2021年高考数学圆锥曲线的定义、方程与性质

合集下载

第 11 讲圆锥曲线定义、方程与性质

第 11 讲圆锥曲线定义、方程与性质

1 1+ 2 |x2| = +k
第 11 讲 │ 要点热点探究
t2 =2 2 4t +9t-9 - 1
令 1+k =t(t>1), S=2 + , = 则
2
. 9 9 -t2+ t +4

1 1 9 9 25 - 2+ (t>1) , 所 以 令 g(t) = - t2 + t + 4 = - 9 t 2 4 25 4 4<g(t)≤ ,即 ≤S<1. ≤4 5 4 4 当 k=0 时,可求得 S=1,故5≤S≤1,故 S 的最小值为5, = = , ≤ , 最大值为 1.
第 11 讲 │ 主干知识整合
(4)圆锥曲线第二定义把“曲线上的点 M”、“焦点 F”、 圆锥曲线第二定义把“ 圆锥曲线第二定义把 ” ” “相应准线 l”和“离心率 e”四者巧妙地联系起来,所以在圆 ” ”四者巧妙地联系起来, 锥曲线的问题中,凡与准线、离心率、 锥曲线的问题中,凡与准线、离心率、焦点有关的问题应充分 利用第二定义. 利用第二定义. 2.焦半径 . 圆锥曲线上一点与其焦点的连线段称为这一点的焦半径, 圆锥曲线上一点与其焦点的连线段称为这一点的焦半径, 下面是用得较多的焦半径公式: 下面是用得较多的焦半径公式: x2 y 2 (1)对于椭圆 2 + 2 = 1(a>b>0)而言 , |PF1|= a+ ex0 , |PF2| 而言, 对于椭圆 a b 而言 = + =a-ex0. - x2 y 2 (2)对于双曲线 2- 2=1(a>0,b>0)而言,若点 P 在右半支 而言, 对于双曲线a b , 而言 上,则|PF1|=a+ex0,|PF2|=ex0-a; = + = ;
圆锥曲线定义、 第 11 讲 │ 圆锥曲线定义、方程与性质

2021年高考理数:圆锥曲线

2021年高考理数:圆锥曲线

核心考点解读——圆锥曲线椭圆(II ) 双曲线(I ) 抛物线(II ) 直线与圆锥曲线(II )1.从考查题型来看,涉及本知识点的选择题、填空题常结合圆锥曲线的定义及其简单几何性质,利用直线与圆锥曲线的位置关系,通过建立代数方程求解.解答题中则常综合考查椭圆的定义、标准方程、直线与椭圆的位置关系等.2.从考查内容来看,主要考查圆锥曲线的方程,以及根据方程及其相应图形考查简单几何性质,重点是椭圆及抛物线的简单几何性质的综合应用,注重运算求解能力的考查.3.从考查热点来看,直线与圆锥曲线的位置关系是高考命题的热点,利用直线与圆锥曲线的位置关系,通过直线方程与圆锥曲线方程的联立,结合椭圆、双曲线、抛物线的定义考查与之有关的问题,重点突出考查运算的能力,体现了数形结合的思想.1.椭圆(1)椭圆的定义:平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记做122F F c =.定义式:12122(2)PF PF a a F F +=>.要注意,该常数必须大于两定点之间的距离,才能构成椭圆. (2)椭圆的标准方程:焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>. (3)椭圆的图形及其简单几何性质 i)图形焦点在x 轴上 焦点在y 轴上ii)标准方程几何性质范围顶点焦点对称性离心率椭圆22221x y a b += (0)a b >>x a ≤ y b ≤ (,0)a ±,(0,)b ± (,0)c ± 对称轴:x轴,y 轴,对称中心:原点01e <<,ce a=22221y x a b+= (0)a b >>y a ≤ x b ≤ (0,)a ±,(,0)b ±(0,)c ±注意:求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.求椭圆的离心率主要的方法有:根据条件分别求出a 与c ,然后利用ce a=计算求得离心率;或者根据已知条件建立关于,,a b c 的等量关系式或不等关系式,由此得到方程或不等式,通过解方程或不等式求解离心率的值或取值范围. 2.双曲线(1)定义:平面内,到两个定点12,F F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两个定点之间的距离叫做双曲线的焦距,记做122F F c =.定义式:12122(02)PF PF a a F F -=<<. 要注意,常数小于两定点之间的距离. (2)双曲线的标准方程:焦点在x 轴上,22221(0,0)x y a b a b -=>>;焦点在y 轴上,22221(0,0)y x a b a b-=>>.说明:要注意根据焦点的位置选择双曲线的标准方程,知道,,a b c 之间的大小关系和等量关系:222,0,0c a b c a c b -=>>>>. (3)双曲线的图形及其简单几何性质 i)图形焦点在x 轴上 焦点在y 轴上ii)标准方程22221x y a b -=(0,0)a b >> 22221y x a b-=(0,0)a b >> 范围 x a ≥,y ∈R y a ≥,x ∈R顶点 (,0)a ± (0,)a ±焦点 (,0)c ± (0,)c ± 渐近线by x a=±a y x b=±对称性 对称轴:x 轴,y 轴;对称中心:原点离心率ce a=,1e > 注意:求双曲线的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择双曲线的标准方程;也可以利用双曲线的定义及焦点位置或点的坐标确定双曲线的标准方程.求双曲线的离心率主要的方法有:根据条件分别求出a 与c ,然后利用ce a=计算求得离心率;或者根据已知条件建立关于,,a b c 的等量关系式或不等关系式,由此得到方程或不等式,通过解方程或不等式求解离心率的值或取值范围.渐近线是双曲线特有的特征,双曲线的渐近线方程可以根据双曲线的标准方程求解,令双曲线标准方程中的10=,得到渐近线方程为22220x y a b -=或22220y x a b-=.3.抛物线(1)定义:平面内与一个定点F 和一条定直线(l l 不经过点)F 的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 定义式:PF d =,d 为动点P 到准线的距离. (2)抛物线的标准方程焦点在x 轴的正半轴上:22(0)y px p =>; 焦点在x 轴的负半轴上:22(0)y px p =->; 焦点在y 轴的正半轴上:22(0)x py p =>; 焦点在y 轴的负半轴上:22(0)x py p =->. (3)抛物线的图形及其简单几何性质 标准 方程22y px = (0)p >22y px =- (0)p >22x py = (0)p >22x py =-(0)p >图形焦点 )0,2(p F )0,2(p F -)2,0(p F )2,0(p F -准线方程 2p x -= 2p x = 2p y -= 2p y =范围 0,x y ≥∈R0,x y ≤∈R ,0x y ∈≥R,0x y ∈≤R对称轴 x 轴y 轴顶点 (0,0)离心率 1e =焦半径12x pPF +=12x pPF +=12y pPF +=12y pPF +=(4)过抛物线的焦点且垂直于对称轴的弦称为通径,抛物线的通径长为2p ;抛物线焦点弦的常用结论:设AB 是过抛物线22(0)y px p =>焦点F 的弦,若1122(,),(,)A x y B x y ,则2124p x x =,212y y p =-,弦长12AB x x p =++,112AF BF p+=等. 4.直线与圆锥曲线的位置关系(1)椭圆、双曲线、抛物线统称为圆锥曲线,直线与圆锥曲线的位置关系可分为相交、相切、相离.位置关系的判定方式:将直线方程与圆锥曲线的方程联立,消元,得到关于()x y 或的方程,通过判别式∆进行判别.要注意,若直线与双曲线的渐近线平行,则直线与双曲线相交,且只有一个交点;若直线与抛物线的对称轴平行或重合,则直线与抛物线相交,且只有一个交点. (2)直线与圆锥曲线相交的弦长问题:弦长公式:221212()()AB x x y y =-+-2121221(1)(1)k x x y y k =+-=+-. (3)已知直线与圆锥曲线相交所得弦的中点,则该弦所在直线方程的表示方式: i)利用点斜式设出直线方程,联立方程,消元后根据根与系数的关系及中点坐标公式建立关于直线斜率的方程,求解方程即可.ii)利用点差法,设弦的端点的坐标分别为1122(,),(,)A x y B x y ,代入曲线方程,然后作差,利用两点坐标求斜率公式,得到斜率,再利用点斜式写出直线方程. (4)圆锥曲线中有关定点、定值的问题:一般可以根据题意求出相关的表达式,再根据已知条件建立方程组(或不等式),消去参数,求出定值或定点的坐标;也可以先利用特殊情况确定定值或定点坐标,再从一般情况进行验证.(5)圆锥曲线中的最值、范围问题:一是根据题中的限制条件求范围,如直线与圆锥曲线的位置关系中∆的范围,方程中变量的范围,角度的大小等;二是将要讨论的几何量,如长度、面积等用参数表示出来,再对表达式进行讨论,应用不等式、三角函数等知识求最值.1.(2021高考新课标I ,理10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .102.(2021高考新课标I ,理15)已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为.3.(2021高考新课标I ,理20)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–13,P 4(13)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.4.(2021高考新课标I ,理5)已知方程222213x y m n m n+=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–3C .(0,3)D .35.(2021高考新课标III ,理11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2021高考新课标II ,理11)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为 A 2B .32C 3D .27.(2021高考新课标I ,理10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42|DE|=25C 的焦点到准线的距离为A .2B .4C .6D .88. (2021高考新课标I ,理5)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A.(33B.(33) C.(2222)D.(2323) 9.(2021高考新课标III ,理20) 已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(II )若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.10.(2021高考新课标I ,理20)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.1.椭圆的离心率为,为椭圆的一个焦点,若椭圆上存在一点与关于直线对称,则椭圆的方程为A .B .C .或D .或2.过双曲线()2222:10,0x y E a b a b-=>>的右焦点,且斜率为2的直线与E 的右支有两个不同的公共点,则双曲线离心率的取值范围是___________. 3.已知抛物线的焦点为.(1)若斜率为的直线过点与抛物线交于两点,求的值;(2)过点作直线与抛物线交于两点,且,求的取值范围.1.过抛物线22(0)y px p =>的焦点F 且斜率为(0)k k >的直线l 交抛物线于点,A B ,若AF FB λ=,且11,32λ⎛⎫∈ ⎪⎝⎭,则k 的取值范围是A .(3B .)3,2C .(2,22D .3,222.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点2F 关于直线b y x a =的对称点为M ,若点M 在双曲线C 上,则双曲线C 的渐近线方程为_______________.3.已知椭圆2222:1(0)x yC a ba b+=>>的左、右焦点分别为12F F、,过点2F且垂直于x轴的直线截椭圆形成的弦长为2,且椭圆C的离心率为22,过点1F的直线l与椭圆C交于,M N两点.(1)求椭圆C的标准方程;(2)若点(2,0)R,且RM RNλ⋅≤,则当λ取得最小值时,求直线l的方程.真题回顾:1.A【解析】设11223344(,),(,),(,),(,)A x yB x y D x y E x y,直线1l的方程为1(1)y k x=-,联立方程214(1)y xy k x⎧=⎨=-⎩,得2222111240k x k x x k--+=,∴21122124kx xk--+=-212124kk+=,同理直线2l与抛物线的交点满足22342224kx xk++=,由抛物线定义可知1234||||2AB DE x x x x p+=++++=221222222212121224244416482816k kk k k k k k++++=++≥=,当且仅当121k k=-=(或1-)时,取等号.【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sinpABα=,则2222||πcossin(+)2p pDEαα==,所以222221||||4(cos sin cosp pAB DEααα+=+=+222222222111sin cos)4()(cos sin)4(2)4(22)16 sin cos sin cos sinααααααααα=++=++≥⨯+=.2.233AP MN⊥,因为圆A与双曲线C的一条渐近线交于M、N两点,则MN为双曲线的渐近线by xa=上的点,且(,0)A a,||||AM AN b==,而AP MN⊥,所以30PAN∠=,点(,0)A a 到直线by x a=的距离22||1AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =,由222c a b =+得2c b =, 所以233c e a b ===【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 3.(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t 24t -,(t ,24t -.则221242421t t k k ---++==-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=.由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m km k m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-).4.A 【解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-.5.A 【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||()FM k a c =-,||OE k a =.设OE 的中点为N ,则OBN FBM △∽△,则1||||2||||OE OB FM BF =,即2(c)k a a k a a c=-+,整理,得13c a =,所以椭圆C 的离心率13e =. 【名师点睛】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c的齐次等式,求得ca或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e . 6.A 【解析】因为1MF 垂直于x 轴,所以2212,2b b MF MF a a a==+,因为211sin 3MF F ∠=,所以2122132b MF ab MF a a==+,化简得b a =,故双曲线的离心率2212b e a =+=. 7.B 【解析】如图,设抛物线方程为22y px =,圆的半径为r ,,AB DE 交x 轴于,C F 点,则22AC =,即A 点纵坐标为22,则A 点横坐标为4p ,即4OC p=,由勾股定理知2222DF OF DO r +==,2222AC OC AO r +==,即22224(5)()(22)()2p p+=+,解得4p =,即C 的焦点到准线的距离为4.8.A 【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF ⋅= 0000(3,)(3,)x y x y --⋅- =2220003310x y y +-=-<,解得033y <<【名师点睛】本题考查利用向量数量积的坐标形式将12MF MF ⋅表示为关于点M 坐标的函数,利用点M 在双曲线上,消去x 0,根据题意化为关于0y 的不等式,即可解出0y 的范围,是基础题,将12MF MF ⋅表示为0y 的函数是解本题的关键.9.由题设)0,21(F .设by l a y l ==:,:21,则≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(I )由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (II )设l 与x 轴的交点为)0,(1x D ,则11112222ABF PQF a b S b a FD b a x S ∆-=-=--=||||||||||,△.由题设可得111222a b b a x ---=||||||,所以01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x y b a .而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .10.(I )因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (II )当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得1248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x .所以34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m:)1(1--=x k y ,A 到m 的距离为122+k ,所以1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积341112||||212++==k PQ MN S .可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[. 当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[.名校预测1.【答案】C 【解析】由题意知,得,不妨设椭圆的方程为22221(0)x y a b a b+=>>,椭圆上任取点,取焦点,则中点,根据条件可得,,联立两式解得,代入椭圆方程解得,,由此可得椭圆的方程为或.故选C .2.【答案】()1,5【解析】由题意知02ba <<,故22222204,115bc b a a a<<<=+<,故15e <<.3.【解析】(1)依题意,.设,则直线.联立,消去y 得,则,则.由抛物线的定义可知,.(2)设直线的方程为与曲线的交点为,∴.将的方程代入抛物线的方程,化简得,.∵,∴.又∵,∴恒成立,∴恒成立.∵,∴只需即可,解得.∴所求的取值范围为.专家押题1.【答案】D 【解析】如图,延长BA 交准线l 于点C ,分别过点A B ,作1AA l ⊥于1A ,1BB l ⊥于1B , 设直线AB 的倾斜角为θ,1FB BB m ==,1FA AA m λ==,则11,cosAAm ACACBC BBλθ==,即coscosmmm mm mλλθλλθ=++,12cos111λθλλ-==-++,则上式是关于λ的减函数,由1132λ⎛⎫∈ ⎪⎝⎭,可得11cos32θ⎛⎫∈ ⎪⎝⎭,,故tankθ=的取值范围是()322,,故选D.2.2y x=±【解析】如图,令1||MF m=,2||MF n=,由题可知2n m a-=①,12MF MF⊥,故n bm a=,即bmna=,将其代入①式,解得22amb a=-,所以2abnb a=-,在12Rt F MF△中,2224m n c+=,即422222444()()a a bcb a b a+=--,结合222a b c+=化简可得2ba=,所以双曲线C的渐近线方程为2y x=±.3. 【解析】(1)联立2222,1,x cx ya b=⎧⎪⎨+=⎪⎩解得2bya=±,故222ba=又2ca=,222a b c=+,解得2a=1b=,故椭圆C的标准方程为2212xy+=.(2)设11(,)M x y,22(,)N x y,故1122(2,)(2,)RM RN x y x y⋅=-⋅-.当直线l垂直于x轴时,121x x==-,12y y=-,且2112y=,此时211117(3,)(3,)92RM RN y y y⋅=-⋅--=-=.当直线l不垂直于x轴时,设直线:(1)l y k x=+,联立22(1),22,y k xx y=+⎧⎨+=⎩整理得2222(12)4220k x k x k+++-=,所以2122412kx xk-+=+,21222212kx xk-=+,故21212122()4(1)(1)RM RN x x x x k x x ⋅=-+++++22222222121222224(1)(2)()4(1)(2)41212k k k x x k x x k k k k k k-=++-+++=+--++++2221721713171222(12)2k k k +==-<++.综上所述,λ的最小值为172,此时直线l 的方程为1x =-.。

圆锥曲线的基本概念与性质

圆锥曲线的基本概念与性质

圆锥曲线的基本概念与性质1. 圆锥曲线的基本概念与性质圆锥曲线是高中数学中非常重要的一个概念,它是由平面与圆锥相交而产生的曲线。

本文将详细介绍圆锥曲线的基本概念和性质。

1.1 椭圆椭圆是圆锥曲线的一种,它是平面与圆锥不垂直于母线的相交曲线。

椭圆具有以下性质:- 椭圆是一个闭曲线,即从椭圆上的任意一点到椭圆的另一点的距离之和是一个常数,即椭圆的周长。

- 椭圆有两个焦点,对于椭圆上的任意一点,到两个焦点的距离之和等于一个常数。

- 椭圆是一个中心对称图形,它的中心是圆心。

1.2 双曲线双曲线也是圆锥曲线的一种,它是平面与圆锥不垂直于母线的相交曲线。

双曲线具有以下性质:- 双曲线是一个开曲线,即从双曲线上的任意一点到双曲线的另一点的距离之差等于一个常数的绝对值,即双曲线的离心率。

- 双曲线有两个焦点,对于双曲线上的任意一点,到两个焦点的距离之差等于一个常数。

- 双曲线是一个中心对称图形,它的中心是圆锥的顶点。

1.3 抛物线抛物线也是圆锥曲线的一种,它是平面与圆锥平行于母线的相交曲线。

抛物线具有以下性质:- 抛物线是一个开曲线,它有一个焦点和一个直线称为准线。

- 抛物线的焦点到任意一点的距离等于准线到该点的距离。

- 抛物线是一个轴对称图形,它的轴对称于对称轴。

2. 圆锥曲线的应用圆锥曲线在几何学以及其他学科领域中都有广泛的应用。

2.1 几何学在几何学中,圆锥曲线被广泛用于描述平面上的点与直线之间的关系。

例如,在解决两点之间的最短路径问题时,可以利用椭圆的性质来确定最短路径。

2.2 物理学在物理学中,圆锥曲线被应用于描述天体运动、光的传播以及其他各种物理现象。

例如,开普勒行星运动定律中的椭圆轨道就是以椭圆为基础建立的。

2.3 工程学在工程学中,圆锥曲线被广泛应用于建筑设计、桥梁设计等领域。

通过合理利用椭圆和抛物线的性质,可以设计出更加稳定和美观的建筑结构。

3. 结论圆锥曲线是数学中一个重要的概念,在几何学、物理学和工程学等不同领域都有广泛的应用。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线,是由平面上一个动点到两个定点的距离之比为定值的点的轨迹。

圆锥曲线是解析几何的重要内容,广泛应用于数学、物理、工程等领域。

本文将对圆锥曲线的相关知识进行总结,帮助读者更好地理解和掌握这一概念。

一、基本概念1. 定义:圆锥曲线是平面上一个动点到两个定点的距离之比为定值的点的轨迹。

2. 定点:圆锥曲线的两个定点分别称为焦点。

3. 对称轴:通过两个焦点并垂直于准线的直线称为对称轴。

4. 准线:通过两个焦点的直线段称为准线。

二、椭圆1. 定义:椭圆是圆锥曲线的一种,其离心率小于1,且焦点不重合的曲线。

2. 方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。

3. 性质:椭圆具有对称性、渐近线和切线性质等。

4. 应用:椭圆在天文学、建筑学和电子等领域应用广泛。

三、双曲线1. 定义:双曲线是圆锥曲线的一种,其离心率大于1的曲线。

2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。

3. 性质:双曲线具有渐近线和切线性质,且有两个分支。

4. 应用:双曲线在物理学、天文学和通信等领域有重要应用。

四、抛物线1. 定义:抛物线是圆锥曲线的一种,其离心率等于1的曲线。

2. 方程:抛物线的标准方程为y^2 = 4ax,其中a是抛物线的焦点到准线的距离。

3. 性质:抛物线具有对称性、渐近线和切线性质等。

4. 应用:抛物线在物理学、工程学和天文学等领域有广泛应用。

五、圆1. 定义:圆是圆锥曲线的一种,其离心率等于0的曲线。

2. 方程:圆的标准方程为(x-h)^2 + (y-k)^2 = r^2,其中(h, k)是圆心的坐标,r是半径长度。

3. 性质:圆具有对称性、切线性质和切圆定理等。

4. 应用:圆在几何学、物理学和工程学等领域有广泛应用。

总结:圆锥曲线是解析几何的重要内容,包括椭圆、双曲线、抛物线和圆。

高考数学复习考点题型专题讲解21 圆锥曲线的基本问题

高考数学复习考点题型专题讲解21 圆锥曲线的基本问题

高考数学复习考点题型专题讲解专题21 圆锥曲线的基本问题高考定位 圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题的一问的形式命题,难度较小.1.(2021·新高考Ⅰ卷)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A.13B.12C.9D.6 答案 C解析 由椭圆C :x 29+y 24=1,得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立.故选C.2.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |=( )A.2B.2 2C.3D.3 2 答案 B解析 法一 由题意可知F (1,0), 抛物线的准线方程为x =-1.设A (y 204,y 0),则由抛物线的定义可知|AF |=y 204+1,又|BF |=3-1=2,故由|AF|=|BF|,可得y24+1=2,解得y0=±2,所以A(1,2)或A(1,-2). 不妨取A(1,2),故|AB|=(1-3)2+(2-0)2=22,故选B.法二由题意可知F(1,0),故|BF|=2,所以|AF|=2.又抛物线通径长为4,所以|AF|=2为通径长的一半,所以AF⊥x轴,所以|AB|=(-2)2+22=22,故选B.3.(2022·全国甲卷)椭圆C:x2a2+y2b2=1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为( )A.32B.22C.12D.13答案 A解析设P(m,n)(n≠0),则Q(-m,n),易知A(-a,0),所以k AP·k AQ=nm+a·n-m+a=n2a2-m2=14(*).因为点P在椭圆C上,所以m 2a 2+n 2b 2=1,得n 2=b 2a2(a 2-m 2),代入(*)式,得b 2a 2=14,所以e =ca=1-b 2a 2=32.故选A.4.(2022·北京卷)已知双曲线y 2+x 2m =1的渐近线方程为y =±33x ,则m =________.答案 -3解析法一 依题意得m <0,双曲线的方程化为标准方程为y 2-x 2-m=1,此时双曲线的渐近线的斜率为±1-m=±33,解得m =-3.法二 依题意得m <0,令y 2-x 2-m =0,得y =±1-m x ,则±1-m=±33,解得m =-3.5.(2022·新高考Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE 的周长是________. 答案 13解析 如图,连接AF 1,DF 2,EF 2,因为C 的离心率为12,所以c a =12,所以a =2c ,所以b 2=a 2-c 2=3c 2.因为|AF 1|=|AF 2|=a =2c =|F 1F 2|, 所以△AF 1F 2为等边三角形,又DE ⊥AF 2,所以直线DE 为线段AF 2的垂直平分线, 所以|AD |=|DF 2|,|AE |=|EF 2|,且∠EF 1F 2=30°, 所以直线DE 的方程为y =33(x +c ),代入椭圆C 的方程x 24c 2+y 23c 2=1,得13x 2+8cx -32c 2=0.设D (x 1,y 1),E (x 2,y 2), 则x 1+x 2=-8c 13,x 1x 2=-32c 213,所以|DE |=⎝⎛⎭⎪⎫1+13[(x 1+x 2)2-4x 1x 2]=43⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8c 132-4×⎝ ⎛⎭⎪⎫-32c 213=48c 13=6, 解得c =138,所以a =2c =134, 所以△ADE 的周长为|AD |+|AE |+|DE |=|DF 2|+|EF 2|+|DE |=4a =13.热点一 圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|).(2)双曲线:||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,l 为抛物线的准线,点F 不在定直线l 上,PM ⊥l 于点M . 2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)已知A ,B 分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点与虚轴的上端点,F (2,0)是双曲线C 的右焦点,直线AB 与双曲线C 的一条渐近线垂直,则双曲线C 的标准方程为________.(2)(2022·成都二诊)已知抛物线C 以坐标原点O 为顶点,以⎝ ⎛⎭⎪⎫p 2,0为焦点,直线x -my-2p =0与抛物线C 交于两点A ,B ,直线AB 上的点M (1,1)满足OM ⊥AB ,则抛物线C 的方程为________.答案 (1)x 22-y 22=1 (2)y 2=2x解析 (1)由题意得A (a ,0),B (0,b ),双曲线的渐近线方程为y =±ba x ,而k AB =-b a,∴-b 2a2=-1,∴a =b ,又F (2,0),∴c 2=a 2+b 2=2a 2=4, ∴a 2=b 2=2,∴双曲线C 的标准方程为x 22-y 22=1.(2)由已知直线OM 的斜率为1,则AB 的斜率为-1,所以m =-1,又M (1,1)在直线AB 上, ∴1+1-2p =0,∴p =1. ∴抛物线C 的方程为y 2=2x .易错提醒 求圆锥曲线的标准方程时的常见错误:(1)双曲线的定义中忽略“绝对值”致错;(2)椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a 2=b 2+c 2,双曲线中的关系式为c 2=a 2+b 2;(3)圆锥曲线方程确定时还要注意焦点位置.训练1 (1)(2022·武汉模拟)抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4,则抛物线的方程为( ) A.y 2=8x B.y 2=4x C.y 2=2x D.y 2=x(2)(2022·怀仁二模)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,且离心率为2,则双曲线C 的标准方程为________. 答案 (1)B (2)x 29-y 227=1解析 (1)由抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4, 可得3+p2=4,解得p =2,所以抛物线的方程为y 2=4x ,故选B.(2)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,可得a =3,离心率为2,所以c =6,则b 2=c 2-a 2=62-32=27.所以双曲线C 的标准方程为x 29-y 227=1.热点二 椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e =ca =1-b 2a 2(0<e <1),双曲线的离心率e =c a =1+b 2a2(e >1). (2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).考向1 离心率问题例2 (1)(2022·济南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为( ) A.3-1 B.32C.12D.22(2)(2022·浙江卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是________. 答案 (1)A (2)364解析 (1)可画出如图所示图形.△MF 1F 2为等边三角形,F 1(-c ,0),F 2(c ,0),QF 1⊥MF 2,∠F 1F 2Q =60°, ∵|F 1F 2|=2c ,∴|QF 2|=c ,|QF 1|=3c , ∴|QF 1|+|QF 2|=(3+1)c =2a ,∴ca=3-1, 即e =3-1.故选A.(2)结合题意作出图形如图所示,由题意知,过左焦点F (-c ,0)且斜率为b 4a 的直线方程为y =b4a(x +c ), 由⎩⎪⎨⎪⎧y =b 4a (x +c ),y =b a x 解得⎩⎪⎨⎪⎧x =c3,y =bc 3a ,所以B ⎝ ⎛⎭⎪⎫c 3,bc 3a .因为|FB |=3|FA |,所以FB →=3FA →, 即⎝ ⎛⎭⎪⎫4c 3,bc 3a =3(x 1+c ,y 1),得⎩⎪⎨⎪⎧x 1=-5c9,y 1=bc9a ,所以A ⎝ ⎛⎭⎪⎫-5c 9,bc 9a .将⎝ ⎛⎭⎪⎫-5c 9,bc 9a 代入双曲线方程x 2a 2-y 2b 2=1,可得⎝ ⎛⎭⎪⎫-5c 92a 2-⎝ ⎛⎭⎪⎫bc 9a 2b 2=1,结合离心率e =c a得e 2=8124, 又e >1,所以双曲线的离心率为364. 考向2 椭圆、双曲线的几何性质例3 (1)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线C 上一点,PF 2⊥x 轴,tan∠PF 1F 2=34,则双曲线的渐近线方程为( )A.x ±2y =0B.2x ±y =0C.3x ±y =0D.x ±3y =0(2)(2022·南通质检)椭圆C :x 218+y 2b 2=1(b 2<18且b >0)的上、下顶点分别为A ,C ,如图,点B 在椭圆上(异于椭圆顶点),点D 在椭圆内,平面四边形ABCD 满足∠BAD =∠BCD =90°,且S △ABC =2S △ADC ,则该椭圆的短轴长为________.答案 (1)C (2)6解析 (1)因为点P 在双曲线上,且PF 2⊥x 轴,所以点P 的横坐标为c ,代入双曲线的方程可得P ⎝ ⎛⎭⎪⎫c ,±b 2a ,则|PF 2|=b 2a,|F 1F 2|=2c ,所以tan∠PF 1F 2=|PF 2||F 1F 2|=b 2a 2c =b 22ac =34,整理得2b 2=3ac , 所以4⎝ ⎛⎭⎪⎫b a 4-9⎝ ⎛⎭⎪⎫b a 2-9=0,解得ba=3,所以双曲线的渐近线方程为y =±3x ,即3x ±y =0,故选C. (2)根据题意可得A (0,b ),C (0,-b ),设B (x 1,y 1),D (x 2,y 2).连接BD ,由∠BAD =∠BCD =90°可得,点A ,B ,C ,D 均在以BD 为直径的圆E (E 为BD 中点)上,又原点O 为圆E 上的弦AC 的中点,所以圆心E 在AC 的垂直平分线上,即圆心E 在x 轴上, 所以y 1+y 2=0. 又S △ABC =2S △ADC , 所以x 1=-2x 2,故圆心E 的坐标为⎝ ⎛⎭⎪⎫x 14,0,所以圆E 的方程为⎝⎛⎭⎪⎫x -x 142+y 2=916x 21+y 21,将(0,b )代入圆E 的方程,结合x 2118+y 21b 2=1可得b 2=9,所以b =3,短轴长为6.规律方法 1.确定椭圆和双曲线的离心率的值或范围,其关键就是确立一个关于a ,b ,c 的等量关系或不等关系,然后用a ,c 代换b ,进而求ca的值或范围.2.求双曲线渐近线方程的关键在于求b a 或ab 的值,也可将双曲线方程中等号右边的“1”变为“0”,然后因式分解得到.训练2 (1)双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 在y 轴上,且△MF 1F 2为正三角形.若线段MF 2的中点恰好在双曲线E 的渐近线上,则E 的离心率等于( ) A.5B.2 C.3D. 2(2)(2022·张家口一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过原点O 的直线l交椭圆C 于点A ,B ,且2|FO |=|AB |,若∠BAF =π6,则椭圆C 的离心率是________. 答案 (1)B (2)3-1解析 (1)不妨设M 在y 轴的正半轴上, 设M (0,t ),t >0,由于△MF 1F 2为正三角形,所以t =3c ,故M (0,3c ),则MF 2的中点为N ⎝ ⎛⎭⎪⎫c 2,3c 2, 因为N 在渐近线y =b ax 上,所以3c 2=b a ×c 2,即b a =3,e =ca=1+⎝ ⎛⎭⎪⎫b a 2=2,故选B. (2)因为直线AB 过原点,由椭圆及直线的对称性可得|OA |=|OB |, 所以|AB |=2|OA |,设右焦点F ′,连接BF ′,AF ′, 又因为2|OF |=|AB |=2c , 可得四边形AFBF ′为矩形,在Rt△ABF 中,|AF |=2c ·cos∠BAF =2c ·32=3c , |BF |=2c ·sin∠BAF =2c ·12=c ,∴|AF ′|=|BF |=c ,由椭圆定义|AF |+|AF ′|=3c +c =2a , ∴e =c a=3-1.热点三 抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α是弦AB 的倾斜角,则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AB |=x 1+x 2+p =2psin 2α. (3)1|FA |+1|FB |=2p.(4)以线段AB 为直径的圆与准线x =-p2相切.例4 (1)(2022·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A (0,2),与抛物线C 的准线交于点N ,FM →=55MN →,则p 的值等于( ) A.18B.2 C.14D.4 (2)(多选)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线l 的斜率为3且经过点F ,直线l 与抛物线C 交于A ,B 两点(点A 在第一象限),与抛物线的准线交于点D ,若|AF |=8,则以下结论正确的是( ) A.p =4 B.DF →=FA → C.|BD |=2|BF | D.|BF |=4 答案 (1)B (2)ABC解析 (1)依题意F 点的坐标⎝ ⎛⎭⎪⎫p 2,0,设M 在准线上的射影为K , 由抛物线的定义知|MF |=|MK |, ∵FM →=55MN →,∴|FM ||MN |=55, 可得|MK ||MN |=55, 则|KN |∶|KM |=2∶1, ∴k FN =0-2p 2-0=-4p ,∴-4p=-2,求得p =2.故选B.(2)如图所示,分别过点A ,B 作准线的垂线,垂足分别为E ,M ,连接EF .设抛物线C 的准线交x 轴于点P ,则|PF |=p ,由于直线l 的斜率为3,则其倾斜角为60°.又AE ∥x 轴,∴∠EAF =60°,由抛物线的定义可知,|AE |=|AF |,则△AEF 为等边三角形, ∴∠EFP =∠AEF =60°,则∠PEF =30°,∴|AF |=|EF |=2|PF |=2p =8,解得p =4,故A 正确;∵|AE |=|EF |=2|PF |,PF ∥AE ,∴F 为线段AD 的中点,则DF →=FA →,故B 正确; ∵∠DAE =60°,∴∠ADE =30°,∴|BD|=2|BM|=2|BF|(抛物线定义),故C正确;∵|BD|=2|BF|,∴|BF|=13|DF|=13|AF|=83,故D错误.规律方法利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与p的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.训练3 (1)(2022·济南模拟)已知抛物线y2=4x的焦点为F,直线l经过F与抛物线交于A,B两点,点P在抛物线的准线上,且PF⊥AB,线段AB的中点为Q.若|PQ|=4,则|AB|=( )A.4B.4 2C.8D.8 2(2)(2022·广州模拟)过抛物线y2=4x焦点F的直线与该抛物线及其准线都相交,交点从左到右依次为A,B,C.若AB→=2BF→,则线段BC的中点到准线的距离为( )A.3B.4C.5D.6答案(1)C (2)B解析(1)由A,B向准线作垂线,垂足分别为C,D,因为PF⊥AB,可知P是线段CD的中点,PQ 是梯形ABDC 的中位线,又由抛物线的定义可知|AB |=2|PQ |=8,故选C. (2)由抛物线的方程可得焦点F (1,0),渐近线的方程为:x =-1, 由AB →=2BF →, 可得|AB ||BF |=2, 如图所示:作BB ′垂直于准线于B ′, 而|BB ′||AB |=22,∴∠ABB ′=45°, 所以直线AB 的斜率为1, 所以直线AB 的方程为x =y +1, 设B (x 1,y 1),C (x 2,y 2),联立⎩⎨⎧y 2=4x ,x =y +1,整理可得:x 2-6x +1=0,可得x 1+x 2=6,所以线段BC 的中点到准线的距离为x 1+x 22+1=4,故选B.一、基本技能练1.(2022·温州模拟)双曲线y 2-2x 2=1的离心率是( )A.52B.62C.3D. 5 答案 B解析 双曲线方程化为y 21-x 212=1,则a 2=1,b 2=12,从而e =1+b 2a 2=62,故选B. 2.设经过点F (1,0)的直线与抛物线y 2=4x 相交于A ,B 两点.若线段AB 中点的横坐标为2,则|AB |=( ) A.4 B.5 C.6 D.7 答案 C解析 因为抛物线为y 2=4x ,所以p =2, 设A ,B 两点横坐标为x 1,x 2, 因为线段AB 中点的横坐标为2, 则x 1+x 22=2,即x 1+x 2=4,故|AB |=x 1+x 2+p =4+2=6,故选C.3.(2022·烟台一模)已知点F 为抛物线y 2=2px (p >0)的焦点,点P 在抛物线上且横坐标为8,O 为坐标原点,若△OFP 的面积为22,则该抛物线的准线方程为( ) A.x =-12B.x =-1C.x =-2D.x =-4 答案 B解析 由抛物线的方程可得F ⎝ ⎛⎭⎪⎫p 2,0,不妨设P 在x 轴上方,则y 2=2p ×8,可得y p =4p , 则S △OFP =12|OF |·y p =12×p2×4p =22,解得p =2,所以准线方程为x =-p2=-1,故选B.4.“1<k <5”是方程“x 2k -1+y 25-k=1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案 B解析 因为k =3时,x 2k -1+y 25-k=1表示圆,故充分性不成立.若x 2k -1+y 25-k=1表示椭圆,则⎩⎨⎧k -1>0,5-k >0,k -1≠5-k ,∴1<k <5且k ≠3,∴必要性成立. 故“1<k <5”是“方程x 2k -1+y 25-k=1表示椭圆”的必要不充分条件.故选B.5.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与x 轴正半轴所成夹角为π3,则C的离心率为( )A.233B.2C.3D.3 答案 A解析 双曲线C 的渐近线方程为y =±ab x ,由题意可得a b =tanπ3=3, 则b a =33, 所以e =ca =c 2a 2=1+⎝ ⎛⎭⎪⎫b a 2=233,故选A.6.(2022·西安二模)直线y =kx (k >0)与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)在第一、第三象限分别交于P ,Q 两点,F 2是C 的右焦点,有|PF 2|∶|QF 2|=1∶3,且PF 2⊥QF 2,则C 的离心率是( ) A.3B. 6 C.3+1 D.6+1 答案 C解析 由对称性可知四边形PF 1QF 2为平行四边形, 又由PF 2⊥QF 2得四边形PF 1QF 2为矩形, ∴|PQ |=|F 1F 2|=2c , 又|PF 2|∶|QF 2|=1∶3, ∴|QF 2|-|PF 2|=(3-1)c =2a , ∴e =c a=23-1=3+1,故选C.7.(2022·石家庄模拟)已知椭圆M:x2a2+y2=1(a>1)的中心为O,过焦点F的直线l与M交于A,B两点,线段AF的中点为P,若|OP|=|PF|=32,则M的方程为( )A.x22+y2=1 B.x23+y2=1C.x24+y2=1 D.x25+y2=1答案 B解析不妨设F为椭圆M的右焦点,则其左焦点为F1,连接AF1,∵O为FF1中点,P为AF中点.∴OP为△AFF1的中位线.∴|AF1|=2|OP|=3,|AF|=2|PF|= 3.∴|AF1|+|AF|=23=2a,∴a= 3.∴椭圆M的方程为x23+y2=1,故选B.8.(2022·南京调研)已知F1,F2分别为双曲线x2a2-y2b2=1(a>0,b>0)的左焦点和右焦点,过F2的直线l与双曲线的右支交于A,B两点,△AF1F2的内切圆半径为r1,△BF1F2的内切圆半径为r2,若r1=2r2,则直线l的斜率为( )A.1B. 2C.2D.2 2答案 D解析记△AF1F2的内切圆圆心为C,△BF1F2的内切圆圆心为D,边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,易知C ,E 横坐标相等,|AM |=|AN |,|F 1M |=|F 1E |,|F 2N |=|F 2E |,由|AF 1|-|AF 2|=2a ,即|AM |+|MF 1|-(|AN |+|NF 2|)=2a ,得|MF 1|-|NF 2|=2a , 即|F 1E |-|F 2E |=2a ,记C 的横坐标为x 0,则E (x 0,0), 于是x 0+c -(c -x 0)=2a ,得x 0=a , 同样圆心D 的横坐标也为a ,则有CD ⊥x 轴,设直线l 的倾斜角为θ,则∠OF 2D =θ2,∠CF 2O =90°-θ2,在△CEF 2中,tan∠CF 2O =tan ⎝ ⎛⎭⎪⎫90°-θ2=r 1|EF 2|,在△DEF 2中,tan∠OF 2D =tan θ2=r 2|EF 2|,由r 1=2r 2,可得2tan θ2=tan ⎝⎛⎭⎪⎫90°-θ2=1tanθ2,解得tan θ2=22,则直线l 的斜率为tan θ=2tanθ21-tan 2θ2=21-12=22,故选D.9.(多选)(2022·福州模拟)已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,P 为C上一点,则( )A.C 的离心率为22B.△PF 1F 2的周长为5C.∠F 1PF 2<90°D.1≤|PF 1|≤3 答案 CD解析 对于A ,由椭圆方程知:a =2,c =4-3=1,∴离心率e =c a =12,A 错误;对于B ,由椭圆定义知:|PF 1|+|PF 2|=2a =4,|F 1F 2|=2c =2, ∴△PF 1F 2的周长为4+2=6,B 错误;对于C ,当P 为椭圆短轴端点时,tan ∠F 1PF 22=c b =33,∴tan∠F 1PF 2=2tan∠F 1PF 221-tan 2∠F 1PF 22=2331-13=3,∴∠F 1PF 2=60°,即(∠F 1PF 2)max =60°, ∴∠F 1PF 2<90°,C 正确;对于D ,∵|PF 1|min =a -c =1,|PF 1|max =a +c =3, ∴1≤|PF 1|≤3,D 正确. 故选CD.10.(多选)(2022·菏泽模拟)设抛物线C:y2=8x的焦点为F,准线为l,点M为C上一动点,E(3,1)为定点,则下列结论正确的有( )A.准线l的方程是y=-2B.以线段MF为直径的圆与y轴相切C.|ME|+|MF|的最小值为5D.|ME|-|MF|的最大值为2答案BC解析抛物线C:y2=8x的焦点为F(2,0),准线为l:x=-2,故A错误;设M(m,n),MF的中点为N,可得|MF|=m+2=2·m+2 2,即N到y轴的距离是|MF|的一半,则以线段MF为直径的圆与y轴相切,故B正确;设M在准线上的射影为H,由|ME|+|MF|=|ME|+|MH|,当E,M,H三点共线时,|ME|+|MH|取得最小值,为3+2=5,故C正确;由|ME|-|MF|≤|EF|,当M为EF的延长线与抛物线的交点时,取得最大值|EF|,为(3-2)2+(1-0)2=2,故D错误.故选BC.11.已知抛物线y2=2px的准线方程为x=-1,则p=________.答案 2解析 y 2=2px 准线方程为x =-p2,则-p2=-1,∴p =2.12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,且其虚轴长大于1,则双曲线C的一个标准方程可以为________. 答案x 2-y 24=1(答案不唯一)解析 依题意,不妨取b =2,由题意可得⎩⎪⎨⎪⎧c a =5,b =2,c 2=a 2+b 2,解得a =1,b =2,c = 5.所以满足题设的一个标准方程为x 2-y 24=1.二、创新拓展练13.(多选)(2022·南通适考)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆C :x 24+y 22=1的左、右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足AF 1→=λF 1B →,则( ) A.△ABF 2的周长为定值B.AB 的长度最小值为1 C.若AB ⊥AF 2,则λ=3D.λ的取值范围是[1,5] 答案 AC解析 AF 1→=λF 1B →,则A ,B ,F 1三点共线,△ABF 2周长=4a =8是定值,A 正确.AB min =2·b 2a=2≠1,B 错误;∵AB ⊥AF 2,则AF 1⊥AF 2,A 在上、下顶点处,不妨设A (0,2),则AB ∶y =x +2,⎩⎨⎧y =x +2,x 24+y 22=1.解得⎩⎨⎧x =0,y =2或⎩⎪⎨⎪⎧x =-423,y =-23,B ⎝ ⎛⎭⎪⎫-423,-23,λ=-2-23=3,C 正确; 令AB :x =my -2,A (x 1,y 1),B (x 2,y 2),⎩⎨⎧x =my -2,x 24+y 22=1消x 可得(m 2+2)y 2-22my -2=0,则y 1+y 2=22mm 2+2, y 1y 2=-2m 2+2,-y 1=λy 2,当m =0时,λ=1,当m ≠0时,λ(1-λ)2=m 2+24m 2>14,∴3-22<λ<3+22,D 错误.故选AC.14.(多选)(2022·济宁模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是双曲线C 上异于顶点的一点,则( ) A.||PA 1|-|PA 2||=2aB.若焦点F 2关于双曲线C 的渐近线的对称点在C 上,则C 的离心率为 5C.若双曲线C 为等轴双曲线,则直线PA 1的斜率与直线PA 2的斜率之积为1D.若双曲线C 为等轴双曲线,且∠A 1PA 2=3∠PA 1A 2,则∠PA 1A 2=π10答案 BCD解析 对于A :在△PA 1A 2中,根据三角形两边之差小于第三边, 故||PA 1|-|PA 2||<|A 1A 2|=2a ,故A 错误; 对于B ,焦点F 2(c ,0),渐近线不妨取y =bax ,即bx -ay =0, 设焦点F 2关于双曲线C 的渐近线的对称点为(m ,n ),则⎩⎪⎨⎪⎧n m -c ×b a =-1,b ×m +c 2-a ×n 2=0,解得⎩⎪⎨⎪⎧m =a 2-b 2c ,n =2abc,即F 2关于双曲线C 的渐近线的对称点为⎝⎛⎭⎪⎫a 2-b 2c ,2ab c , 由题意该对称点在双曲线上,故(a 2-b 2)2a 2c 2-(2ab )2b 2c 2=1,将c 2=a 2+b 2代入,化简整理得b 4-3a 2b 2-4a 4=0,即b 2=4a 2, 所以e =1+b 2a2=5, ∴e =5,故B 正确;对于C :双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0),设P (x 0,y 0)(y 0≠0),则x 20-y 20=a 2,所以x 20-a 2=y 20, 故k PA 1·k PA 2=y 0x 0+a ·y 0x 0-a =y 20x 20-a2=1,故C 正确;对于D :双曲线为等轴双曲线,即C :x 2-y 2=a 2(a >0), 且∠A 1PA 2=3∠PA 1A 2, 设∠PA 1A 2=θ,∠A 1PA 2=3θ, 则∠PA 2x =4θ,根据C 项中的结论kPA 1·kPA 2=1, 即有tan θ·tan 4θ=1,在三角形中,只有两角互余时,它们的正切值才互为倒数, 故θ+4θ=π2,所以θ=π10,即∠PA 1A 2=π10,故D 正确.故选BCD.15.(多选)(2022·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)左、右焦点分别为F 1,F 2,点P 为C 上任意一点,△PF 1F 2的内切圆的圆心为I ,圆I 与PF 1的切点为M ,PI 与x 轴的交点为N ,则以下结论正确的有( ) A.PF 1→·PF 2→有最大值a 2 B.内切圆I 面积有最大值πb 2c 2(a +c )2C.若|PM |=12|F 1F 2|,则椭圆C 的离心率为 12D.若∠F 1PF 2=2π3,则1|PF 1|+1|PF 2|=1|PN |答案 BCD解析 对A :PF 1→·PF 2→=PO →2-c 2≤b 2,故A 不正确;对B :由等面积法,内切圆I 的半径r =S △PF 1F 2a +c ≤bca +c ,所以内切圆面积有最大值πb 2c 2(a +c )2,故B 正确;对C :|PM |=12|F 1F 2|=c ,2|PM |+2c =4c =2a ,椭圆C 的离心率为12,故C 正确;对D :若∠F 1PF 2=2π3,由角平分线性质得则1|PF 1|+1|PF 2|=1|PN |,故D 正确.故选BCD. 16.(多选)(2022·无锡模拟)已知双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,且过点⎝⎛⎭⎪⎫1,32,椭圆C 2:x 2a 2+y 2b 2=1的焦距与双曲线C 1的焦距相同,且椭圆C 2的左、右焦点分别为F 1,F 2,过点F 1的直线交C 2于A ,B 两点,若点A (1,y 1),则下列说法中正确的有( ) A.双曲线C 1的离心率为2 B.双曲线C 1的实轴长为12C.点B 的横坐标的取值范围为(-2,-1)D.点B 的横坐标的取值范围为(-3,-1) 答案 AD解析 双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,则可设双曲线C 1的方程为x 2-y 23=λ,∵过点⎝⎛⎭⎪⎫1,32,∴1-34=λ,解得λ=14,∴双曲线C 1方程为4x 2-43y 2=1,即x 214-y234=1,可知双曲线C 1的离心率e =ca=2,实轴的长为1,故选项A 正确,选项B 错误; 由14+34=1,可知椭圆C 2:x 2a 2+y 2b2=1的焦点F 1(-1,0),F 2(1,0), 不妨设A (1,y 1)(y 1>0),代入x 2a 2+y 2b 2=1,得1a 2+y 21b 2=1,∴y 1=b 2a ,直线AB 的方程为y =b 22a(x +1),联立⎩⎪⎨⎪⎧y =b 22a (x +1),x2a 2+y2b 2=1,消去y 并整理得(a 2+3)x 2+2(a 2-1)x -3a 2-1=0, 根据韦达定理可得1·x B =-3a 2+1a 2+3,可得x B =-3a 2+1a 2+3=-3+8a 2+3,又a 2>1,∴a 2+3>4,0<8a 2+3<2, ∴-3<x B <-1,故选项C 错误,选项D 正确,故选AD.17.(2022·北京石景山区一模)设点F 1,F 2分别为椭圆C :x 24+y 2=1的左、右焦点,点P是椭圆C 上任意一点,若使得PF 1→·PF 2→=m 成立的点恰好是4个,则实数m 的一个取值可以为________. 答案 0(答案不唯一)解析 当m =0时,PF 1→·PF 2→=0,则PF 1→⊥PF 2→,由椭圆方程可知a 2=4,b 2=1,c 2=3,因为c >b ,所以以F 1F 2为直径的圆与椭圆有4个交点. 使得PF 1→·PF 2→=0成立的点恰好有4个. 所以实数m 的一个取值可以为0.18.(2022·湖州质检)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,设椭圆、双曲线的离心率分别为e 1,e 2,则e 21+e 22的最小值为________.答案 1+32解析 由题意,可设椭圆长半轴为a 1,双曲线的实半轴为a 2, 不妨设P 为双曲线右支上一点,由椭圆和双曲线的定义可知 ⎩⎨⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,则|PF 1|=a 1+a 2,|PF 2|=a 1-a 2, 又∠F 1PF 2=π3,由余弦定理可得(2c )2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cosπ3, 整理得4c 2=a 21+3a 22,即1e 21+3e 22=4,则14e 21+34e 22=1, 所以e 21+e 22=⎝ ⎛⎭⎪⎫14e 21+34e 22(e 21+e 22)=1+e 224e 21+3e 214e 22≥1+2e 224e 21·3e 214e 22=1+32. 当且仅当e 224e 21=3e 214e 22,即e 2=43e 1时取等号.。

圆锥曲线的定义与性质及其应用

圆锥曲线的定义与性质及其应用

圆锥曲线的定义与性质及其应用圆锥曲线是数学中研究的一类平面曲线,包括椭圆、双曲线和抛物线。

它们具有独特的性质和广泛的应用。

本文将对圆锥曲线的定义、性质以及一些实际应用进行介绍。

1. 圆锥曲线的定义圆锥曲线是在一个平面上,以一点为焦点,一条直线为准线,到该直线上各点的距离与到焦点的距离之比等于一个常数的点构成的曲线。

根据准线与焦点的位置关系,圆锥曲线可以分为三类:椭圆、双曲线和抛物线。

2. 椭圆的性质与应用椭圆是一种闭合的曲线,其定义为到两个焦点距离之和等于常数的点的集合。

椭圆具有以下性质:- 椭圆的长轴和短轴:椭圆的两个焦点之间的距离等于椭圆的长轴,而通过椭圆中心且垂直于长轴的线段称为椭圆的短轴。

- 焦点定理:对于椭圆上的任意一点P,其到两个焦点的距离之和等于椭圆的长轴的长度。

- 在物理学和天文学中,椭圆常用来描述行星、彗星和卫星的轨道。

3. 双曲线的性质与应用双曲线是一种开放的曲线,其定义为到两个焦点距离差的绝对值等于常数的点的集合。

双曲线具有以下性质:- 双曲线的渐近线:双曲线有两条渐近线,其与曲线的距离趋近于零,且曲线无限延伸。

- 双曲线的离心率:双曲线的离心率大于1。

离心率是描述焦点与准线距离关系的重要参数。

- 在物理学中,双曲线常用来描述电磁波的传播和光学系统中的折射现象等。

4. 抛物线的性质与应用抛物线是一种开放的曲线,其定义为到焦点距离等于到准线的距离的点的集合。

抛物线具有以下性质:- 抛物线的对称性:抛物线以焦点为中心,与焦点到准线垂直的线段称为对称轴。

抛物线上的任意一点到焦点和准线的距离相等。

- 抛物线的焦距:焦点到对称轴的距离称为抛物线的焦距,是抛物线性质研究和计算的重要参数。

- 在物理学中,抛物线常用来描述抛射物的运动轨迹,以及天文学中的天体运动等。

5. 圆锥曲线的应用举例圆锥曲线在科学和工程领域具有广泛的应用,以下举几个例子:- 天体运动:行星、彗星和卫星的轨道通常用椭圆来描述,能够帮助科学家研究它们的运动规律。

高中数学第八章圆锥曲线知识点

高中数学第八章圆锥曲线知识点

高中数学第八章圆锥曲线知识点第八章圆锥曲线是高中数学的一个重要章节,本章内容涵盖了圆锥曲线的基本定义、性质和相关的解题方法。

在本文档中,我们将详细介绍圆锥曲线的相关知识点,帮助同学们更好地理解和掌握这一部分内容。

一、圆锥曲线的基本定义1. 圆锥曲线的定义圆锥曲线是由一个固定点(焦点)和一个动点(在直线上移动)确定的几何图形。

根据焦点的位置和直线与曲线的交点情况,圆锥曲线分为椭圆、双曲线和抛物线三种情况。

2. 椭圆的定义椭圆是平面上与两个固定点的距离之和等于常数的点(焦点),构成的几何图形。

3. 双曲线的定义双曲线是平面上与两个固定点的距离之差等于常数的点(焦点),构成的几何图形。

4. 抛物线的定义抛物线是平面上与一个固定点的距离等于另一个固定点到直线的距离,构成的几何图形。

二、圆锥曲线的性质1. 椭圆的性质椭圆的离心率小于1,焦点在椭圆的内部。

椭圆有两个主轴,相互垂直,长度分别为2a和2b,其中2a是椭圆的长轴,2b是椭圆的短轴。

椭圆的面积为πab。

2. 双曲线的性质双曲线的离心率大于1,焦点在双曲线的外部。

双曲线有两个虚轴和两条实轴,相互垂直。

双曲线的面积无限大。

3. 抛物线的性质抛物线的离心率等于1,焦点在抛物线的内部。

抛物线有一个对称轴,与焦点和顶点的距离相等。

抛物线的面积为2/3 × a × h,其中a是焦点到顶点的距离,h是对称轴的长度。

三、圆锥曲线的解题方法1. 椭圆的解题方法(1)求解椭圆的标准方程,确定椭圆的中心、长轴和短轴;(2)求解椭圆的焦点和离心率;(3)利用椭圆的性质解题,例如求点到椭圆的距离或求椭圆上一点的坐标。

2. 双曲线的解题方法(1)求解双曲线的标准方程,确定双曲线的中心、虚轴和实轴;(2)求解双曲线的焦点和离心率;(3)利用双曲线的性质解题,例如求点到双曲线的距离或求双曲线上一点的坐标。

3. 抛物线的解题方法(1)求解抛物线的标准方程,确定抛物线的顶点、对称轴和焦点;(2)利用抛物线的性质解题,例如求点到抛物线的距离或求抛物线上一点的坐标。

圆锥曲线的基本概念与性质解析

圆锥曲线的基本概念与性质解析

圆锥曲线的基本概念与性质解析圆锥曲线是数学中的一个重要概念,通过对锥体的切割而得到的曲线形状。

它包括椭圆、抛物线和双曲线三种基本形式,并具有各自独特的性质和特点。

本文将对圆锥曲线的基本概念进行详细解析,并探讨它们的性质。

一、圆锥曲线的定义圆锥曲线是指通过对一个圆锥体进行切割而产生的曲线。

切割方式可以是与锥轴平行的切割、与锥轴垂直的切割或者与锥轴倾斜的切割。

二、椭圆椭圆是一个重要的圆锥曲线,它的定义是所有到两个给定点(称为焦点)的距离之和等于常数的点的轨迹。

椭圆具有以下性质:1. 焦点之间的距离等于椭圆的长度。

2. 椭圆的离心率小于1,且离心率越小椭圆越接近于圆形。

3. 对称轴是通过两个焦点和中心点的直线。

4. 焦点到椭圆上任一点的距离相等。

三、抛物线抛物线是另一种重要的圆锥曲线,它的定义是所有到一个给定点(称为焦点)的距离等于给定直线(称为准线)的距离的点的轨迹。

抛物线具有以下性质:1. 抛物线的焦点与准线距离相等。

2. 对称轴是通过焦点和抛物线上顶点的直线。

3. 抛物线的离心率等于1,离心率大于1的曲线不属于抛物线。

四、双曲线双曲线是圆锥曲线中的另一种形式,它的定义是所有到两个给定点(焦点)的距离之差等于常数的点的轨迹。

双曲线具有以下性质:1. 双曲线的离心率大于1。

2. 焦点之间的距离等于双曲线的长度。

3. 双曲线有两条渐近线,它们与双曲线的曲线趋于无限远时趋于平行。

五、圆锥曲线的应用圆锥曲线在几何学和物理学等领域有广泛的应用。

椭圆的形状在天体运动等领域有重要意义,抛物线的形状广泛应用于抛射物的运动分析,双曲线则在电磁波传播等方面有重要应用。

结论圆锥曲线是通过对圆锥体进行切割而得到的曲线形状,包括椭圆、抛物线和双曲线三种基本形式。

它们具有各自独特的性质和特点,广泛应用于数学、几何学和物理学等领域。

通过对圆锥曲线的深入理解和研究,我们可以进一步探索其在实际问题中的应用和意义。

圆锥曲线的方程与性质

圆锥曲线的方程与性质
代入①得(5- 4c2c)2+4(53-c c)=1,
即 c2-2c-3=0,解得 c=-1(舍去)或 c=3.
索引
所以 C1 的标准方程为3x62+2y72 =1, C2的标准方程为y2=12x.
索引
考点整合
///////
1.圆锥曲线的定义 (1)椭圆:|MF1|+|MF2|=2a(2a>|F1F2|); (2)双曲线:||MF1|-|MF2||=2a(2a<|F1F2|); (3)抛物线:|MF|=d(d为M点到准线的距离). 温馨提醒 应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误.
所以
C
的离心率
e=ac=22ac=|PF|1F|-1F|2P| F2|=
27mm=
7 2.
索引
3.(2021·新高考Ⅰ卷)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为 C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线 方程为__x_=__-__23_______. 解析 法一 由题意易得|OF|=p2,|PF|=p,∠OPF=∠PQF,所以 tan∠OPF
索引
(2)(2021·江南十校联考)已知椭圆 C:xa22+y2=1(a>1)的左、右焦点分别为 F1,F2, 过 F1 的直线与椭圆交于 M,N 两点,若△MNF2 的周长为 8,则△MF1F2 面积的
最大值为( B )
3 A. 2
B. 3
C.2 3
D.3
解析 由椭圆定义|MF1|+|MF2|=|NF1|+|NF2|=2a, 所以△MNF2的周长为|MN|+|MF2|+|NF2|=|MF1|+|NF1|+|MF2|+|NF2|=4a=8. 则 a=2,故 c= a2-1= 3.

圆锥曲线的定义、方程与性质(题型归纳)

圆锥曲线的定义、方程与性质(题型归纳)

圆锥曲线的定义、方程与性质【考情分析】1.考查特点:(1)圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题第(1)问的形式命题,难度中等;(2)直线与圆锥曲线的位置关系是命题的热点,尤其是有关弦长计算及存在性问题,运算量大,能力要求高,突出方程思想、转化化归与分类讨论思想方法的考查.2.关键能力:逻辑思维能力、运算求解能力以及创新能力.3.学科素养:逻辑推理、直观想象、数学运算.【题型一】圆锥曲线的定义及标准方程【典例分析】1(2021·山东省实验中学高三模拟)已知双曲线22525x y -=上一点P 到其左焦点F 的距离为8,则PF 的中点M 到坐标原点O 的距离为()A .9B .6C .5D .4【答案】A【解析】由22525x y -=,得221255x y -=,则2225,5a b ==,所以230c =,所以5,a b c ===,设双曲线的右焦点为1F ,因为P 到其左焦点F 的距离为85a c <+=+P 在双曲线的左支上,所以1210PF PF a -==,所以118PF =,因为M 为PF 的中点,O 为1FF 的中点,所以1192OM PF ==,故选:A 2.已知抛物线()220y px p =>的焦点为F ,准线为l ,若点A 在l 上,点B 在抛物线上,l 与x 轴的交点为C ,ABF是正三角形,且四边形ABFC 的面积是,则p =()A .1B .32C .2D .3【答案】C【解析】由抛物线的定义及ABF 为正三角形,可知//AB x 轴,所以60AFC ︒∠=,从而可知2AB p =,AC =,又因为四边形ABFC 的面积是,所以有22p p+=2p =.故选:C.【提分秘籍】【变式演练】1.(2021·江苏金陵中学高三模拟)以椭圆()2222:10x y C a b a b+=>>的短轴的一个端点和两焦点为顶点的三角形为等边三角形,且椭圆C 上的点到左焦点的最大距离为6,则椭圆C 的标准方程为()A .22143x y +=B .22184x y +=C .2211612x y +=D .2216448x y +=【答案】C【解析】由题意知:短轴端点与焦点形成等边三角形,则2a c =,椭圆上的点到左焦点最大距离为6,即6a c +=,则4a =,2c =,23b =则椭圆的标准方程为:2211612x y +=.故选:C.2.【多选】(2021·福建福州市·高三二模)在ABC 中,4AB =,M 为AB 的中点,且CA CB CM -=,则下列说法中正确的是()A .动点C 的轨迹是双曲线B .动点C 的轨迹关于点M 对称C .ABC 是钝角三角形D .ABC面积的最大值为【答案】BD【解析】以M 为原点,AB 为x 轴建立直角坐标系.设CM =r ,此时C 点在以M 为圆心,r为半径的动圆上.由CA CB r -=,知C 点在以AB 为焦点,2r a =的双曲线22221x y a b -=上且22242AB a b ⎛⎫+== ⎪⎝⎭.对点(),C x y 有222x y r +=,22221444x y r r-=-,从而2223(16)64y r r =-,当28r =时,2y最大,故yABC S ,故D 正确;2r =时,得到另一个C 点'C ,此时ABC 为直角三角形,故C 错误;∵CA CB -非定值,∴C 不以双曲线为轨迹,故A 错误;∵CM CA CB -=,∴一定有C 关于M 的对称点关于原点对称,故B 正确.故选:BD .3.已知抛物线C :x 2=4y 的焦点为F ,M 是抛物线C 上一点,若FM 的延长线交x 轴的正半轴于点N ,交抛物线C 的准线l 于点T ,且FM →=MN →,则|NT |=________.【答案】3【解析】由x 2=4y ,知F (0,1),准线l :y =-1.设点M (x0,y 0),且x 0>0,y 0>0.由FM →=MN →,知点M 是线段FN 的中点,N 是FT 中点,利用抛物线定义,|MF |=|MM ′|=y 0+1,且|FF ′|=2|NN ′|=2.又2(y 0+1)=|FF ′|+|NN ′|=3,知y 0=12.∴|MF |=12+1=32,从而|NT |=|FN |=2|MF |=3.【题型二】圆锥曲线的几何性质【典例分析】1.已知1F ,2F 分别为椭圆E :()222210y x a b a b +=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且2112sin 3sin PF F PF F ∠=∠,则椭圆E 的离心率为()A .102B .4C D .54【答案】B【解析】1F ,2F 分别为椭圆E :()222210y x a b a b+=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且2112sin 3sin PF F PF F Ð=Ð,由正弦定理可得213PF PF =,令1233PF PF n ==,则32n n a +=,22294n n c +=,可得22542a c =,所以椭圆的离心率为:104c e a===.故选:B .2.(2021·天津南开中学高三模拟)已知双曲线()222210,0x y a b a b-=>>的中心为O ,左焦点为F ,左顶点为A ,点P 为双曲线右支上一点,直线OP 交双曲线于另一点Q ,若直线AQ 恰好平分线段PF ,则该双曲线的离心率为__________.【答案】3【解析】设PF 的中点为M ,连接OM ,O 、M 分别为PQ 、PF 的中点,则//OM FQ 且12OM FQ =,所以,12OA OM AF FQ ==,即12a c a =-,3c a =∴,因此,该双曲线的离心率为3ce a ==.故答案为:3.【提分秘籍】【变式演练】1.(2021湖南长沙长郡中学高三模拟)已知抛物线28y x =的焦点为F ,经过点P (1,1)的直线l 与该曲线交于A 、B 两点,且点P 恰好为AB 的中点,则||||+=AF BF ()A .4B .6C .8D .12【答案】B【解析】抛物线28y x =中,4p =,其焦点()2,0F ,准线方程2x =-,如图过点,,A B P 作准线的垂线,垂足为,,M N R ,由抛物线定义可知,||||AF BF AM BN +=+,而P 恰好为AB 的中点,故PR 是梯形ABNM 的中位线,故2AM BN PR +=,又P (1,1),故132pPR =+=,所以||||236AF BF +=⨯=.故选:B.2.已知1F ,2F 分别为双曲线22221x ya b-=(0a >,0b >)的左、右焦点,过点2F 作圆222x y a +=的切线交双曲线左支于点M ,且1260F MF ∠︒=,则该双曲线的渐近线方程为__________.【答案】313y x ⎛⎫=±+⎪ ⎪⎝⎭.【解析】设切点为A ,过1F 作21F B MF ⊥,垂足为B ,由题意可得OA a =,2OF c =,222AF c a b =-=,由OA 为12BF F △的中位线,可得12BF a =,22BF b =,又1260F MF ∠=︒,可得114sin 603BF a MF ==︒,23aMB =,22223aMF MB BF b =+=+,又21242233a a MF MF b a -=+-=,所以313b a ⎛⎫=+ ⎪ ⎪⎝⎭,所以双曲线的渐近线方程为313y x ⎛⎫=±+ ⎪ ⎪⎝⎭.故答案为:313y x ⎛⎫=±+ ⎪ ⎪⎝⎭.3.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________.【答案】3-1.【解析】设椭圆的右焦点为F (c ,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A )23,2(c c,由点A 在椭圆M 上得,c 24a 2+3c 24b2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∵b 2=a 2-c 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),则4a 4-8a 2c 2+c 4=0,e 4-8e 2+4=0,∴e 2=4+23(舍),e 2=4-2 3.由0<e <1,得e =3-1.【题型三】直线与圆锥曲线【典例分析】1.(2021·浙江镇海中学高三模拟)已知直线1y x =-与抛物线24y x =交于A ,B 两点.若点(1,)C m -满足90ACB ∠= ,则m =()A .1-B .1C .2D .3【答案】C【解析】直线1y x =-与抛物线24y x =联立得:2216104y x x x y x=-⎧⇒-+=⎨=⎩,设1122(,),(,)A x y B x y ,所以12126,1x x x x +==,点(1,)C m -满足90ACB ∠= ,所以有:21121121212120(1,)(1,)01()0,CA CB x y m x y m x x x x y y m y y m ⋅=⇒+-+-=⇒++++-++=121212121212,24,(1)(1)()14y y x x y y x x x x x x +=+-==--=-++=-,所以2161440,m m ++--+=解得2m =,故选:C2.已知椭圆22221x y a b +=(0a b >>)的右焦点为F ,离心率为2,过点F 的直线l 交椭圆于A ,B 两点,若AB 的中点为()1,1,则直线l 的斜率为()A .14-B .34-C .12-D .1【答案】A【解析】设()11,A x y ,()22,B x y ,则AB 的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,由题意可得122x x +=,122y y +=,将A ,B 的坐标的代入椭圆的方程:22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,作差可得22221212220x x y y a b--+=,所以221212221212y y x x b b x x a y y a-+=-⋅=--+,又因为离心率2c e a ==,222c a b =-,所以22234a b a -=,所以2214b a -=-,即直线AB 的斜率为14-,故选:A.【提分秘籍】1.求解弦长的4种方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点间的距离公式求解.(3)联立直线与圆锥曲线方程,消元得到关于x 或y 的一元二次方程,利用根与系数的关系得到(x 1-x 2)2或(y 1-y 2)2,代入两点间的距离公式求解.(4)当弦过焦点时,可结合焦半径公式求解弦长.[提醒]利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在,可直接求交点坐标再求弦长.涉及焦点弦长时要注意圆锥曲线定义的应用.2.处理中点弦问题常用的2种方法(1)点差法:设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,2121x x y y --三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解.[提醒]中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.【变式演练】1.(2021·陕西高三模拟)已知抛物线22(0)x py p =>焦点为,F O 为坐标原点,直线l 过点F 与抛物线交于,A B 两点,与x 轴交于()2,0C p ,若17AB =,则OCF △的面积为___________.【答案】32【解析】抛物线22(0)x py p =>焦点(0,)2p F ,而直线l 过点(2,0)C p ,则直线l 的斜率为14k =-,其方程为124p y x -=-,即42x y p =-+,由2422x y px py=-+⎧⎨=⎩消去x 得228920y py p -+=,显然0∆>,设1122(,),(,)A x y B x y ,则1298py y +=,而17AB =,由抛物线定义知,1217||||()()17228p p p AB AF BF y y =+=+++==,解得8p =,即(0,4)F ,()16,0C ,而90FOC ∠= ,于是得1||||322OCF S OC OF =⋅⋅= ,所以OCF △的面积为32.故答案为:322.(2021·湖南长沙长郡中学高三模拟)已知椭圆C :2214x y +=.(1)椭圆C 是否存在以点11,2⎛⎫- ⎪⎝⎭为中点的弦?若存在,求出弦所在的直线l 的方程,若不存在,请说明理由;(2)已知椭圆C 的左、右顶点分别为A ,B ,点P 是椭圆C 上的点,若直线AP ,BP 分别与直线3y =交于G ,H 两点,求线段GH 的长度取得最小值时直线GP 的斜率.【解析】(1)因为22(1)111422-⎛⎫+=< ⎪⎝⎭,所以点11,2⎛⎫- ⎪⎝⎭在椭圆C 的内部,则椭圆C 存在以点11,2⎛⎫- ⎪⎝⎭为中点的弦.设弦所在的直线l 与椭圆C 相交于()11,M x y ,()22,N x y ,则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得22222121044x x y y -+-=,即()()()()2121212104x x x x y y y y -++-+=.又122x x +=-,121y y +=,()()2121(2)104x x y y --∴+-⨯=,整理得212112y y x x -=-.所以直线l 的方程为11(1)22y x =+-,即220x y -+=.(2)因为A ,P ,G 三点共线所以可知当线段GH 的长度取得最小值时,直线AP 的斜率k 显然存在,且0k >,()2,0A -,设直线AP 的方程为(2)y k x =+,从而点32,3G k ⎛⎫- ⎪⎝⎭.联立22(2)14y k x x y =+⎧⎪⎨+=⎪⎩,消y 整理得()222214161640k x k x k +++-=,0∆>设点()00,P x y ,则202164(2)14k x k--⋅=+.所以2022814k x k -=+,从而02414k y k =+,所以222284,1414k k P k k ⎛⎫- ⎪++⎝⎭.又点()2,0B ,则直线PB 的斜率为14k-.由1(2)43y x k y ⎧=--⎪⎨⎪=⎩,得1223x k y =-+⎧⎨=⎩,所以(122,3)H k -+.故332122124GH k k k k=-+-=+-.又0k >,则31212k k +≥=,当且仅当312k k =,即12k =时等号成立所以当12k =时,线段GH 的长度取得最小值.所以此时直线GP 的斜率为12.1.(2021山师大附中高三模拟)“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当0n <时,方程221x ny +=表示焦点在x 轴上的双曲线;当0n >时,221x ny +=可化为2211y x n+=,因为椭圆的焦点在x 轴上,所以11n>即1n >,故方程221x ny +=表示焦点在x 轴上的圆锥曲线时,0n <或1n >,故“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的充分不必要条件,故选:A.2.(2021·浙江镇海中学高三模拟)已知抛物线2y =的准线与双曲线()22210x y a a-=>相交于A ,B 两点,F 为抛物线的焦点,若FAB 为直角三角形,则实数a 的值为()A .19B .29C .13D.3【答案】D【解析】2y =的准线x =,焦点),不妨设A点坐标2a ⎛⎫⎪ ⎪⎝⎭,FAB 为直角三角形,∠AFB =90°,由对称性可知,FAB 为等腰直角三角形,由直角三角形的性质得a a=,解得23a =.故选:D 3.已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F 、2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF =()A .1B .1或9C .3或9D .9【答案】D【解析】由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点P 在双曲线C 的左支上,所以214PF PF -=,所以29PF =,故选:D.4.(2021·山东省淄博市实验中学高三模拟)2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2;③c 1a 2>a 1c 2.④1212c c a a <其中正确式子的序号是()A .①③B .②③C .①④D .②④【答案】B【解析】由图可得1212,a a c c >>,所以1122a c a c +>+,即①错误;因为1122,a c PF a c PF -=-=,所以1122a c a c -=-,即②正确,由1122a c a c -=-,得1221a c a c +=+,即22221212212122a c a c a c a c ++=++,即22221112222122a c a c a c a c -+=-+,即221221122()0b b a c a c -=->,可得2112a c a c >,即③正确,由2112a c a c >,可得1212c c a a >,即④错误;综上所述选项B 正确.故选:B.5.(2021·湖南长沙雅礼中学高三模拟)P 为双曲线2222:1x y C a b-=(0a >,0b >)上一点,1F ,2F 分别为其左、右焦点,O 为坐标原点.若OP b =,且2112sin 3sin PF F PF F ∠∠=,则C 的离心率为()ABC .2D【答案】B【解析】由2112sin 3sin PF F PF F ∠∠=,以及正弦定理可得213PF PF =,因为122PF PF a -=,所以13PF a =,2PF a =,因为2OF c =,OP b =,所以22OPF π∠=,所以2cos a OF P cÐ=,在12F F P 中,()()22212223cos cos 22a c a a F F P OF P a cc+-Ð==Ð=×.化简可得c =,所以C的离心率==ce a.故选:B 6.设1F ,2F 为椭圆1C 与双曲线2C 的公共焦点,1F ,2F 分别为左、右焦点,1C 与2C 在第一象限的交点为M .若12MF F △是以线段1MF 为底边的等腰三角形,且双曲线2C 的离心率72,2e ⎡⎤∈⎢⎥⎣⎦,则椭圆1C 离心率的取值范围是()A .45,99⎡⎤⎢⎥⎣⎦B .70,16⎡⎤⎢⎥⎣⎦C .27,516⎡⎤⎢⎥⎣⎦D .2,17⎡⎤⎢⎥⎣⎦【答案】C【解析】设椭圆长轴长为2a ,双曲线实轴长为2a ',焦点为2c ,2122MF F F c ==,则1MF =2222a c a c '+=-,又c e a =',所以c a e '=,即242c c a e +=,又7[2,2e ∈,所以椭圆的离心率为127,15162c e a e⎡⎤'==∈⎢⎥⎣⎦+.故选:C .7.(2021·重庆南开中学高三模拟)已知曲线C 的方程为()22113x y m R m m+=∈+-,则()A .当1m =时,曲线C 为圆B .当5m =时,曲线C 为双曲线,其渐近线方程为33y x =±C .当1m >时,曲线C 为焦点在x 轴上的椭圆D .存在实数m 使得曲线C【答案】AB【解析】对于A 选项:m =1时,方程为22122x y +=,即222x y +=,曲线C 是圆,A 正确;对于B 选项:m =5时,方程为22162x y -=,曲线C为双曲线,其渐近线方程为3y x =±,B 正确;对于C 选项:m >1时,不妨令m =5,由选项B 知,曲线C 为双曲线,C 不正确;对于D 选项:要曲线C 为双曲线,必有(1)(3)0m m +-<,即m <-1或m >3,m <-1时,曲线C :2213(1)y x m m -=--+,m >3时,曲线C :22113x y m m -=+-,时,它实半轴长与虚半轴长相等,而-(m +1)≠3-m ,m +1≠m -3,D 不正确.故选:AB11.(2021·湖南雅礼中学高三模拟)设抛物线2:4C y x =的焦点为F ,O 为坐标原点,过F 的直线与C 分别交于()1122(),,A x y B x y ,两点,则()A .12y y 为定值B .AOB ∠可能为直角C .以BF 为直径的圆与y 轴有两个交点D .对于确定的直线AB ,在C 的准线上存在三个不同的点P ,使得ABP △为直角三角形【答案】AD【解析】设:1AB l x ty =+,与24y x =联立可得:2124404y ty y y --==-,,故A 对;因为221212116y y x x ==,所以12121OA OBy y k k x x ⋅=≠-,∴2AOB π∠≠,故B 错;设BF 的中点11111,,2222BF x y x M ++⎛⎫=⎪⎝⎭,则以BF 为直径的圆与y 轴相切,故C 错;设AB 的中点1212,22x x y y N ++⎛⎫ ⎪⎝⎭,N 到C 准线的距离为当1212x x ++,因为12122AB x x +=+故有以AB 为直径的圆与C 的准线相切,对于确定的直线AB ,当P ∠为直角,此时P 为切点;当A ∠或B Ð为直角,此时P 为过A (或B )的AB 的垂线与准线的交点,故D 正确.故选:AD12.已知双曲线22:139x y C -=的左、右顶点分别为A ,B ,点P 是C 上的任意一点,则()A .双曲线C 的离心率为233B .焦点到渐近线的距离为3C .点P 到两条渐近线的距离之积为94D .当P 与A 、B 不重合时,直线PA ,PB 的斜率之积为3【答案】BCD【解析】对于A ,,3a b c ===2e ==,故A 错误;对于B ,双曲线的右焦点2F 到渐近线y x ==的距离为3d ==,故B 正确;对于C ,设()00,P x y ,满足2200139x y -=,即220039x y -=,则点P到两条渐近线的距离之积为2200123944x y d d -⋅==,故C 正确;对于D ,设()00,P x y ,由C 得2239x y -=,PAPB k k ==2200220039333PA PB y x k k x x -⋅===--,故D 正确;故选:BCD13.(2021·湖北襄阳五中高三模拟)已知椭圆G:2221(06x y b b+=<<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+,当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②OP 的最小值为2;③存在b 使得椭圆G 上满足条件的点P 仅有两个,其中,所有正确命题的序号是__________.【答案】①②【解析】椭圆(222:106x y G b b+=<<的两个焦点分别为)1F和()2F ,短轴的两个端点分别为()10,B b -和()20,B b ,设(),P x y ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+,由椭圆定义可得,1222PB PB a b +==,即有P 在椭圆222166y x b+=-上,对于①,将x 换为x -方程不变,则点P 的轨迹关于y 轴对称,故①正确.;对于②,由图象可得,当P 满足22x y =,即有226b b -=,即b =时,OP 取得最小值,可得222x y ==时,即有2OP ==取得最小值为2,故②正确;对于③,由图象可得轨迹关于,x y 轴对称,且0b <<,则椭圆G 上满足条件的点P 有4个,不存在b 使得椭圆G 上满足条件的点P 有2个,故③不正确.,故答案为①②.14.(2021·山东滕州一中高三模拟)某中学张燕同学不仅学习认真,而且酷爱体育运动,经过艰苦的训练,终于在校运会的投铅球比赛中创造佳绩.已知张燕所投铅球的轨迹是一段抛物线(人的身高不计,铅球看成一个质点),如图所示,设初速度为定值0v ,且与水平方向所成角为变量θ,已知张燕投铅球的最远距离为10m .当她投得最远距离时,铅球轨迹抛物线的焦点到准线的距离为____m .(空气阻力不计,重力加速度为210m /s )【答案】5【解析】设铅球运动时间为0t ,t 时刻的水平方向位移为x ,则0cos x v t θ=.由001sin 02v gt θ-=知002sin v t g θ=20sin 2v x g θ∴=故当4x π=时,20max 10v x g==,210m /s g =∴解得:0t =,010m /sv =201 2.5m22t h g ⎛⎫∴== ⎪⎝⎭如图建立平面直角坐标系,(5, 2.5)P --,设抛物线方程为22x py=-则抛物线的焦点到准线的距离22(5)5m 22 2.5x p y -===-⨯故答案为:515.(2021·山东枣庄一中高三模拟)已知双曲线2222:1x y C a b-=(0a >,0b >)的左、右焦点分别为1F 、2F ,O为坐标原点,P 是双曲线上在第一象限内的点,直线PO 、2PF 分别交双曲线C 左、右支于另一点M 、N ,213PF PF =,且260MF N ∠=︒,则双曲线C 的离心率为________;渐近线方程为________.【答案】22y x =±【解析】由213PF PF =,122PF PF a -=,解得13PF a =,2PF a =,由题意可得四边形12PF MF 为平行四边形,又260MF N ∠=︒,可得1260F PF ∠=︒,在12PF F △中,可得()22224323cos 607c a a a a a =+-⋅⋅⋅︒=,即有2c a =,则2c e a ==,所以2b a ===,则渐近线方程为2y x =±.故答案为:72;32y x =±.16.(2021•南充模拟)已知椭圆2222:1(0)x y C a b a b +=>>的左,右焦点分别为1(2,0)F -,2(2,0)F ,点15(1,)3P --在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为一1的直线l 与椭圆C 相交于M ,N 两点,使得11||||F M F N =?若存在,求出直线的方程;若不存在,说明理由.【解析】(1)由题意得,2c =,2211519a b +=,222a b c =+,解得:26a =,22b =,所以椭圆的标准方程:22162x y +=;(2)假设存在满足条件的直线l ,设直线l 的方程:y x t =-+,设(,)M x y ,(,)N x y ''与椭圆联立整理:2246360x tx t -+-=,△223644(36)0t t =-->,t -<<,32t x x '+=,2364t xx -'=,由于11||||F M F N =,设线段MN 的中点为E ,则1F E MN ⊥,所以111F E MN k k =-=又3(4t E ,)3t ,所以141324F E tk t ==+,解得4t =-,当4t =-时,不满足t -<<,所以不存在满足条件的直线l .17.(2021·湖南高三模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为72,双曲线上的点到焦点的最小距离为2.(1)求双曲线C 的方程;(2)四边形MNPQ 的四个顶点均在双曲线C 上,且//MQ NP ,MQ x ⊥轴,若直线MN 和直线QP 交于点()4,0S ,四边形MNPQ 的对角线交于点D ,求点D 到双曲线C 的渐近线的距离之和.【解析】(1)由题意,22222c a c a a b c ⎧-=⎪⎪=⎨⎪+=⎪⎩,解得24a =,23b =,所以双曲线C 的方程为22143x y -=;(2)由MQ x ⊥轴,//MQ NP ,可知四边形MNPQ 为等腰梯形,且关于x 轴对称,故四边形MNPQ 的对角线的交点D 在x轴上,如图所示:设点(,0)D t ,则对角线MP 的方程为(0)x my t m =+≠,设1122(,),(,)M x y P x y ,由对称性知1122(,),(,)Q x y N x y --,联立22143x y x my t ⎧-=⎪⎨⎪=+⎩,消去x 得222(34)63120m y mty t -++-=,所以22222(6)4(34)(312)48(34)0mt m t m t ∆=---=-+>,即2234m t +>,由韦达定理得21212226312,3434mt t y y y y m m --+==--,由,,M N S 三点共线知MS NS k k =,即121244y y x x -=--,所以1221(4)(4)0y my t y my t +-++-=,整理得12122(4)()0my y t y y +-+=,所以222(312)(4)(6)034m t t mt m -+--=-,所以224(1)034m t m -=-,即24(1)0,1m t t -==,所以直线MP 过定点()1,0,即D ()1,0,因为双曲线C 20y ±=20y -=时,由点到直线距离公式得217d ==,由对称性知点D 到双曲线C 的渐近线的距离之和为2217.。

圆锥曲线知识点整理

圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是解析几何中的重要内容,它是由圆(或椭圆、双曲线、抛物线)在一个平面上的投影形成的一类曲线。

在数学和物理学等领域,圆锥曲线有着广泛的应用。

下面将对圆锥曲线的相关知识点进行整理和说明。

一、圆锥曲线的定义及基本概念1. 圆锥曲线的定义:圆锥曲线是平面上的一条曲线,它是由一个固定点(焦点)和一个固定直线(准线)所确定的点的集合。

2. 圆锥曲线的焦点和准线:焦点是确定圆锥曲线形状的重要参数,准线是直线,在圆锥曲线的定义中起着重要作用。

3. 圆锥曲线的形状:圆锥曲线有四种形状,分别是圆、椭圆、双曲线和抛物线。

它们的形状由焦点、准线和离心率等参数确定。

二、圆锥曲线的方程及性质1. 圆的方程:圆的方程可以用一般式表示为(x-a)²+(y-b)²=r²,其中(a,b)表示圆心的坐标,r表示半径。

2. 椭圆的方程:椭圆的方程可以用标准方程表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)表示椭圆中心的坐标,a和b分别表示椭圆在x轴和y轴上的半轴长度。

3. 双曲线的方程:双曲线的方程可以用标准方程表示为(x-h)²/a²-(y-k)²/b²=1,或(x-h)²/a²-(y-k)²/b²=-1。

其中(h,k)表示双曲线中心的坐标,a和b分别表示双曲线在x轴和y轴上的半轴长度。

4. 抛物线的方程:抛物线的方程可以用标准方程表示为y²=4ax,其中a表示抛物线的焦点到准线的距离。

5. 圆锥曲线的性质:圆锥曲线具有许多重要的性质,如对称性、离心率、焦点与准线的关系等。

这些性质对于理解和分析圆锥曲线的形状起着重要作用。

三、圆锥曲线在实际应用中的意义1. 圆锥曲线在物理学中的应用:在物理学中,圆锥曲线被广泛应用于描述物体的运动轨迹、电场和磁场分布等问题。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。

下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。

一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。

根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。

(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。

椭圆有两个焦点,与这两个焦点的距离之和是常数。

椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。

(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。

抛物线是一条对称曲线,其开口方向由切割平面的位置决定。

抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。

(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。

双曲线有两个焦点,与这两个焦点的距离之差是常数。

双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。

二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。

(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。

(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。

三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。

2. 椭圆的长轴和短轴分别与x轴和y轴平行。

3. 椭圆有两个焦点,对称于椭圆的长轴上。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。

在高中数学课程中,学习圆锥曲线是必不可少的。

本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。

一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。

二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

3. 抛物线:抛物线的基本方程为:$y^2=2px$。

其中,p为抛物线的焦距。

三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。

双曲线还具有渐近线,即曲线趋近于两根直线。

2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。

此外,椭圆也具有主轴、短轴和焦距等重要概念。

3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。

四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。

2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。

例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。

3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。

例如自由落体运动、射击运动以及卫星的发射轨道等。

综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。

在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。

希望本文对你对圆锥曲线的学习有所帮助。

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。

定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。

标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。

圆锥曲线的定义与基本性质

圆锥曲线的定义与基本性质

圆锥曲线的定义与基本性质圆锥曲线是仿射空间中的一类特殊曲线,由一个固定点(焦点)到一个固定直线(准线)上所有点的距离与一个常数之比为定值的点构成。

圆锥曲线包括椭圆、双曲线和抛物线三种类型。

在本文中,我们将探讨圆锥曲线的一些基本定义及性质。

一、圆锥曲线的定义圆锥曲线是由一个固定点 p(称为焦点)和一个不包含 p 点的直线 l(称为准线)所确定的曲线。

圆锥体沿着准线 l 延伸,取一个点 r,使得 pr:rd 是定值,其中 d 为点 r 到直线 l 的距离。

设 F1,F2 是焦点,l 为准线,e 为离心率,则 e=PF1/PS,其中 S 是公共焦点。

- 当 e<1 时,得到椭圆;- 当 e=1 时,得到抛物线;- 当 e>1 时,得到双曲线。

例如,下图中,以点 F 为焦点,线段 CD 为准线,且焦距PF/CD=1/2,得到的曲线就是抛物线。

二、圆锥曲线的参数方程对于椭圆而言,可以使用参数方程来描述:x=a cos⁡ty=b sin⁡t其中 a 和 b 分别代表椭圆在 x 轴和 y 轴方向上的半径,t 为变量。

类似的,可以得到双曲线和抛物线的参数方程。

三、圆锥曲线的焦点和直径对于圆锥曲线,焦点和直径是十分重要的性质之一。

对于椭圆而言,每一条直径的中点都会落在坐标系的第一象限中,且椭圆的两个焦点都位于坐标轴上。

对于双曲线而言,每一条直径的中点都会落在 x 轴中线上,且双曲线的两个焦点都位于 x 轴上。

对于抛物线而言,它没有焦点,但总存在一个顶点,即曲线的最高点或最低点,每一条与顶点连线垂直于开口的那一侧的直线都称为该抛物线的一条直径。

四、圆锥曲线的离心率和倾角离心率 e 是一个很重要的度量曲线形状的参数,表示焦点与准线之间距离的比值。

其定义为 e=PF/PS,其中 PF 为焦点到曲线表面上一点的距离,PS 为焦点到准线的距离。

而圆锥曲线的倾角则是准线与 x 轴的夹角。

对于椭圆和双曲线而言,倾角的值随着离心率的增大而减小,对于抛物线而言,则为 45 度。

(完整版)圆锥曲线的定义、方程和性质知识点总结

(完整版)圆锥曲线的定义、方程和性质知识点总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

2021年全国卷数学圆锥曲线解法

2021年全国卷数学圆锥曲线解法

2021年全国卷数学圆锥曲线解法最近,随着中国教育改革的不断深入,数学圆锥曲线的解法变的越来越重要。

尤其是2021年全国卷,考题中更加注重这一部分。

那么,今天我们就来详细分析一下数学圆锥曲线的解法。

首先,我们先来了解一下什么是数学圆锥曲线。

数学圆锥曲线是一种特殊的曲线,它是一种螺旋曲线,由一个圆和一条直线相结合而成。

即圆心是圆,圆上一点是直线上一点,直线上一点与圆心连线也是直线。

其次,我们再来看一下数学圆锥曲线的概念,以及它的特点。

数学圆锥曲线的特点是它的曲线半径随着时间的推移而变化,当超过一定的范围时,它会转折成一个圆环。

另外,数学圆锥曲线的曲线面积比它的外围面积要小,这也是数学圆锥曲线的一个特征。

最后,我们分析一下数学圆锥曲线的解法。

数学圆锥曲线的解法是由圆和直线构成,因此,要求出它的解法时,首先要解圆方程,即该圆的标准方程为:x^2+y^2+2gx+2fy+c=0其中,g、f分别代表圆心的横坐标和纵坐标,c为常数。

接下来,该曲线的方程为:y=mx+k其中,m为斜率,k为截距。

以上就是数学圆锥曲线的解法,它们的具体计算方法为:1)先通过圆及其直线的方程,求出圆心坐标以及斜率;2)将得到的圆心坐标及斜率置入圆锥曲线的标准方程中,解出该曲线;3)最后,将解出来的圆锥曲线放置在图表上,作出图形。

以上就是本文关于数学圆锥曲线的解法分析,我们可以看到,数学圆锥曲线的解法结合了圆和直线的解法,结合使用这两个解法可以解出特定的圆锥曲线。

掌握数学圆锥曲线的解法是2021年全国卷数学考试的重点,希望同学们在备考中能够抓住这一点,以达到良好的考试成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高考数学圆锥曲线的定义、方程与性质(1)圆锥曲线的定义、方程与性质是每年高考必考的内容.以选择题、填空题的形式考查,常出现在第4~12或15~16题的位置,着重考查圆锥曲线的几何性质与标准方程,难度中等.(2)圆锥曲线的综合问题多以解答题的形式考查,常作为压轴题出现在第19~20题的位置,一般难度较大.考点一 圆锥曲线的定义与标准方程[例1] (1)(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 (2)(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( )A .2B .3C .4D .8 (3)(2019·郑州模拟)设F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0B.x ±2y =0 C .x ±2y =0D.2x ±y =01.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55 B.655 C.855 D.4552.(2019·福州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA ―→=2AF ―→,且|BF ―→|=4,则双曲线C 的方程为( )A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=13.若抛物线y 2=2px (p >0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的标准方程为____________________.考点二 圆锥曲线的性质[例2] (1)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23 B.12 C.13D.14(2)(2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ―→=AB ―→, F 1B ―→·F 2B ―→=0,则C 的离心率为________.(3)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为5,△AOB 的面积为2,则p =________.1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2x B.y =±3x C .y =±22x D.y =±32x2.(2019·济南市模拟考试)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于A ,B 两点,且AF 1―→·AF 2―→=0,AF 2―→=2F 2B ―→,则椭圆E 的离心率为( )A.23B.34C.53D.743.(2019·广州市调研测试)已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为( )A.2+1B.3+1C.5+1D.2+24.已知F 1,F 2是双曲线y 2a 2-x 2b 2=1(a >0,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线离心率的取值范围是________.考点三 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系[例3] 在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |; (2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.题型二 直线与圆锥曲线的弦长[例4] (2019·全国卷Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP ―→=3PB ―→,求|AB |.1.已知椭圆C :x 2a 2+y 2=1(a >1),F 1,F 2分别是其左、右焦点,以F 1F 2为直径的圆与椭圆C 有且仅有两个交点.(1)求椭圆C 的方程;(2)设过点F 1且不与坐标轴垂直的直线l 交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点P ,点P 横坐标的取值范围是⎝⎛⎭⎫-14,0,求线段AB 长度的取值范围.2.(2019·全国卷Ⅲ)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝⎛⎭⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(3,0),且经过点⎝⎛⎭⎫-1,32,点M 是x 轴上的一点,过点M 的直线l 与椭圆C 交于A ,B 两点(点A 在x 轴的上方).(1)求椭圆C 的方程;(2)若AM ―→=2MB ―→,且直线l 与圆O :x 2+y 2=47相切于点N ,求|MN |.【课后专项练习】A 组一、选择题1.(2019·济南模拟)已知双曲线x 29-y 2m =1的一个焦点F 的坐标为(-5,0),则该双曲线的渐近线方程为( )A .y =±43xB.y =±34xC .y =±53xD.y =±35x2.已知抛物线x 2=4y 上一动点P 到x 轴的距离为d 1,到直线l :x +y +4=0的距离为d 2,则d 1+d 2的最小值是( )A.552+2B.522+1C.522-2D.522-13.(2019·全国卷Ⅲ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A.324B.322C.22D.324.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B.3 C .2 D.55.(2019·昆明模拟)已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,B 为C 的短轴的一个端点,直线BF 1与C 的另一个交点为A ,若△BAF 2为等腰三角形,则|AF 1||AF 2|=( )A.13B.12C.23D.36.(2019·广州调研)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,过右焦点F 且斜率为k (k >0)的直线与Γ相交于A ,B 两点.若AF ―→=3FB ―→,则k =( )A.1B.2C.3D.2二、填空题7.已知P (1,3)是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)渐近线上的点,则双曲线C 的离心率是________.8.若F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为________.9.(2019·洛阳尖子生第二次联考)过抛物线C :y 2=2px (p >0)的焦点F 的直线与抛物线C 交于A ,B 两点,且AF ―→=3FB ―→,抛物线C 的准线l 与x 轴交于点E ,AA 1⊥l 于点A 1,若四边形AA 1EF 的面积为63,则p =________.三、解答题10.(2019·天津高考)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为5 5.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N 在y轴的负半轴上,若|ON|=|OF|(O为原点),且OP⊥MN,求直线PB的斜率.11.已知抛物线C:x2=2py(p>0)上一点M(m,9)到其焦点F的距离为10.(1)求抛物线C的方程;(2)设过焦点F的直线l与抛物线C交于A,B两点,且抛物线在A,B两点处的切线分别交x轴于P,Q两点,求|AP|·|BQ|的取值范围.12.(2019·江苏高考)如图,在平面直角坐标系xOy 中,椭圆C :x 2a2+y 2b2=1(a >b >0)的焦点为F 1(-1,0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:(x -1)2+y 2=4a 2交于点A ,与椭圆C 交于点D .连接AF 1并延长交圆F 2于点B ,连接BF 2交椭圆C 于点E ,连接DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.1.已知抛物线C:x2=2py(p>0),过焦点F的直线交C于A,B两点,D是抛物线的准线l与y轴的交点.(1)若AB∥l,且△ABD的面积为1,求抛物线的方程;(2)设M为AB的中点,过M作l的垂线,垂足为N.2.(2019·武汉市调研测试)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,1),且右焦点F (3,0).(1)求椭圆Γ的标准方程;(2)过N (1,0)且斜率存在的直线AB 交椭圆Γ于A ,B 两点,记t =MA ―→·MB ―→,若t 的最大值和最小值分别为t 1,t 2,求t 1+t 2的值.3.如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,右顶点、上顶点分别为点A ,B ,且|AB |=52|BF |. (1)求椭圆C 的离心率;(2)若点M ⎝⎛⎭⎫-1617,217在椭圆C 的内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段PQ 的中点,且OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.4.(2019·福建省质量检查)在平面直角坐标系xOy中,圆F:(x-1)2+y2=1外的点P 在y轴的右侧运动,且P到圆F上的点的最小距离等于它到y轴的距离.记P的轨迹为E.(1)求E的方程;(2)过点F的直线交E于A,B两点,以AB为直径的圆D与平行于y轴的直线相切于点M,线段DM交E于点N,证明:△AMB的面积是△AMN的面积的四倍.。

相关文档
最新文档