新人教版八年级数学教学反思
新人教版八年级数学教学反思(通用12篇)
新人教版八年级数学教学反思(通用12篇)新人教版八年级数学教学反思(通用12篇)在学习、工作、生活中,我们需要很强的课堂教学能力,反思过去,是为了以后。
我们该怎么去写反思呢?下面是小编帮大家整理的新人教版八年级数学教学反思,仅供参考,欢迎大家阅读。
八年级数学教学反思篇1《平行四边形的性质》承接上一章的内容,课本的设计意图是利用图形平移和旋转的特征来得出平行四边形的性质。
我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作平移和旋转得到其他性质。
考虑到对角线互相平分这一性质在得出平行四边形是中心对称图形后即可推导出,所以我对教材进行了整合,把下一节的内容提前讲了,并在课堂上加上相应的练习。
因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。
上完课后,总体感觉还可以,主线突出,学生通过动手操作的过程和自制教具、多媒体课件的演示,得出并掌握性质,效果比较好。
例题能够引导学生用不同的方法去解决问题,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,反馈工作做得较到位。
但需要改进的地方确是更多的。
在得出平行四边形定义的时候花了不少时间让学生回忆四边形的定义,其实是没什么用的,只需把本节课需用到的四边形内角和等于360°带过便足够。
直接的引入应该可以更节省时间,把本节课要研究的问题直接摆出来,让学生明确自己的任务。
学生根据学案上的步骤画图时是有些麻烦的,困难在于不理解文字想要表达的意思,不知道该怎样做,这时可以更灵活地利用实物投影给学生做示范,但要注意作图规范(尤其是线段的平移)。
性质的探索所花的时间也较长,从三个过程才得出几个性质。
其实由平行四边形是中心对称图形可以一次过把所有的性质都得出,这样学生还是需要动手做,但可以更快地得到结果。
八年级数学教学反思10篇
《八年级数学教学反思》八年级数学教学反思(一):每年都有不一样的感受和反思,教学中感受颇深的是学生对于数学的学习。
对数学感兴趣的很少,中游一部分学生数学成绩平平,很多同学数学不入门更不要说兴趣了。
由于个体差异、智商差异、理解潜力差异等,产生了不少的学困生。
因此,转化学困生成了我们数学老师普遍关注的问题。
在新科该下应当采取相应有效的措施,改善教学方式和策略,对学困生进行转化。
下方我结合自我近几年来的教学实践,对学困生的成因及转化对策,谈一下自我的看法。
一、数学学困生构成的原因分析数学学困生构成的原因是复杂的、也是多方面的。
我认为大部分学困生是后天构成的,主要集中表此刻以下几个方面:1缺乏兴趣进入初中以后,由于课程增多,对于数学基础差的学生来说学习的困难就更大了,书看不动,题不会解。
再说数学是一门比较抽象,逻辑性较强的学科,学生容易觉得枯燥无味,从而丧失学习兴趣。
2学习目的不明确学困生由于升学无望,认为读书无用,无心学习。
因此缺乏进取心,没有乐观向上、用心进取的良好心态。
上课不愿听讲甚至违反纪律,对自我失去信心,自暴自弃,结果导致数学成绩越来越差。
3学习意志不坚强进入初中以后,有的学生适应潜力比较差,表此刻学习情感脆弱,意志不够坚强,遇到困难和和挫折就退缩,甚至丧失信心。
4学习品质差学习品质是决定数学成绩好坏的一个重要因素。
有的学生在学习上缺乏主动,不能持续的听课,自控潜力差,学习被动,无自觉性,情绪不稳定,上课注意力不集中,平时贪玩好动,态度消极,敷衍应付。
5父母因素此刻初中生独生子女占比例较大,一方面家长望子成龙,盼女成凤心切,他们对子女期望过高,超出学生现有潜力,个性是在农村,家长忙于挣钱忙于农活对孩子教育不够,没有好的教育方法,成绩差就实行暴力。
另一方面又过分溺爱,造成学生复杂的心理矛盾,构成自私、蛮横的不良习惯,没有吃苦耐劳的、刻苦学习的精神。
二、数学学能的转化对策1抓好入门知识,降低难度在教学中,在入门出我适当放慢进度,降低难度。
八年级上册数学教学反思(推荐15篇)
八年级上册数学教学反思(推荐15篇)八年级上册数学教学反思(1)一学期以来,本人担任八年级的数学教学任务,在教学期间认真备课、认真上课、积极的参与听课、评课。
认真的批改作业,讲解习题。
给学生作好课后辅导工作。
再课余时间学习专业知识,不断提高自己的知识水平,经常向有经验的教师学习,认真钻研教材,以及教法、学法来充实自己。
对待学生,严格要求,关爱有加。
在平时,常常反思自己的教育教学行为,记录教育教学过程中的所得、所失、所感,从而不断提高自己的教学水平和思想觉悟。
要提高教学质量,关键是上好课,向课堂要质量。
为了上好课,我做了下面的工作:一、备好课。
备好课的备是指认真钻研教材,备知识点备重难点,备教法备学法。
背好课的背是指对教材充分了解能够运用自如,以至于达到哪一题是那一页的甚至是第几行都一清二楚。
讲习题时,要对学生进行变式训练,使学生达到举一反三的程度。
教师应知道补充那些资料,怎样教才好。
遇到难以把握的问题请教有经验的老教师。
二、组织好课堂教学。
关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对的稳定性。
同时,激发学生的积极性,使他们愉快的学习,创造良好的课堂气氛。
教师课堂语言简洁明了,适当点拨,精讲精练,注意引发学生学习的兴趣。
课堂上处理好自主探究与合作交流的关系。
让每个学生都动起来,全面参与到学习中来,充分发挥以学生为主,教师为辅。
遇到问题先让学生自主探究,独立思考,然后在分组讨论合作交流,派代表解答,其他学生进行点评。
好方法大家分享,大难题大家解决。
三、课后要及时的进行反思。
在教学过程中,会出现一些闪光点:能激发学生学习兴趣的精彩的课堂语言,对知识重难点创新的突破点,学生的精彩发现,独特的思维方式等都应进行详细的记录,供日后参考。
四、我们还要做好课后辅导工作,初中的学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,从尊重开始,从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重。
八年级数学课后反思五篇
八年级数学课后反思五篇第一篇:八年级数学课后反思数学反思的核心要素是数学反思的知识、技能和内容。
数学反思的知识包括陈述性知识、程序性知识和过程性知识,反思技能包括经验、理论、分析、评价、策略、实践等。
下面小编为大家整理了八年级数学课后反思,欢迎参考。
八年级数学课后反思篇一传统的数学教学注重教师的教,而学生则是被动接受、重复记忆、题海训练、强化储存,根本没有学生主体活动过程,新课程则提倡培养学生独立思考能力、发现问题与解决问题的能力以及探究式学习的习惯,把关注学生的发展作为新课程的核心理念,新课程下的教师只不过是学生自我发展的引导者和促进者,因此一个称职的初中数学教师,要以“课标”精神为指导,要在教学中不断反思,不断学习,与时共进。
一、对数学教学理念的反思——课堂教学行为是否改变?新的教学理念认为教学是一种对话、一种沟通、一种合作共建,因而要求课堂教学应该是和谐、民主、平等的过程。
学生不再是孤立的学习者,教师也不再是课堂的表演者,实践证明师生之间、生生之间的互动合作,平等交流是目前数学课堂上较受欢迎的一种学习方式。
因此教师教学中新的教学理念应用的体现,就是是否在教与学的交互活动中培养学生自主学习、探究学习和合作学习的习惯,提高他们独立思考、创新思维的能力的形成。
具体来说,教师的教学行为应有以下的转变:(1)、由过去重“教”转变为现在重“学”;(2)、由过去重“结果”转变为现在重“过程”;(3)、由过去重“问答” 转变为现在重“对话”;(4)由过去重“讲解” 转变为现在重“引导”;(5)、由过去重“程式化” 转变为现在重“个性化”;(6)由过去重“强记” 转变为现在技能的拓展。
总而言之,评价教师课堂教学行为是否改变,不仅要看教师讲课的水平,更重要的是要仔细考察学生学会和会学的程度以及学生的精神状态。
二、对数学教学设计的反思——是否为学生的发展,设计教学?教学设计是有效地上好每节课的必需环节,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。
初二数学教学反思优秀3篇
初二数学教学反思优秀3篇初二数学教学反思一一、在思想上领会课改经验自开展课改以来,我深刻体会到了“三步六环”教法的重要性和必要性。
课改经验不是一种死经验,也不是万能的格式,需要我们灵活运用、传承与创新。
教师应以改革求发展、求质量、求生存,就要注意以下两点:1、教学理念的改革。
相信“没有教不好的学生”,追求“让每一位家长满意”。
2、课堂教学的改革。
追求高效的课堂:自主而不自流、放手而不放任、互动而不胡动、形散而神聚。
高效课堂做到“三讲三不讲”:讲易混点、讲易漏点、讲易错点;不讲学生已会的、不讲学生自己能学会的、不讲学生怎么学也学不会的。
二、课改经验落实在课堂及各个教学环节中课改主要体现在课堂教学的改革与实施。
我的课改主要表现在以下四个方面:1、实行“讲学稿”辅助教学的方法。
我们的“讲学稿”既体现了集体备课、资源共享的作用,又实现了个性特色的展示。
这是我学习课改最实质性的尝试。
2、结合本班实际,灵活运用课改教学思想,不能有“拿来主义”的教条做法。
3、要高效课堂,时不待人。
要高效课堂是课改经验的精髓,得出的经验就是:先学并非预习,先学是要求学生进行第一次自学,找问题,然后由教师释疑和范解。
当堂训练是要求将知识当堂“消化”。
在时间上要求课内紧课外松。
灵活、宽松、有序、高效的课堂,是我教改的重点探索之路。
4、优差结对,重点发展。
开展“一帮一,一对红”工作,充分利用内部资源,实行优势互补。
三、课改中的经验与缺憾谈几点经验:1、实现课堂教学模式的改革要做好引领,做好培训。
要把它作为一项长期性的工作,放在教科研的首要日程上来,从每一节课抓起,从教学的每个环节抓起,持之以恒,定时引领和培训。
2、结伴互助,资源共享。
现代教育资源不是一家所有,也不是个人所有,应当推广应用,建立共享平台。
结伴同行、资源互助共享,这不仅是一种理念,更是共同进步的好路子。
3、虚心学习、清洗头脑,探索新知。
时代在进步,日新月异。
在知识爆炸的年代,我要不断“洗脑”,要有虚心的态度、诚实的品质、坚毅的精神去探索新知识、新技术,并运用于教育教学改革中去。
八年级数学教学反思最新5篇
八年级数学教学反思最新5篇作为一位刚到岗的人民教师,课堂教学是我们的任务之一,教学的心得体会可以总结在教学反思中,那么你有了解过教学反思吗?接下来给大家带来八年级数学教学反思,希望能给您大家带来帮助。
八年级数学教学反思1听课是学生取知识,发展力的重要途经,是学习的中心环节,作为一名中学生,他的大部分时间都是在课堂上度过的。
所以教家呼吁,向课堂40分钟要质量,就是个原因。
如果我们忽视了听课这个环节,就是检了芝麻,丢了西瓜,得不偿失。
听课有个方法和策略的问题,不少同学听课方法不对头,意力不集中,经常分心走神;有的同学听课不得要领,掌握的知识支零破碎;有的同学极其被动,手慌脚乱,无所适从;有的同学听课流于形式,只听热闹不听门道;有的同学我行我素,自以为是,数学课上做外语,外语上做数学,凡此种种,都直接影响听课效果,导致成绩下降,下面谈一谈听数学课的方法,大家参考。
培养审题的好习惯——建立错题本审题是解题的基础,完全明确问题的文字陈述和符号的含义,准确把握问题的条件和结论,必要时还要适当画出图表,列举、提炼出问题的关键,形成题目脉络。
解题中的反思是指学习者对自身解题活动的深层次的反向思考,不仅仅是对数学解题学习的一般性回顾或重复,而是深究数学解题活动中所涉及的知识、方法、思路、策略等,从中达到解决一类问题。
所谓:“数学问题的解决仅仅只是一半,更重要的是解题之后的回顾”。
建议学生在复习过程中准备一本专门的解题反思本,把一些典型的例题尤其是典型的错误摘录下来,并对每一题批注在解题过程中,自己都用了哪些基础知识、基本方法以及数学思想方法,解该题时哪些步骤容易出错,是否还有其他的方法,该问题的难点何在,应该如何突破,问题能否推广,在解题时自己有哪些缺点为解题设置了障碍等。
等到临近中考时再把这本子拿出来好好复习,会比看书本或其他资料更有针对性,复习效果自然也会更好。
八年级数学教学反思2备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。
八年级数学教学反思范文(五篇)
八年级数学教学反思范文(五篇)反思,回头、反过来思索的意思。
近代西方哲学中广泛使用的概念之一。
又译为反省、反映。
原意指光的反射,作为哲学概念是借用光反射的间接性意义,指不同于直接熟悉的间接熟悉。
以下是我为大家收集的八班级数学教学反思范文(五篇),欢迎大家阅读。
第一篇: 八班级数学教学反思有人曾说“课堂教学总是一门带着圆满的艺术”,作为一名老师,我对此也颇有感慨。
面对新的理念,新的结构,新的形式,新的体系,在课堂教学中,老师是否能最大限度地发挥主导作用,直接影响和制约着同学主体作用的发挥。
以下我就谈谈在本节课中老师的主导作用。
一、设疑导思探究公式--------引导者老师的主导作用首先体现在培育同学的学习爱好方面。
由于老师是课堂心理环境的直接制造者,老师“导入”的情境、语言、方法直接影响同学的学习爱好及其探究学问的欲望。
由于我校同学的基础都不是非常好,所以本课采纳同学刚学过的“多项式乘法法则”来吸引同学的留意力,提高同学的学习爱好,从而使其端正学习态度全神贯注地投入到学习的整个过程中。
二、激活主题理解公式--------促进者老师的主导作用还应体现在乐观进行学法讨论,加强学法指导。
本节课中,先用图形的面积来对公式作出直观的理解,再用口诀来概括公式,使同学对公式的理解更加形象生动;最终通过例题让同学按公式对号入座,进一步理解公式中的a和b既可以表示数也可以表示字母,既可以表示单项式也可以表示多项式。
采纳由直观到抽象,由抽象到形象,由形象到详细,层层递进,由浅入深,深化浅出的方法,使同学对完全平方公式有一个充分理解的过程。
三、组织沟通应用公式--------调控者由于同学所处的文化环境、学问基础和自身的思维方式不同,将导致不同的学习结果,即使是思维反映很灵敏的同学,在有些时刻也会遇到一些思维障碍。
本节课在同学练习过程中,要认真观看同学探究活动的心情表现,从同学的言语、表情、眼神、手势和体态等方面观看他们的内心活动,分析他们的思维状态和概念水平,捕获各种思维现象,随时调整教学过程,让同学自己去反思、纠错,而老师则在关键时刻引导或者作出恰当的点拨。
初二数学教学反思总结(3篇)
初二数学教学反思总结上学期期中考试成绩已揭晓,现结合考试成绩与平时学生现状对上学期工作做以总结:1、学生答题情况分析(1)学生的基础知识和基本技能不扎实。
如部分学生对整式的运算掌握的不好,不少学生对公式和法则不熟。
考查的3个几何说理题,这两个题的难度不大,但得分是最少的3个题,说明大多数学生几何还没入门。
通过对以上试卷的分析,在今后的教学过程中应注意以下几个方面:1.研读新课程标准,以新课程理念指导教学工作平时教学要研读数学课程标准,将数学课程标准所倡导的教学理念落实到自己的教学中。
从学生已有知识和生活经验出发,创设问题情境,激发学生的学习积极性,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学经验。
2.面向全体,夯实基础3.注重应用,培养能力数学教学中应经常关注社会生活,注重情感设置,引导学生从所熟悉的实际生活中和相关学科的实际问题出发,通过观察分析,归纳抽象出数学概念和规律,让学生不断体验数学与生活的联系,在提高学习兴趣的同时,培养学生的分析能力和建模能力;同时要加强思维能力和创新意识的培养,在教学中,要激发学生的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性的解决问题,使数学学习成为再发现、再创造的过程,教师应选配或设计一定数量的开放性问题、探索性问题,为培养学生的创新意识提供机会,鼓励学生对某些数学问题进行探讨。
4、关注本质,指导教学初二数学教学反思总结(二)初二学期教学工作已经结束,回顾半年的数学教学,是一种辛劳,更多的是一种遗憾,也许我们的数学教学是一种的遗憾教学。
本学其我所教的班级成绩下滑比较明显,我仔细寻找了一下原因。
一、教材的不足和问题大大的增强了我们教师的工作量,减少了我们的效率本教材不太适合中下学生的,它的知识点的循环上升,散乱的,本意是好的,但对学生的基础要求太高,如因式分解一章中,学生对因式分解理解不好,教材对学生的要求低而考试的要求有较高,所以就出现了偏差。
新人教版八年级数学上册《三角形的内角和》教学反思(精选篇)
新人教版八年级数学上册《三角形的内角和》教学反思新人教版八年级数学上册《三角形的内角和》教学反思新人教版八年级数学上册《三角形的内角和》教学反思本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过拼图说出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生]的逻辑推理能力爱因斯坦说过:“问题的提出往往比本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过拼图说出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生]的逻辑推理能力爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角和,初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180呢?这个问题一抛出去马上激发学生的学习热情。
其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。
但是只是“知其然而不知其所以然”,所以我觉得本课的重点就是要让他们知道“知其所以然”,因此接着就让学生分讨论:有什么办法可以验证得出这样的结论。
学生会提出度量、折一折的方法,然后让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法(2-3组)或者用折一折的方法(4-5组),通过小组合作交流,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生]的说理能力,逻辑推理能力,增强了语言表达能力,培养学生]的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想―――转化思想,为学好初中数学打下坚实的基础。
初二数学教学反思(15篇)
初二数学教学反思(15篇)初二数学教学反思1作为一名教师,又应对的是新教材,对于自我的教学工作,我认为主要要从以下及点进行反思。
一、对教材的反思。
这是我进入初中的第一年,对新教材的认识比较肤浅,应对新课程,教师首先要转变主角,确认自我新的教学身份,如今的教材更注重的是学生个人潜力的培养,并不是一味的老师为主体,专门讲解的那种模式,新课程要求老师由传统的知识传授者转变为学生学习的引导者、组织者。
经过这么长时光的教学工作,我一个最大的认识就是给学生自主交流的时光多了,学生渐渐成了教室、课堂的主体,老师只是引导学生、辅助学生的一个个体。
如初一数学第一章《数学与我们同行》里,老师讲授的资料可谓微乎其微,基本都是学生自主发挥,这就是新课程的特点,让学生讨论、动脑、学会总结。
老师只是引导学生思考,最后决定、汇总学生结论正确与否的人。
所以作为教师的.我,在如何正确引导学生学习方面还需改善。
二、对学生的反思。
从学生到老师的转变我用了不到半年时光,也许是有点快了,所以看到那些学生仿佛就看到自我过去的影子,所以透过这些日子与学生的交流,发现自我并不能很快适应老师这个主角,自我仿佛是个大孩子,对同学板不下脸,威性不够,此刻的孩子本生就是从父母的溺爱中成长起来的,所以越是脾气好的老师就越是不象话,这就是我这么些月来的最大感受。
年轻就得付出代价,所以对学生得反思对于年轻教师来说就更关键了,掌握好学生得心理,对学生管理得尺度掌握的好坏就影响着学生的成绩。
而且,此刻的学生对于感兴趣的事物才会花更多心思,数学课本就乏味,所以如何让学生提起兴趣,这对于教学质量的好坏还是有很大的影响的。
三、教学中要尊重学生已有的知识与经验。
教学活动务必建立在学生的认识发展水平和已有的知识经验基础之上,体现学生学习的过程是在教师的引导下自我建构、自我生成的过程。
学生不是简单被动地理解信息,而是对外部信息进行主动地选取、加工和处理,从而获得知识的好处。
八年级数学教学反思5篇
八年级数学教学反思5篇1.八年级数学教学反思篇一本节课将一次函数的知识分为概念、图象及其性质和应用三大部分,授课过程中体现在板书设计、知识回顾、例题讲解及练习巩固等环节,让学生对一次函数有一个系统、直观的复习思路。
在复习知识点时,让学生自己联想回顾,变被动为主动学习。
例如,在“图象及其性质”环节中,老师不急于提问,而是让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充。
这样,使无味的复习课变得活跃一些,增强了学习气氛。
在处理典型例题A练习中,发现绝大多数学生对于简单题型能自己解答,而一部分学生对综合性、开放性题目有些无从下手,透露出了思维不灵活,应变能力弱等不足。
所以要想达到高效高质,必须要分层次教学,让不同水平的学生在同一节课中得到应有的发展,课前必须对每一个环节,每一个题型,每一个学生作充分地细致地研究。
在教学过程中,我发现理论与实践在学生身上很难统一。
学生习惯于做纯理论性的问题,而对于实践中蕴含的数学问题即便很简单,也发现、挖掘不出。
2.八年级数学教学反思篇二分式方程在整个初中数学中占有十分重要的地位在本课的教学过程中,我认为应从这样的几个方面入手:1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。
这两个条件是判断一个方程是否为分式方程的充要条件。
同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。
正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3.解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
新人教版八年级数学教学反思
新人教版八年级数学教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作报告、合同协议、心得体会、发言致辞、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work reports, contract agreements, insights, speeches, rules and regulations, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!新人教版八年级数学教学反思新人教版八年级数学教学反思12篇下面是本店铺收集的新人教版八年级数学教学反思12篇(初中数学八年级教学反思),欢迎参阅。
2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案
第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
最新人教版八年级数学上册全套教学反思
最新人教版八年级数学上册全套教学反思最新人教版八年级数学上册全套教学反思(具体到每一课时,有课题学习、教学活动、小结、复习。
适合电子备课)11.1.1三角形的边教学反思:三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,短短的四十分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。
因此,教学中,我让学生亲身经历了探究的过程,围绕“任意的三条线段能不能围成一个三角形?”这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。
这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。
11.1.2三角形的高线教学反思三角形有三条高,三角形的高的教学一直以来都是难点,尤其是画高,学生作业的错误很多。
教科书对高的定义是“三角形一个顶点到对边的垂线段,叫做三角形的高,这个对边叫做底。
”如果就定义而言,学生理解起来就比较困难,其原因有二,一是学生对“对边”的概念不太理解,要弄清“高”先得搞清楚“对边”是怎么一回事,人为的设置了障碍;二是定义先讲“高”,再定义“底”,而书上要求学生画高是都是先指定三角形的高,再根据指定的底画高,这样,如果教学生画高时,必然还要教学生弄清“底”的“对应顶点”是哪个,又再次增加了学生的难度。
那么,到底如何突破这个难点呢?首先,让我们来想一想,在我们的生活中,“高”是什么意思呢?“高”即“高度”的意思,那么,“高度”的“高”对于三角形而言,还有没有意义呢?答案是肯定的。
三角形的高,其实说白了就是三角形的高度(准确地说是表示三角形高度的线段),只是“高”这个概念把“高度”这个实际的意思上升到理论,成为一个几何学上的科学概念了。
八年级数学教学反思短篇(通用20篇)
八年级数学教学反思短篇(通用20篇)八年级数学教学反思短篇篇1我在教学中采取了一些比较新颖的方法,也取得了不错的效果,以下即为我的几点做法:一、多种多样的兴趣激励法进行课堂教学在课堂教学改革中,首先教师要改变观念,研究教材的使用;更重要的是必须改革传统教学方法,结合学校特点,发挥优势,数学科课堂教学模式还要更加深入地探索、研究,逐步形成自我教学特色。
兴趣是一种巨大的激励学习的潜在力量。
在教学中,当一个学生对他所学的知识发生兴趣时,就会调动自己的一切潜能积极、主动、愉快地去学习,而不会感到是一种沉重的负担。
对此,我采取了这样几点做法:(1)用生动有趣的图案和实物来代替抽象的理论知识,来调动学生的学习积极性。
相对于数学的推理计算,学生更容易对直观有趣的图案和实物产生兴趣。
在讲解第一章“生活中的图形”时,我将大量有趣的图画、实物带入教室,让学生感悟我们日常生活中存在着大量几何图形,数学就存在于生活之中,学习数学能为解决生活中的问题提供很大的帮助,从而调动起学生进一步学习的兴趣。
在讲解第四章“图案设计”一节时,我在上课时向学生展示了大量生动的几何图案,如仙人掌、帆船、房屋、桥梁等等,引起了学生的兴趣,理解了对称的意义及用途,体会到数学王国的瑰丽。
(2)用精彩的问题设置吸引学生。
“思维总是从提出问题开始的。
”课堂提问是启发学生积极思维的重要手段,教师要善于运用富有吸引力的提问激发学生的兴趣。
我在讲解“日历中的方程”一节时,我让学生随便圈出某月日历上一竖列上相邻的三个数,将这三个数的和告诉我,我就能猜出这三个数是多少。
这个问题一下子把学生调动了起来,学生迫切的想知道我是如何猜出这三个数的,学习热情高涨。
这时,我告诉学生,我们只需要列一个简单的方程即可解决这个问题,学生自然对列方程产生了浓厚的兴趣,心情愉快的接受了新知识,学会解决问题的方法。
(3)从现实生活中的常见问题和学生熟悉的事物入手简化复杂问题。
九年级下册“三视图”这一章节的教学中,有些比较复杂的立体图形的很不好想像,我就在课前有萝卜、地瓜刻出模型来,让学生面对实物来解决问题,进而来培养他们的空间想像力,从而将问题简单化。
人教版八年级上册数学教案及反思
人教版八年级上册数学教案及反思一、教学目标1.理解平方根的概念,掌握平方根的性质。
2.学会求解一个数的平方根,能够运用平方根解决实际问题。
3.培养学生的观察能力、逻辑思维能力和解决问题的能力。
二、教学重点与难点重点:平方根的概念和性质,求解平方根的方法。
难点:平方根的性质的理解和应用。
三、教学过程(一)导入新课1.教师通过多媒体展示一张图片,图片中有一系列的正方形,边长分别为1、2、3、4、5……2.提问:同学们,你们能找出这些正方形中哪些是正方形面积的平方根?(二)探究新知1.教师引导学生回顾平方的概念,让学生举例说明平方的意义。
2.提问:那么平方根是什么意思呢?请大家举例说明。
4.教师展示平方根的性质,让学生通过小组讨论,探究平方根的性质。
(1)正数的平方根有两个,且互为相反数。
(2)0的平方根是0。
(3)负数没有平方根。
(三)巩固练习1.教师给出一些数的平方根,让学生求解。
2.学生求解后,教师提问:你们是如何求解这些数的平方根的?(四)实际应用1.教师给出一个实际问题:一个正方形的面积是16平方厘米,求这个正方形的边长。
(五)课堂小结1.教师提问:本节课我们学习了什么内容?四、作业布置1.请同学们课后完成教材上的练习题。
2.家长签字确认,确保同学们完成作业。
五、教学反思1.本节课通过图片导入,激发学生的兴趣,引导学生积极参与课堂讨论。
2.在探究平方根性质时,采用小组讨论的方式,培养学生的合作能力和探究精神。
3.通过巩固练习和实际应用,让学生学会运用平方根解决实际问题。
4.课堂小结环节,帮助学生梳理本节课的知识点,巩固所学内容。
不足之处:1.在讲解平方根性质时,可能有些同学对“负数没有平方根”的理解不够深刻,需要进一步讲解和举例。
2.课堂时间安排不够合理,导致作业布置较少,可能影响学生对知识点的巩固。
改进措施:1.在讲解平方根性质时,增加实例,让学生更好地理解。
2.调整课堂时间安排,确保作业布置充足,提高学生对知识点的掌握程度。
2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解公式法(第2课时)教案
第十四章整式的乘法与因式分解14.3因式分解14.3.2公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式:a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32.解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是()(出示课件15)A.11B.9C.–11D.–9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b)·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a–4b+5=0,求2a 2+4b–3的值.(出示课件23)师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a–4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b–2)2=01020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩∴2a 2+4b–3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是()A.a 2+1B.a 2–6a+9C.x 2+5yD.x 2–5y 2.把多项式4x 2y–4xy 2–x 3分解因式的结果是()A.4xy(x–y)–x 3B.–x(x–2y)2C.x(4xy–4y 2–x 2)D.–x(–4xy+4y 2+x 2)3.若m=2n+1,则m 2–4mn+4n 2的值是________.4.若关于x 的多项式x 2–8x+m 2是完全平方式,则m 的值为_________.5.把下列多项式因式分解.(1)x 2–12x+36;(2)4(2a+b)2–4(2a+b)+1;(3)y 2+2y+1–x 2;6.计算:(1)38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327.分解因式:(1)4x 2+4x+1;(2)13x 2–2x+3.小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a–b=3,求a(a–2b)+b 2的值;(2)已知ab=2,a+b=5,求a 3b+2a 2b 2+ab 3的值.小聪:小明:参考答案:1.B2.B3.14.±45.解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6.解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17.解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2 (2)原式=13(x2–6x+9)=13(x–3)28.解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2.当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解 积的乘方教案
第十四章整式的乘法与因式分解14.1整式的乘法14.1.3积的乘方一、教学目标【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.二、课型新授课三、课时第1课时四、教学重难点【教学重点】积的乘方运算法则的理解及其应用.【教学难点】积的乘方推导过程的理解和灵活运用.五、课前准备教师:课件、直尺、计算器等。
学生:直尺、计算器。
六、教学过程(一)导入新课若已知一个正方体的棱长为2×103cm,你能计算出它的体积是多少吗?学生思考后列式:V=(2×103)3(cm3)教师提出问题:底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。
积的乘方如何运算呢?能不能找到一个运算法则?(出示课件2)(二)探索新知1.创设情境,探究积的乘方的法则教师问1:请同学们完成下面的题目计算:(1)x2·x5;(2)y2n·y n+1;(3)(x4)3;(4)(a2)3·a5.学生回答:(1)x7;(2)y3n+1;(3)x12;(4)a11.教师问2:同底数幂的乘法法则,幂的乘方法则是什么?学生回答:同底数幂的乘法法则:底数不变,指数相加;a m·a n=a m+n (m,n都是正整数).幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n都是正整数).教师问3:地球半径约为6.4×103km,球的体积计算公式为:V=4πr3,你知道3地球的体积大约是多少吗?(出示课件4)学生独立思考问题3并口答:体积应是V=4π(6.4×103)3km3.3教师问4:结果是幂的乘方形式吗?学生讨论后回答:底数是6.4和103的乘积,虽然103是幂,但总体来看不是幂的乘方.教师讲解:如何运算呢?本节课我和同学们一起来探究积的乘方的运算.教师问4:计算:(3×4)2和32×42,看一下他们的结果,你发现了什么?学生计算后回答:它们的结果相等,即(3×4)2=32×42教师问5:下列两题有什么特点?(出示课件7)(1)(ab)2;(2)(ab)3学生回答:底数为两个因式相乘,积的形式.教师问6:你猜想一下它们的结果是多少呢?学生回答:(ab)2=a2b2,则(ab)3=a3b3,教师问7:你能证明上边的猜想吗?(出示课件8)学生讨论并回答:(ab)2=(ab)·(ab)(乘方的意义)=(aa)·(bb)(乘法交换律、结合律)=a2b2(同底数幂相乘的法则)同理:(ab)3=(ab)·(ab)·(ab)(乘方的意义)=(aaa)·(bbb)(乘法交换律、结合律)=a3b3(同底数幂相乘的法则)教师问8:同学们试着猜想一下:(ab)n=?(出示课件9)学生猜想:(ab)n=a n b n.教师问9:你能用你学过的知识验证你的猜想吗?从运算结果看能发现什么规律?师生共同讨论后解答如下:因此可得:(ab)n=a n b n(n为正整数).教师总结:得到结论:(出示课件10)积的乘方:(ab)n=a n·b n(n是正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.教师问10:前面提出问题中正方体的体积V=(2×103)3它不是最简形式,根据发现的规律如何计算呢?学生解答:可作如下运算:V=(2×103)3=23×(103)3=23×103×3=8×109cm3.教师问11:三个或三个以上的积的乘方等于什么?学生讨论后回答:三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=a n·b n·c n(n为正整数);教师讲解:积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏掉乘方出现错误;教师问12:积的乘方的法则:(ab)n=a n·b n(n是正整数),把等式的左右两边一换可以得到:a n·b n=(ab)n(n为正整数).这样成立吗?师生共同讨论后解答如下:积的乘方法则可以进行逆运算.即:a n·b n=(ab)n(n为正整数).总结点拨:分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.例1:计算:(出示课件11)(1)(2a)3;(2)(–5b)3;(3)(xy2)2;(4)(–2x3)4.师生共同解答如下:解:(1)原式=23a3=8a3;(2)原式=(–5)3b3=–125b3;(3)原式=x2(y2)2=x2y4;(4)原式=(–2)4(x3)4=16x12.总结点拨:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.例2计算:(出示课件14)(1)–4xy2·(xy2)2·(–2x2)3;(2)(–a3b6)2+(–a2b4)3.师生共同解答如下:解:(1)原式=–4xy2·x2y4·(–8x6)=[–4×(–8)]x1+2+6y2+4=32x9y6;(2)原式=a6b12+(–a6b12)=[1+(–1)]a6b12=0总结点拨:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.例3:如何简便计算(0.04)2022×[(–5)2022]2?(出示课件15)师生共同解答如下:解法一:(0.04)2022×[(–5)2022]2=(0.22)2022×54044=(0.2)4044×54044=(0.2×5)4044=14044=1解法二:(0.04)2022×[(–5)2022]2=(0.04)2022×(25)2022=(0.04×25)2022=12022=1总结点拨:(出示课件16)①逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.②一般转化为底数乘积是一个正整数,再进行幂的计算较简便.(三)课堂练习(出示课件20-24)1.计算(–x2y)2的结果是()A.x4y2B.–x4y2C.x2y2D.–x2y22.下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x43.计算:(1)82024×0.1252023=________;(2)(-3)2023×(-13)2022________;(3)(0.04)2023×[(–5)2023]2=________.4.判断:(1)(ab2)3=ab6()(2)(3xy)3=9x3y3() (3)(–2a2)2=–4a4()(4)–(–ab2)2=a2b4() 5.计算:(1)(ab)8;(2)(2m)3;(3)(–xy)5;(4)(5ab2)3;(5)(2×102)2;(6)(–3×103)3.6.计算:(1)2(x3)2·x3–(3x3)3+(5x)2·x7;(2)(3xy2)2+(–4xy3)·(–xy);(3)(–2x3)3·(x2)2.7.如果(a n•b m•b)3=a9b15,求m,n的值.参考答案:1.A2.C3.(1)8;(2)-3;(3)14.(1)×(2)×(3)×(4)×5.解:(1)原式=a8b8;(2)原式=23·m3=8m3;(3)原式=(–x)5·y5=–x5y5;(4)原式=53·a3·(b2)3=125a3b6;(5)原式=22×(102)2=4×104;(6)原式=(–3)3×(103)3=–27×109=–2.7×1010.6.(1)解:原式=2x6·x3–27x9+25x2·x7=2x9–27x9+25x9=0;(2)解:原式=9x2y4+4x2y4=13x2y4;(3)解:原式=–8x9·x4=–8x13.7.解:∵(a n•b m•b)3=a9b15,∴(a n)3•(b m)3•b3=a9b15,∴a3n•b3m•b3=a9b15,∴a3n•b3m+3=a9b15,∴3n=9,3m+3=15.∴n=3,m=4.(四)课堂小结今天我们学了哪些内容:积的乘方法则:(ab)n=a n·b n(n是正整数).使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.(五)课前预习预习下节课(14.1.4)98页到99页的相关内容。
新人教版八年级数学下册《一次函数》教学反思(共五则范文)
新人教版八年级数学下册《一次函数》教学反思(共五则范文)第一篇:新人教版八年级数学下册《一次函数》教学反思本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。
求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的思想学习函数。
通过本节课的教学发现:1、有一小部分的学生还是不懂得看函数图像。
2.用一次函数解析式解决实际问题时,不注意自变量的取值范围。
3.结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。
另外,运用知识解决实际问题是学生学习的目的,是重点,但也是学生的难点,需要慢慢的加强训练。
1.一次函数的图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的信息,解决更多的实际问题。
2.我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。
第二篇:八年级数学下册一次函数教学设计八年级数学下册一次函数教学设计教学目标1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。
2、能根据问题信息写出一次函数的表达式。
能利用一次函数解决简单的实际问题。
3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
教学过程1、复习:函数与正比例函数的概念和它们之间的关系。
2、问题:某登山队大本营所在地的气温为15℃.海拔每升高1km 气温下降6℃,登山队员由大本营向上登高xkm时,他们所在的位置的气温是y℃。
试用解析式表示y与x的关系。
3、反思:这个函数是正比例函数吗?它与正比例函数有什么不同?这种形式函数还会有吗?中下层的学生对登高xkm,气温下降多少度不能想出来,课堂上应及时点拨在对旧知的复习中突出函数是对变量间关系的刻画,正比例函数则是对某一类关系共性的抽象反映。
八年级数学教学反思优秀6篇
八年级数学教学反思优秀6篇初二数学教学反思篇一初二上学期很快就要过去了,回顾一学期的数学教学,没有多少成功感,期间我们取得了一些成绩,也吸取了很多的教训。
下面具体谈谈我们的一些工作方法以及我们的困惑。
一、本学期的教学时间较长,期中考试却只有两章内容而期末考试却有四章内容,教材的不足和问题大大的增加了我们初二教师的工作量,降低了我们的工作效率。
而且本教材不适合学生自学,它的知识点循环上升,本意是好的,但对学生的基础要求太高,如整式的乘法中,学生对整式的加法一点不会,他们的无心向学与教材的安排有很大的关系。
本教材的许多重要的知识点内容和时间不够,因式分解2个课时这种好像简单的,实际上是学生学的最差的,4节课才能解决问题的。
二、重视教学交流。
好方法大家资源共享,难题困难大家一起解决。
每个人上完课后都会找机会谈谈自己这节课是否达到了预期效果;学生们有没有什么特别好或不好的反应;出现了哪些新问题,是怎么解决的,大家再商量着还有没有更好的讲解方式,以便让还没上这课的其他老师能吸取经验,更好地把握教材,这是我们的核心工作,每天必做。
碰到特别难以把握的问题,我们会向其他有经验的老师们请教。
有时设想的教学方法和现实的教学效果会有很大差异,这时我们会做一下教学实验,就是大家讨论一种认为比较可行的教学方式。
在每次听课中,我们都综合学生们的反应、授课老师的自我评课、听课老师们的意见再加以完善,其他老师再上时,争取达到最理想的效果。
这样的教学实验我们做的很多,效果还不错,大家都觉得收益非浅。
在教学中也有很棘手的地方。
尽管我们在想方设法地让学生喜欢数学、主动学习数学,但时下的学生厌学情绪很浓,而且学生间的层次拉得很大,一群后进生的教学成为一个难点。
怎样缩小差距,让每个学生都学到有价值的数学,能获得必要的数学,不同的学生在数学上得到不同的发展,这些都成为我们工作的瓶颈。
不过我们相信事在人为,没有跨不过的坎,只要我们不断学习、不断总结、不断反思,在领导和老师们的帮助下,一定可以携手走过数学的沼泽,到达了一片数学的绿洲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学教学反思
通过八年级数学的教学,在教学实践中我觉得教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然地参与到教学全过程中来,经过自己的思维活动和动手操作获得知识。
要提高教学效果,达到教学目的,必须在引导学生参与教学活动的全过程上做好文章:加强学生的参与意识;增加学生的参与机会;提高学生的参与质量;培养学生的参与能力。
一、改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。
就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。
因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。
二、重视学习动机在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识。
学生学知识是为了用知识。
但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。
因此在教学时,应针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。
使大家都能深深感受到"人人学有用的数学"的新理念。
经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。
从教育心理学的角度来说,教师应操纵或控制教学过程中影响学生学习的各有关变量。
在许许多多的变量中,学习动机是对学生的学习起着关键作用的一个,它是有意义学习活动的催化剂,是具有情感性的因素。
只有具备良好的学习动机,学生才能对学习积极准备,集中精力,认真思考,主动地探索未知的领域。
教学中,激发学生参与热情的方法很多。
用贴近学生生活的实例引入新知,既能化难为易,又使学生倍感亲切;提出问题,设置悬念,能激励学生积极投入探求新知识的活动;对学生的学习效果及时肯定;组织竞赛;设置愉快情景等,使学生充分展示自己的才华,不断体验解决问题的愉悦。
坚持这佯做,可以逐步强化学生的参与热情。
三、重视实践活动在教学过程中的启智功能,通过观察、思考、讨论等形式诱导学生参与知识形成发展的全过程,尽可能增加学生的参与机会。
在数学教学中,促使学生眼、耳、鼻、舌、身多种感官并用,让学生积累丰富的典型的
感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。
四、重视学习环境在教学过程中的作用
通过创设良好的人际关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量。
和谐的师生关系便于发挥学生学习的主动性、积极性。
现代教育家认为,要使学生积极、主动地探索求知,必须在民主、平等、友好合作师生关系基础上,创设愉悦和谐的学习气氛。
因此,教师只有以自身的积极进取、朴实大度、学识渊博、讲课生动有趣、教态自然大方、态度认真,治学严谨、和蔼可亲、不偏不倚等一系列行为在学生中树立起较高威信,才能有较大的感召力,才会唤起学生感情上的共鸣,以真诚友爱和关怀的态度与学生平等交往,对他们尊重、理解和信任,才能激发他们的上进心,主动地参与学习活动。
教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。
交往沟通、求知进取、和谐愉快的学习氛围为学生提供了充分发展个性的机会,教师只有善于协调好师生的双边活动,才能让大多数学生都有发表见解的机会。
例如,在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。
这样学生在生动活泼、民主和谐的群体学习环境中既独立思考又相互启发,在共同完成认知的过程中加强思维表达、分析问题和解决问题能力的发展,逐步提高学生参与学习活动的质量。
五、重视学习方法在教学过程中的推动作用
通过方法指导,积极组织学生的思维活动,不断提高学生的参与能力。
教育心理学的研究成果表明,教师可以通过有目的的教学促使学生有意识地掌握推理方法、思维方式、学习技能和学习策略,从而提高学生参与活动的心理过程的效率来促进学习。
教学过程是一个师生双边统一的活动过程。
在这个过程中,教与学的矛盾决定了教需有法,教必得法,学才有路,学才有效,否则学生只会效仿例题,只会一招一式,不能举一反三。
在教学中,教师不但要教知识,还要教学生如何“学”。
教学中教师不能忽视,更不能代替学生的思维,而是要尽可能地使教学内容的设计贴近学生的“最近发展区”。
通过设计适当的教学程序,引导学生从中悟出一定的方法。
例如:学生学会一个内容后,教师就组织学生进行小结,让学生相互交流,鼓励并指导学生结合自己的实际情况。
总结出个人行之有效的学习方法,对自己的学习过程进行反思,学生可以适当调整自己的学习行为,进而提高学生的参与能力。
六、培养学生反思是作业之后的一个重要环节
实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习
惯,是提高学习效果、培养能力的行之有效的方法。
解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。
反思对学生思维品质的各方面的培养都有作积极的意义。
因此,在不增加学生负担的前提下,要求作业之后尽量写反思,利用作业空出的反思栏给老师提出问题,结合作业作出合适的反思。
对学生来说是培养能力的一项有效的思维活动,培养学生反思解题过程是作业之后的一个重要环节,具有很大的现实意义。
总之,在数学课堂教学中,教师要时时刻刻注意给学生提供参与的机会,体现学生的主体地位,充分发挥学生的主观能动作用。
只有这样才能收到良好的教学效果.。