盖斯定律及其应用
盖斯定律及其应用
![盖斯定律及其应用](https://img.taocdn.com/s3/m/5a5668160740be1e650e9a6e.png)
盖斯定律及其应用盖斯定律化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步及反应的反应热之和与该反应一步完成的反应热是相同的,这就是盖斯定律。
例如:122(g)2(g)2(l)H 2(g)2(g)2(l)H 2(g)H 1H O H O 21H O H O 2H O ∆∆∆+=+−−→ 可以通过两种途径来完成。
如上图表:已知: 2(g)2(g)2(g)11H O H O ;H 241.8kJ /mol 2+=∆=- 2g 2l 2H O H O H 44.0kJ /mol =∆=()();- 根据盖斯定律,则12H H H 241.8kJ /mol 44.0kJ /mol 285.8kJ /mol ∆=∆∆=+=+-(-)- 其数值与用量热计测得的数据相同。
盖斯定律的应用盖斯定律:当某一物质在定温定压下经过不同的反应过程,生成同一物质时,无论反应是一步完成还是分几步完成,总的反应热是相同的。
即反应热只与反应始态(各反应物)和终态(各生成物)有关,而与具体反应的途径无关。
应用盖斯定律进行简单计算,关键在于设计反应过程,同时注意:⑴ 当反应式乘以或除以某数时,△H 也应乘以或除以某数。
⑵ 反应式进行加减运算时,△H 也同样要进行加减运算,且要带“+”、“-”符号,即把△H 看作一个整体进行运算。
⑶ 通过盖斯定律计算比较反应热的大小时,同样要把△H 看作一个整体。
⑷ 在设计的反应过程中常会遇到同一物质固、液、气三态的相互转化,状态由固→液→气变化时,会吸热;反之会放热。
⑸ 当设计的反应逆向进行时,其反应热与正反应的反应热数值相等,符号相反。
【例1】.已知⑴ ()()()2221g g g 1H O H O H akJ /mol 2+=∆;= ⑵ ()()()2222g g g 2H O 2H O H bkJ /mol +=∆;=⑶ ()()()2223g g l 1H O H O H ckJ /mol 2+=∆;= ⑷ ()()()2224g g l 2H O 2H O H dkJ /mol +=∆;=下列关系式中正确的是( )A .a <c <0B .b >d >0C .2a =b <0D .2c =d >0【解析】:⑴、⑵式反应物、生成物的状态均相同,⑴×2=⑵,即2△H 1=△H 2,2a =b ,又H 2的燃烧反应为放热反应,故2a =b <0,C 项符合题意。
盖斯定律计算三字口诀
![盖斯定律计算三字口诀](https://img.taocdn.com/s3/m/866687e6f424ccbff121dd36a32d7375a417c6ee.png)
盖斯定律计算三字口诀
(原创实用版)
目录
1.盖斯定律的概述
2.盖斯定律计算三字口诀的含义
3.盖斯定律计算三字口诀的应用举例
4.盖斯定律计算三字口诀的优点和局限性
正文
盖斯定律是热力学中的一个重要定律,它描述了在恒压条件下,气体的体积与温度之间的关系。
盖斯定律计算三字口诀则是对盖斯定律的一种简洁概括,它将复杂的计算过程简化为三个简单的步骤,从而使得盖斯定律的计算变得更加简便。
盖斯定律计算三字口诀的具体内容是:“温升压不变,压升温不变,体积膨胀”。
这三个步骤分别描述了在恒压条件下,气体温度升高时体积的变化;在恒温条件下,气体压力升高时体积的变化;以及在气体压力和温度同时变化时,体积的变化。
例如,当我们需要计算一定质量的理想气体在恒压条件下,从初始温度 T1 升高到最终温度 T2 时体积的变化时,我们可以使用盖斯定律计算三字口诀。
首先,根据“温升压不变”,我们可以得出体积与温度成正比,即 V1/T1=V2/T2。
然后,通过解这个方程,我们就可以得到体积的变化量。
盖斯定律计算三字口诀的优点在于它将复杂的计算过程简化为简单的三步,使得计算更加简便。
然而,它也存在一定的局限性,例如在非恒压条件下,盖斯定律计算三字口诀就不再适用。
第1页共1页。
盖斯定律的原理及应用
![盖斯定律的原理及应用](https://img.taocdn.com/s3/m/5ee1f2b5f71fb7360b4c2e3f5727a5e9856a2736.png)
盖斯定律的原理及应用1. 引言盖斯定律是流体力学中的基本定律之一,描述了管道中流体的流动行为。
它由爱尔兰工程师亨利·盖斯于1799年提出,是流体力学领域中的重要原理。
本文将介绍盖斯定律的基本原理以及其在实际应用中的作用。
2. 盖斯定律的原理盖斯定律表述了液体或气体通过管道时的流量与压力之间的关系。
根据盖斯定律,管道内流体的流量Q与压力差△P之间呈线性关系。
具体可以用以下公式表示:Q = kA△P其中,Q表示流量,A表示管道的横截面积,△P表示压力差,k 为比例常数。
该公式可以简化为Q ∝△P。
盖斯定律的基本原理可以通过流体的动量守恒和能量守恒来推导。
根据动量守恒定律,流体在管道中的动量变化等于施加在其上的力乘以时间。
而根据能量守恒定律,单位时间内流过管道某一截面的功率等于管道前后的压力差。
基于这两个定律,可以推导出盖斯定律的数学表达式。
3. 盖斯定律的应用盖斯定律在很多实际应用中起着重要作用,以下列举几个常见的应用场景:3.1 水管系统的设计在设计水管系统时,盖斯定律可以用于确定不同管段的管径。
通过测量进水口和出水口处的压力差,可以根据盖斯定律计算出流量,然后根据流量要求确定相应的管径。
这有助于确保水流的稳定性和高效性。
3.2 汽车制动系统盖斯定律在汽车制动系统中有广泛应用。
制动系统中的刹车片通过液压系统施加力来减速汽车。
根据盖斯定律,当刹车踏板施加的力增大时,液压系统中的压力增加,从而提高了制动力。
这使得汽车的制动更加可控和安全。
3.3 喷气发动机的燃烧室设计盖斯定律在喷气发动机的燃烧室设计中也起着重要作用。
喷气发动机中的燃油通过喷射和燃烧产生高温高压的气体,从而产生推力。
盖斯定律可以用于确定燃烧室中燃气的流动速度和压力分布,有助于提高燃烧效率和推力。
3.4 水力发电站的设计盖斯定律在水力发电站的设计中也有重要应用。
水力发电利用水流的动能来驱动发电机,产生电能。
通过应用盖斯定律,可以计算出水流的流量和压力,从而设计合适的水轮机和水管系统,以提高发电效率。
盖斯定律及其应用
![盖斯定律及其应用](https://img.taocdn.com/s3/m/a485447e25c52cc58ad6be15.png)
人 教 版 化 学
C( 石墨 ) + O2(g)= CO2(g)
H 2(g) + 1/2O 2(g) = H 2O(l)
ΔH2=- 393.5 kJ· mol
-1
-1
ΔH 3 =- 285.8 kJ ·mol
②
③ 根据盖斯定律求反应 C(石墨)+2H 2(g)= CH 4(g) ④ 的ΔH 4
化学反应原理
已知 25 ℃、101 kPa 下,1 g C8H18(辛烷)燃烧生成二 氧化碳和液态水时放出 48.40 kJ 热量。则 C8H18 的燃烧 热为 ________________。
人 教 版 化 学
化学反应原理
第1章 第三节
[解析 ] 注意燃烧热为燃烧 1 mol 物质所放出的热 量。 1 g C8H18 燃烧生成二氧化碳和液态水时放出 48.40 kJ 热量,则 1 mol C8H18 完全燃烧放出的热量为 48.40 kJ· g
第1章 第三节
[解析 ] 方法一: 因为反应式①②③和④ 之间有以下 关系: ②+③×2-①=④ 所以 ΔH4= ΔH2+ 2ΔH3-ΔH1 =- 393.5+ 2×(- 285.8)- (- 890.3) =- 74.8(kJ· mol 1)
-
人 教 版 化 学
化学反应原理
第1章 第三节
方法二:也可以设计一个途径,使反应物经过一些 中间步骤最后回复到产物:
-1
C.- 244.15 kJ· mol-1
D.+ 244.15 kJ· mol-1
化学反应原理
第1章 第三节
[解析 ] ①×2 得:2C(s)+ 2O2(g)===2CO2(g) =- 787.0 kJ· mol
-1
ΔH4
盖斯定律及其应用-高二化学(人教版2019选择性必修1)
![盖斯定律及其应用-高二化学(人教版2019选择性必修1)](https://img.taocdn.com/s3/m/07c5009aed3a87c24028915f804d2b160b4e86b9.png)
④H2Sg+H2SO4aq===Ss+SO2g+
2H2Ol ΔH4=+61 kJ·mol-1
(3)加和调整好的热化学方程式 (4)求焓变ΔH (5)检查 系统(Ⅰ):①+②+③可得出H2O(l)===H2(g)+1/2O2(g) ΔH=ΔH1+ΔH2+ΔH3
【答案】 H2O(l)===H2(g)+1/2O2(g) ΔH=+286 kJ·mol-1 H2S(g)===H2(g)+S(s) ΔH=+20 kJ·mol-1
系统(Ⅰ) H2SO4aq ΔH2=-151 kJ·mol-1 ③2HIaq===H2g+I2s
ΔH3=+110 kJ·mol-1
系统(Ⅱ)
②SO2g+I2s+2H2Ol===2HIaq +H2SO4aq ΔH2=-151 kJ·mol-1 ③2HIaq===H2g+I2s ΔH3=+110 kJ·mol-1
C.ΔH3=ΔH1-2ΔH2 答案:A
D.ΔH3=ΔH1-ΔH2
解析:热化学方程式①、②和③之间存在关系:①+2×②=③,故有
ΔH1+2ΔH2=ΔH3。
突破点二:盖斯定律的应用
应用一 利用盖斯定律计算反应热
[方法归纳] 有些反应进行得很慢,有些反应不容易直接发生,有些反应的产品不纯,
这给测定反应热造成了困难,此时若应用盖斯定律,就可以间接把它们的反应热计算
解析: 将已知的热化学方程式依次编号为①、②、③、④,将方程式 ③×2-①-④×4得 2N2H4(g)+2NO2(g)===3N2(g)+4H2O(l),所以反应的ΔH=2×(-534 kJ·mol-1)-67.7 kJ·mol-1-4×(+44.0 kJ·mol-1)=-1 311.7 kJ·mol-1。
出来。
盖斯定律的应用
![盖斯定律的应用](https://img.taocdn.com/s3/m/469bd70476eeaeaad0f33038.png)
1、盖斯定律的涵义:对于一个化学反应,无论是一步完成还是分几步完成,其反应焓变是一样的的。
这就是盖斯定律。
也就是说,化学反应的反应热只与反应体系的始态和终态有关,而与具体的反应进行的途径无关。
2、盖斯定律的应用盖斯定律在科学研究中具有重要意义。
因为有些反应进行的很慢,有些反应不容易直接发生,有些反应的产品不纯(有副反应发生),这给测定反应热造成了困难。
此时如果应用盖斯定律,就可以间接的把它们的反应热计算出来。
例如:C(S)+0.5O2(g)=CO(g)上述反应在O2供应充分时,可燃烧生成CO2、O2供应不充分时,虽可生成CO,但同时还部分生成CO2。
因此该反应的△H无法直接测得。
但是下述两个反应的△H却可以直接测得:C(S)+O2(g)=CO2(g) ;△H1= - 393.5kJ/molCO(g)+0.5 O2(g)=CO2(g) ;△H2=- 283.0kJ/mol根据盖斯定律,就可以计算出欲求反应的△H3。
分析上述反应的关系,即知△H1=△H2+△H3△H3=△H1-△H2=-393.5kJ/mol-(-283.0kJ/mol)=-110.5kJ/mol 例5图由以上可知,盖斯定律的实用性很强。
3、反应热计算根据热化学方程式、盖斯定律和燃烧热的数据,可以计算一些反应的反应热。
反应热、燃烧热的简单计算都是以它们的定义为基础的,只要掌握了它们的定义的内涵,注意单位的转化即可。
热化学方程式的简单计算的依据:(1)热化学方程式中化学计量数之比等于各物质物质的量之比;还等于反应热之比。
(2)热化学方程式之间可以进行加减运算。
例1:按照盖斯定律,结合下述反应方程式,回答问题,已知:(1)NH3(g)+HCl(g)===NH4Cl(s)△H1=-176kJ/mol(2)NH3(g)+H2O(l)===NH3.H2O(aq) △H2=-35.1kJ/mol(3)HCl(g) +H2O(l)===HCl(aq) △H3=-72.3kJ/mol(4)NH3(aq)+ HCl(aq)===NH4Cl(aq) △H4=-52.3kJ/mol(5)NH4Cl(s)+2H2O(l)=== NH4Cl(aq) △H5=?则第(5)个方程式中的反应热△H是____。
化学反应的盖斯定律
![化学反应的盖斯定律](https://img.taocdn.com/s3/m/6121cc576ad97f192279168884868762caaebb24.png)
盖斯定律的数学表达
盖斯定律可以用数学表达式来表示。对于一个化学反应,其焓变(ΔH)可以表示为:ΔH = Σ(ΔHₘ)rxn + Σ(ΔHₘ)vap + Σ(ΔHₘ)solv等式中,ΔHₘ表示物质的标准摩尔生成焓,rxn表示化学反应方程式中各物质的计量系数,vap和solv分别表示气体和 溶液的体积变化。
反应热的比较
利用盖斯定律,可以比较不同化学反应的反应热 大小,从而判断反应的能量变化趋势。
3
反应热的测量
通过实验测量反应过程中温度的变化,结合盖斯 定律,可以更准确地测定化学反应的反应盖斯定律,可以选择出能量 最低的反应路径,即最有利于发 生的反应路径。
比较不同路径
实验结果分析与结论
分析数据
对实验数据进行统计分析,计算不同温度下反应 的焓变值。
验证盖斯定律
比较不同温度下反应的焓变值,验证盖斯定律的 正确性。
结论总结
根据实验结果得出结论,总结盖斯定律在化学反 应中的应用和意义。
盖斯定律在化学反应
04
中的应用
反应热的计算
1 2
计算反应热
盖斯定律可以用于计算化学反应的反应热,通过 已知的反应热和温度变化,可以求得未知反应的 反应热。
在化学合成中,可以利用盖斯定律优 化合成路径,降低能耗和减少环境污 染。
计算焓变和熵变
通过盖斯定律,可以计算化学反应的 焓变和熵变,进而了解反应的能量变 化和自发性的变化。
02
盖斯定律的原理
能量守恒原理
第10章第39讲盖斯定律及应用2025年高考化学一轮复习讲义(新人教版)
![第10章第39讲盖斯定律及应用2025年高考化学一轮复习讲义(新人教版)](https://img.taocdn.com/s3/m/fdf748a1710abb68a98271fe910ef12d2bf9a902.png)
第39讲 盖斯定律及应用[复习目标] 1.掌握盖斯定律的内容及意义,并能进行有关反应热的计算。
2.能综合利用反应热和盖斯定律比较不同反应体系反应热的大小。
考点一 盖斯定律与反应热的计算1.盖斯定律的内容一个化学反应,不管是一步完成的还是分几步完成的,其反应热是相同的。
即化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关。
2.盖斯定律的意义间接计算某些反应的反应热。
3.盖斯定律的应用转化关系反应热间的关系 a A ――→ΔH 1B ;A ――→ΔH 21aBΔH 1=a ΔH 2 AΔH 1ΔH 2BΔH 1=-ΔH 2ΔH =ΔH 1+ΔH 2一、应用循环图分析焓变关系1.(2022·重庆,13)“千畦细浪舞晴空”,氮肥保障了现代农业的丰收。
为探究(NH 4)2SO 4的离子键强弱,设计如图所示的循环过程,可得ΔH 4/(kJ· mol -1)为( )A .+533B .+686C .+838D .+1 143 答案 C解析 ①NH 4Cl(s)===NH +4(g)+Cl -(g) ΔH 1=+698 kJ·mol -1;②NH 4Cl(s)===NH +4(aq)+Cl-(aq) ΔH 2=+15 kJ·mol -1;③Cl -(g)===Cl -(aq) ΔH 3=-378 kJ·mol -1;④12(NH 4)2SO 4(s)===NH +4(g)+12SO 2-4(g) ΔH 4;⑤12(NH 4)2SO 4(s)===NH +4(aq)+12SO 2-4(aq) ΔH 5=+3 kJ·mol -1;⑥12SO 2-4(g)===12SO 2-4(aq) ΔH 6=-530 kJ·mol -1;则⑤+①-⑥-②+③得④,ΔH 4=+838 kJ· mol -1, C 正确。
2.[2018·北京,27(1)]近年来,研究人员提出利用含硫物质热化学循环实现太阳能的转化与存储。
高中化学高考精品备课教案:盖斯定律及其应用
![高中化学高考精品备课教案:盖斯定律及其应用](https://img.taocdn.com/s3/m/3107bd5253ea551810a6f524ccbff121dd36c527.png)
化学反应与能量变化盖斯定律及其应用课标要求核心考点五年考情核心素养对接1.了解盖斯定律及其简单应用。
2.能辨识化学反应中的能量转化形式,能解释化学反应中能量变化的本质。
3.能进行反应焓变的简单计算,能用热化学方程式表示反应中的能量变化,能运用反应焓变合理选择和利用化学反应盖斯定律及其应用2023全国甲,T28;2023全国乙,T28;2023湖南,T16;2023湖北,T19;2023山东,T20;2023年6月浙江,T19;2022年6月浙江,T18;2022广东,T19;2022全国甲,T28;2021湖南,T16;2021重庆,T10;2021年1月浙江,T24;2020年7月浙江,T22;2020全国Ⅱ,T28;2019全国Ⅱ,T271.证据推理与模型认知:能基于盖斯定律,结合键能、焓变等信息,计算未知反应的焓变;能对燃料、能源使用方案进行简单评价;能结合数据信息,根据目的选择物质,设计反应;能从物质与能量转化的角度,创造性地设计反应,合理利用能量。
2.科学探究与创新意识:能测定典型反应的反应热,并分析误差;能探究反应热测定过程中的影响因素命题分析预测1.以盖斯定律的应用为载体命题,常以非选择题中某一问的形式考查热化学方程式的书写或反应热的计算。
2.预计在2025年高考中,有关反应热的考查内容将不断拓宽,对热化学方程式的书写及盖斯定律的应用要求会有所提高,另外试题很可能会涉及能源问题,以引导考生形成与环境和谐共处、合理利用自然资源的观念考点盖斯定律及其应用1.盖斯定律(1)定义:一个化学反应,不管是一步完成的还是分几步完成的,其反应热是[1]相同的。
即反应热只与反应体系的[2]始态和[3]终态有关,而与[4]反应途径无关。
如:途径一:A→B途径二:A→C→B则ΔH1、ΔH2、ΔH的关系为ΔH=[5]ΔH1+ΔH2。
(2)本质:在指定状态下,各物质的焓都是确定的,等压且没有除体积功之外的其他功产生时,从反应物变成产物,无论经过哪些步骤,它们焓的差值都是不变的。
盖斯定律及其应用
![盖斯定律及其应用](https://img.taocdn.com/s3/m/2ef6584a804d2b160b4ec0f1.png)
一、必备技能
1.盖斯定律: 不管化学反应是一步完成还是分几步完成,其总的热效应是 相同的,即反应的焓变只与体系的始态和终态有关,而与反应途 径无关。通俗地说,相关热化学方程式之间可以“加减”,随之 反应热ΔH也相应地“加减”。即在如下图所示的变化过程中,存
2.应用盖斯定律计算化学反应的焓变时,关键在于设 计反应过程,同时应注意: (1)由于△H与反应物的物质的量有关,因此热化学 方程式中化学式前面的化学计量数必须与△H相对应。如化 学计量数成倍减少或增加,则△H也要成倍的减少或成倍的 增加。
二、必备技能
【例1 】下列说法正确的是( ) A.任何酸与碱发生中和反应生成1 mol H2O的过程中,能量变化均相同
B.同温同压下,H2 (g)+Cl2(g)= 2HCl(g)在光照和点燃条件下的△H不同
【解析】 只有在稀溶液中,不同的强酸与强碱发生中和反应而生成 1molH2O时,能量变化相同,A错误;根据盖斯定律可知反应热
226.25 kJ。 答案 (1)2Al(s)+Fe2O3(s)===2Fe(s)+Al2O3(s) ΔH=-593.1 kJ· mol-1 (2)226.25 kJ
若有17 g氨气经催化氧化完全生成一氧化氮气体和水蒸
气所放出的热量为________。
解析 化学反应的反应热只与反应体系的始态和终态有关, 而与反应的途径无关。 1 3 (1)①× 2 + ② - ③× 得 : 2Al(s) + Fe2O3(s)===2Fe(s) + 2 Al2O3(s) ΔH=-593.1 kJ· mol-1 (2)(①-②)×2 +③×3 得: 4NH3(g) + 5O2(g)===4NO(g) + 6H2O(g) ΔH=-905 kJ· mol-1 -1 905 kJ· mol 17 g 则 17 g NH3 被氧化时放出的热量= = - × 4 17 g· mol 1
盖斯定律及其应用
![盖斯定律及其应用](https://img.taocdn.com/s3/m/9d087ac05fbfc77da269b1eb.png)
10
【练习3】同素异形体相互转化但反应热相 当小而且转化速率慢,有时还很不完全,测 定反应热很困难。现在可根据盖斯提出的观 点“不管化学反应是一步完成或分几步完成, 这个总过程的热效应是相同的”。已知: P4(s、白磷)+5O2(g)=P4O10(s);H1= -2983.2 kJ/mol
②
=
③
则 ΔH1 + ΔH2 =ΔH3 所以, ΔH1 =ΔH3- ΔH2 =-393.5kJ/m 283.0kJ/m ol+ ol =-110.5kJ/m ol
ห้องสมุดไป่ตู้
应用了什么规律?
7
盖斯定律的计算要注意:
①确定待求的反应方程式; ②找出待求方程式中各物质出现在已知方程 式的什么位置; ③根据未知方程式中各物质计量数和位置的 需要对已知方程式进行处理,或调整计量数, 或调整反应方向; ④实施叠加并检验上述分析的正确与否。
8
【练习1】已知 ① CO(g) + 1/2 O2(g) =CO2(g)
ΔH1= -283.0 kJ/mol
② H2(g) + 1/2 O2(g) =H2O(l) ΔH2= -285.8 kJ/mol ③C2H5OH(l) + 3O2(g) = 2CO2(g) + 3H2O(l) ΔH3=-1370 kJ/mol 试计算 ④2CO(g)+ 4 H2(g)=H2O(l)+ C2H5OH(l) 的ΔH
5
实例1
CO(g) H2 C(s) H1 H3 CO2(g)
H1 =
H2 +
H3
《盖斯定律及应用》课件
![《盖斯定律及应用》课件](https://img.taocdn.com/s3/m/26085172effdc8d376eeaeaad1f34693daef1025.png)
对可逆过程的依赖性
总结词
盖斯定律的应用依赖于可逆过程,但实 际反应往往难以达到可逆状态。
VS
详细描述
盖斯定律仅适用于可逆过程,但在实际反 应中,由于各种因素的限制,如反应动力 学、热力学ቤተ መጻሕፍቲ ባይዱ化学平衡等,反应很难完全 达到可逆状态。因此,在应用盖斯定律时 需要考虑这些因素的影响。
对热力学过程的依赖性
详细描述
盖斯定律表明,一个系统的热力学状态变化只取决于起始和 最终状态,而与变化过程中所经历的中间状态无关。这意味 着,通过不同的反应路径,可以达到相同的最终状态,这些 路径的热力学行为是等效的。
盖斯定律的发现与起源
总结词
盖斯定律由苏格兰物理学家和数学家詹姆斯·克拉克·盖斯于19世纪提出。
详细描述
盖斯定律的发展趋势与展望
盖斯定律的理论研究进展
盖斯定律基本原理的完善
随着理论物理学的发展,盖斯定律的基本原理得到进一 步明确和阐述,为相关领域的研究提供更坚实的理论基 础。
盖斯定律与其他理论的融合
盖斯定律与热力学、统计力学等理论相互渗透,形成更 广泛的理论体系,推动相关领域的发展。
盖斯定律在交叉学科中的应用
要点二
详细描述
盖斯定律在多个领域中具有重要意义。在化学反应计算中 ,盖斯定律可以用于计算不同反应路径的能量变化,有助 于理解化学反应的本质和过程。在能源利用方面,盖斯定 律有助于优化能源转换过程,提高能源利用效率。此外, 在环境保护领域,盖斯定律可以帮助我们更好地理解和控 制环境污染物的生成和转化过程。
总结词
盖斯定律的应用受到热力学过程的限制,不 适用于非热力学平衡过程。
详细描述
盖斯定律适用于等温、等压或绝热过程,但 不适用于非热力学平衡过程。在非平衡过程 中,化学反应的热效应不仅与反应途径有关 ,还与反应条件有关。因此,在应用盖斯定 律时需要确保所研究的反应过程符合热力学 的基本原理。
简述盖斯定律的内容
![简述盖斯定律的内容](https://img.taocdn.com/s3/m/f0a018a6f9c75fbfc77da26925c52cc58ad69054.png)
简述盖斯定律的内容摘要:1.盖斯定律的定义与背景2.盖斯定律的表达式及其意义3.盖斯定律在实际应用中的例子4.盖斯定律与其他热力学定律的关系5.盖斯定律的拓展与未来发展正文:盖斯定律是热力学领域中非常重要的定律之一,它的发现者是俄国科学家盖斯。
本文将简要介绍盖斯定律的内容、表达式、实际应用及其在热力学中的地位。
一、盖斯定律的定义与背景盖斯定律,又称盖斯-亥姆霍兹定律,是指在恒定温度和压力下,气体的体积与其内能成正比。
这一定律揭示了气体内能与体积之间的关系,为热力学研究提供了基本依据。
二、盖斯定律的表达式及其意义盖斯定律可以用以下表达式表示:ΔU = nC_pΔT其中,ΔU表示内能的变化,n表示摩尔数,C_p表示定压热容,ΔT表示温度变化。
该定律的意义在于,它表明在恒定压力下,气体的内能变化仅与温度有关。
这对于研究气体在各种热力学过程中的能量变化具有重要的指导意义。
三、盖斯定律在实际应用中的例子盖斯定律在实际应用中具有广泛的应用,例如在气体输送、气体储存和气体分离等领域。
通过盖斯定律,我们可以预测气体在一定条件下的体积变化,从而为实际工程问题提供解决方案。
四、盖斯定律与其他热力学定律的关系盖斯定律与热力学第一定律和热力学第二定律密切相关。
热力学第一定律揭示了能量守恒原理,而热力学第二定律则表明热量不可能自发地从低温物体传到高温物体。
盖斯定律则是从能量守恒的角度,进一步阐述了气体内能与体积之间的关系。
五、盖斯定律的拓展与未来发展随着科学技术的不断发展,盖斯定律的应用范围将进一步拓展。
例如,在新能源开发、节能减排等领域,盖斯定律将为研究气体在各种条件下的热力学行为提供理论支持。
同时,盖斯定律的研究也将不断深入,以期为解决更多实际问题提供理论依据。
总之,盖斯定律是热力学领域中具有重要意义的基本定律。
它揭示了气体内能与体积之间的关系,并在实际应用中发挥着重要作用。
高二化学--盖斯定律及应用
![高二化学--盖斯定律及应用](https://img.taocdn.com/s3/m/7448e302844769eae009edaf.png)
[创设情境]:能量是守恒的,在复杂化学反应中,从反应物出发得到生成物的途径往往并不唯一,那么不同的反应途径是不是消耗的能量就有多有少呢? [学习任务]:通过实验我们发现,化学反应的反应热与反应的途径无关,只与反应的始末状态有关。
1.盖斯定律的内容:不管化学反应是一步完成或分几步完成,其 相同。
换句话说,化学反应的反应热只与 有关,而与反应的途径无关。
2.盖斯定律直观化:参照图1尝试填写图2的表格: △H1、△H2、△H3 三种之间的关系如何?找出能量守恒的等量的关系3. 利用盖斯定律计算反应热:【例1】试利用298K 时下列反应焓变的实验数据,计算在此温度下C(s)+21O2 (g)=CO(g)的反应焓变? 反应3C(s)+ O2 (g)=CO2(g) △H1=-393.5 kJ·mol -1 反应1CO(g)+ 21O2 (g)=CO2(g) △H2=-283.0 kJ·mol -1 反应2 方法1:以盖斯定律原理求解, 以给出的反应为基准(1)找起点C(s), (2)终点是CO2(g),(3)总共经历了两个反应 C→CO2 ;C→CO→CO2。
(4)也就说C→CO2的焓变为C→CO; CO→CO2之和。
则△H1=△H3+△H2 方法2:以盖斯定律原理求解, 以要求的反应为基准(1) 找起点C(s),(2) 终点是CO(g),(3) 总共经历了两个反应 C→CO2→CO。
(4) 也就说C→CO 的焓变为C→CO2; CO2→CO 之和。
注意:CO→CO2 焓变就是△H2 那 CO2→CO 焓变就是 —△H2 方法3:利用方程组求解(1) 找出头尾 :同上 (2) 找出中间产物 :CO2(3) 利用方程组消去中间产物:反应1 + (-反应2)= 反应 3 (4) 列式:△H1—△H2 = △H3∴△H 3=△H1 -△H2=-393.5 kJ/mol -(-283.0 kJ/mol)=-110.5 kJ/mol 【例2】根据下列热化学方程式分析,C(s)的燃烧热△H 等于 ( ) C(s) + H2O(l) === CO(g) + H2(g) △H1 =+175.3k J·mol—1 2CO(g) + O2(g) == 2CO2(g) △H2=—566.0 k J·mol—1 2H2(g) + O2(g) == 2H2O(l) △H3=—571.6 k J·mol—1 A. △H1 + △H2 —△H3 B.2△H1 + △H2 + △H3 C. △H1 + △H2/2 + △H3 D. △H1 + △H2/2 + △H3/2 【练习1】已知氟化氢气体中有平衡关系: 2H3F33H2F2 △H1= a kJ·mol—1 H2F2 2HF △H2= b kJ·mol—1 已知a 、b 均大于0;则可推测反应:H3F33HF 的△H3为( D ) (a + b ) kJ·mol—1 B.(a — b )kJ·mol—1C.(a + 3b )kJ ·mol—1D.(0.5a + 1.5b )kJ·mol—1 【练习2】(2005广东22·4) 由金红石(TiO2)制取单质Ti ,涉及到的步骤为: TiO2TiCl4−−−−→−ArC /800/0镁Ti 已知:① C (s )+O2(g )=CO2(g ) ∆H 1 =-393.5 kJ·mol -1 ② 2CO (g )+O2(g )=2CO2(g ) ∆H 2 =-566 kJ·mol -1 ③ TiO2(s )+2Cl2(g )=TiCl4(s )+O2(g ) ∆H 3=+141 kJ·mol -1则TiO2(s )+2Cl2(g )+2C (s )=TiCl4(s )+2CO (g )的∆H = [本节知识体系]:[自主检测](一)基础知识——必会题1.考点:盖斯定律及其应用 (1).盖斯定律的涵义:化学反应的反应热只与反应的 (各反应物)和 (各生成物)有关,而与反应的 无关。
盖斯定律及其应用
![盖斯定律及其应用](https://img.taocdn.com/s3/m/92923d2fbcd126fff7050b2f.png)
②P(s、红磷)+5/4O2(g)=1/4P4O10(s) △H2= -738.5 kJ/mol
试写出白磷转化为红磷的热化学方程式 ①- 4×②:
。
P4(s、白磷)=4P(s、红磷) △= - 29.2kJ/mol
正逆反应的反应热效应数值相等,符号相反。 “+”不能省去。 思考:为什么在热化学反应方程式中通常可不 表明反应条件?
热化学方程式还可以表示理论可进行实际难进行的化学反应
练习4. 已知: ① CO(g)+1/2O2(g)=CO2(g) ΔH1= -283.0 kJ/mol ② H2(g)+1/2O2(g)=H2O(l) ΔH2= -285.8 kJ/mol ③C2H5OH(l)+ 3O2(g)=2CO2(g)+3H2O(l) ΔH3=-1370 kJ/mol 试计算④ 2CO(g)+4H2(g)=H2O(l)+C2H5OH(l) 的ΔH
例3:已知下列各反应的焓变
①Ca(s)+C(s,石墨)+3/2O2(g)=CaCO3(s)
△H = -1206.8 kJ/mol
②Ca(s)+1/2O2(g)=CaO(s)
△H = -635.1 kJ/mol
③C(s,石墨)+O2(g)=CO2(g)
△H = -393.5 kJ/mol
试求④CaCO3(s)=CaO(s)+CO2(g)的焓变
△ H1 < 0
S(始态)
L(终态)
△ H2 > 0 △ H1 +△ H 2 ≡ 0
如何理解盖斯定律?
盖斯定律的例题及解析
![盖斯定律的例题及解析](https://img.taocdn.com/s3/m/a72cb573842458fb770bf78a6529647d26283464.png)
盖斯定律的例题及解析一、什么是盖斯定律盖斯定律(Gauss’s Law),也称高斯定理,是电磁学中的基本定律之一,用于描述电场的性质。
根据盖斯定律,通过任何闭合曲面的电通量等于该闭合曲面内的电荷总量除以真空电容率。
数学公式表示为:其中,S为闭合曲面,E为电场强度,dS为曲面上的面元,Q为闭合曲面内的电荷总量,ε₀为真空电容率。
二、盖斯定律的应用1. 理解电场盖斯定律可以帮助我们理解电场的分布情况。
通过计算电通量,可以确定电场是从正电荷向外发散还是向内收敛。
当闭合曲面内没有电荷时,电通量为零,表示电场无源。
而当闭合曲面内有电荷时,电通量不为零,表示电场有源。
2. 计算电场强度通过盖斯定律,可以利用已知的电荷分布计算出电场强度。
首先选择一个合适的闭合曲面,使得计算电通量相对简便。
然后根据所选曲面的形状和对称性,确定哪些面元的电通量可以直接求得。
最后,根据高斯定律公式计算出电场强度。
3. 研究电荷分布盖斯定律也可用于研究电荷的分布情况。
通过观察闭合曲面内的电通量,可以推断出曲面内的电荷分布情况。
例如,如果电通量是正的,表示闭合曲面内存在正电荷;如果电通量是负的,表示闭合曲面内存在负电荷。
通过这种方式,我们可以了解电荷在空间中的分布情况。
三、盖斯定律的例题分析1. 球形电荷分布假设有一个半径为R的均匀带电球体,其电荷密度为ρ。
求球心处的电场强度。
解析:1.选择一个球形闭合曲面,以球心为球心,半径为r(r > R)。
2.根据球对称性,球面上的所有面元的电通量都相等。
由于电场和面元的夹角为零度,电通量可直接求得。
3.根据盖斯定律公式,电通量等于在球体内的电荷总量除以真空电容率。
公式表示为:4.解方程得到电场强度E。
2. 无限长均匀带电线假设有一条无限长均匀带电线,线密度为λ。
求距离线上一点P距离为r处的电场强度。
解析:1.选择一个以点P为球心的球形闭合曲面,半径为r。
2.根据线对称性,球面上的所有面元的电通量都相等。
《盖斯定律及应用》课件
![《盖斯定律及应用》课件](https://img.taocdn.com/s3/m/1378189332d4b14e852458fb770bf78a64293a63.png)
由于盖斯定律的复杂性,很难准确预测未来的情况。
3 适用性有限
盖斯定律并非适用于所有情况,需要根据具体情况谨慎应用。
总结
揭示实际问题规律
盖斯定律帮助我们认识到很多实际问题中存在的规 律,为问题解决提供思路。
综合考虑
虽然盖斯定律有其局限性,但我们在解决问题时需 要综合ຫໍສະໝຸດ 虑多个因素。《盖斯定律及应用》
通过本课件,我们将详细介绍《盖斯定律及应用》。盖斯定律是一个在各个 领域都具有广泛应用的原理,可以帮助我们更好地理解和解决实际问题。
什么是盖斯定律?
盖斯定律,也称为巴里定律,指的是在任何一个系统中,20%的原因会导致 80%的结果,剩余的80%原因只能导致20%的结果。
盖斯定律的应用
产品管理
从产品功能到销售额,我们 可以运用盖斯定律更好地管 理和优化产品。
市场营销
通过社交媒体推广产品,定 位目标用户和提高知名度, 都可以应用盖斯定律。
人力资源管理
员工绩效评估、招聘与人员 配置、培训和发展等方面, 盖斯定律都可以提供指导和 帮助。
盖斯定律的局限性
1 难以量化
盖斯定律所涉及的原因和结果很难进行精确的量化和确定。
高中化学盖斯定律及其应用
![高中化学盖斯定律及其应用](https://img.taocdn.com/s3/m/d72afb297f1922791788e827.png)
盖斯定律及其应用高考频度:★★★★☆难易程度:★★★☆☆典例在线在25℃、101kPa时,:2H2O(g)===O2(g)+2H2(g)H1Cl2(g)+H2(g)===2HCl(g)22Cl2(g)+2H2O(g)===4HCl(g)+O2(g)H3那么H3与H1和H2间的关系正确的选项是A.H3=H1+2H2B.H3=H1+H 2C.H=H-2H D.H=H-H312312【参考答案】 A【试题解析】第三个方程式可由第二个方程式乘以2与第一个方程式相加得到,由盖斯定律可知H3= H1+2 H2。
解题必备1.在化学科学研究中,常常需要通过实验测定物质在发生化学反响的反响热。
但是某些反响的反响热,由于种种原因不能直接测得,只能通过化学计算的方式间接地获得。
通过大量实验证明,不管化学反响是一步完成或分几步完成,其反响热是相同的。
换句话说,化学反响的反响热只与反响体系的始态和终态有关,而与反响的途径无关,这就是盖斯定律。
2.从能量守恒定律理解盖斯定律从S→L,H1<0,体系放出热量;从L→S,H2>0,体系吸收热量。
根据能量守恒,H1+H2=0。
3.盖斯定律的应用方法〔1〕“虚拟路径〞法假设反响物A变为生成物D,可以有两个途径①由A直接变成D,反响热为 H;②由A经过B变成C,再由C变成D,每步的反响热分别为 H1、H2、H3。
如下列图:那么有H= H1+H2+H3。
2〕“加合〞法运用所给热化学方程式通过加减乘除的方法得到所求的热化学方程式。
先确定待求的反响方程式? 找出待求方程式中各物质在方程式中的位置?根据待求方程式中各物质的计量数和位置对方程式进行处理,得到变形后的新方程式?将新得到的方程式进行加减反响热也需要相应加减?写出待求的热化学方程式4.运用盖斯定律计算反响热的 3个关键〔1〕热化学方程式的化学计量数加倍,H也相应加倍。
2〕热化学方程式相加减,同种物质之间可加减,反响热也相应加减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习
1.已知石墨的燃烧热:△H=-393.5kJ/mol (1)写出石墨的完全燃烧的热化学方程式 (2)二氧化碳转化为石墨和氧气的热化学方程式
①C(石墨,s)+O2(g)=CO2(g) △H =-393.5kJ/mol ②CO2(g)=C(石墨,s)+O2(g) △H
正=逆+3反9应3.5的kJ反/m应o热l 效应数值相等,符号相反。 “+”不能省去。
【解】:根据盖斯定律,反应④不论是一步完成还是分 几步完成,其反应热效应都是相同的。下面就看看反应 ④能不能由①②③三个反应通过加减乘除组合而成,也 就是说,看看反应④能不能分成①②③几步完成。
①×2 + ②×4 - ③ = ④
所以,ΔH=ΔH1×2 +ΔH2×4 -ΔH3 =-283.2×2 -285.8×4 +1370 kJ/mol =-339.2 kJ/mol
A
ΔH1
ΔH ΔH2
C
B
ΔH、ΔH1、ΔH2 之间有何关系?
ΔH=ΔH1+ΔH2
例1
CO(g)
H1
△H1 + △H2 = △H3
H2
C(s)
H3 CO2(g)
C(s)+1/2O2(g) = CO(g) △H1=?
+) CO(g)+1/2O2(g) = CO2(g) △H2=-283.0 kJ/mol
2、有关反应热的计算: (1)盖斯定律及其应用 (2) 根据一定量的物质参加反应放出或吸收的
热量(或根据已知的热化学方程式),进行有 关反应热的计算或比较大小。
Q = n×(-ΔH) 比热公式:△H = c m△T
(3)利用键能计算反应热 ① △H = ∑E(吸) - ∑E(放) ② △H = 反应物的键能总和 – 生成物的键能 总和 ③ △H = ∑E(生) - ∑E(反)
①N2(g)+2O2(g)==2NO2(g) △H1=+67.2kJ/mol ②N2H4(g)+O2(g)==N2(g)+2H2O(l) △H2=-
534kJ/mol
假如都在相同状态下,请写出发射火箭反应的热化学
方程式。
2 × ②-①:
2 N2H4(g)+ 2NO2(g)= 3N2(g)+4H2O(l) △H=-
注意事项:
(1)热化学方程式乘上某一个数时,反应热 数值也须乘上该数;
(2)热化学方程式相加减时,同种物质之间 可相加减,反应热也随之相加减;
(3)将一个热化学方程式颠倒时, △H的 “+” “-”号必须随之改变。
你知道神六的火箭燃料是什么吗?
例4:某次发射火箭,用N2H4(肼)在NO2中燃烧, 生成N2、液态H2O。已知:
为了理解盖斯定律,可以以
B
登山为例:
登山的高度与上 山的途径无关, 只与起点和终点 的相对高度有关
A
请思考:由起点A到终点B有多少条途径?
从不同途径由A点到B点的位移有什么关系?
以能量守恒定律来论证盖斯定律:
△H1 < 0
S(始态)
L(终态)
△H2 > 0 △H1 +△H2 ≡ 0
如何理解盖斯定律?
△H的计算数值:吸“+”放“-”
课本P注注1意 意2 例热 有1化 关:学单方位程的式正正确确书书 写写。,特别
【解】钠与氯气起反应的化学方程式如下
Na(s) + 1/2Cl2(g) = NaCl (s)
23g/mol
△H
1.0g
-17.87kJ
△H=23g/mol×(-17.87kJ)÷ 1.0g =-411kJ/mol
问题 情景
在化学科研中,经常要测量化学反应的反应热,但 是某些物质的反应热,由于种种原因不能直接测得,只 能通过化学计算的方式间接获得。如对于反应: C(s)+1/2O2(g) = CO(g),因为C燃烧时不可能完全生成 CO,总有一部分CO2生成,因此这个反应的△H 无法 直接测得,那么该反应的反应热是如何确定的呢?
④=②+③-① △H=178.2
例2:写出石墨变成金刚石的热化学方程式 (25℃,101kPa时)
查燃烧热表知:
①C(石墨,s)+O2(g)=CO2(g) △H1=393.5kJ/mol
②C(金刚石,s)+O2(g)=CO2(g) △H2=-
所3以9,5.0①kJ-/m②o得l : C(石墨,s)=C(金刚石,s) △H=+1.5kJ/mol
规律: “正逆”反应的反应热效应数值相等,符号相反
2、甲硅烷(SiH4)是一种无色气体,遇到空气能发生 爆炸性自燃,生成SiO2和水。已知室温下1g甲硅烷 自燃放出44.6kJ热量,其燃烧热化学方程式为
SiH__4_(g__)_+__O_2_(_g__)_=_S__iO__2_(_s_)_+__H_2_O__(_l_)___△_H__=_-_______ 1427.2kJ/mol
3. 在100 g 碳不完全燃烧所得气体中,CO占 1/3体积,CO2占2/3体积,且
C(s)+1/2O2(g)=CO(g) △H=- 110.35kJ/mol
CO(g)+1/2O2(g)=CO2(g) △H=- 282.57kJ/mol
C
与这些碳完全燃烧相比,损失的热量是( )
A.392.92 kJ
ห้องสมุดไป่ตู้那么,H2的燃烧热△H究竟是多少?如何计算?
已知 ② H2O(g) = H2O (l)
△H2=-44 kJ/mol ③ H2(g)+1/2O2(g) = H2O (l) ①+②=③ △H=△H1+ △H2=-285.8kJ/mol
2、盖斯定律的应用
有些化学反应进行很慢或不易直接发生,很 难直接测得这些反应的反应热,可通过盖斯定律 获得它们的反应热数据。
C(s)+O2(g) = CO2(g)
△H3=-393.5 kJ/mol
∴△H1 = △H3 - △H2
= -393.5 kJ/mol -(-283.0 kJ/mol)
= -110.5 kJ/mol
实例2 下列数据表示H2的燃烧热吗?
① H2(g)+1/2O2(g) = H2O (g) △H1=-241.8kJ/mol
此外,在生产中,对燃料的燃烧,反应条件的控制 以及废热的利用,也需要进行反应热的计算。
一、盖斯定律
1、定义:不管化学反应是分一步完成或分几 步完成,其反应热是相同的。
换句话说:化学反应的反应热只与反应体系 的始态和终态有关,而与反应的途径无关。
盖斯的生平事迹
盖斯是俄国化学家,早年从事分析化学研究, 1830年专门从事化学热效应测定方法的改进,曾改 进拉瓦锡和拉普拉斯的冰量热计,从而较准确地测 定了化学反应中的能量。1836年经过多次试验,他 总结出一条规律:在任何化学反应过程中的热量, 不论该反应是一步完成的还是分步进行的,其总热 量变化是相同的,1840年以热的加和性守恒定律形 式发表。这就是举世闻名的盖斯定律。盖斯定律是 断定能量守恒的先驱,也是化学热力学的基础。当 一个不能直接发生的反应要求计算反应热时,便可 以用分步法测定反应热并加和起来而间接求得。故 而我们常称盖斯是热化学的奠基人。
例3:同素异形体相互转化但反应热相当小而且转化速 率慢,有时还很不完全,测定反应热很困难。现在可根 据盖斯提出的观点“不管化学反应是一步完成或分几步 完成,这个总过程的热效应是相同的”。已知:
①P4(s、白磷)+5O2(g)=P4O10(s)△H1=-2983.2 kJ/mol
②P(s、红磷)+5/4O2(g)=1/4P4O10(s) △H2= -738.5 kJ/mol
试写出白磷转化为红磷的热化学方程式
。
①- 4×②:
P4(s、白磷)=4P(s、红磷) △=-29.2kJ/mol
小结:
(1)热化学方程式与数学上的方程式相似,可以移项 同时改变正、负号;当热化学方程式中各物质的化学 计量数改变,其反应热数值改变相同的倍数 (2)根据盖斯定律,可以将两个或两个以上的热化学 方程式包括其△H相加或相减,得到一个新的热化学方 程式。 (3)可燃物产生的热量=可燃物的物质的量 × 燃烧热
B. 2489.44 kJ
C. 784.92 kJ
D. 3274.3 kJ
二.反应热的计算:
利用反应热的概念、盖斯定律、热 化学方程式进行有关反应热的计算:
题型一:有关热化学反应方程式的 的含义及书写
题型二:燃烧热、中和热的判断、 求算及测量
具体内容:
1. 已知一定量的物质参加反应放出的热量,写出 其热化学反应方程式。
例1:已知下列各反应的焓变 ①Ca(s)+C(s,石墨)+3/2O2(g)=CaCO3(s)
△H = -1206.8 kJ/mol ②Ca(s)+1/2O2(g)=CaO(s)
△H = -635.1 kJ/mol ③C(s,石墨)+O2(g)=CO2(g)
△H = -393.5 kJ/mol 试求④CaCO3(s)=CaO(s)+CO2(g)的焓变
关键:目标方程式的“四则运算式”的导出。
方法(1)写出目标方程式确定“过渡物质”(要消去 的物质) (2)然后用消元法逐一消去“过渡物质”,导出“四 则运算式”。 消去的技巧:目标方程式和已知方程式 同类物质(同为反应物或同为生成物)相加; 不同类物质(一个为反应物与一个为生成物相减;
遵循数学基本原则
答:略
课本P12 例2:
【解】设1kg乙醇燃烧后放出的热量为x
C2H6O(l) + 3O2(g)== 2CO2(g) +3H2O (l)