部时,如图3,=AC+(BC﹣BN)即2MN=AC﹣BD+6BC∴2MN=AB﹣DC,④当点C在点B右侧时,⑤当DC在AB右侧时,综上所述:线段CD的长为a﹣2b.故答案为a﹣3b.17.【解答】解:(1)原式=﹣24+2.5÷0.1=﹣24+25(2)原式=﹣6﹣4﹣×16=﹣20.18.【解答】解:(1)去括号得:8﹣9x﹣6=6,移项合并得:﹣9x=5,(2)去分母得:3(3x﹣1)﹣12=2(2x﹣7),移项合并得:﹣x=1,解得:x=﹣1.19.【解答】解:∵A=4x2y﹣5xy2,B=3x2y﹣4xy2,∴2A﹣B=2(4x7y﹣5xy2)﹣(2x2y﹣4xy2)=8x2y﹣10xy7﹣3x2y+8xy2=5x8y﹣6xy2;当x=﹣2,y=4时,2A﹣B=5×(﹣2)2×1﹣6×(﹣2)×52=20+12=32.20.【解答】解:设B型机器一天生产x个产品,则A型机器一天生产(x+1)个产品,由题意得,=,7x﹣1=132,答:每箱装12个产品.21.【解答】解:如图,(2)在(1)的条件下,∵D是BC的中点,∴AD=BD﹣AB=12﹣8=4.答:AD的长为2.22.【解答】解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为=60%.∴乙种服装每件进价为=800(元),(2)设甲种服装进了x件,则乙种服装进了(40﹣x)件,解得:x=15.答:商场销售完这批服装,共盈利14500元.=3200﹣2×500+20.答:先打八五折再参加活动.23.【解答】解(1)分两种情况:①当射线OD在∠BOC的内部时,如图1所示,∴∠BOE=∠AOB,∴∠BOE=75°,∴∠BOD=∠BOC=×60°=40°,②当射线OD在∠AOC的内部时,∵∠COD=∠BOC=×60°=20°,=20°+60°﹣75°,综上所述,∠DOE=35°或5°;∴∠MOD=∠AOD,∠CON=∠BOC,∴∠MOC﹣∠NOD=(∠MOD﹣∠COD)﹣(∠CON﹣∠COD),=(∠AOD﹣∠BOC),∴∠MOC﹣∠NOD=(∠AOC+∠COD﹣∠BOD﹣COD),∴(∠AOC﹣∠BOD)/(∠MOC﹣∠NOD)==2;∵∠BOB1=6t,∵OE平分∠AOB1,∵∠C4OB1=360°﹣∠C1OB1=180°﹣6t,∴∠C1OF=60°﹣2t,∴75°+3t﹣60°+2t=30°或60°﹣2t﹣75°﹣3t=30°,②当∠BOB1>30°时,故答案为:3秒或15秒.24.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b ∴a=16,b=20;∵AC=2AB∴16﹣c=24故答案为:16,20,﹣8;EF=AE﹣AF=(24﹣2t)﹣(20﹣3t)+5∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣8t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∵MQ﹣NT=3PT,∴x=15﹣2t或x=﹣3t,∴PT=1或PT=。
湖北省武汉市2019-2020学年数学七上期末考试试题
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图所示,点N 在点O 的( )方向上.A.北偏西65°B.南偏东65°C.北偏西25°D.南偏西25° 2.若∠β=25°31',则∠β的余角等于( )A.64°29'B.64°69'C.154°29'D.154°69' 3.如果一个角α的度数为13°14',那么关于x 的方程21803x x α-=︒-的解为( )A.76°46'B.76°86'C.86°56'D.166°46'4.在解方程12323x x -+-=1时,去分母正确的是( ) A.3(x ﹣1)﹣2(2x+3)=6 B.3(x ﹣1)﹣2(2x+3)=1 C.2(x ﹣1)﹣2(2x+3)=6 D.3(x ﹣1)﹣2(2x+3)=3 5.组成多项式2x 2-x-3的单项式是下列几组中的( )A .2x 2,x ,3 B .2x 2,-x ,-3C .2x 2,x ,-3 D .2x 2,-x ,3 6.请通过计算推测32018的个位数是( )A .1B .3C .7D .97.如果x y =,那么下列等式不一定成立的是A.2239a aa -=-B.x a y a -=-C.ax ay =D.x y a a= 8.鸡兔同笼问题是我国古代著名趣题之一. 大约在1500年前,《孙子算经》中就记载了这个有趣的问题. 书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得( )A.鸡23只,兔12只B.鸡12只,兔23只C.鸡15只,兔20只D.鸡20只,兔15只9.一个代数式减去-2x 得-2x 2-2x+1,则这个代数式为( ) A .21x -+ B .2241x x --+C .221x -+D .224x x --10.若与互为相反数,则的值为( )A .-bB .C .-8D .811.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作 A .7℃ B .-7℃ C .2℃ D .-12℃12.实数a ,b 在数轴上对应的点的位置如图所示,计算||-a b 的结果为( )A.+a bB.-a bC. b a -D.a b -- 二、填空题13.已知点A 在O 的北偏西60°方向,点B 在点O 的南偏东40°方向,则∠AOB 的度数为_____ 14.一副三角板按如图方式摆放,若2327'α∠=o ,则β∠的度数为______o .15.若4x+8与﹣2x ﹣10的值互为相反数,则x 的值为_____. 16.312132nmx y xy m n --+=若与是同类项,则____________。
2019-2020学年湖北省武汉市洪山区七年级上期末考试数学模拟试卷及答案解析
2019-2020学年湖北省武汉市洪山区七年级上期末考试
数学模拟试卷
一.选择题(共10小题,满分30分,每小题3分)
1.算式﹣﹣(﹣)之值为何?()
A .
B .
C .
D .
2.2019年10月1日在北京举行的国庆70周年阅兵活动中,15000名将士接受了党和人民的检阅,将数据15000用科学记数法表示为()
A.0.15×105B.1.5×104C.15×103D.150×102
3.若8x m y与6x3y n的和是单项式,则m+n的值为()
A.4B.8C.﹣4D.﹣8
4.关于x的方程2(x﹣a)=5的解是3,则a的值为()
A.2B .C.﹣2D .﹣
5.中国讲究五谷丰登,六畜兴旺.如图是一个正方体展开图,图中的六个正方形店内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”
相对的是()
A.猪B.马C.狗D.鸡
6.下列运用等式性质正确的是()
A.如果a=b,那么a+c=b﹣c B.如果a=b ,那么=
C .如果=,那么a=b D.如果a=3,那么a2=3a2
7.如图是一组有规律的图案,第(1)个图案由2个圆组成,第(2)个图案由5个圆组成,第(3)个图案由8个圆组成,第(4)个图案由11个圆组成……,则第10个图案中圆的个数是()
第1 页共19 页。
2020-2021学年湖北省武汉市洪山区七年级(上)期末数学试卷及参考答案
2020-2021学年武汉市洪山区七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
1.(3分)下列计算正确的是()A.2m﹣m=2B.2m+n=2mnC.2m3+3m2=5m5D.m3n﹣nm3=02.(3分)某市在一次扶贫助残活动中,捐款约61800000元,请将61800000元用科学记数法表示,其结果为()A.0.618×109元B.6.18×106元C.6.18×107元D.618×105元3.(3分)下面的图形中是正方体的展开图的是()A.B.C.D.4.(3分)已知关于x的方程mx+2=x的解是x=3,则m的值为()A.B.1C.D.35.(3分)下列说法:①的系数是2;②是多项式;③x2﹣x﹣2的常数项为2;④﹣3ab2和b2a是同类项,其中正确的有()A.1个B.2个C.3个D.4个6.(3分)一个角的余角的3倍比这个角的4倍大18°,则这个角等于()A.36°B.40°C.50°D.54°7.(3分)周末小华从家出发,骑车去位于自己南偏东35°方位的南湖花溪公园游玩,那么他准备回家时,自己家位于他现在位置()方位.A.北偏西55°B.北偏西35°C.南偏东55°D.南偏西35°8.(3分)某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完,设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x9.(3分)适合|a+5|+|a﹣3|=8的整数a的值有()A.4个B.5个C.7个D.9个10.(3分)如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.4个B.3个C.2个D.0个二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上. 11.(3分)计算:4÷(﹣2)3=.12.(3分)计算:135°3′﹣92°33′=.13.(3分)小红在解关于x的方程:﹣3x+1=3a﹣2时,误将方程中的“﹣3”看成了“3”,求得方程的解为x=1,则原方程的解为.14.(3分)某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么该商店在这次交易中了(填“赚”或“亏”)元.15.(3分)已知平面内∠AOB=50°,∠COB=10°,OE、OF分别平分∠AOB、∠BOC,则∠EOF=.16.(3分)历史上数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a 时的多项式的值用f(a)来表示.例如,对于多项式f(x)=mx3+nx+5,当x=2时,多项式的值为f(2)=8m+2n+5.若对于多项式f(x)=tx5+mx3+nx+7,有f(3)=5,则f(﹣3)的值为.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程,17.(8分)计算:(﹣8)×﹣2+.18.(8分)解方程:=32﹣2x.19.(8分)先化简,再求值:2[x2+2(x2﹣x)]﹣6(x2﹣2x),其中x=.20.(8分)在风速为26千米每小时的条件下,一架飞机顺风从A机场到B机场要用2.8小时,它逆风飞行同样的航线要用3小时,求无风时这架飞机在这一航线的平均速度.21.(8分)如图,过直线AB上一点O,作射线OC.(1)若∠AOC=5∠BOC,求∠BOC的度数;(2)如图,在直线AB的另一侧作射线OD,若∠BOD与∠BOC互余,且∠AOC+∠AOD﹣13°=180°,求∠BOC的度数.22.(10分)在某届女排世界杯比赛中,参赛队伍为12支,比赛采取单循环方式,五局三胜制,积分规则如下:比赛中以3:0或者3:1取胜的球队积3分,负队积0分;而在比赛中以3:2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如表所示:球队场次胜场负场总积分中国11110美国1110128俄罗斯1183巴西1123(1)中国队11场胜场中仅有两场以3:2取胜,则中国队的总积分为.(2)巴西队积3分取胜的场次是积2分取胜的场次的3倍,且负场总积分为1分,总积分见表,求巴西队负场的场数.(3)美国队积3分的胜场数为偶数,美国队积3分的胜场数为场;俄罗斯队积3分的胜场数比美国队积3分的胜场数少2场,且俄罗斯队负场总积分为1分,则俄罗斯队总积分为分.23.(10分)把线段AB延长到D,使BD=AB,再延长线段BA到C,使CB=3AB.(1)请根据题意将下列图形补充完整,并求出CD是AB的多少倍.(2)补充完后图中共有几条线段?若图中所有线段长度和为87,求线段AB的长度.(3)若AB=4cm,点E、F分别是线段AC、CD的中点,动点M从点A出发,沿直线CD以2cm/秒的速度向右运动,当点F是线段EM的中点时,求点M运动的时间t的值.24.(12分)将一副直角三角板ABC,ADE,按如图1叠加放置,其中B与E重合,∠BAC =45°,∠BAD=30°.(1)如图1,点F在直线AC上,且位于点A的左侧,求∠FAD的度数;(2)将三角板ADE从图1位置开始绕A点顺时针旋转,并记AM,AN分别为∠BAE,∠CAD的角平分线.①当三角板ADE旋转至如图2的位置时,求∠MAN的度数.②若三角板ADE的旋转速度为每秒5°,且转动到∠DAC=180°时停止,运动时间记为t(单位:秒),试根据不同的t的值,求∠MAN的大小(直接写出结论).2020-2021学年湖北省武汉市洪山区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
湖北省武汉洪山区五校联考2024届数学七年级第一学期期末检测试题含解析
湖北省武汉洪山区五校联考2024届数学七年级第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.某个工厂有技术工12人,平均每天每人可加工甲种零件24个或乙种零件15个,2个甲种零件和3个乙种零件可以配成一套,设安排x 个技术工生产甲种零件,为使每天生产的甲乙零件刚好配套,则下面列出方程中正确的有( )个 ①()15122423x x -= ②32415(12)2x x ⨯=- ③()32421512x x ⨯=⨯- ④()224315121x x ⨯+⨯-=A .3B .2C .1D .02.下面的图形中,是三棱柱的侧面展开图的为( )A .B .C .D .3.如图所示,某公司员工住在,,A B C 三个住宅区,已知A 区有2人,B 区有7人,C 区有12人,三个住宅区在同一条直线上,且150,300AB m BC m ==,D 是AC 的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车紧张,在,,,A B C D 四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在( )A .A 处B .B 处C .C 处D .D 处4.一个长方形的长和宽分别为3cm 和2cm ,依次以这个长方形的长和宽所在的直线为旋转轴,把长方形旋转1周形成圆柱体甲和圆柱体乙,两个圆柱体的体积分别记作V 甲、V 乙,侧面积分别记叙S 甲、S 乙,则下列说法正确的是( ).A .V V <甲乙,S S =甲乙B .V V >甲乙,S S =甲乙C .V V =甲乙,S S =甲乙D .V V >甲乙,S S <甲乙 5.下列各组数中,互为相反数的是( )A .2和-2B .-2和12C .-2和12-D .12和2 6.己知下列一组数:1,34,59,716,925,…则第n 个数为( ) A .21n n - B .224n n - C .221n n - D .221n n + 7.有一块直角三角形纸片,两直角边AC=12cm ,BC=16cm 如图,现将直角边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合,则DE 等于( )A .6cmB .8cmC .10cmD .14cm8.数a 、b 在数轴上的位置如图所示,正确的是( ).A .a b >B .0a b +>C .0ab >D .a b > 9.一个长方形的周长为,若它的宽为,则它的长为( ) A . B . C . D .10.下列说法正确的有( )①绝对值等于本身的数是正数;②将数60340精确到千位是③连接两点的线段的长度就是两点间的距离;④若AC=BC ,则点C 就是线段AB 的中点.A .1个B .2个C .3个D .4个 二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2019次输出的结果为_____.12.在一个样本中,100个数据分布在5个组内,第一、二、四、五组的频数分别为9,16,40,15,若用扇形图对这些数据进行统计,则第三组对应的扇形圆心角的度数为_____.13.已知21342+==,213593++==,21357164+++==,13579++++=_______,... ,根据前面各式的规律可猜测101103105...199++++=_________.14.把多项式2x 2+3x 3-x+5x 4-1按字母x 降幂排列是_____________.15.单项式23x yz -的系数是________,次数是_______.16.观察等式:①212=⨯,②24623+==⨯,③2461234++==⨯,……按照这种规律写出第n 个等式2462n +++⋅⋅⋅+=_____.三、解下列各题(本大题共8小题,共72分)17.(8分)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?18.(8分)如图,在数轴上点A 为表示的有理数为-8,点B 表示的有理数为12,点P 从点A 出发分别以每秒4个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒4个单位长度的速度运动至点A 停止运动.设运动时间为t (单位:秒).(1)当1t =时,点P 表示的有理数是______;(2)当点P 与点B 重合时,t =______;(3)①在点P 由点A 到点B 的运动过程中,点P 与点A 的距离是______,点P 表示的有理数是______(用含t 的代数式表示);②在点P 由点B 到点A 的运动过程中,点P 与点A 的距离是______(用含代数式表示);(4)当t =______时,12AP =.19.(8分)计算:(-1)3+10÷22×15. 20.(8分)如图,已知∠AOC =60°,∠BOD =90°,∠AOB 是∠DOC 的3倍,求∠AOB 的度数.21.(8分)先化简,再求值:(1x 1﹣1y 1)﹣3(x 1y 1+x 1)+3(x 1y 1+y 1),其中x =﹣1,y =1.22.(10分)你知道生你养你的亲爱的母亲的生日吗下面图一,图二是某校调查部分学生是否知道母亲生日的扇形统计图和条形统计图.根据以上信息,解答下列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若学校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日?(3)通过对以上数据的分析,你有何感想?(用一句话来表达)23.(10分)计算:(1)-23÷89×(-23)2-︱-4︱; (2)()()2232425x xy x xy ---+(3)解方程: 5731164x x --+= 24.(12分)(1)4x ﹣3(5﹣x )=6;(2)121132x x +--=参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意和配套问题的解法逐一进行判断即可.【题目详解】设安排x 个技术工生产甲种零件,根据题意有:()32421512x x ⨯=⨯-,故③正确; 然后将其写成比例式,即为()15122423x x -=,故①正确; 然后将①中的3乘到左边,即为32415(12)2x x ⨯=-,故②正确; ④很明显错误;所以正确的有3个故选:A .【题目点拨】 本题主要考查一元一次方程的应用,根据题意列出方程并掌握配套问题的解法是解题的关键.2、A【解题分析】试题分析:利用三棱柱及其表面展开图的特点解题.注意三棱柱的侧面展开图是三个小长方形组合成的大长方形.三棱柱的侧面展开图是一个三个小长方形组合成的矩形.故选A .考点:几何体的展开图.3、C【分析】利用已知条件分别求出停靠站设在A,B,C,D 时,所有员工步行到停靠点的路程之和,然后进行比较即可得出答案.【题目详解】∵150,300AB m BC m ==∴450AC AB BC m =+=∵D 是AC 的中点 ∴12252AD CD AC m === 75BD AD AB m ∴=-=若停靠站设在A时,所有员工步行到停靠点的路程之和为:7150124506450m⨯+⨯=若停靠站设在B时,所有员工步行到停靠点的路程之和为:2150123003900m⨯+⨯=若停靠站设在C时,所有员工步行到停靠点的路程之和为:245073003000m⨯+⨯=若停靠站设在D时,所有员工步行到停靠点的路程之和为:2225775122253675m⨯+⨯+⨯=3000367539006450<<<∴停靠站设在C时,所有员工步行到停靠点的路程之和最小故选:C.【题目点拨】本题主要考查有理数的混合运算的应用,掌握有理数的混合运算顺序和法则是解题的关键.4、A【解题分析】试题分析:由题可得,V甲=π•22×3=12π,V乙=π•32×2=18π,∵12π<18π,∴V甲<V乙;∵S甲=2π×2×3=12π,S乙=2π×3×2=12π,∴S甲=S乙,故选A.点睛:此题主要考查了面动成体,关键是根据旋转寻找出所形成的圆柱体的底面半径和高.5、A【解题分析】分析:根据相反数的定义,只有符号不同的两个数是互为相反数.解答:解:A、2和-2只有符号不同,它们是互为相反数,选项正确;B、-2和12除了符号不同以外,它们的绝对值也不相同,所以它们不是互为相反数,选项错误;C、-2和-12符号相同,它们不是互为相反数,选项错误;D、12和2符号相同,它们不是互为相反数,选项错误.故选A .6、C【分析】仔细分析所给数据可得分子部分是从1开始的连续奇数,分母部分是从1开始的连续整数的平方,从而可以得到结果. 【题目详解】解:第一个数:221111⨯-=, 第二个数:2322142⨯-=, 第三个数:2523193⨯-=, 第四个数:27241164⨯-=, 第五个数:29251255⨯-=, …第n 个数:221n n-. 故选:C .【题目点拨】本题是一道找规律的题目,解答本题的关键是认真分析所给数据得到规律,再把这个规律应用于解题.7、A【解题分析】先根据勾股定理求得AB 的长,再根据折叠的性质求得AE ,BE 的长,从而利用勾股定理可求得DE 的长.【题目详解】解:∵AC=12cm ,BC=16cm ,∴AB=20cm ,∵AE=12cm (折叠的性质),∴BE=8cm ,设CD=DE=x ,则在Rt △DEB 中,()222816x x +=-,解得x=6,即DE 等于6cm .故选A .【题目点拨】本题考查了翻折变换(折叠问题),以及利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.8、D【分析】根据数据在数轴上的位置关系判断.【题目详解】选项A. 如图a b < ,错误.选项 B. a 点离原点的距离比b 点离原点距离远,故0a b +<,错误.选项 C. ,a b 一正一负,所以0ab <,错误.选项D. a 点离原点的距离比b 点离原点距离远,故a b >,故选D.【题目点拨】利用数轴比较大小,数轴左边的小于右边,离原点距离越大,数的绝对值越大,原点左边的是负数,右边的是正数. 9、A【解题分析】根据长方形的周长公式列出其边长的式子,再去括号,合并同类项即可.【题目详解】∵一个长方形的周长为6a-4b ,一边长为a-b ,∴它的另一边长为=(6a-4b)-(a-b)=3a-2b-a+b=2a-b .故选A.【题目点拨】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.10、B【解题分析】①根据绝对值等于本身的数是非负数可判断;②60340精确到千位即在千位数四舍五入得60000,再用科学计数法表示即可;③根据两点之间的距离定义即可判断;④根据AC=BC ,点C 在线段AB 上,那么点C 就是线段AB 的中点即可判断正误.【题目详解】①绝对值等于本身的数是非负数,①错误;②将数60340精确到千位是60000,用科学计数法表示为③连接两点的线段的长度就是两点间的距离,正确;④若AC=BC ,点C 在线段AB 上,点C 就是线段AB 的中点,④错误.故选B.【题目点拨】此题主要考察绝对值、有理数的精确位、线段的长短及中点的定义.二、填空题(本大题共有6小题,每小题3分,共18分)11、5【解题分析】把x =625代入计算即可求出所求.【题目详解】解:当x =625时,原式=15×625=125, 当x =125时,原式=15×125=25, 当x =25时,原式=15×25=5, 当x =5时,原式=15×5=1, 当x =1时,原式=1+4=5,依此类推,以5,1循环,∵(2019−2)÷2=1008…1,∴第2019次输出的结果为5,故答案为5【题目点拨】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.12、72°【分析】先根据题意,得到第三组数据的频数,再根据扇形圆心角计算公式进行计算即可.【题目详解】∵100个数据分布在5个组内,第一、二、四、五组的频数分别为9,16,40,15,∴第三组数据的频数为20, ∴第三组对应的扇形圆心角的度数为20100×360°=72°, 故答案为:72°.【题目点拨】此题考查扇形统计图的应用,解题关键在于用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.13、25 ;7500.【分析】由所给式子可知,从1开始的几个连续奇数的和等于这几个连续奇数个数的平方,据此解答即可.【题目详解】∵21342+==,213593++==,21357164+++==,∴2135795++++=,∴101103105...199++++=2100-250=7500.故答案为25 ;7500.【题目点拨】】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14、5x 4﹢3x 3﹢2x 2-x -1【分析】先分清各项,然后按降幂排列的定义解答.【题目详解】多项式2x 2+3x 3-x+5x 4-1的各项是2x 2,3x 3,-x ,5x 4,-1,按x 降幂排列为5x 4+3x 3+2x 2-x-1.故答案为5x 4+3x 3+2x 2-x-1.【题目点拨】此题考查的多项式的次数排列,本题降幂排即从x 的最高次幂排到最低次幂.15、-1 1【分析】依据单项式的定义分析即可得出答案.【题目详解】解:单项式23x yz -的系数是-1,次数是1.故答案为:-1,1.【题目点拨】本题考查单项式的系数和次数,注意单项式中数字因数叫做单项式的系数,字母的指数和是单项式的次数. 16、()1n n +【分析】通过观察前几个式子找到规律,利用规律即可得出答案.【题目详解】①2121(11)=⨯=⨯+,②246232(21)+==⨯=⨯+,③24612343(31)++==⨯=⨯+,通过观察发现,前一个数是有几个数相加即是几,后一个数比前一个数大1,则根据规律即可得出 2462n +++⋅⋅⋅+=()1n n +故答案为:()1n n +.【题目点拨】本题主要考查规律,找到规律是解题的关键.三、解下列各题(本大题共8小题,共72分)17、安排生产甲零件的天数为503天,安排生产乙零件的天数为503天.【分析】设安排生产甲零件x 天,则安排生产乙零件(30-x )天,然后再根据“甲乙两种零件分别取3个和2个才能配套”列方程求解即可.【题目详解】解:设安排生产甲零件x 天,则安排生产乙零件(30-x )天根据题意可得:()1003012032x x -= 解得x=503,则30-x=403. 答:安排生产甲零件的天数为503天,安排生产乙零件的天数为503天. 【题目点拨】本题主要考查了一元一次方程的应用,解题关键是要读懂题意、找出合适的等量关系、列出方程.18、(1)-4;(2)5;(3)①4t ;84t -+;②()4045t t ->;(4)3或1.【分析】(1)先计算出当1t =时点P 移动的距离,进一步即得答案;(2)先求出点P 与点B 重合时点P 移动的距离,再根据路程、速度与时间的关系求解;(3)①根据距离=速度×时间即可得出点P 与点A 的距离,然后用﹣8加上这个距离即为点P 表示的有理数; ②用2AB 的长减去点P 移动的距离即为点P 与点A 的距离,据此解答即可;(4)分两种情况:当点P 由点A 到点B 运动时与点P 由点B 到点A 运动时,分别列出方程求解即可.【题目详解】解:(1)当1t =时,点P 移动的距离是4×1=4个单位长度,点P 表示的有理数是﹣8+4=﹣4; 故答案为:﹣4;(2)当点P 与点B 重合时,点P 移动的距离是2-(﹣8)=20,20÷4=5秒, 故答案为:5;(3)①在点P 由点A 到点B 的运动过程中,点P 与点A 的距离是4t ,点P 表示的有理数是84t -+;故答案为:4t ;84t -+;②由2AB 的长减去点P 移动的距离即为点P 与点A 的距离,AB=2-(﹣8)=20,在点P 由点B 到点A 的运动过程中,点P 与点A 的距离是()4045t t ->;故答案为:()4045t t ->;(4)当点P 由点A 到点B 运动时,4t=2,解得t=3;当点P 由点B 到点A 运动时,40-4t=2,解得t=1;综上,当t=3或1时,AP=2.【题目点拨】本题以数轴为载体,主要考查了数轴上两点间的距离和一元一次方程的应用,属于常考题型,正确理解题意、灵活应用数形结合思想是解题的关键.19、-12【分析】根据有理数混合运算法则来求解即可.【题目详解】解:原式=-1+10÷4×15 =-1+10×14×15 =-1+12 =-12【题目点拨】本题考查有理数的混合运算,按照先乘方,再乘除,最后加减.20、112.5°【解题分析】试题分析:本题考查了角的和差及一元一次方程的应用,设∠COD =x °, ∠AOB =3x °,根据∠AOB =∠BOD +∠AOC -∠COD 列方程求解.解:设COD x ∠=︒,6090AOC BOD ∠=∠=,,60AOD x ∴∠=-,9060150AOB x x ∴∠=+-=-,AOB ∠是DOC ∠的3倍,1503x x ∴-=,解得37.5x =,337.5112.5AOB ∴∠=⨯=.21、-x 1+y 1,2.【解题分析】先将原式去括号,合并同类项化简成1x 1﹣1y 1﹣2x+2y ,再将x ,y 的值代入计算即可.【题目详解】原式=1x 1﹣1y 1﹣2x 1y 1﹣2x+2x 1y 1+2y=1x 1﹣1y 1﹣2x+2y ,当x=﹣1,y=1时,原式=1﹣8+2+6=2.22、(1)90,见解析;(2)1500;(3)尊敬父母是中华民族的传统美德,我们应把这一美德继续发扬光大【分析】(1)根据记不清的人数与圆心角的度数即可求出总人数,进而可求出知道与不知道的人数,再画图即可解答.(2)利用样本估计总体的知识解答即可.【题目详解】(1)本次调查的学生人数有:1203090360÷=(人) “不知道”学生的人数有:904010360⨯=(人) “知道”学生的人数有:9020050360⨯=(人) 故补全的条形统计图如图所示:(2)27002001500360⨯=(人) ∴估计这所学校有1500名学生知道母亲的生日;(3)尊敬父母是中华民族的传统美德,我们应把这一美德继续发扬光大.【题目点拨】本题考查的是条形统计图、扇形图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)8-;(2)2817x xy -;(3)1x =-【分析】(1)根据有理数的混合运算法则进行计算;(2)根据整式的加减运算法则进行计算;(3)先两边同时乘以12去分母,再去括号,移项,合并同类项,最后化一次项系数为1.【题目详解】解:(1)原式948444889=-⨯⨯-=--=-; (2)原式2261225x xy x xy =-+-2817x xy =-;(3)5731164x x --+= ()()25712331x x -+=-10141293-+=-x x1x=-.【题目点拨】本题考查有理数的混合运算,整式的加减运算,解一元一次方程,解题的关键是掌握这些运算法则.24、(1)x=3;(2)x=-14.【分析】(1)通过去括号,移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,去括号,移项,合并同类项,未知数系数化为1,即可求解.【题目详解】(1)4x﹣3(5﹣x)=6,去括号得:4x﹣15+3x=6,移项合并得:7x=21,解得:x=3;(2)1211 32x x+--=,去分母得:2(x+1)﹣3(2x﹣1)=6,去括号得:2x+2﹣6x+3=6,移项合并得:﹣4x=1,解得:x=﹣14.【题目点拨】本题主要考查一元一次方程的解法,掌握解一元一次方程的基本步骤,是解题的关键.。
2019-2020学年湖北省武汉市洪山区上期七年级期末数学试卷(图片版无答案)
前事不忘,后事之师。
《战国策·赵策》圣哲学校蔡雨欣
【素材积累】
指豁出性命,进行激烈的搏斗。
比喻尽最大的力量,极度的努力,去实现自己的目标。
逆水行舟,不进则退。
人生能有几回搏,此时不搏何时搏。
——容国团 .生当作人杰,死亦为鬼雄。
——李清照贝多芬拼搏成长大作曲家贝多芬小时候由于家庭贫困没能上学,十七岁时患了伤寒和天花之后,肺病、关节炎、黄热病、结膜炎等又接踵而至,二十六岁不幸失去了听觉,爱情上也屡遭挫折,在这种境遇下,贝多芬发誓“要扼住生命的咽喉”。
在与生命的顽强拼搏中,他的意志占了上风,在乐曲创作事业上,他的生命之火燃烧得越来越旺盛了。
2019-2020学年湖北省武汉市洪山区七年级(上)期末数学试卷解析版
2019-2020学年湖北省武汉市洪山区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑1.(3分)武汉地区冬季日均最高气温5℃,最低﹣3℃,日均最高气温比最低气温高()A.2℃B.15℃C.8℃D.7℃2.(3分)第七届世界军人运动会将于2019年10月在武汉举行,届时将需要200000名城市志愿者和50000名赛会志愿者.数250000用科学记数法表示为()A.2.5×104B.25×104C.2.5×105D.0.25×1063.(3分)下列计算正确的是()A.﹣3a﹣3a=0B.x4﹣x3=xC.x2+x2=2x4D.﹣4x3+3x3=﹣x34.(3分)已知x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是()A.﹣2B.2C.3D.55.(3分)如图是一个正方体的表面展开图,则原正方体中与“武”字所在的面相对的面上标的字是()A.文B.明C.城D.市6.(3分)下列判断错误的是()A.若a=b,则ac﹣3=bc﹣3B.若a=b,则C.若x=2,则x2=2xD.若ax=bx,则a=b7.(3分)下列图案是晋商大院窗格的一部分,其中“〇”代表窗纸上所贴的剪纸,第1个图中有5个“〇”,第2个图中有8个“〇”,第3个图中有11个“〇”,则第()个图中所贴剪纸“〇”的个数为2018.A.671B.672C.670D.6738.(3分)已知点C在线段AB上,AC:BC=5:3,点D在线段AB的延长线上,BD:CD=2:3,若BD=3cm,则线段AB的长为()cm.A.5B.4C.6D.39.(3分)为迎军运会,武汉市对城区主干道进行绿化,计划把某一段公路的两侧全部栽上银杏树,要求每两棵树的间隔相等,并且路的每一侧的两端都各栽一棵,如果每隔4米栽一棵,则还差102棵;如果每隔5米栽一棵,则多出102棵,设公路长x米,有y棵树,则下列方程中:①2(+1)﹣102=2(+1)+102;②﹣102=+102;③4(﹣1)=5(﹣1);④4(﹣1)=5(﹣1)其中正确的是()A.①③B.②③C.①④D.①10.(3分)如图,O为直线AB上一点,∠DOC为直角,OE平分∠BOC,OF平分∠AOD,OG平分∠AOC,下列结论:①∠BOE与∠DOF互为余角;②2∠AOE﹣∠BOD=90°;③∠EOD与∠COG互为补角;④∠BOE﹣∠DOF=45°;其中正确的是()A.①②③④B.③④C.②③D.②③④二、填空题(本大题共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上11.(3分)当x=时,式子x﹣和7﹣的值相等.12.(3分)某商店在某时刻以每件60元的价格卖出一件衣服,盈利25%,则这件衣服的进价是.13.(3分)∠α的补角是它的2倍,则∠a的余角等于度.14.(3分)有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|c﹣2b|+|a+2b|=.15.(3分)已知∠AOB=80°,OC为从O点引出的任意一条射线,若OM平分∠AOC,ON平分∠BOC,则∠MON 的度数是.16.(3分)若a、b都是有理数,定义“*”如下:a*b=,例如3*2=32+2=11.现已知3*x=19,则x的值为.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(8分)计算或化简:(1)﹣22+2×(﹣3)2+(﹣6)÷()2(2)3x2y﹣2[x2y﹣2(xy x2y)+2xy]18.(8分)解下列一元一次方程:(1)3(x+1)﹣2(x﹣2)=2x+3(2)19.(8分)王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg,采摘结束后王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人樱桃一样多,她们采摘用了多少时间?20.(8分)已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,|a﹣15|+(b﹣ 4.5)2=0,求a,b的值;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=15,AD=2BE,求线段CE的长.21.(8分)把2016个正整数1、2、3、4、……、2016按如图方式排列成一个表,用一方框按如图所示的方式任意框住9个数.(方框只能平移)(1)若框住的9个数中,正中间的一个数为39,则:这九个数的和为.(2)方框能否框住这样的9个数,它们的和等于2016?若能,请写出这9个数;若不能,请说明理由.(3)若任意框住9个数的和记为S,则:S的最大值与最小值之差等于.22.(10分)为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明算8、9月各用多少吨水?23.(10分)如图,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.(1)求∠AOD的度数;(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.24.(12分)已知线段AD=80,点B、点C都是线段AD上的点.(1)如图1,若点M为AB的中点,点N为BD的中点,求线段MN的长;(2)如图2,若BC=10,点E是线段AC的中点,点F是线段BD的中点,求EF的长;(3)如图3,若AB=5,BC=10,点P、Q分别从B、C出发向点D运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t秒,点E为AQ的中点,点F为PD的中点,若PE=QF,求t的值.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑1.【解答】解:5﹣(﹣3)=5+3=8(℃).故选:C.2.【解答】解:250000=2.5×105.故选:C.3.【解答】解:A、﹣3a﹣3a=﹣6a,故此选项错误;B、x4与x3不是同类项,不可以合并,故此选项错误;C、x2+x2=2x2,故此选项错误;D、﹣4x3+3x3=﹣x3,故此选项正确;故选:D.4.【解答】解:把x=﹣3代入k(x+4)﹣2k﹣x=5,得:k×(﹣3+4)﹣2k﹣(﹣3)=5,解得:k=﹣2.故选:A.5.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“文”相对的字是“汉”;“明”相对的字是“市”;“武”相对的字是“城”.故选:C.6.【解答】解:A、利用等式性质1,两边都减去3,得到a﹣3=b﹣3,所以A成立;B、利用等式性质2,两边都除以c2+1,得到,所以B成立;C、因为x不为0,所以C成立;D、当x=0时,等式不成立,所以不成立,故选:D.7.【解答】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个,∴3n+2=2018,解答:n=672,故选:B.8.【解答】解:∵AC:BC=5:3,∴设AC=5x,BC=3x,∴AB=8x,∵BD:CD=2:3,∴BC:BD=1:2,∴BD=6x=3cm,∴x=,∴AB=4,故选:B.9.【解答】解:设公路长x米,有y棵树,根据题意,得①2(+1)﹣102=2(+1)+102,③4(﹣1)=5(﹣1);故选:A.10.【解答】解:∵OE平分∠BOC,OG平分∠AOC,∴∠BOE+∠AOG=90°,∵∠AOG≠∠DOF,∴①错误;∵∠DOC=∠GOE=90°,∴∠AOE=135°﹣∠AOD,∴2∠AOE=270°﹣∠AOD,∴2∠AOE﹣∠BOD=90°,∴②正确;∵∠DOC=∠GOE=90°,∴∠EOD+∠COG=180°,∴③正确;∵OE平分∠BOC,OF平分∠AOD,∴∠DOF+∠COG=45°,∵OE平分∠BOC,OG平分∠AOC,∴∠BOE+∠COG=90°,∴∠BOE﹣∠DOF=45°;∴④正确.综上所述,正确的有②③④.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上11.【解答】解:根据题意得:x﹣=7﹣,去分母得:15x﹣5(x﹣1)=105﹣3(x+3),去括号得:15x﹣5x+5=105﹣3x﹣9,移项得:15x﹣5x+3x=105﹣9﹣5,合并同类项得:13x=91,把x的系数化为1得:x=7,故答案为:7.12.【解答】解:设这件衣服的进价为x元,由题意得,x+25%x=60解得x=48,故答案为:48.13.【解答】解:由题意得:180°﹣∠α=2∠α,解得:∠α=60°,则∠a的余角=90°﹣60°=30°;故答案为:30.14.【解答】解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,c﹣2b>0,a+2b<0,则原式=a+c﹣(c﹣2b)﹣a﹣2b=a+c﹣c+2b﹣a﹣2b=0.故答案为:015.【解答】解:∵OM平分∠AOC,ON平分∠BOC.∴∠MOC=∠AOC,∠CON=∠BON=BOC.如图1,∠MON=∠MOC+∠CON=(∠AOC+∠BOC)=×80°=40°;如图2,∠MON=∠MOC+∠CON=(∠AOC+∠BOC)=(360°﹣∠AOB)=×280°=140°.故答案为:40°或140°.16.【解答】解:当3≥x时,则9+x=19,解得x=10,不符合题意;当3<x时,则x2+3=19,解得x1=4,x2=﹣4(舍去),综上,x的值为4.故答案为:4三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.【解答】解:(1)原式=﹣4+18﹣6×9=﹣4+18﹣54=﹣40;(2)原式=3x2y﹣2x2y+4(xy﹣x2y)﹣4xy=3x2y﹣2x2y+4xy﹣6x2y﹣4xy=﹣5x2y.18.【解答】解:(1)3(x+1)﹣2(x﹣2)=2x+3,3x+3﹣2x+4=2x+3,3x﹣2x﹣2x=3﹣3﹣4,﹣x=﹣4,x=4;(2)去分母得:3(x+2)﹣2(2x﹣3)=12,3x+6﹣4x+6=12,3x﹣4x=12﹣6﹣6,﹣x=0,x=0.19.【解答】解:设她们采摘用了x小时,根据题意可得:8x﹣0.25=7x+0.25,解得:x=0.5.答:她们采摘用了0.5小时.20.【解答】解:(1)∵|a﹣15|+(b﹣4.5)2=0,∴|a﹣15|=0,(b﹣4.5)2=0,∵a、b均为非负数,∴a=15,b=4.5,(2)∵点C为线段AB的中点,AB=15,CE=4.5,∴AC=AB=7.5,∴AE=AC+CE=12,∵点D为线段AE的中点,∴DE=AE=6,(3)设EB=x,则AD=2BE=2x,∵点D为线段AE的中点,∴AD=DE=2x,∵AB=15,∴AD+DE+BE=15,∴x+2x+2x=15,解方程得:x=3,即BE=3,∵AB=15,C为AB中点,∴BC=AB=7.5,∴CE=BC﹣BE=7.5﹣3=4.5.21.【解答】解:(1)31+32+33+38+39+40+45+46+47=351.故答案为:351;(2)设正中间的数为a,则(a﹣8)+(a﹣7)+(a﹣6)+(a﹣1)+a+(a+1)+(a+6)+(a+7)+(a+8)=9a,由题意得9a=2016,解得a=224.∵224=7×32,∴224是表中第32行的最后一个数,∴不能框住这样的9个数,它们的和等于2016;(3)若任意框住9个数的和记为S,则S的最小值为9×9=81.∵2016÷7=288,∴2016在第288行的最后一个数,∴S的最大值为9×(2016﹣1﹣7)=18072,∴18072﹣81=17991.即S的最大值与最小值之差为17991.故答案为:17991.22.【解答】解:(1)∵小刚家6月份用水15吨,∴小刚家6月份应缴水费为10×1.6+(15﹣10)×2=26(元),故答案为:26;(2)由题意知小刚家7月份的用水量超过10吨而不超过20吨,设小刚家12月份用水量为x吨,依题意得:1.6×10+2(x﹣10)=1.75x解得:x=16,(3)因小刚家8月、9月共用水40吨,9月份用水比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为x吨,则8月份的用水量为(40﹣x)吨,①当x≤10时,依题意可得方程:1.6x+16+20+2.4(40﹣x﹣20)+2=79.6解得:x=8,②当10<x<20时,依题意得:16+2(x﹣10)+16+20+2.4(40﹣x﹣20)+2=79.6解得:x=6不符合题意,舍去.综上:小刚家8月份用水32吨,9月份用水8吨.23.【解答】解:如图所示:(1)设∠AOD=5x°,∵∠BOC=∠AOD∴∠BOC=•5x°=3x°又∵∠AOC=∠AOB+∠BOC,∠BOD=∠DOC+∠BOC,∠AOD=∠AOB+∠BOC+∠DOC,∴∠AOC+∠BOD=∠AOD+∠BOC,又∵∠AOC=∠BOD=120°,∴5x+3x=240解得:x=30°∴∠AOD=150°;(2)∵∠AOD=150°,∠BOC=∠AOD,∴∠BOC=90°,①若线段OB、OC重合前相差20°,则有:20t+15t+20=90,解得:t=2,②若线段OB、OC重合后相差20°,则有:20t+15t﹣90=20解得:,又∵0<t<6,∴t=2或t=;(3)∠MON的度数不会发生改变,∠MON=30°,理由如下:∵旋转t秒后,∠AOD=150°﹣5t°,∠AOC=120°﹣5t°,∠BOD=120°﹣5t°∵OM、ON分别平分∠AOC、∠BOD∴∠AOM=∠AOC=,∠DON==∴∠MON=∠AOD﹣∠AOM﹣∠DON=150°﹣5t°﹣﹣=30°.24.【解答】解:(1)∵M为AB的中点,N为BD的中点,∴,,∴MN=BM+BN====40;(2)∵E为AC的中点,F为BD的中点,∴,,∴;(3)运动t秒后,AQ=AC+CQ=15+4t,∵E为AQ的中点,∴,∴,∵DP=DB﹣BP=75﹣t,F为DP的中点,∴,又DQ=DC﹣CQ=65﹣4t,∴,或,由PE=QF得:或解得:或t=12.。