正余弦函数的单调性

合集下载

1.4.2第2课时 正、余弦函数的单调性与最值 课件

1.4.2第2课时 正、余弦函数的单调性与最值 课件
栏目 导引
第一章 三角函数
(4)确定含有正弦函数或余弦函数的较复杂函数的单调性时, 要注意使用复杂函数的判断方法来判断. 2.解析正弦函数、余弦函数的最值 (1)明确正弦、余弦函数的有界性,即|sin x|≤1,|cos x|≤1. (2)对有些函数,其最值不一定就是1或-1,要依赖函数的定 义域来决定. (3)形如y=Asin(ωx+φ)(A>0,ω>0)的函数求最值时,通常利 用“整体代换”,即令ωx+φ=z,将函数转化为y=Asin z的 形式求最值.
第一章 三角函数
栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π+2kπ,74π+ 2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
【名师点评】 正弦、余弦函数单调区间的求解技巧: (1)结合正弦、余弦函数的图象,熟记它们的单调区间. (2)确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法:采 用“换元”法整体代换,将ωx+φ看作一个整体,可令“z= ωx+φ”,即通过求y=Asin z的单调区间而求出函数的单调 区间.若ω<0,则可利用诱导公式将x的系数转变为正数.
栏目 导引
第一章 三角函数
跟踪训练
1.求函数 y=sin(π3-12x),x∈[-2π,2π]的单调递增区间. 解:y=sin(π3-12x)=-sin(12x-π3). 由 y=sin x 与 y=-sin x 的图象关于 x 轴对称可知,y=sin x 的递增 区间就是 y=-sin x 的递减区间.因此,要求 y=-sin(12x-π3)的递 增区间,只要求出 y=sin(12x-π3)的递减区间即可.

正、余弦函数的单调性与最值

正、余弦函数的单调性与最值

比较三角函数值的大小 比较下列各组数的大小. (1)cos-253π与 cos-147π; (2)sin2 012°和 cos157°.
【思路探索】 利用诱导公式将异名三角函数转化为 同名三角函数,非同一单调区间的角,转化到同一单调区 间上,再利用函数的单调性比较.
【解】 (1)解法一: ∵cos-253π=cos-6π+75π=cos75π, cos-147π=cos-6π+74π=cos74π, ∵π<75π<74π<2π, 又 y=cosx 在[π,2π]上单调递增, ∴cos75π<cos74π,
求函数y=Asin(ωx+φ)(A>0,ω≠0)或y=Acos(ωx+ φ)(A>0,ω≠0)的单调区间,一般将ωx+φ视作整体,代入y =sinx或y=cosx相关的单调区间所对应的不等式,解之即 得.这里实际上采用的是整体的思想,这是研究三角函数 性质的重要数学思想,一般地,ω<0时,y=Asin(ωx+ φ)(Aω≠0)变形为y=-Asin(-ωx-φ),y=Acos(ωx+ φ)(Aω≠0)变形为y=Acos(-ωx-φ),再求函数的单调区 间.所有的这些变形都是为了使x前面的系数为正值.同 时要注意A<0时单调区间的变化.
单调减区间为2kπ+π6,2kπ+76π. (2)函数 y=2sinπ3-2x=-2sin2x-3π,令 2kπ-2π≤2x -π3≤2kπ+2π(k∈Z),得 kπ-1π2≤x≤kπ+152π(k∈Z),∴函数 y=2sin3π-2x的单调减区间为kπ-1π2,kπ+152(k∈Z).令π2 +2kπ≤2x-3π≤32π+2kπ,k∈Z,解得152π+kπ≤x≤1112π+kπ, k∈Z,即原函数的单调递增区间为152π+kπ,1112π+kπ(k∈Z).

正弦,余弦函数的单调性和奇偶性

正弦,余弦函数的单调性和奇偶性
正弦, 正弦,余弦函数的性质
(奇偶性,单调性) 奇偶性,单调性)
X
正弦, 正弦,余弦函数的图象和性质
y
1 -4π -3π -2π -π
o
-1
π





x
y=sinx (x∈R) ∈
∈ 定义域 x∈R ∈ 值 域 y∈[ - 1, 1 ] π 周期性 T = 2π
1
y=cosx (x∈R) ∈
4
y 1

3π 2
π
y=|sinu|
π
2
π
π
2
O
π
3π 2

u
即: 增区间为 k π ≤ u ≤ k π , k ∈ Z 2 减区间为 k π ≤ u ≤ k π + π , k ∈ Z ∵
π
-1
y=sinu y=- |sinu|
2 3π π kπ ≤ x ≤ kπ , k ∈ Z y为增函数 为增函数 4 4 π π kπ ≤ x ≤ kπ + , k ∈ Z y为减函数 为减函数 4 4
正弦,余弦函数的奇偶性, 正弦,余弦函数的奇偶性,单调性
小 结:
函数 奇偶性 [ 正弦函数 奇函数 [
π
2
单调性(单调区间) 单调性(单调区间)
π
+2kπ, 2 +2kπ],k∈Z 单调递增 π π ∈ +2kπ, π
3π 2
π
2
+2kπ],k∈Z 单调递减 π ∈ 单调递增 单调递减
余弦函数
偶函数

x
sinx
π
2

0 0

正弦函数余弦函数的单调性

正弦函数余弦函数的单调性

正弦函数和余弦函数是周期函数,它们的单调性极为重要,它们的单调性决定了函数的性质,也是函数图形及表示形式的基础.
正弦函数是关于直角坐标系x轴的周期函数,其表达式为y=sin x,它的定义域为[-π,π], x轴上的值是周期性变化的,当x=0时,y=0,当x=π/2时,y=1,当x=π时,y=-1,其余的点也是类似的,它的单调性是递增的.
余弦函数也是关于x轴的周期函数,其表达式为y=cos x,它的定义域也是[-π,π],其形状和正弦函数类似,只是它的单调性是递减的,当x=0时,y=1,当x=π/2时,y=0,当x=π时,y=-1,它的单调性是递减的.
正弦函数和余弦函数都是周期函数,它们的单调性分别是递增和递减.它们的单调性决定了函数的性质,也是函数图形及表示形式的基础.它们也提供了许多实用的应用,在物理、工程、数学等方面都有广泛的应用,从而为科学技术发展做出了重要的贡献.。

人教版高中数学必修4《正弦函数、余弦函数的单调性》教案和教案说明

人教版高中数学必修4《正弦函数、余弦函数的单调性》教案和教案说明

课题:正弦函数、余弦函数的单调性教材:人教版必修4(新课标A 版)教学目标:知识目标: 掌握正弦函数和余弦函数的单调性;会运用正余弦函数的单调性去判断两个同名的弦函数值的大小关系;能求出求形如的单调区间及)cos()sin(ϕωϕω+=+=x y x y 。

情感目标: 通过经历新知识的探索,培养学生善观察、勤思考、爱探究良好的学习品质。

能力目标: 培养学生的思考分析能力、自主探究能力,提高学生对新旧知识的运用能力,在推导新知及解题过程中使学生感悟数形结合思想及化归思想。

教学重点、难点:教学重点:用数形结合法探索正、余弦函数的单调性。

教学难点:求形如情形的单调区间当及0)cos()sin(>+=+=ωϕωϕωx y x y 。

教学方法:讲授法,探究法,讲练结合法教学过程:一、复习引入:1引入:前面已学过正弦函数和余弦函数的图象以及它们周期性和奇偶性,(投影:正、余弦函数的图象),现在我们要通过正弦、余弦函数图象去研究它的另一个重要的性质——单调性。

2、板书课题:正弦函数、余弦函数的单调性3、回忆:函数在某区间上单调增(或单调减)的图象特征。

二、新课:(一)、正弦函数的单调性1、探究正弦函数]23,2[sin ππ-=在x y 上的单调性(1) 让学生观察正弦函数y=sinx 的图象启发学生思考:它有多段图象自左到右是呈现上升状态,也有多段呈下降状态,根据函数单调性知识可知它分段具有单调性,那么这里面有什么规律呢,先要找一个周期区间上的函数图象来分析研究。

引导学生分析所选用的那一个区间段的图是否最佳选择,最适合的是只有一个单调增区间和单调减区间的用这两段上的图象。

(选择区间]23,2[ππ-) (2)让学生再观察正弦函数在区间]23,2[ππ-上的图象的升降情况.提问:从图形中你发现了什么样的现象?(3)总结出y=sinx 在一个周期段的区间上的单调性结论:(投影)正弦函数y=sinx 在闭区间]2,2[ππ-上单调增,其值由-1增大到1; 在闭区间]23,2[ππ上单调减,其值由1减小到-1. 2、探讨正弦函数y=sinx 在整个定义域上的单调性(1)观察y=sinx 在闭区间⋯⋯--]2325[]25,23[ππππ,、,它们的图象是完全相同的,也一样是从左到右上升状态,这些闭区间之间的关系是相隔了整数倍的周期,引导结合正弦函数的周期性,让学生试写出它在定义域上的单调增区间(2)得出结论:正弦函数y=sinx 在每一个闭区间)](22,22[Z k k k ∈+-ππππ上单调增,其值由-1增大到1;用类似方法探索出正弦函数y=sinx 在定义域上的减区间,得到结论:在每一个闭区间)](232,22[Z k k k ∈++ππππ上单调减,其值由1减小到-1. (教师板书正弦函数的增、减区间)强调:正弦函数在定义域R 上不单调,但在各个周期上分段单调;上面写的正弦函数的增、减区间,其实是由很多个区间组成,并不止一个,因为k 每取一个整数就有一个相应的区间,书写带周期的单调区间时,勿忘了写上Z k ∈这一条件。

1.4.2 正弦 余弦函数的性质(单调性、最值)

1.4.2  正弦 余弦函数的性质(单调性、最值)

3 5 对称中心: ( ,0),( ,0),( ,0),( ,0) 2 2 2 2

2
k ,0) k Z
1 例5:求函数 y sin( x ) 的单调递增区间: 2 3
解:

2
1 y sin x 3 2
y sin z

2k z
余弦函数的单调性
y
1 -3
5 2
-2
3 2
-


2
o
-1

2

3 2
2
5 2
x
3
7 2
4
x
cosx
-
-1



2

0
1

2


-1
0
0
y=cosx (xR) 增区间为 [ +2k, 2k],kZ + ], kZ 减区间为 [2k, 2k, 其值从-1增至1 其值从 1减至-1
y cos x
3 5 2
2


y
1
任意两相邻对称轴 ( 或对称中心 ) 的间距为 3 2 O 5 x 3 半个周期;
2
2
1
2

2
3
2
对称轴与其相邻的对称中心的间距为
对称轴:x
,0, , 2
四分之一个周期.
(
x k , k Z

o
-1

2
3
4
5
6
x
sin(-x)= - sinx (xR) cos(-x)= cosx (xR)

求三角函数的单调性的基本方法[推荐]

求三角函数的单调性的基本方法[推荐]

求三角函数的单调性的基本方法[推荐] 三角函数的单调性是函数在其定义域内的特定区间内单调增加或减少的特性。

对于三角函数,如正弦函数(sine function)、余弦函数(cosine function)和正切函数(tangent function),它们的单调性取决于其角度或弧度的值。

为了理解和确定三角函数的单调性,我们可以采用以下的基本方法:方法一:使用函数图像对于三角函数,其图像是理解其单调性的直观且有效的方式。

通过绘制函数的图像,我们可以清晰地看到函数在哪些区间内是单调增加或减少的。

例如,正弦函数的图像呈现了周期性的变化,其在每个周期内都有一段上升和下降的区间,这就是正弦函数的单调性。

方法二:利用三角恒等式和三角函数的性质除了观察图像,我们还可以利用三角恒等式和三角函数的性质来理解和确定函数的单调性。

例如,我们知道正弦函数在任何角度下都有定义,但在0到π/2(弧度)之间是单调增加的,而在π/2到π(弧度)之间是单调减少的。

这是因为正弦函数在这个范围内的导数(也就是变化率)是正的(增加)和负的(减少)。

方法三:利用导数判断对于一般函数,我们可以通过求导数来判断其单调性。

对于三角函数,我们也可以通过求导数来判断其单调性。

例如,我们可以求正弦函数的导数,然后观察其在哪个区间内为正(即函数在此区间内单调增加),在哪个区间内为负(即函数在此区间内单调减少)。

这种方法可以与第一种方法(使用函数图像)相互验证。

结论:理解和确定三角函数的单调性需要综合运用以上三种方法。

通过绘制函数图像、掌握三角恒等式和三角函数的性质、以及利用导数判断函数的单调性,我们可以更全面地理解三角函数的性质,从而更好地解决涉及三角函数的数学问题。

具体来说,我们可以按照以下步骤进行:1.首先,我们需要了解所研究的三角函数的定义和基本特性,例如正弦函数、余弦函数和正切函数的定义域、值域和周期等。

2.其次,我们可以绘制出该函数的图像,通过观察图像的形状和变化趋势来初步判断其单调性。

2 第2课时 正、余弦函数的单调性与最值

2 第2课时 正、余弦函数的单调性与最值

第2课时 正、余弦函数的单调性与最值问题导学预习教材P204-P207,并思考以下问题:1.正、余弦函数的单调区间相同吗?它们分别是什么? 2.正、余弦函数的最值分别是多少?正弦、余弦函数的图象和性质正、余弦函数不是定义域上的单调函数,如说“正弦函数在第一象限是增函数”也是错误的,因为在第一象限的单调递增区间有无穷多个,在每个单调增区间上,y =sin x 都是从0增加到1,但不能看作一个单调区间.判断正误(正确的打“√”,错误的打“×”) (1)函数y =12sin x 的最大值为1.( )(2)∃x 0∈[0,2π],满足cos x 0= 2.( )(3)正弦函数、余弦函数在定义域内都是单调函数.( ) 答案:(1)× (2)× (3)×在下列区间中,使函数y =sin x 为增函数的是( ) A .[0,π] B.⎣⎡⎦⎤π2,3π2C.⎣⎡⎦⎤-π2,π2 D .[π,2π]答案:C函数y =1-2cos π2x 的最小值、最大值分别是( )A .-1,3B .-1,1C .0,3D .0,1 答案:A函数y =sin x (π3≤x ≤2π3)的值域为________.答案:[32,1]函数y =-cos x 的单调递减区间是____________; 单调递增区间是____________. 答案:[-π+2k π,2k π](k ∈Z ) [2k π,2k π+π](k ∈Z )正、余弦函数的单调性求下列函数的单调递减区间:(1)y =12cos ⎝⎛⎭⎫2x +π3;(2)y =2sin ⎝⎛⎭⎫π4-x .【解】 (1)令z =2x +π3,而函数y =cos z 的单调递减区间是[2k π,2k π+π](k ∈Z ).所以当原函数单调递减时,可得2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ).所以原函数的单调递减区间是⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)y =2sin ⎝ ⎛⎭⎪⎫π4-x =-2sin ⎝ ⎛⎭⎪⎫x -π4.令z =x -π4,则y =-2sin z ,求y =-2sin z 的单调递减区间,即求sin z 的单调递增区间.所以-π2+2k π≤z ≤π2+2k π,k ∈Z .即-π2+2k π≤x -π4≤π2+2k π,k ∈Z .所以-π4+2k π≤x ≤3π4+2k π,k ∈Z .所以函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的单调递减区间是⎣⎢⎡⎦⎥⎤-π4+2k π,3π4+2k π(k ∈Z ).求正、余弦函数的单调区间的策略(1)结合正、余弦函数的图象,熟记它们的单调区间.(2)在求形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间时,应采用“换元法”整体代换,将“ωx +φ”看作一个整体“z ”,即通过求y =A sin z 的单调区间而求出原函数的单调区间.求形如y =A cos(ωx +φ)(A >0,ω>0)的函数的单调区间同上.1.函数y =sin ⎝⎛⎭⎫x +π2,x ∈R 在( )A.⎣⎡⎦⎤-π2,π2上是增函数 B .[0,π]上是减函数 C .[-π,0]上是减函数 D .[-π,π]上是减函数解析:选B.因为y =sin ⎝ ⎛⎭⎪⎫x +π2=cos x ,所以在区间[-π,0]上是增函数,在[0,π]上是减函数. 2.求函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π4的单调增区间.解:设x +π4=u ,y =|sin u |的大致图象如图所示,函数的周期是π.当u ∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )时,函数y =|sin u |递增.函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π4的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).比较三角函数值的大小比较下列各组数的大小. (1)sin1017π与sin 1117π; (2)cos ⎝⎛⎭⎫-7π8与cos 6π7;(3)sin 194°与cos 160°.【解】 (1)因为函数y =sin x 在⎣⎢⎡⎦⎥⎤π2,π上单调递减,且π2<1017π<1117π<π,所以sin 1017π>sin 1117π. (2)cos ⎝ ⎛⎭⎪⎫-7π8=cos 7π8,因为0<6π7<7π8<π,y =cos x 在(0,π)上是减函数,所以cos7π8<cos 6π7. 所以cos ⎝ ⎛⎭⎪⎫-7π8<cos 6π7.(3)由于sin 194°=sin(180°+14°)=-sin 14°, cos 160°=cos(180°-20°)=-cos 20°=-sin 70°, 又0°<14°<70°<90°,而y =sin x 在[]0°,90°上单调递增, 所以sin 14°<sin 70°,-sin 14°>-sin 70°, 即sin 194°>cos 160°.比较三角函数值大小的步骤(1)异名函数化为同名函数;(2)利用诱导公式把角转化到同一单调区间上; (3)利用函数的单调性比较大小.1.sin 470°________cos 760°(填“>”“<”或“=”).解析:sin 470°=sin 110°=cos 20°>0,cos 760°=cos 40°>0且cos 20°>cos 40°, 所以cos 760°<sin 470°. 答案:>2.比较下列各组数的大小. (1)sin ⎝⎛⎭⎫-376π与sin ⎝⎛⎭⎫493π; (2)cos 870°与sin 980°. 解:(1)sin ⎝⎛⎭⎫-376π =sin ⎝ ⎛⎭⎪⎫-6π-π6=sin ⎝ ⎛⎭⎪⎫-π6,sin ⎝⎛⎭⎫493π=sin ⎝⎛⎭⎪⎫16π+π3=sin π3, 因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,所以sin ⎝ ⎛⎭⎪⎫-π6<sin π3,即sin ⎝⎛⎭⎫-376π<sin 493π. (2)cos 870°=cos(720°+150°) =cos 150°,sin 980°=sin(720°+260°) =sin 260°=sin(90°+170°)=cos 170°, 因为0°<150°<170°<180°, 且y =cos x 在[0°,180°]上是减函数,所以cos 150°>cos 170°,即cos 870°>sin 980°.正、余弦函数的最值(值域)求下列函数的最值. (1)y =3+2cos ⎝⎛⎭⎫2x +π3;(2)y =-sin 2x +3sin x +54.【解】 (1)因为-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1,所以当cos ⎝ ⎛⎭⎪⎫2x +π3=1时,y max =5;当cos ⎝⎛⎭⎪⎫2x +π3=-1时,y min =1.(2)y =-sin 2x +3sin x +54=-(sin x -32)2+2.因为-1≤sin x ≤1,所以当sin x =32时,函数取得最大值,y max =2;当sin x =-1时,函数取得最小值,y min =14- 3.(变条件)在本例(1)中,若x ∈⎣⎡⎦⎤-π6,π12,则函数y =3+2cos ⎝⎛⎭⎫2x +π3的最大、最小值分别是多少?解:因为x ∈⎣⎢⎡⎦⎥⎤-π6,π12,所以0≤2x +π3≤π2,所以0≤cos ⎝⎛⎭⎪⎫2x +π3≤1,所以当cos ⎝ ⎛⎭⎪⎫2x +π3=1时,y max =5;当cos ⎝⎛⎭⎪⎫2x +π3=0时,y min =3.所以函数y =3+2cos ⎝ ⎛⎭⎪⎫2x +π3,x ∈⎣⎢⎡⎦⎥⎤-π6,π12的最大值为5,最小值为3.三角函数最值问题的求解方法(1)形如y =a sin x (或y =a cos x )型,可利用正弦函数、余弦函数的有界性,注意对a 正负的讨论.(2)形如y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )型,可先由定义域求得ωx +φ的范围,然后求得sin(ωx +φ)(或cos(ωx +φ))的范围,最后求得最值.(3)形如y =a sin 2x +b sin x +c (a ≠0)型,可利用换元思想,设t =sin x ,转化为二次函数y =at 2+bt +c 求最值.t 的范围需要根据定义域来确定.1.函数y =cos(x +π6),x ∈[0,π2]的值域是( )A .(-32,12) B .[-12,32]C .[32,1] D .[12,1]解析:选B.由0≤x ≤π2,得π6≤x +π6≤2π3,所以-12≤cos(x +π6)≤32,故选B.2.求函数y =cos 2x +4sin x 的最值及取到最大值和最小值时的x 的集合.解:y =cos 2x +4sin x =1-sin 2x +4sin x =-sin 2x +4sin x +1 =-(sin x -2)2+5.所以当sin x =1,即x =2k π+π2,k ∈Z 时,y max =4;当sin x =-1,即x =2k π-π2,k ∈Z 时,y min =-4.所以y max =4,此时x 的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =2k π+π2,k ∈Z ; y min =-4,此时x 的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =2k π-π2,k ∈Z .1.下列函数中,在区间⎝⎛⎭⎫π2,π上恒正且是增函数的是( )A .y =sin xB .y =cos xC .y =-sin xD .y =-cos x解析:选D.作出四个函数的图象,知y =sin x ,y =cos x 在⎝ ⎛⎭⎪⎫π2,π上单调递减,不符合;而y =-sin x 的图象虽满足在⎝ ⎛⎭⎪⎫π2,π上单调递增但其值为负,所以只有D 符合,故选D.2.函数y =3cos ⎝⎛⎭⎫12x -π4在x =________时,y 取最大值.解析:当函数取最大值时,12x -π4=2k π(k ∈Z ),x =4k π+π2(k ∈Z ).答案:4k π+π2(k ∈Z )3.sin 21π5________sin 425π(填“>”或“<”).解析:sin 215π=sin(4π+π5)=sin π5,。

正弦函数余弦函数的性质(单调性)

正弦函数余弦函数的性质(单调性)

正弦函数余弦函数的性质(单调性)
正弦函数和余弦函数是我们在高中数学中常见的两个三角函数,它们具有很多有趣的性质。

在这里,我们来讨论正弦函数和余弦函数的单调性。

1. 正弦函数的单调性:
正弦函数表示为y = sin(x),其中x是角度,y是对应的正弦值。

这个函数的定义域是所有实数,因此我们可以讨论它的单调性。

正弦函数的周期是2π,也就是说,当给定角度x时,sin(x)等于sin(x+2π)、
sin(x+4π)、sin(x+6π)等等。

这意味着对于任何给定的y值,我们可以找到无限个对应的角度x,使得sin(x)等于y。

所以,正弦函数是一种周期函数,它不具有单调性。

我们可以将正弦函数的定义域限制在一个周期内,例如[0, 2π]。

在这个区间上,正弦函数的单调性是可讨论的。

这个区间上,正弦函数是先增后减的,也就是说,当x在[0,π/2]时,sin(x)递增;当x在[π/2,π]时,sin(x)递减;当x在[π,3π/2]时,
sin(x)递增;当x在[3π/2,2π]时,sin(x)递减。

所以,在一个周期内,正弦函数是两个相邻极值点之间的区间里递增或递减的。

正弦函数和余弦函数分别在一个周期内具有先增后减和先减后增的单调性。

由于它们是周期函数,所以在整个定义域上它们并没有单调性。

三角函数的单调性质

三角函数的单调性质

三角函数的单调性质在数学中,三角函数是经常被学习和使用的一类函数。

它们在几何、物理、工程等领域都有着重要的应用。

而了解和研究三角函数的性质,可以帮助我们更好地理解它们的行为和特点。

其中之一便是三角函数的单调性质。

在本文中,我们将探讨三角函数的单调性以及它们在不同区间上的变化规律。

要了解三角函数的单调性质,首先我们需要了解什么是单调函数。

在数学中,如果函数f(x)在某个区间上的导数恒大于或小于零,那么我们称f(x)在该区间上是单调递增的或单调递减的。

对于三角函数而言,我们可以通过观察它们的导数来判断它们的单调性。

首先,我们来看正弦函数sin(x)。

正弦函数是周期函数,其图像在一个周期内重复。

在一个周期内,我们可以观察到sin(x)的图像在区间[0, 2π]上的变化情况。

根据导数的定义,我们知道sin(x)的导数是余弦函数cos(x)。

在区间[0, 2π]上,cos(x)在[0, π/2]和[3π/2, 2π]上大于零,说明sin(x)在这两个区间是单调递增的;而在[π/2, 3π/2]上,cos(x)小于零,说明sin(x)在该区间上是单调递减的。

综上所述,我们可以得出正弦函数在[0, 2π]上是单调递增的[-π/2, π/2]以及[5π/2, 3π/2],单调递减的区间是[π/2, 3π/2]。

在其他周期内,正弦函数的单调性与在[0, 2π]上的类似。

接下来,我们来讨论余弦函数cos(x)的单调性。

与正弦函数类似,cos(x)的导数是负正弦函数-sin(x)。

根据导数的定义,我们知道cos(x)在区间[0, 2π]上是单调递减的。

所以,余弦函数在[0, 2π]上是单调递减的。

在其他周期内,余弦函数的单调性与在[0, 2π]上的类似。

接下来,我们研究正切函数tan(x)的单调性。

正切函数的导数是sec^2(x),其中sec(x)表示x的余切函数。

在定义域内,sec(x)的值在(-π/2, π/2)上大于零,而在其他区间小于零。

第2课时正弦函数、余弦函数的单调性与最值

第2课时正弦函数、余弦函数的单调性与最值
易错提醒:求函数 y=Asin(ωx+φ)的单调区间时,把 ωx+φ 看作一个整体,借助 y=sin x 的单调区间来解决.当 A<0 或 ω<0 时,要注意原函数的单调性与函数 y=sin x 的单调性的关系.
【跟踪训练】 1.变式练将本例(2)变为:求函数 y=2cos( -x)的单调递 增区间. 解:y=2cos( -x)=2cos(x- ), 由 2kπ+π≤x- ≤2kπ+2π,k∈Z, 得 2kπ+ ≤x≤2kπ+ ,k∈Z. 所以原函数的单调递增区间是[2kπ+ ,2kπ+ ](k∈Z).
解析:当 sin x=-1,即 x=- +2kπ,k∈Z 时, 函数 y=2-sin x 取得最大值 3.
4.函数 y=3-2cos( x+ )的最大值为 5 , 此时自变量 x 的 取值是 3kπ+π,k∈Z .
解析:当 cos( x+ )=-1 时,ymax=3-2×(-1)=5.此时自变量 x=3kπ+π,k∈Z.
所以 ≤ω≤ ,故选 C. 答案:C
探索点二 比较三角函数值大小问题 【例 2】 比较下列各组数的大小:
(1)cos(- )与 cos(- );(2)sin 194°与 cos 160°.
【解题模型示范】
【跟踪训练】 4.cos 1,cos 2,cos 3 的大小关系是cos 1>cos 2>cos 3.(用 “>”连接)
课堂建构
解:(1)因为-1≤sin 2x≤1, 所以-2≤-2sin 2x≤2,所以 1≤3-2sin 2x≤5, 所以函数 y=3-2sin 2x 的值域是[1,5].
(2)由 y=cos(x+ ),x∈[0, ],得 x+ ∈[ , ].

正弦余弦函数的单调性及简单应用三亚市一中万荣

正弦余弦函数的单调性及简单应用三亚市一中万荣

(1) sin(
18
)与sin(
10
)
y
1
x
-3 5 -2 3
2
2
o - 2
2
3 2
2
5 2
3
7 2
4
-1

2 10 18 2

y=sinx
在[
2
,
2
]上是增函数
sin(
10
) < sin(
18
) 精选ppt课件
7
(2) cos( 23 )与cos( 17 )
8
(3)c os2(3)与 s i1 n7
5
4y
1
x
-3 5
-2
3
2
2
o - 2
2
3 2
2
5 2
3 7 2
4
-1
解:
cos(23) cos23 cos3
5
5
5
s in17 s in cos
4
4
4
0 3 又 y=cosx 在 [0, ]上是减函数
45
co 3 s co 即 sc o 2 s3 si1n 7
单调性(单调区间)
[
2
+2k,
2
+2k],kZ
单调递增
[ +2k, 3 +2k],kZ 单调递减
2
2
[ +2k, 2k],kZ 单调递增
[2k, 2k + ], kZ 单调递减
思想方法: 1.利用图象寻找单调区间
2.换元思想
精选ppt课件
13
3. 复合函数的单调性

正余弦函数的单调性

正余弦函数的单调性

.内容及解析(一)内容:本节课从正弦函数的图像出发研究正弦函数的单调区间,并在此基础上类比得出余弦函数的单调区间.内容还包含利用三角函数的单调性比较一组数的大小,以及求已知三角函数的单调区间.(二)解析:由于三角函数是刻画周期变化现象的重要数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期上的单调性那么它在整个定义域内的单调性即可知道.二、目标及解析(一)教学目标1.掌握正弦函数、余弦函数的单调性;3.会利用三角函数的单调性判断一组数的大小,会求给出的三角函数单调区间.(二)解析1.根据《课程标准》提出本节内容的要求及本节课内容对今后学习的影响,提出了上述教学目标并给出了相应的要求定位.单调性是学习最值的基础.2.正、余弦函数的单调性与前面学习的函数的单调性的含义是一样的.3. 正、余弦函数的单调性,要求由图象观察,可以进一步学习的类比的思想方法,渗透数形结合思想.三、问题诊断分析同学在研究过程中对取区间来进行研究理解可能会遇到困难,此处需引导学生观察图像,强调由于三角函数的周期性,首先我们只用研究一个周期内的情况,其次这个区间上有且仅有一个单调增区间和一个单调减区间;第二个难点,将一个周期的单调区间推广到整个定义域范围内,教学过程中要给学生充分的时间思考,教师引导他们得出单调区间的一般形式.四、教学过程设计(一)教学基本流程正弦函数的单调区间单调性的引入余弦函数的单调区间课堂小结单调性的运用(二)教学情境1.单调性的复习引入上次课我们学习了正、余弦函数的周期性及其奇偶性,这节课我们将继续来研究三角函数的另一个重要性质-----单调性.问题1:什么是函数的单调性?设计意图:引导学生复习单调性的概念.师生活动:教师提问,学生回答.问题2:我们研究函数的单调性是在定义域范围内研究的,正、余弦函数的定义域是什么?设计意图:此内容在学习三角函数图像的时候已经提过,此处提出来一是帮助学生记忆,二为接下来的内容做铺垫.师生活动:定义域为.2.正弦函数的单调区间问题3:观察正弦函数图象,它在整个定义域上具有单调性吗?在区间上具有单调性吗?设计意图:正弦函数在整个定义域范围内并不具有单调性,但在区间上具有单调性,提出此问题帮助学生从图象整体转移到部分.师生活动:学生观察图像,回答问题.教师适当点拨.问题4:你能写出正弦函数的几个单调递增区间吗?设计意图:此问题有助于学生发现这些区间之间的关系.师生活动:学生看图动手写,教师提问.问题5:整个定义域范围内的所有的单调增、减区间该怎么表示呢?设计意图:提出问题,引导学生思考取哪个区间来作为出发点.在学习了周期性的基础上来思考此问题,首先有助于加强周期性的运用,其次能提高学生的归纳能力.师生活动:(1)学生观察函数图象说出自己的想法及理由;(2)师生得出应以为出发点,原因之一这个区间有且仅有一个单调增区间和一个单调减区间,其次这个区间在原点附近,便于研究.(3)正弦函数的周期是多少?得出单调递增区间:得出单调递减区间:(4)请同学们观察在区间内函数值的变化范围?在整个定义域范围内的函数值变化情况呢?3、余弦函数的单调区间问题6:类比正弦函数的单调区间的研究过程,你能得出余弦函数的单调区间吗?其函数值的变化情况又怎样呢?设计意图:同学用研究正弦函数的方法,类比研究余弦函数的增减区间,培养类比思维.师生活动:(1)同学类比研究正弦函数方法,根据余弦函数的图像,自主探究余弦函数的单调性,讨论得出余弦函数的单调区间,函数值的变化情况.(2)教师给学生足够的时间思考、讨论,并巡视课堂做个别点拨,最后提问:我们应该选择哪个周期来作为研究对象?在这个周期内的增减情况如何?函数值变化情况怎样?如何将本周期内的情况扩充到整个定义域范围内?其一般情况如何表示?4、单调性的运用例1:利用三角函数的单调性,比较下列各组数的大小:(1)与;(2)与.设计意图:本题么难点在于用诱导公式将已知角化为同一单调区间内的角,大部分同学可能想不到.通过运用单调性解决问题,一能帮助同学记忆单调区间,其次帮助同学掌握利用单调性比较两个三角函数大小的基本方法.师生活动:教师用提问的方式提示同学将角转化到同一个单调区间内:(1)我们知道正、余弦函数具有周期性,利用单调性来比较已知角的三角函数值的大小,若已知角不在同一个单调区间内,怎么办?变式训练:利用三角函数的单调性,比较下列数的大小:与设计意图:及时巩固例1的解题方法.师生活动:学生自主完成,教师巡视进行个别辅导.例2:求函数的单调递增区间.设计意图:本题对同学来说可能会有一定难度,通过本题,进一步理解函数的单调性,掌握利用单调性解题的基本方法.师生活动:教师提示同学将分解,可提出问题:(1)的单调递增区间是什么?(2)的单调递增区间是什么?(3)的单调递增区间是什么?变式训练:你能求的单调递增区间吗?设计意图:通过解决本问题,使学生对求相对复杂函数的单调区间的问题有一个完整的认识.师生活动:同学先行试解,一定时间后教师将错误答案呈现出来,然后同学利用描点画图的方法将此函数图像画出来观察其单调增区间是否与答案一致.(1)我们发现与答案恰好相反,为什么?(2)同学们观察此函数与例1的函数有什么区别,为什么用例1的方法结果是错的?(3)能否将此函数转化为与例1类似的形式?5、目标检测:1.利用三角函数的单调性,比较下列各组数的大小:(1)与(2)与2.求函数的单调递增区间.6、小结(1)正、余弦函数的单调区间,函数值变化情况分别是什么?(2)利用三角函数的单调性比较一组数的大小需注意什么问题?(3)如何求一个已知三角函数的单调区间?。

正、余弦函数的单调性与最值例题

正、余弦函数的单调性与最值例题

正、余弦函数的单调性与最值(例题)考点一 单调性1.求函数1sin 23y x π⎛⎫=+ ⎪⎝⎭,[2,2]x ππ∈−的单调递增区间为 .2.设 sin(cos1)a =,cos(cos1)b =,cos1c =,cos(sin1)d =,则下列不等式正确的是 A .b c d a >>>B .b d c a >>>C .a c d b >>>D .a d c b >>>考点二 最值和值域3.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x 的集合,并求出最大值、最小值.(1)cos 1y x =+,x ∈R ;(2)3sin 2y x =−,x ∈R .4.已知函数()π26f x x ⎛⎫=− ⎪⎝⎭. (1)求函数()f x 的单调区间;(2)求函数()f x 在区间ππ,42⎡⎤−⎢⎥⎣⎦上的最小值和最大值,并求此时x 的值.考点三 复合函数的单调性与最值5.求使下列函数取得最大值和最小值时的x 的值,并求出函数的最大值和最小值.(1)25sin 4y x x =−++; (2)2cos sin y x x =−,,44x ππ⎡⎤∈−⎢⎥⎣⎦.6.函数()f x =________.7. 函数y =2+cos x 2-cos x的最大值为________.8.函数y =log 12(cos x +√32)的单调递增区间为__________,函数()212log cos 2cos 1y x x =++的值域为_______.考点四 单调性综合9.已知0ω>,函数()sin 3f x x πω⎛⎫=− ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内单调递减,则ω的取值范围是( ) A .110,3⎛⎤ ⎥⎝⎦ B .511,23⎡⎤⎢⎥⎣⎦ C .10,2⎛⎤ ⎥⎝⎦ D .13,24⎡⎤⎢⎥⎣⎦10.已知0<ω<3,函数()sin 3f x x πω⎛⎫=− ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内不单调,则ω的取值范围为__________.11.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==−,则()f x 的最小正周期为_________.12.已知函数()sin 1()4f x x a a π⎛⎫=++−∈ ⎪⎝⎭R ,0,2x π⎡⎤∈⎢⎥⎣⎦,定义在非零实数集上的奇函数()g x 在(0,)+∞上是增函数,且(2)0=g .若(())0g f x <恒成立,求实数a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦、余弦函数的单调性
姓名: 班级: 小组:
一、画出正余弦函数的图象并写出其单调区间:
二、形如()00)sin(>>+=ωϕω,A x A y 的单调区间,基本思路是把 整
体代换,由 解出的范围即为单调递增区间;由 解出的范围即为单调递减区间.
三、若上述函数中0<ω,为了防止出错,以及便于计算,遇到负号 .
四、复合函数的单调性: (四字概括).注意定义域.
例1 求函数⎪⎭⎫ ⎝⎛+=32
1sin πx y 的单调递增区间.
变式1 求函数⎪⎭⎫ ⎝⎛+=32
1sin πx y 在[]ππ2,2-上的单调递增区间.
变式2 求函数⎪⎭⎫ ⎝⎛+-=32
1sin πx y 的单调递增区间.
例2 求函数12143sin +⎪⎭
⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+πx y 的单调递增区间.
变式1 求函数⎪⎭⎫ ⎝
⎛-=32sin lg πx y 的单调递增区间.
变式2 求函数4
1sin cos 22+-=x x y 的单调递增区间.
反思与总结:。

相关文档
最新文档