小学奥数 牛吃草问题 知识点+例题+练习 (分类全面)

合集下载

小学奥数题目-五年级-应用题-牛吃草问题

小学奥数题目-五年级-应用题-牛吃草问题

牛吃草问题1、概念由英国科学家牛顿提出,后人把这类问题称为牛吃草问题或叫做“牛顿问题”。

最基本的牛吃草问题是指牛在牧场上吃草,牧场上的草在不断的、均匀的生长。

难点在于草的总量不定。

2、四个关键量(1)草的生长速度(2)草的总量,分为新草的总量和原草的总量(3)牛的头数(4)吃的时间3、解决牛吃草问题的主要依据(1)草的每天生长量不变(2)每头牛每天的吃草量不变(3)草的总量=草场原有的草量(固定值)+新生的草量(4)新生的草量=草的生长速度×时间5、牛吃草问题的变形问题有抽水问题、电梯问题、检票口检票问题等等,关键在于类比成牛吃草问题,举一反三。

【例题1】牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天?1.1.【练习题1.1】牧场上一片青草,每天牧草都匀速生长。

这片牧草可供8头牛吃10天,或者可供6头牛吃15天。

问:可供4头牛吃几天?2.2.【练习题1.2】牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?3.3.【练习题1.3】一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光。

那么想用4天的时间,把这块草地的草吃光,需要多少只羊?【例题2】由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?1.1.【练习题2.1】由于天气突变,牧场上的草以固定的速度剧烈减少。

已知某块草地上的草可供33只羊吃5天,或可供24只羊吃6天。

照此计算,这个牧场可供多少只羊吃10天?2.2.【练习题2.2】由于天气逐渐冷起来,牧场上的草量不仅不增加,反而以固定的速度在减少。

已知某块草地上的草可供25头牛吃4天,或可供16头牛吃6天。

小学奥数 牛吃草问题

小学奥数 牛吃草问题

专题一:牛吃草问题※.核心公式:草场草量=(牛数-每天长出的草量)×天数这里我们把草场草量称为“原有量”把每天长出的草量称为“日产量”那么牛吃草问题的核心公式为:原有量 =(牛数-日产量)×天数※.解题思路:A.对于简单的牛吃草问题,一般可以根据已知条件,分步骤解答。

首先:求出日产量(每天长出的草量)然后:求出原有量(草场草量)最后:求出题目。

B.对于较为复杂的牛吃草问题,我们将在下面例题中,具体分析。

----------------------------------------------------------------- 例1.牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析:这是一道基本的牛吃草问题,我们可以按照思路A解答。

解:设1头牛1天吃的草为1份。

每天长出的草量为:(10×20-15×10)÷(20-10)= 5(份)草场原有的草量为:10×20-5×20 = 100(份)25头牛可以吃的天数:100÷(25-5)= 5(天)答:这片草地可供25头牛吃5天。

课堂练兵:牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供几头牛吃5天?例2.由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?分析:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。

但我们可以利用例1的方法,求出每天减少的草量和原有的草量。

解:设1头牛1天吃的草为1份。

每天减少的草量为:(20×5-15×6)÷(6-5)= 10(份)草场原有的草量为:20×5+10×5 = 150(份)设:可供x头牛吃10天?150 = (x+10)×10x = 5答:可供5头牛吃10天。

四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解

例1:牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天?分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。

可以吃:72÷6=12天。

例2:一片牧场上长满牧草,如牧草每天都匀速生长。

则牧场可供27头牛吃6天或23头牛吃9天。

问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。

我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。

例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。

如果用12人舀水,3小时舀完。

如果只有5个人舀水,要10小时才能舀完。

现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。

设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。

例4:有一片牧场,24头牛6天可以将草吃完,或21头牛8天可以吃完。

要使牧草永远吃不完,至多可以放牧几头牛?分析:要牧草永远吃不完,就要保证每天最多只吃新增的量,否则一旦超过每天新增的量,吃了原来的量,总有一天会吃完。

小学奥数 牛吃草问题 知识点+例题+练习 (分类全面)

小学奥数 牛吃草问题 知识点+例题+练习 (分类全面)
例5、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级台阶?
拓展:自动扶梯以均匀速度行驶着,小明和小红从扶梯上楼。已知小明每分钟走25级台阶,小红 每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上。该扶梯共有多少级台阶?
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
解决牛吃草问题主要抓住两个量:
(1)、原有草量
(2)、每天生长草量
例1、牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。如果牧草每周匀速生长,可供21头牛吃几周?
例6、一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些水。如果用12人舀水,3小时舀完。如果只有5个人舀水,要10小时才能舀完。现在要想2小时舀完,需要多少人?
拓展:有一水池,池底有泉水不断涌出。用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可以把水抽干。那么用25部这样的抽水机多少小时可以把水抽干?
教学内容
牛吃草问题
教学目标
能理解牛吃草问题并会解决问题
重点
用二元一次方程组求原有草量和每天生长草量
难点
用二元一次方程组求原有草量和每天生长草量




课堂精讲
顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

牛吃草问题(附练习题)

牛吃草问题(附练习题)

⽜吃草问题(附练习题)⽜吃草问题(附练习题)⽜吃草问题是经典的奥数题型之⼀,这⾥我只介绍⼀些⽐较浅显的⽜吃草问题,给⼤家开拓⼀下思维,⾸先,先介绍⼀下这类问题的背景,⼤家看知识要点知识要点⼀、定义伟⼤的科学家⽜顿著的《普通算术》⼀书中有这样⼀道题:“12头⽜4周吃牧草10/3格尔,同样的牧草,21头⽜9周吃10格尔。

问24格尔牧草多少⽜吃18周吃完。

”(格尔——牧场⾯积单位),以后⼈们称这类问题为“⽜顿问题”的⽜吃草问题。

这类问题难在哪呢?⼤家看看它的特点⼆、特点在“⽜吃草”问题中,因为草每天都在⽣长,草的数量在不断变化,也就是说这类问题的⼯作总量是不固定的,⼀直在均匀变化。

难吗?难什么啊,⼀点都不难,只要掌握了⽅法,以后这样的题就都会了,来,看看这例题典例评析例1 牧场上长满牧草,每天都匀速⽣长。

这⽚牧场可供27头⽜吃6天或23头⽜吃9天。

问可供21头⽜吃⼏天?【分析】这⽚牧场上的牧草的数量每天在变化。

解题的关键应找到不变量——即原来的牧草数量。

因为总草量可以分成两部分:原有的草与新长出的草。

新长出的草虽然在变,但应注意到它是匀速⽣长的,因⽽这⽚牧场每天新长出飞草的数量也是不变的。

从这道题我们看到,草每天在长,⽜每天在吃,都是在变化的,但是也有不变的,都是什么不变啊?草是以匀速⽣长的,也就是说每天长的草是不变的;,同样,每天⽜吃草的量也是不变的,对吧?这就是我们解题的关键。

这⾥因为未知数很多,我教⼤家⼀种巧妙的设未知数的⽅法,叫做设“1”法。

我们设⽜每天吃草的数量为1份,具体1份是多少我们不知道,也不⽤管它,设草每天增长的数量是a份,设原来的草的数量为b份,那么我们可以列⽅程了:27*6=b+6a;23*9=b+9a【思考1】⼀⽚草地,每天都匀速长出青草,如果可供24头⽜吃6天,或20头⽜吃10天,那么可供18头⽜吃⼏天?15天.设1头⽜1天吃的草为1份。

则每天新⽣的草量是(20×10-24×6)÷(10-6)=14份,原来的草量是(24-14)×6=60份。

四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解work Information Technology Company.2020YEAR例1:牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。

可以吃:72÷6=12天。

例2:一片牧场上长满牧草,如牧草每天都匀速生长。

则牧场可供27头牛吃6天或23头牛吃9天。

问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。

我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。

例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。

如果用12人舀水,3小时舀完。

如果只有5个人舀水,要10小时才能舀完。

现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。

设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。

小学奥数专题练习~牛吃草问题.

小学奥数专题练习~牛吃草问题.

冲刺重点——思维数学牛吃草问题知识归纳:例题1:一片草地,每天都匀速地长出青草,这片草地可供24头牛吃6周或18头牛吃10周。

问:供给19头牛吃,可以吃几周?练习1:一片草地,每天都匀速的长出青草。

这片草地可供27头牛吃6天或23头牛吃9天。

问:供给24头牛吃,可以吃几天?例题2:有一口水井,井底不断涌出泉水,每分钟涌出的水量相等。

如果使用3架抽水机来抽水,36分钟可以抽完;如果使用5架抽水机来抽水,20分钟可以抽完。

现在12分钟内要抽完井水,需要抽水机多少架?练习2:一个水池有一根进水管,有若干根相同的抽水管。

进水管不间断地进水,若用24根抽水管抽水,6小时即可把池中的水抽干;若用21根抽水管抽水,8小时可将池中的水抽干,那么用16根抽水管,多少小时可将水池中的水抽干?例题3:内蒙古奶牛场由于天气逐渐冷起来,牧场上的草不仅不长多,反而以固定的速度在减少。

照这样计算:某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

那么,可供多少头牛吃10天?练习3:内蒙古奶牛场由于天气渐冷,牧场上的草以固定的速度减少。

已知牧场上的草可供12头牛吃9天,或可供10头牛吃10天。

照这样计算,这个牧场可供多少头牛吃12天?例题4:万达商城大厦自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩子每分钟走20级,用了5分钟到达楼上;女孩每分钟走15级,用了6分钟到达楼上。

问该自动扶梯有多少级可见扶梯?练习4:自动扶梯以均匀速度由下往上行驶着,向东和刘胜要从扶梯下楼。

已知向东每分钟走33级,刘胜每分钟走24级,结果向东用5分钟,刘胜用6分钟分别到达楼上。

该扶梯共有多少级台阶?例题5:火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票,一个检票口每分钟能让25人检票进站。

如果只有一个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票后多少分钟就没有人排队?练习5:火车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

小学数学(牛吃草问题)

小学数学(牛吃草问题)

牛吃草问题知识点一:常规草增草减例题一:牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?例题二:由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?知识点二:牛吃草变形例题三:某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多,从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。

如果同时打开7个检票口,那么需多少分钟?知识点三:牛在变化例题四:个牧场上的青草每天都匀速生长。

这片草原可供17头牛吃30天,或供19头牛吃24天。

现有一群牛吃了6天后卖掉4头,余下的牛又吃了2天将草吃完。

请问这群牛原有多少头?例题五:有一块草地,每天都有新的草长出,这块草地可供9头牛吃12天,或供8头牛吃16天,开始只有4头牛在这块草地上吃草,从第7天起又增加了若干头牛来吃草,又吃了6天吃完了所有的草,假设草的生长速度每天都相同,每头牛每天的吃草量也相同,那么从第7天起,增加了多少头牛来吃草?知识点四:草地在变化例题六:有三块草地,面积分别是5公顷,15公顷和24公顷,草地上的草一样厚并且长得一样快。

第一块草地可供10头牛吃30天;第二块草地可供28头牛吃45天,那么第三块草地可供多少头牛吃80天?知识点五:牛羊一起吃草例题七:有一片草场,草每天的生长速度相同,若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)那么,17头牛和20只羊多少天可将草吃完?知识点六:方程法解牛吃草例题八:如图,一块正方形的草地被分为完全相等的四块和中间的阴影部分,已知草在各处都是同样速度匀速生长,老农戴着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光。

(在这两天内,其他草地的草正常生长)之后他让一半牛在②号草地,一半牛在③号草地吃草,6天之后又将两个草地的草吃光,然后老农把31的牛放在阴影部分的草地中,另外32的牛放在④号草地吃草。

小学奥数专题牛吃草问题

小学奥数专题牛吃草问题

小学奥数专题一牛吃草问题牛吃草概念及公式:设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度一、奥数导引例1.一块牧场长满草,每天牧草都均匀生长;这片牧场可供10头牛吃20天,可供15头牛吃10天,那么1可供25头牛吃多少天 2可供多少头牛吃4天例1.解析:假设一头牛一天吃1份草,10天长出草10×20-15×10=50份,每天长出草50÷20-10=5份,原有草10×20-20×5=100份,25头牛吃的草,减去每天长的草,一天消耗草25-5=20份,够吃100÷25-5=5天;可供25头牛吃5天; 解法二:110-x×20=15-x×10=25-x×210-x×20=15-x×10= -x×4例2.如果22头牛吃33公亩牧场的草,54天后可以吃完,17头牛吃28公亩牧场的草,84天后可以吃完,那么要在24天内吃完40公亩牧场的草,需要多少头牛A.50B.46C.38D.35例2解法1:牧场的面积发生变化,所以每天长出的草量不再是常量;设每头牛每天的吃草量为1份,则每亩54天的总草量为:22×54÷33=36份;每亩84天的总草量为:17×84÷28=51份,那么每亩每天的新生长草量为51-36÷84-54=0.5份,每亩原有草量为36-0.5×54=9份,那么40亩原有草量为9×40=360份,40亩24天新生长草量为24×0.5×40=480份,40亩24天共有草量360+480=840,可供牛数为840÷24=35头;解法2:利用列方程解问题;二、历年真题三、奥数拔高训练100分1.一个牧场可供58头牛吃7天,或者可供50头牛吃9天;假设草的生长量每天相等,每头牛的吃草量也相等,那么可供多少头牛吃6天10分2.现要将一池塘水全部抽干,但同时又有水流进池塘;若用8台抽水机10天可以抽干;用6台抽水机20天可以抽干;若要5天抽干水,需要多少台同样的抽水机抽水 15分3.一个蓄水池装有9根水管,1根进水管,8根相同的出水管;先放进一些水再排水;排水时进水管不关;如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光;要想在4.5小时内把池内的水全部排光,需同时打开几个出水管 15分4.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站开放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客解决完毕;1求增加人数的速度;2原来的人数;30分5.有三块草地,面积分别是5、15、24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天 30分1.解析:50×9-58×7÷9-7=22份,58×7-22×7=252份,252+6×22÷6=64头可供64头牛吃6天;2.解析:假设一台抽水机一天抽水1份;6×20-8×10÷20-10=4份,8×10-4×10=40份, 40+4×5÷5=12台,需要12台同样的抽水机抽水;3.解析:假设打开一根出水管每小时可排水“一份”,那么8根出水管开3小时共排出水8×3=24份;5根出水管开6小时共排出水5×6=30份;两种情况比较,可知3小时内进水管放进的水是30-24=6份;进水管每小时放进的水是6÷3=2份;3小时排水24份,3小时进水6份,可见打开排水管前,水池中有水24-6=18份;4.5小时再进水4.5×2=9份,4.5小时排完需打开18+9÷4.5=6根排水管;4.解析:设一个检票口一分钟通过一个人1个检票口30分钟30个人1个检票口10分钟20个人30-20÷30-10=0.5个人原有1×30-30×0.5=15人或者2×10-10×0.5=15人5.解析:设每头牛每天的吃草量为1份,则每亩30天的总草量为:10×30÷5=60份;每亩45天的总草量为:28×45÷15=84份,那么每亩每天的新生长草量为84-60÷45-30=1.6份,每亩原有草量为60-1.6×30=12份,那么24亩原有草量为12×24=288份,24亩80天新生长草量为24×1.6×80=3072,24亩80天共有草量3072+288=3360,可供牛数为3360÷80=42头;例 1 一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天例 22008年“陈省身杯”国际青少年五年级数学邀请赛有一个水池,池底存了一些水,并且还有泉水不断涌出;为了将水池里的水抽干,原计划调来8台抽水机同时工作;但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时;工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时;这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下台抽水机;例3 甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.巩固小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.例 4 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽巩固现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间。

牛吃草问题的例题

牛吃草问题的例题

牛吃草问题的例题一、基本牛吃草问题(1 - 5题)例题1:一片草地,可供10头牛吃20天,15头牛吃10天。

问可供25头牛吃几天?解析:设每头牛每天的吃草量为1份。

1. 首先求每天新生长的草量:- 10头牛20天的吃草量为10×20 = 200份。

- 15头牛10天的吃草量为15×10=150份。

- 20天的总草量比10天的总草量多的部分就是(20 - 10)天新长出来的草,所以每天新长的草量为(200 - 150)÷(20 - 10)=5份。

2. 然后求草地原有的草量:- 因为10头牛20天吃草量为200份,其中20天新长的草量为5×20 = 100份,所以原有草量为200-100 = 100份。

3. 最后求25头牛可以吃的天数:- 25头牛每天的吃草量为25份,每天新长草5份,那么可以吃的天数是100÷(25 - 5)=5天。

例题2:有一块匀速生长的草场,可供27头牛吃6周,或供23头牛吃9周。

那么它可供21头牛吃几周?解析:设每头牛每周的吃草量为1份。

1. 求每周新生长的草量:- 27头牛6周的吃草量为27×6 = 162份。

- 23头牛9周的吃草量为23×9 = 207份。

- 每周新长的草量为(207 - 162)÷(9 - 6)=15份。

2. 求草地原有的草量:- 27头牛6周吃草量为162份,6周新长草量为15×6 = 90份,所以原有草量为162-90 = 72份。

3. 求21头牛可吃的周数:- 21头牛每周吃草21份,每周新长草15份,可吃的周数为72÷(21 - 15)=12周。

例题3:牧场上长满牧草,每天牧草都匀速生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天。

问:可供多少头牛吃5天?解析:设每头牛每天吃草量为1份。

1. 求每天新长的草量:- 10头牛20天吃草量为10×20 = 200份。

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)

牛吃草问题之巴公井开创作“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天).如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不竭变动.这类工作总量不固定(均匀变动)的问题就是牛吃草问题.例1 牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变动,我们要想法子从变动傍边找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部份.牧场上原有的草是不变的,新长出的草虽然在变动,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量.设1头牛一天吃的草为1份.那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完.前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草.200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份.也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草.由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份).现在已经知道原有草100份,每天新长出草5份.当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天).所以,这片草地可供25头牛吃5天.在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种分歧情况吃失落的总草量的差及吃的天数的差计算出来的.(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.例2 一个水池装一个进水管和三个同样的出水管.先翻开进水管,等水池存了一些水后,再翻开出水管.如果同时翻开2个出水管,那么8分钟后水池空;如果同时翻开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开几多分钟?分析:虽然概况上没有“牛吃草”,但因为总的水量在均匀变动,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似.出水管所排出的水可以分为两部份:一部份是出水管翻开之前原有的水量,另一部份是开始排水至排空这段时间内进水管放进的水.因为原有的水量是不变的,所以可以从比力两次排水所用的时间及排水量入手解决问题.设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量.两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是有的水,可以求出原有水的水量为解:设出水管每分钟排出的水为1份.每分钟进水量答:出水管比进水管晚开40分钟.例3 由于天气逐渐冷起来,牧场上的草不单不长年夜,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供几多头牛吃10天?分析与解:与例1分歧的是,不单没有新长出的草,而且原有的草还在减少.可是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天.例4 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟达到楼上,女孩用了6分钟达到楼上.问:该扶梯共有几多级?分析:与例3比力,“总的草量”酿成了“扶梯的梯级总数”,“草”酿成了“梯级”,“牛”酿成了“速度”,也可以看成牛吃草问题.上楼的速度可以分为两部份:一部份是男、女孩自己的速度,另一部份是自动扶梯的速度.男孩5分钟走了20×5= 100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级.由男孩5分钟达到楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有(20+10)×5=150(级).解:自动扶梯每分钟走(20×5-15×6)÷(6—5)=10(级),自动扶梯共有(20+10)×5=150(级).答:扶梯共有150级.例5 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等待检票的步队消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时翻开7个检票口,那么需几多分钟?分析与解:等待检票的旅客人数在变动,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.旅客总数由两部份组成:一部份是开始检票前已经在排队的原有旅客,另一部份是开始检票后新来的旅客.设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时翻开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).例6 有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃几多天?分析与解:例1是在同一块草地上,现在是三块面积分歧的草地.为了解决这个问题,只需将三块草地的面积统一起来.[5,6,8]=120.因为 5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题酿成: 120公顷草地可供19×15=285(头)牛吃几天?因为草空中积相同,可忽略具体公顷数,所以原题可酿成:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?”这与例1完全一样.设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264—180)×10=840(份).可供285头牛吃840÷(285—180)=8(天).所以,第三块草地可供19头牛吃8天.练习1.一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周或供23头牛吃9周.那么,可供21头牛吃几周?2.一牧场上的青草每天都匀速生长.这片青草可供17头牛吃30天,或供19头牛吃 24天.现有一群牛,吃了6天后卖失落4头,余下的牛又吃了2天将草吃完,这群牛原来有几多头?3.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球新生成的资源增长速度是一定的,为使人类有不竭发展的潜力,地球最多能养活几多亿人?4.有一水池,池底有泉水不竭涌出.用10部抽水机20时可以把水抽干;用15部同样的抽水机,10时可以把水抽干.那么,用25部这样的抽水机几多小时可以把水抽干?5.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.如果同时开放3个检票口,那么40分钟检票口前的步队恰好消失;如果同时开放4个检票口,那么25分钟步队恰好消失.如果同时开放8个检票口,那么步队几多分钟恰好消失?6.两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是分歧的,一只每个白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用5个昼夜达到井底,另一只蜗牛恰好用6个昼夜达到井底.那么,井深几多米?7.两位顽皮的孩子逆着自动扶梯的方向行走.在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟达到另一端,女孩走了3分钟达到另一端.问:该扶梯共几多级?谜底与提示1.12周.解:设1头牛1周吃的草为1份.牧场每周新长草(23×9-27×6)÷(9-6)=15(份).草地原有草(27-15)×6=72(份),可供21头牛吃72÷(21-15)=12(周).2.40头.解:设1头牛1天吃的草为1份.牧场每天新长草(17×30-19×24)÷(30-24)=9(份).草地原有草(17-9)×30=240(份).这群牛8天应吃失落草240+9×8+4×2=320(份),所以这群牛有320÷8=40(头).3.70亿.解:设1亿人生活1年的资源为1份.地球每年新生成资源(80×300-100×100)÷(300-100)=70(份).当新生成的资源很多于每年消耗失落的资源时,地球上的资源才不致减少.所以地球最多能养活70亿人.4.5时.解:设1部抽水机1时抽出的水为1份.水池中每小时涌出泉水(10×20-15×10)÷(20-10)=5(份).水池中原有水(10-5)×20=100(份).25部抽水机抽干需100÷(25-5)=5(时).5.10分.时间:二O二一年七月二十九日解:设1个检票口1分钟通过的旅客人数为1份.每分钟新来旅客6.15米.解:每夜下滑(20×5-15×5)÷(6-5)=10(分米),井深(20+10)×5=150(分米)=15米.7.54级.解:自动扶梯每分钟走[24×(180÷20)-27×(120÷20)]÷(3-2)=54(级).自动扶梯共有27×(120÷20)-54×2=54(级).时间:二O二一年七月二十九日。

奥数班四年级第10讲 牛吃草问题

奥数班四年级第10讲   牛吃草问题
2. 一只船发现漏水时,已经进了一些水,水匀速进入船内。如果 10 人 淘水,3 小时淘完;如 5 人淘水 8 小时淘完。如果要求 2小时淘完,要 安排多少人淘水?
假设:1个人1时淘1份水。
10个人3时淘: 10×3=30份
5个人8时淘: 5×8=40份
多了: 40-30=10份
?人2时:
水速: 10÷(8-3)=2份/时
多了: 200-168=32份 草速: 32÷(20-12)=4份/天 几天: 4÷2=2天
10
【课堂精练】
4. 有一片草地,草每天生长的速度相同。这片草地可供5头牛吃40天, 或6供头牛吃30天。如果4头牛吃了30天后,又增加2头牛一起吃,这片 草地还可以再吃几天?
假设:1头牛1天吃1份草。
5头牛40天吃: 5×40=200份 6头牛30天吃: 6×30=180份
第10讲 牛吃草问题
四年级奥数班
【知识点拨】 牛吃草问题又称为消长问题或牛顿牧场,是17世纪 英国伟大的科学家牛顿提出来的。
1.牛吃草问题的特点: 草天天在生长
2.牛吃草问题的解题关键:: (1)草的生长速度
(2)原有的草量
【典型例题】
【典型例题】
例1:牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃 20天,可供15头牛吃10天。问:这片牧草可供25头牛吃多少天?
假设:1头牛1周吃1份草。 27头牛6周吃: 27×6=162份
23头牛9周吃: 23×9=207份
多了: 207-162=45份
草速: 45÷(9-6)=15份/周
原草: 162-15×6=72份
21头牛
每周吃21份
每天相当于吃: 21-15=6份/周
21头牛几周: 72÷6=12周

小学奥数牛吃草问题应用题练习50题附详解

小学奥数牛吃草问题应用题练习50题附详解

小学奥数牛吃草问题专项练习50题附详解(1)120头牛28天吃完10公顷牧场上的全部牧草,210头牛63天吃完30公顷牧场上的全部牧草,如果每公顷牧场上原有的牧草相等,且每公顷每天新生长的草量相同,那么多少头牛126天可以吃完72公顷牧场上的全部牧草?(2)12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草.多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?(3)牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?(4)画展9点开门,但早就有人排队等候入场了.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,则9点9分就不再有人排队了,如果开5个入场口,则9点5分就没有人排队了.那么第一个观众到达的时间是8点几分?(5)甲,乙,丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)(6)甲,乙,丙三人同时从同一地点出发,沿同一路线追赶前面的小明,他们三人分别用9分钟,15分钟,20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,求丙每小时行多少千米?(7)假设地球上新生成的资源的增长速度是一定的,照此测算,地球上资源可供137.5亿人生活112.5年,或可供112.5亿人生活262.5年,为使人类能不断繁衍,那么地球上最多能养活多少亿人?(8)快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是每小时24千米,20千米,19千米.快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?(9)两位孩子逆着自动扶梯的方向行走.在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端.问:该扶梯共多少级?(10)两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每个白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.那么,井深多少米?(11)某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?(12)某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙14天可以把砖运完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?(13)某商场八时三十分开门,但早有人来等候.从第一个顾客来到时起,每分钟来的顾客数一样多.如果开三个入口,八时三十九分就不再有人排队:如果开五个入口,八时三十五分就不再有人排队.那么,第一个顾客到达时是几点几分?(14)某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入场口每分钟可以进来10个游客,如果开放4个入场口.20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟后就没有人排队?(15)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:这片牧草可供25头牛吃几天?(16)牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?(17)入冬及其它原因,某片草地的草每天自然减少且减少的速度相同.这片草地可供8头牛吃10天,或供26头牛吃4天.供16头牛吃,能吃几天?(18)天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么可供11头牛吃几天?(19)现欲将一池塘水全部抽干,但同时有水匀速流入池塘.若用8台抽水机10天可以抽干;用6台抽水机20天能抽干.问:若要5天抽干水,需多少台同样的抽水机来抽水?(20)沿着匀速成上升的自动扶梯,甲从上朝下走到底走了150级,乙从下朝上走到顶走了75级.如果甲每分钟走的扶梯级数是乙的3倍,那么这部自动扶梯有多少级?(21)羊村有一批青草,若8只大羊和10只小羊一起吃,则可以吃12天,已知两只小羊每天吃的草量与一只大羊吃的草量相等.那么,这批青草可供多少只小羊和5只大羊吃8天?(22)一个农夫有2公顷,4公顷和6公顷三块牧场,三场牧场上的草长得一样密,而且长得一样快,农夫将8头牛赶到2公顷的牧场,5天吃完了,农夫又将这8头牛赶到4公顷的牧场,15天又吃完了;最后,这8头牛又被赶到6公顷的牧场,这块牧场够吃多少天?(23)一个水库水量一定,河水匀速流入水库.5台抽水机连续20天可抽干,6台同样的抽水机15天可抽干.若要求6天抽干,需要多少台同样的抽水机?(24)一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?(25)一牧场上的青草每天都匀速生长.这片青草可供10头牛吃20周,或供15头牛吃10周.那么可供25头牛吃几周?(26)一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周或供23头牛吃9周.那么可供21头牛吃几周?(27)一片草地,每天都匀速长出青草,这片草地可供8头牛吃20天或15头牛吃15天,那么这片草地可供16头牛吃几天?(28)一片草地,每天都匀速长出青草.如果可供24头牛吃6天,或20头牛吃10天吃完.那么可供19头牛吃几天?(29)一片草地每天长的草一样多,现有牛、羊、鹅各一只,且羊和鹅吃草的总量正好是牛吃草的总量.如果草地放牧牛和羊,可以吃45天;如果放牧牛和鹅,可吃60天:如果放牧羊和鹅,可吃90天.这片草地放牧牛、羊、鹅,可以供它们吃多少天?(30)一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马,牛,羊一起去吃草,几天可以将这片牧草吃尽?(31)一艘轮船发生漏水事故,船长立即安排两部抽水机同时向外抽水,当时已经漏了500桶水,一部抽水机每分钟抽水18桶,另一部每分钟抽水12桶,经过25分钟把水抽完,问每分钟漏进水多少桶?(32)一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时船内已经进入一些水,如果以8个人淘水,5小时可以淘完;如果以5个人淘水,10小时才能淘完.现在要想在2小时内淘完,需要多少人?(33)因为天气日渐寒冷,牧场上的草不但不生长,反而以固定的速度每天在减少.如果20头牛去吃20天可以吃完;如果30头牛去吃15天可以吃完.那么,如果10头牛去吃多少天可以吃完?(34)由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?(35)由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?(36)有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的三倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地的草.问几头牛10天能同时吃完两块草地上的草?(37)有快、中、慢三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟,10分钟,12分钟追上骑车人.现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?(38)有三块草地,面积分别是4公顷,8公顷和10公顷,草地上的草一样厚,而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?(39)有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?(40)有三块草地,面积分别是5,15,25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,则第三块草地可供多少头牛吃60天?(41)有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?(42)有一个水池,池底有一个打开的出水口,用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完.如果仅靠出水口出水,那么多长时间能把水漏完?(43)有一个蓄水池,池中已经有一些水,一个进水管不断向池内匀速进水.如果打开10个相同的出水管放水,3小时放完;如果打开5个相同的出水管放水,8小时放完.如果要求在2小时放完,要安排多少个相同的出水管?(44)有一个长方形的水箱,上面有一个注水孔,底面有个出水孔,两孔同时打开后,如果每小时注水30立方米,7小时可以注满水箱;如果每小时注水45立方米,注满水箱可少用2.5小时.那么每小时由底面小孔排水多少立方米?(每小时排水量相同)(45)有一口井,用四部抽水机40分钟可以抽干,若用同样的抽水机6部,24分钟可以抽干,那么同样用抽水机5部,多少时间可以抽干?(46)有一口水井,连续不断涌出泉水,每分钟涌出的水量相等.如果使用3台抽水机来抽水,36分钟可以抽完;如果使用5台抽水机来抽水,20分钟可抽完.现在12分钟内要抽完井水,需要抽水机多少台?(47)有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完.现有牛若干头,吃6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头(草每日匀速生长)?(48)有一牧场,已知养牛27头,6天把草吃尽,养牛23头,9天把草吃尽.如果养牛21头,那么几天能把草吃尽呢?(49)有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?如果桶没有裂缝由4个人来喝需要几天喝完?(50)有一眼泉井,用功率一样的3台抽水机去抽井水,同时开机,40分钟可以抽干;用同样的6台抽水机去抽,则只需要16分钟就可以抽干,那么用同样的抽水机9台,几分钟可以抽干?小学奥数牛吃草问题专项练习50题详解(1)解:设1头牛1天吃1份牧草.120头牛28天吃掉120×28=3360份,说明每公顷牧场28天提供3360÷10=336份牧草;210头牛63天吃掉210×63=13230份,说明每公顷牧场63天提供13230÷30=441份牧草;每公顷牧场63-28=35天多提供441-336=105份牧草,说明每公顷牧场每天的牧草生长量为105÷35=3份,原有草量为336-28×3=252份.如果是72公顷的牧场,原有草量为252×72=18144份,每天新长出3×72=216份,126天共计提供牧草18144+126×216=45360份,可供45360÷126=360头牛吃126天.(2)解:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份)每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份)则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份)可供养4536÷126=36头牛.(3)解:设1头牛1天的吃草量为"1"将它们转化为如下形式方便分析:18头牛16天共18×16=288份相当于原有草量+16天自然增加的草量27头牛8天供27×8=216 份相当于原有草量+8天自然增加的草量从上看出:2000平方米的牧场上16-8=8天生长草量=288-216=72即1天生长草量=72÷8=9那么2000平方米的牧场上原有草量:288-16×9=144或216-8×9=144则6000平方米的牧场1天生长草量=9×(6000÷2000)=27原有草量:144×(6000÷2000)=4326天里,西侧草场共提供草432+27×6=594可以让594÷6=99(头)牛吃6天.(4)解:设一个入口1分钟入场的人数为1份,3个入场口9分钟进入了27份观众,5个入场口5分钟进入了25份观众,说明4分钟来的观众人数是27-25=2份,即每分钟来0.5份.因为9点5分时共来了25份,来25份需要25÷0.5=50分钟,所以第一个观众到达的时间是8点15分.(5)解: 设1个工人1小时搬1份面粉.甲仓库中12个工人5小时搬了12×5=60份,乙仓库中28个工人3小时搬了28×3=84份,说明甲仓库的传送机5-3=2小时多输送了84-60=24份面粉,即每小时输送24÷2=12份,仓库中共有面粉(12+12)×5=120份.丙仓库中120份面粉需在2小时内搬完,每小时需搬120÷2=60份,因此需要工人60-12×2=36名.(6)解:(15×20-24×9)÷(15-9)=14(千米)15×20-14×15=90(千米)90÷20+14=18.5(千米).(7)解:设一亿人一年消耗的能源是1份.那么一年新生的能源是:(262.5×112.5-137.5×112.5)÷(262.5-112.5)=112.5×(262.5-137.5)÷(262.5-112.5)=14062.5÷150=93.75(份)要想使得人类不断生存下去,则每年消耗的能源最多就是每年新生的能源,那么最多的人口是:93.75÷1=93.75(亿人).答:地球上最多能养活93.75亿人.(8)解:6小时时自行车共走了:6×24=144(千米),10小时时自行车共走了:20×10=200(千米),自行车的速度为:(200-144)÷(10-6)=14(千米),三车出发时自行车已经走了:144-14÷6=60(千米),慢车追上的时间为:60÷(19-14)=12(小时).(9)解:2分钟=120秒,3分钟=180秒. 电动扶梯每分钟走:[(180÷20)×24-(120÷20)×27]÷(3-2)=216-162=54(级)电动扶梯共有:(120÷20)×27-54×2=54(级)答:该扶梯共54级.(10)解:(20×5-15×6+20)×5=30×5=150(分米)150分米=15米答:井深15米.(11)解:设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).(12)解:依题意知开工前运进的砖相当于"原有草"开工后每天运进相同的砖相当于"草的生长速度"工人砌砖相当于"牛在吃草".所以设1名工人1天砌砖数量为"1",列表分析得:15人14天共15×14=210份:原有砖的数量+14天运来砖的数量20人9天共20×9 =180份:原有砖的数量+9天运来砖的数量从上面的表中可以看出(14-9)=5天运来的砖为(210-180)=30即1天运来的砖为30÷5=6原有砖的数量为:180-6×9=126假设6名工人不走,则能多砌6×4=24份砖则砖的总数为126+24+6×(6+4)=210因为是10天工作完,所以有210÷10=21名工人.(13)解:设每个入口每分钟来商场的人数为一份从八时三十分到八时三十九分经过了:9分钟从八时三十分到八时三十五分经过了:5分钟每个入口每分钟增加的人数:(9×3-5×5)÷(5-3)=2÷2=1(份)每个入口原有等候的人数:9×3-1×9=27-9=18(份)从第一个顾客来到时起,到八时三十分开门经过的时间是:18÷1=18(分钟)所以第一个顾客到达时是8点12分.答:第一个顾客到达时是8点12分.(14)解:4个入场口20分钟进入的人数是:10×4×20=800(人),开门后20分钟来的人数是:800-400=400(人),开门后每分钟来的人数是:400÷20=20(人),设开6个入场口x分钟后没有人排队,由题意列方程得10×6×x=400+20x, 40x=400,x=10.答:开放6个入场口10分钟后就没有人排队.(15)解:设1头牛1天吃的草为1份,由条件可知,前后两次青草的问题相差为10×20-15×10=50.为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10(天)生长出来的,所以每天生长的青草为50÷10=5.现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的5头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;每天生长草量50÷10=5.原有草量(10-5)×20=100或200-5×20=100.25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).答:可供25头牛吃5天.(16)解:设每头牛每天吃"1"份草.每天新生草量为:(23×9-27×6)÷(9-6)=(207-162)÷3=45÷3=15(份)原有草量为:27×6-15×6=72(份)21头牛吃的天数:72÷(21-15)=72÷6=12(天)答:这片牧草可供21头牛吃12天.(17)解:设每头牛每天吃草1份则草每天减少:(26÷4-8×10)÷(10-4)=(104-80)÷6=24÷6=4(份)由于草每天减少4份,就相当于每天增加了4头牛吃草,那么草地原有的草的份数:(8+4)×10=12×10=120(份)16头牛吃:120÷(16+4)=120÷20=6(天)答:供16头牛吃,能吃6天.(18)解:5天时共有草:20×5=1006天时共有草:16×6=96草减少的速度为:(100-96)÷(6-5)=4原有的草量为:100+4×5=120可供11头牛吃:120÷(11+4)=8(天).(19)解:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位池塘中原有水量:6×20-4×20=40单位若要5天内抽干水,需要抽水机40÷5+4=12台.(20)解:(150×3+75×2)÷(3+2)=(450+150)÷5=120(级)答:这部自动扶梯有120级.(21)解:假设一只小羊每天吃1份草;这批青草共有:(8×2+10)×12=312(份)5只大羊8天吃青草:5×2×8=80(份)可供小羊的只数是:(312-80)÷8=29(只)答:可供29只小羊和5只大羊吃8天.(22)解:5×8÷2=20,15×8÷4=30(30-20)÷(15-5)=11×6=620-5×1=1515×6=9090÷(8-6)=45(天).(23)解:20天共抽水:20×5=10015天共抽水:15×6=90进水的速度为:(100-90)÷(20-15)=2原有水为:100-2×20=6060÷6=10(台)10+2=12(台).(24)解:设1头牛1天吃1份牧草那么16头牛20天一共吃了16×20=320份草20头牛12天吃了240份草每天长草量为(320-240)÷(20-12)=10份草原有的草量为320-10×20=120份草现在有10+15=25头牛,其中吃原有草的牛有25-10=15头那么可以吃120÷15=8天.(25)解:把一头牛一周所吃的牧草看作1,那么就有:10头牛20周所吃的牧草为:10×20=200 (这200包括牧场原有的草和20周新长的草)15头牛10周所吃的牧草为:15×10=150(这150包括牧场原有的草和10周新长的草)1周新长的草为:(200-150)÷(20-10)=5牧场上原有的草为:10×20-5×20=100每周新长的草不够250头牛吃,25头牛减去20头,剩下5头吃原牧场的草:100÷(25-5)=100÷20=5(周)答:可供25头牛吃5周.(26) 解:设1头牛1周吃的草为1份牧场每周新长草(23×9-27×6)÷(9-6)=15(份)草地原有草(27-15)×6=72(份)可供21头牛吃72÷(21-15)=12(周)(27) 解:假设每头牛每天吃青草1份青草的生长速度:(15×15-20×8)÷(20-15)=65÷5=13(份)草地原有的草的份数:15×15-13×15=225-195=30(份)每天生长的13份草可供13头牛去吃,那么剩下的16-13=3头牛吃30份草: 30÷(16-13)=30÷3=10(天)答:这片草地可供16头牛吃10天.(28) 解:6天时共有草:24×6=14410天时共有草:20×10=200草每天生长的速度为:(200-144)÷(10-6)=14原有草量:144-6×14=60可供19头牛: 60÷(19-14)=12(天).(29) 解:设1头牛1天吃草量为"1",将它们转化为如下形式方便分析.45天牛和羊吃草量=原有草量+45天新长草量 ①60天牛和鹅吃草量=原有草量+60天新长草量 ②90天牛(鹅和羊)吃草量=原有草量+90天新长草量 ③由①×②-③可得: 90天羊吃草量=原有草量,羊每天吃草量=原有草量÷90 由(3)分析知道:90天鹅吃草量=90天新长草量,鹅每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=60,带入③得90天羊吃草量=60,羊每天吃草量=32 这样如果牛,羊和鹅一起吃,可以让鹅去吃新生草,牛和羊吃原有草可以吃:60÷(1+32)=36(天). (30) 解:设1匹马1天吃草量为"1",将它们转化为如下形式方便分析:15天马和牛吃草量=原有草量+15天新长草量 ①20天马和羊吃草量=原有草量+20天新长草量 ②30马(牛和羊)吃=原有草量+30天新长草量 ③由①×②-③可得: 30天牛吃草量=原有草量,牛每天吃草量=原有草量÷30;由③分析知道:30天羊吃草量=30天新长草量,羊每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=20,带入③30天牛吃草量=20,得牛每天吃草量=32,这样如果马,牛和羊一起吃,可以让羊去吃新生草,马和牛吃原有草可以吃:20÷(1+32)=12(天). (31) 解:25分钟共抽水:(18+12)×25=750(桶)25分钟共漏水:750-500=250(桶)每分钟漏水:250÷25=10(桶).(32) 解:设每人每小时淘水1份.(1×10-5×8)÷(10-5)=10÷5=2(份)(30+2×2)÷2=34÷2=17(人)答:现在要想在2小时内淘完,需要17人.(33) 解:(30×15-20×20)÷(20-15)=1020×20+10×20=600600÷(10+10)=30(天)答:10头牛去吃30天可吃完.(34) 解:设1头牛1天吃1份牧草,则20头牛5天吃掉20×5=100份牧草,16头牛6天吃掉16×6=96份牧草,说明6-5=1天牧场上的牧草减少100-96=4份,我们可以假设有4头牛来帮忙把这部分草给吃了.牧场上的原有草量是:100+4×5=120份.原来有11头牛,现在又有4头牛来帮忙吃,所以可维持120÷(11+4)=8天.(35) 解:设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由"草地上的草可供20头牛吃5天",再加上"寒冷"代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由 150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天.(36) 解:设1头牛1天的吃草量为"1",将它们转化为如下形式方便分析,根据甲的面积是乙的3倍可以将关系(将乙看成1份,则甲就是3份)进行转化.甲: 30头牛12天30×12=360:甲原有草量+12天甲地自然增加的草量,甲转化为:10 头牛 12天10×12=120:乙原有草量+12天乙地自然增加的草量乙转化为: 20头牛4天20×4 = 80乙原有草量+ 4天乙地自然增加的草量.由此可以看出(12-4)=8天乙地长草量为(120-80)=40,即1天乙地长草量为40÷8=5;乙地的原有草量为:120-5×12=60;则甲,乙两地1天的新生草为:5×(3+1)=20,原有草量为:60×(3+1)=240;10天甲,乙两地共提供青草为:240+20×10=440,需要:440÷10=44(头)牛.(37)解:24×6=144(千米)10×20=200(千米)(200-144)÷(10-6)=14(千米)200-10×14=60(千米)60÷12+14=19(千米).(38)解:设1头牛1周吃1份牧草.24头牛6周吃掉24×6=144份,说明每公顷草地6周提供144÷4=36份牧草;36头牛12周吃掉36×12=432份,说明每公顷草地12周提供432÷8=54份牧草.每公顷草地12-6=6周多提供54-36=18份牧草,说明每公顷草地每周的牧草生长量是18÷6=3份,原有草量是36-3×6=18份.10公顷草地原有18×10=180份牧草,每周新增3×10=30份,可供50头牛吃180÷(50-30)=9周.(39)解:设每头牛每天的吃草量为1则每亩30天的总草量为:10×30÷5=60每亩45天的总草量为:28×45÷15=84那么每亩每天的新生长草量为(84-60)÷(45-30)=1.6每亩原有草量为:60-1.6×30=12那么24亩原有草量为:12×24=28824亩80天新长草量为24×1.6×80=307224亩80天共有草量3072+288=3360所以有3360÷80=42(头)答:第三块地可供42头牛吃80天.(40)解:30×10÷5=6028×45÷15=84(84-60)÷(45-30)=1.61.6×25=4060-1.6×30=1212×25=300300÷60=5(头)40+5=45(头).(41)解:因为5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为: 120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,所以原题可变为:"一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?"设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264—180)×10=840(份).可供285头牛吃840÷(285—180)=8(天).所以,第三块草地可供19头牛吃8天.(42)解:设1台抽水机1小时抽出1单位的水,那么5台抽水机20小时抽出5×20=100单位的水,8台抽水机15小时抽出8×15=120单位的水,说明池底的出水口20-15=5小时漏出120-100=20单位的水,则出水口的出水速度是每小时20÷5=4单位,水池中原有100+4×20=180单位的水,如果仅靠出水口出水,需要180÷4=45小时.(43)解:每小时新注入的水量是:(5×8-10×3)÷(10-5)=(40-30)÷5=10÷5=2(个)排水前原有的水量是:10×3-2×3=30-6=24(个)蓄水池2小时的总水量是:24+2×2=28(个)2小时把池内的水排完需要安排同样的出水管数是:28÷2=14(个)答:要想2小时内把池内的水排完需要安排同样的14个出水管.(44)解:7小时共注水:7×30=210(立方米)4.5小时共注水:(7-2.5)×45=202.5(立方米)排水速度为:(210-202.5)÷(7-4.5)=3(立方米).(45)解:设每台抽水机每分钟的抽水量为1份.井每分钟涌出的水量为:(4×40-6×24)÷(40-24)=16÷16=1(份)井里原有水量为:4×40-40×1=120(份)或6×24-24×1=120(份);井每分钟涌出的水即1份,要用1台抽水机去抽,剩下5-1=4(台)抽水机就要去抽原有的水:120÷(5-1)=120÷4=30(分钟)答:同样用抽水机5部,30分钟可以抽干.(46)解:36分钟时的总水量为:3×36=10820分钟时的总水量为:5×20=100涌水的速度为:(108-100)÷(36-20)=0.5原水量为:100-20×0.5=9090÷12=7.5 (台)7.5+0.5=8(台).(47)解:设1头牛1天吃1份草则牧草每天的生长量:(17×30-19×24)÷(30-24)=9份原有草量:17×30-9×30=240份假设牛的数量保持不变,连续吃6+2=8天共需要牧草240+9×8+4×2=320份因此有牛320÷8=40头.(48)解:设1头牛1天吃1份的草,求两个总量,27×6=162,23×9=207,总量的差÷时间差=每天长草量=安排去吃新草的牛数(207-162)÷(9-6)=15.每天长草量×天数=总共长出来的草15×6=90,草的总量-总共长出来的草=原有。

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)

牛吃草问题之阿布丰王创作“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天).如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不竭变动.这类工作总量不固定(均匀变动)的问题就是牛吃草问题.例1牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变动,我们要想法子从变动傍边找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部份.牧场上原有的草是不变的,新长出的草虽然在变动,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量.设1头牛一天吃的草为1份.那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完.前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草.200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份.也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草.由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份).现在已经知道原有草100份,每天新长出草5份.当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天).所以,这片草地可供25头牛吃5天.在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种分歧情况吃失落的总草量的差及吃的天数的差计算出来的.(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.例2 一个水池装一个进水管和三个同样的出水管.先翻开进水管,等水池存了一些水后,再翻开出水管.如果同时翻开2个出水管,那么8分钟后水池空;如果同时翻开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开几多分钟?分析:虽然概况上没有“牛吃草”,但因为总的水量在均匀变动,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似.出水管所排出的水可以分为两部份:一部份是出水管翻开之前原有的水量,另一部份是开始排水至排空这段时间内进水管放进的水.因为原有的水量是不变的,所以可以从比力两次排水所用的时间及排水量入手解决问题.设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量.两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是有的水,可以求出原有水的水量为解:设出水管每分钟排出的水为1份.每分钟进水量答:出水管比进水管晚开40分钟.例3由于天气逐渐冷起来,牧场上的草不单不长年夜,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供几多头牛吃10天?分析与解:与例1分歧的是,不单没有新长出的草,而且原有的草还在减少.可是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天.例4 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟达到楼上,女孩用了6分钟达到楼上.问:该扶梯共有几多级?分析:与例3比力,“总的草量”酿成了“扶梯的梯级总数”,“草”酿成了“梯级”,“牛”酿成了“速度”,也可以看成牛吃草问题.上楼的速度可以分为两部份:一部份是男、女孩自己的速度,另一部份是自动扶梯的速度.男孩5分钟走了20×5= 100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级.由男孩5分钟达到楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有(20+10)×5=150(级).解:自动扶梯每分钟走(20×5-15×6)÷(6—5)=10(级),自动扶梯共有(20+10)×5=150(级).答:扶梯共有150级.例5某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等待检票的步队消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时翻开7个检票口,那么需几多分钟?分析与解:等待检票的旅客人数在变动,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.旅客总数由两部份组成:一部份是开始检票前已经在排队的原有旅客,另一部份是开始检票后新来的旅客.设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时翻开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).例6有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃几多天?分析与解:例1是在同一块草地上,现在是三块面积分歧的草地.为了解决这个问题,只需将三块草地的面积统一起来.[5,6,8]=120.因为 5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题酿成: 120公顷草地可供19×15=285(头)牛吃几天?因为草空中积相同,可忽略具体公顷数,所以原题可酿成:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?”这与例1完全一样.设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264—180)×10=840(份).可供285头牛吃840÷(285—180)=8(天).所以,第三块草地可供19头牛吃8天.练习1.一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周或供23头牛吃9周.那么,可供21头牛吃几周?2.一牧场上的青草每天都匀速生长.这片青草可供17头牛吃30天,或供19头牛吃 24天.现有一群牛,吃了6天后卖失落4头,余下的牛又吃了2天将草吃完,这群牛原来有几多头?3.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球新生成的资源增长速度是一定的,为使人类有不竭发展的潜力,地球最多能养活几多亿人?4.有一水池,池底有泉水不竭涌出.用10部抽水机20时可以把水抽干;用15部同样的抽水机,10时可以把水抽干.那么,用25部这样的抽水机几多小时可以把水抽干?5.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.如果同时开放3个检票口,那么40分钟检票口前的步队恰好消失;如果同时开放4个检票口,那么25分钟步队恰好消失.如果同时开放8个检票口,那么步队几多分钟恰好消失?6.两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是分歧的,一只每个白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用5个昼夜达到井底,另一只蜗牛恰好用6个昼夜达到井底.那么,井深几多米?7.两位顽皮的孩子逆着自动扶梯的方向行走.在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟达到另一端,女孩走了3分钟达到另一端.问:该扶梯共几多级?谜底与提示1.12周.解:设1头牛1周吃的草为1份.牧场每周新长草(23×9-27×6)÷(9-6)=15(份).草地原有草(27-15)×6=72(份),可供21头牛吃72÷(21-15)=12(周).2.40头.解:设1头牛1天吃的草为1份.牧场每天新长草(17×30-19×24)÷(30-24)=9(份).草地原有草(17-9)×30=240(份).这群牛8天应吃失落草240+9×8+4×2=320(份),所以这群牛有320÷8=40(头).3.70亿.解:设1亿人生活1年的资源为1份.地球每年新生成资源(80×300-100×100)÷(300-100)=70(份).当新生成的资源很多于每年消耗失落的资源时,地球上的资源才不致减少.所以地球最多能养活70亿人.4.5时.解:设1部抽水机1时抽出的水为1份.水池中每小时涌出泉水(10×20-15×10)÷(20-10)=5(份).水池中原有水(10-5)×20=100(份).25部抽水机抽干需100÷(25-5)=5(时).5.10分.时间:二O二一年七月二十九日解:设1个检票口1分钟通过的旅客人数为1份.每分钟新来旅客6.15米.解:每夜下滑(20×5-15×5)÷(6-5)=10(分米),井深(20+10)×5=150(分米)=15米.7.54级.解:自动扶梯每分钟走[24×(180÷20)-27×(120÷20)]÷(3-2)=54(级).自动扶梯共有27×(120÷20)-54×2=54(级).时间:二O二一年七月二十九日。

奥数牛吃草10题

奥数牛吃草10题

牛吃草问题10题:1、一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天。

那么它可供几头牛吃20天?可供29头牛吃几天?2、牧场上长满牧草,每天牧草都匀速生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天。

那么这片牧场可供几头牛吃25天?3、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。

经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。

那么,可供11头牛吃几天?4、有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊1天的吃草量相当于1头牛1天的吃草量)。

那么,17头牛和20只羊多少天可将草吃完?5、.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?6、有三块草地,面积分别为5公顷、15公顷和24公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。

问:第三块草地可供多少头牛吃80天?7、有三块草地,面积分别为5,6和8公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。

问:第三块草地可供19头牛吃多少天?8、一个水池装一个进水管和三个同样的出水管。

先打开进水管,等水池存了一些水后,再打开出水管。

如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。

那么出水管比进水管晚开多少分钟?9、一个水池有一根进水管不间断地进水,还有若干根相同的抽水管若用24根抽水管抽水,6小时即可把池中的水抽干;若用21根抽水管抽水,8小时可把池中的水抽干。

若用16根抽水管,需要 ____小时可把水池中的水抽干。

10、画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队。

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)

牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。

也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。

由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。

当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

所以,这片草地可供25头牛吃5天。

在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。

牛吃草问题例题及练习

牛吃草问题例题及练习

牛吃草问题辅导例题及练习姓名解题技巧:牛吃草问题这种题的关键是牧场上牧草的总数量在不断地变化,因此要解答好这类题首先要分析清草的变化情况,即常说的新生量。

然后再找出牧场上原有草的数量,只要你请注意了这两点,就能很好地把问题解答出来。

例1 牧场上有一片匀速生长的牧草,可供27头牛吃6天,或供23头牛吃9天,那么这片牧草可供多少头牛吃12天?解:27头牛6周的吃草量27×6=16223头牛9周的吃草量23×9=207★每天新生的草量(207-162)÷(9-6)=15★原有的草量207-15×9=72 72÷12+15=21(头)例2 一只船发现漏水时,已经进了一些水,水匀速进入船内。

如果派10人淘水,6小时淘完;如果派6人淘水,18小时淘完。

如果派22人淘水,多少小时可以淘完?10人6小时淘水量10×6=606人18小时淘水量6×18=108★漏进的新水(108-60)÷(18-6)=4★原有漏进的水60-4×6=36 36÷(22-4)=2时例3 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.一个检票口一分钟能检票的人数看成“1份”。

30分钟的总量:4×30=12020分钟的总量:5×20=100★每分钟新增的量:(120-100)÷(30-20)=2★原有的量:120-2×30=60100-2×20=60 60÷(7-2)=12(分)附加问题:在开始检票前几分钟,就有人在排队了?60÷2=30(分)例4 两个顽皮的孩子逆着自动滚梯行走,男孩每秒可走3级台阶,女孩每秒可走2级台阶,结果从滚梯一端到达另一端,男孩走了100秒,女孩走了300秒,该滚梯共有多少级?男生走了:3×100=300(级)女生走了:2×300=600(级)★每秒新增的量:(600-300)÷(300-100)=1.5(级)(自动滚梯的速度)原有的量(自动滚梯原有的级数):300-1.5×100=150(级)600-1.5×300=150(级)例5 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少.但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.★每天减少的量:(20×5-15×6)÷(6-5)=10★原有的量:20×5+5×10=150(150-10×10)÷10=5(头)150÷10-10=5(头)例6 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走80级梯级,女孩每分钟走60级梯级,结果男孩用了0.5分钟到达楼上,女孩用了0.6分钟到达楼上.问:该扶梯共有多少级?每分钟减少的量:(80×0.5-60×0.6)÷(0.6-0.5)=40(级/分)(自动扶梯的速度)★原有的量:80×0.5+40×0.5=60(级)★单位时间增加(减少)的量=两次总量之差÷时间之差例7 有三块草地,面积分别为5,15和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?把一头牛吃一天的草量看成“1份”第一块(5公顷30天的总量):10×30=300第二块(15公顷45天的总量):28×45=1260提示:先“归一”,都变成1公顷:1公顷30天的总量:300÷5=601公顷45天的总量:1260÷15=84★1公顷每天增长的量:(84-60)÷(45-30)=1.6★1公顷原有的量:60-1.6×30=12应用“归一”的结果:用到中第三块(24公顷80天):★24公顷每天增长的量:1.6×24=38.4★24公顷原有的量:12×24=288288÷80+38.4=42(头)家庭作业1.一片牧场长满牧草,每天牧草都匀速生长,这片牧场可供10头牛吃20天,或可供15头牛吃10天,问:可供多少头牛吃5天?2.一片均匀生长的牧草,如果9头牛吃,12天吃光所有的草,如果8头牛吃16天吃完所有的草。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例6、一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些水。如果用12人舀水,3小时舀完。如果只有5个人舀水,要10小时才能舀完。现在要想2小时舀完,需要多少人?
拓展:有一水池,池底有泉水不断涌出。用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可以把水抽干。那么用25部这样的抽水机多少小时可以把水抽干?
例5、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级台阶?
拓展:自动扶梯以均匀速度行驶着,小明和小红从扶梯上楼。已知小明每分钟走25级台阶,小红 每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上。该扶梯共有多少级台阶?
教学内容
牛吃草问题
教学目标
能理解牛吃草问题并会解决问题
重点
用二元一次方程组求有草量和每天生长草量
难点
用二元一次方程组求原有草量和每天生长草量




课堂精讲
知识点详解
牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
拓展:牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。问:这片牧草可供25头牛吃多少天?
例2、一牧区长满牧草,每天牧草都在匀速生长。这牧区的草可供27头牛食用6周,可供23头牛食用9周。多少头牛8周可食完这牧区的草?
拓展:一块1000平方米扩大牧场里的草能够让12头牛吃16个星期,或让18头牛吃8个星期。如果在全部时间内,草能够均匀地生长,那么,一块4000平方米的牧场6个星期能养活多少头牛?
课后作业
1.牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?
2.由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头牛吃10天?
3、两个顽皮的孩子逆着自动扶梯的方向行走。在每分钟里,男孩可走40级台阶,女孩可走20级台阶,男孩走了2分钟到达另一端,女孩走了3分钟到达另一端,该扶梯共有多少级台阶?
例4、由于天气逐渐变冷,牧场上的草每天匀速减少。经过计算,牧场上的草可供20头牛吃5天,或者供16头牛吃6天,那么这片牧场上的草可供11头牛吃几天?
拓展:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。如果牧场上的草可供20头牛吃5天,或者供15头牛吃6天,那么可供多少头牛吃10天?
例3、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需多少分钟?
拓展:旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放3个检票口,需用半小时把所有乘客检查完毕,当开放4个检票口时,只要20分钟就把所有乘客检查完毕, 求增加人数的速度和原来的人数
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
解决牛吃草问题主要抓住两个量:
(1)、原有草量
(2)、每天生长草量
例1、牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。如果牧草每周匀速生长,可供21头牛吃几周?
4、一水库存水量一定,河水均匀入库。5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。若要6天抽干,需要多少台同样的抽水机?
5、一片草地,每天都匀速长出青草。如果可供24头牛吃6天,或20头牛吃10天吃完。那么可供19头牛吃几天?
(拔高)例7、一个牧场上的青草每天都匀速生长。这片青草可供17头牛吃30天,或供19头牛吃24天。现有一群牛吃了6天后卖掉4头,余下的牛又吃了2天将草吃完。这群牛原来有多少头?
(拔高)拓展:有一片草地,草每天生长的速度相同。这片草地可供5头牛吃40天,或6供头牛吃30天。如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天?
相关文档
最新文档