江苏省2020-2021学年高二数学下学期期初考试试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期初考试

高二数学

一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有

一项是符合题目要求的。

1.与曲线3

5y x x =-相切且过原点的直线的斜率为( ) A .2

B .-5

C .-1

D .-2

2.已知等差数列{}n a 中,7916+=a a ,则8a 的值是( ) A .4

B .16

C .2

D .8

3.已知复数z 满足

+=z i

i z

,则z =( ) A .

1122i + B .

1122i - C .1122

-+i

D .1122

i --

4.已知随机变量8ξη+=,若~(10,0.4)ξB ,则()ηE ,()ηD 分别是( ) A .4和2.4

B .2和2.4

C .6和2.4

D .4和5.6

5.已知抛物线2

:C y x =的焦点为F ,00(,)A x y 是C 上一点,05

||4

AF x =,则0x =( ) A .4 B .2

C .1

D .8

6.411(12)x x ⎛⎫++ ⎪⎝

展开式中2

x 的系数为( ) A .10

B .24

C .32

D .56

7.设1F ,2F 是双曲线22

22:1x y C a b

-=(

)的左、右焦点,O 是坐标原点.过2

F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5

B .3

C .2

D .2

8.直线y =a 分别与直线y =2(x +1),曲线y =x +lnx 交于点A ,B ,则|AB|的最小值为( ) A .3

B .2

C .

D .

二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符

合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。 9.若数列{}n a 对任意2()n n N ≥∈满足11(2)(2)0n n n n a a a a -----=,下面选项中关于数

列{}n a 的命题正确的是( ) A .{}n a 可以是等差数列

B .{}n a 可以是等比数列

C .{}n a 可以既是等差又是等比数列

D .{}n a 可以既不是等差又不是等比数列

10.已知函数()f x 的定义域为R 且导函数为'()f x ,如图是函数'()y xf x =的图像,则下列

说法正确的是( )

A .函数()f x 的增区间是(2,0),(2,)-+∞

B .函数()f x 的增区间是()(),2,2,-∞-+∞

C .2x =-是函数的极小值点

D .2x =是函数的极小值点

11.设椭圆的方程为22

124

x y +

=,斜率为k 的直线不经过原点O ,而且与椭圆相交于,A B 两点,M 为线段AB 的中点.下列结论正确的是( ) A .直线AB 与OM 垂直;

B .若点M 坐标为()1,1,则直线方程为230x y +-=;

C .若直线方程为1y x =+,则点M 坐标为13,34⎛⎫

⎪⎝⎭

D .若直线方程为2y x =+,则4

23

AB =

. 12.下列说法中,正确的命题是( ) A .已知随机变量ξ服从正态分布(

)2

2,N δ

,()40.84P ξ<=,则()240.16P ξ<<=.

B .以模型kx

y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3.

C .已知两个变量具有线性相关关系,其回归直线方程为y a bx =+,若2b =,1x =,3y =,则1a =.

D .若样本数据1x ,2x ,…,10x 的方差为2,则数据121x -,221x -,…,1021x -的方差

三、填空题:本题共4小题,每小题5分,共20分。请把答案直接填写在答题卡相应..... 位置上...

。 13.两个实习生加工一个零件,产品为一等品的概率分别为23和3

4

,则这两个零件中恰有一个一等品的概率为__________.

14.某幼儿园的老师要给甲、乙、丙、丁4个小朋友分发5本不同的课外书,则每个小朋友至少分得1本书的不同分法数为______.

15.若5

(2)a x x

+的展开式中各项系数之和为0,则展开式中含3x 的项为__________. 16.已知函数()()2ln p

f x px x f x x

=-

-,若在定义域内为单调递增函数,则实数p 的最小值为_________;若p >0,在[1,e]上至少存在一点0x ,使得()00

2e

f x x >成立,则实数p 的取值范围为_________.(本题第一空2分,第二空3分)

四、解答题:本题共6小题,共70分。请在答.题卡指定区域......

内作答。解答时应写出文字说明、证明过程或演算步骤。 17.(本小题满分10分)

已知等差数列{}n a 的首项为1,公差0d ≠,且8a 是5a 与13a 的等比中项. (1)求数列{}n a 的通项公式; (2)记()

1

1

n n n b n N a a *+=∈⋅,求数列{}n b 的前n 项和n T .

18.(本小题满分12分)

某品牌汽车4S 店,对该品牌旗下的A 型、B 型、C 型汽车进行维修保养,汽车4S 店记录了100辆该品牌三种类型汽车的维修情况,整理得下表:

假设该店采用分层抽样的方法从上述维修的100辆该品牌三种类型汽车中随机取10辆进行问

相关文档
最新文档