13简明材料力学习题答案第十三章

合集下载

第十三章北航 材料力学 全部课件 习题答案

第十三章北航 材料力学 全部课件 习题答案

M ( x2 ) Fx2 M C ,
图 13-9 根据卡氏定理,得
C
1 [ EI

a 0
( Fx1 )(
x1 )dx1 a

a 0
( Fx2 )(1)dx2 ]
5Fa 2 () 6EI
A A
13-10 图示各梁,弯曲刚度 EI 均为常数,试用卡氏定理计算横截面 A 的挠度 与转角 。
3 3
3 3
–F
F 2

3 Fa 3 3 Fa 12
3 Fa 12
3
a

3 6


9
故有
ΔB
求 AB 的运算过程列表如下: i 1 2 3

i 1
3
F Ni FNi li 3Fa (←) EA 12EA
li
a a a
F Ni
2 3a 1
FNi
F
F Ni FNi l i
2 3 F 3


3a 1
–F
3 F 3
3 F 6
3a
F 2

故有
5 3 F 6
AB
F Ni FNi li 5 3F () EA 6 EA i1
3
(b) 解:求Δ B 和 AB 的单位状态分别示如图 13-17b(1)和 b(2) 。
图 13-17b 求 Δ B 的运算过程列表如下:
i 1 2 3 4
转角。
图示刚架,承受载荷 F 作用。设弯曲刚度 EI 为常数,试用卡氏定理计算截面 C 的
题 13-9 图 解:在截面 C 处假想附加一矩为 M C 的力偶(见图 13-9) ,由图可得
M x1 ( F

材料力学课后习题答案13章

材料力学课后习题答案13章

= 7.44 × 10− 2 m = 74.4mm

2 × 0.050 Fd = (300 N ) 1 1 + + 2.22 × 10 − 2
= 1.004 × 10 3 N
M max = 1.004 ×10 3 N (1.00m ) = 1.004 ×10 3 N ⋅ m
设压杆微弯平衡时的挠曲轴方程为
πx w = f sin l
式中,f 为压杆中点的挠度即最大挠度。
题 13-8 图 解:由题设可知,
w = f sin
πx , l
6
w′ =
πf πx cos l l
据此可得
λ (x ) =
q cr 所作之功为
1 x 2 * 1 ( w′) dx = 2 0 2


x 0
(也可通过左侧题号书签直接查找题目与解)
13-2
比为 8:3。
图示圆截面简支梁,直径为 d,承受均布载荷 q 作用,弹性模量 E 与切变模量 G 之
(1)若同时考虑弯矩与剪力的作用,试计算梁的最大挠度与最大转角; (2)当 l/d =10 与 l/d =5 时,试计算剪切变形在总变形(最大挠度与最大转角)中所占百分比。
(2)被冲击面(弹簧顶面)的静位移为
∆st =
最大冲击载荷为
Pl P 500 + = 1.516 × 10 − 5 m + m = 2.52 × 10 − 3 m 3 EI k 200 × 10
2h + + Fd = P 1 1 ∆ st
于是,杆内横截面上最大的正应力为
Fl 3 ∆= 48EI
得刚度系数
0.030 4 48 × 200 × 10 × F 48 EI 12 N = 6.48 × 10 5 N k= = 3 = 3 ∆ m m l 1.00

材料力学习题册答案-第13章 能量法

材料力学习题册答案-第13章 能量法
如果考虑轴向拉压,解法同第2题,略。
5.如下图刚架受一对平衡力F作用,各段的EI相同且等于常量,试用图乘法求两端A、B间的相对转角。
解:应用图乘法,在A、B点加一对单位力偶。它们的内力图如下图。
6.图示刚架,各段的抗弯刚度均为EI。试计算B截面的水平位移和C截面的转角。
解:应用图乘法,在B截面加一水平单位力,在C截面加一单位力偶,它们的内力图如下图。
第十三章能量法
一、选择题
1.一圆轴在图1所示两种受扭情况下,其〔A〕。
A应变能相同,自由端扭转角不同;
B应变能不同,自由端扭转角相同;
C应变能和自由端扭转角均相同;
D应变能和自由端扭转角均不同。
〔图1〕
2.图2所示悬臂梁,当单独作用力F时,截面B的转角为θ,假设先加力偶M,后加F,那么在加F的过程中,力偶M〔C〕。
A不做功;B做正功;
C做负功,其值为 ;D做负功,其值为 。
3.图2所示悬臂梁,加载次序有下述三种方式:第一种为F、M同时按比例施加;第二种为先加F,后加M;第三种为先加M,后加F。在线弹性范围内,它们的变形能应为〔D〕。
A第一种大;B第二种大;
C第三种大;D一样大。
4.图3所示等截面直杆,受一对大小相等,方向相反的力F作用。假设杆的拉压刚度为EA,材料的泊松比为μ,那么由功的互等定理可知,该杆的轴向变形为 ,l为杆件长度。〔提示:在杆的轴向施加另一组拉力F。〕
A 0;B ;
C ;D无法确定。
〔图2〕〔图3〕
二、计算题
1.图示静定桁架,各杆的拉压刚度均为EA相等。试求节点C的水平位移。
解:解法1-功能原理,因为要求的水平位移与P力方向一致,所以可以用这种方法。
由静力学知识可简单地求出各杆的内力,如下表所示。

材料力学(金忠谋)第六版答案第14章

材料力学(金忠谋)第六版答案第14章

材料力学(金忠谋)第六版答案第14章第十三章 动载荷13-1 铸铁杆AB 长m l 8.1=,以等角速度绕垂直轴O -O 旋转如图示。

已知铸铁的比重3/74m kN =γ,许用拉应力[]MPa 40=σ,材料的弹性模量E =160 Gpa 。

试求此杆的极限转速,并计算此杆在转速m r n /100=时的绝对伸长。

解: (1) 极限转速m rn s s l g l g A A Ndl gA dr r qd r Nd x r gAdr ma r qd x r a jx dl n n 1092260137.114175.130799.010*******.92)2(][2][)2(21][)2(21)()()()()(235222222222====⨯⨯⨯⨯⨯=≤≤≤======⎰πωωγσωσωγσσωγωγω(2) 当n =1000m rcm m Eg l r EA r Nd l s n l 0252.01052.28.91016039.072.104107423)2(2)(2172.1046010002602492233220=⨯=⨯⨯⨯⨯⨯⨯⨯===∆=⨯==-⎰ωππω(2)吊索: MPa A P d d 55.2105276.14max=⨯==-σ13-3 轴上装一钢质圆盘,盘上有一圆孔。

若轴与盘以s140=ω的匀角速度旋转,论求轴内由这一圆孔引起的最大正应力。

解:23max max 22225.1212.021*********.01060041411060064003.03.047800640404.0mMN W M mN L P N Na gA ma P s m r a z d d d d n n d n =⨯⨯==⋅=⨯⋅===⨯⨯⨯⨯=⋅⋅⋅===⨯==πσπδγω13-4 飞轮轮缘的平均直径D =1.2m ,材料比重3/72m kN =γ,弹性模量GPa E 200=,轮缘与轮幅装配时的过盈量mmD2.0=∆,若不计轮相的影响,求飞轮允许的最大转速。

简明材料力学习题解答

简明材料力学习题解答

简明材料力学习题解答标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]3-1. 用截面法求图示各杆在截面1-1、2-2、3-3上的扭矩。

并于截面上有矢量表示扭矩,指出扭矩的符号。

作出各杆扭矩图。

解: (a)(1) 用截面法求1-1截面上的扭矩(2) 用截面法求2-2(3) 画扭矩图(b)(1) 用截面法求1-1截面上的扭矩(2) 用截面法求2-2截面上的扭矩(21 x2xT xx(3) 用截面法求3-3截面上的扭矩(4) 画扭矩图. 直径D =50 mm处的切应力,并求横截面上的最大切应力。

解: (1) 圆轴的极惯性矩点的切应力(2) 圆轴的抗扭截面系数截面上的最大切应力注:截面上的切应力成线性分布,所以也可以用比例关系求最大切应力。

. 发电量为1500 kW 的水轮机主轴如图示。

D =550 mm ,d =300 mm ,正常转速n =250r/min 。

材料的许用剪应力[τ]=500 MPa 。

试校核水轮机主轴的强度。

解:(1) 计算外力偶矩(2) 计算扭矩(3) (4) 强度校核T强度足够。

注:强度校核类问题,最后必需给出结论。

3-5. 图示轴AB 的转速n =120 r/min ,从B 轮输入功率P = kW ,功率的一半通过锥形齿轮传送给轴C ,另一半由水平轴H 输出。

已知D 1=60 cm ,D 2=24 cm ,d 1=10 cm ,d 2=8 cm ,d 3=6 cm ,[τ]=20 MPa 。

试对各轴进行强度校核。

解:(1(2(3)计算抗扭截面系数(4)强度校核强度足够。

3-6. 图示阶梯形圆轴直径分别为d 1=40 mm ,d 2=70 mm ,轴上装有三个带轮。

已知由轮3输入的功率为P 3=30 kW ,轮1输出的功率为P 1=13 kW ,轴作匀速转动,转速n =200 r/min ,许用扭转角[θ]=2 o /m 。

试校核轴的强度和刚度。

解:(1) 计算外力偶矩 (2) 计算扭矩T(3) 计算抗扭截面系数(4) 强度校核强度足够。

工程力学材料力学(北京科大东北大学版)第4版13章习题答案

工程力学材料力学(北京科大东北大学版)第4版13章习题答案

第一章参考答案1-1: 解:(a):N 1=0,N 2=N 3=P (b):N 1=N 2=2kN (c):N 1=P,N 2=2P,N 3= -P (d):N 1=-2P,N 2=P (e):N 1= -50N,N 2= -90N (f):N 1=0.896P,N 2=-0.732P 注(轴向拉伸为正,压缩为负)1-2: 解: σ1= 2118504P kN S d π==35.3Mpa σ2=2228504P kNS d π==30.4MPa∴σmax =35.3Mpa 1-3:解:下端螺孔截面:σ1=19020.065*0.045P S ==15.4Mpa上端单螺孔截面:σ2=2PS =8.72MPa上端双螺孔截面:σ3= 3PS =9.15Mpa∴σmax =15.4Mpa 1-4:解: 受力分析得: F 1*sin15=F 2*sin45 F 1*cos15=P+F 2*sin45∴σAB = 11F S =-47.7MPa σBC =22F S =103.5 MPa1-5:解: F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2FS =38.1MPa1-6:解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm (2) ∴AB l ∆=-0.02mm 1-7:解:AC AC AC LNL EA EA σε===1.59*104, CB CB CB LNL EA EA σε===6.36*1041-8:解: 1-9:解: 1-10:解:[][]max 59.5MPa σσ=<1-11:解:(1)当45oα=,[]11.2σσ=>强度不够(2)当60oα=,[]9.17σσ=< 强度够1-12:解:1-13:解:[]max 200213MPa MPa σ=< 1-14:解: 1.78, 1.26d cm d cm==拉杆链环1-15 解:22BC F Q ==70.7 kN查表得: 45*45*3 1-16解:(1)[]2401601.5ssn σσ===MPa(2)1-17 解:(1)'61544014.521542390F n F ===≈1-18 解:P=119kN 1-19 解:所以最大载荷 84kN 1-20 解: P=33.3 kN 1-21 解: 1-22 解: 1-23 解:第二章习题2-1 一螺栓连接如图所示,已知P=200 kN , =2 cm ,螺栓材料的许用切应力[τ]=80Mpa ,试求螺栓的直径。

大学物理13章习题详细答案

大学物理13章习题详细答案

习题1313-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。

设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。

(2)板B 接地时,两板间的电势差。

[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε== B A-Q/2Q/2Q/2Q/2A B -QQ13-4 两块靠近的平行金属板间原为真空。

使两板分别带上面电荷密度为0的等量异号电荷,这时两板间电压为U 0=300V 。

保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为r =5的电介质,试求(1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度; (2) 金属板间电压变为多少电介质上下表面束缚电荷面密度多大13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。

圆柱面B 上带电荷,A 和C 都接地。

求B 的内表面上线电荷密度1和外表面上线电荷密度2之比值1/2。

[解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-=rE 02II 2πελ= AB 0101I BA ln 2d 2d ABA BR Rr r U R R R R πελπελ=-==⎰⎰r E IIIB C 0202II BC ln 2d 2d CB CBR R r r U R R R R πελπελ===⎰⎰r EBC 02A B 01ln 2ln 2R R R R πελπελ= 因此 AB BC 21ln :ln:R R R R =λλ13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为。

揭示材料力学的奥秘知到章节答案智慧树2023年山东农业工程学院

揭示材料力学的奥秘知到章节答案智慧树2023年山东农业工程学院

揭示材料力学的奥秘知到章节测试答案智慧树2023年最新山东农业工程学院第一章测试1.从材料力学的角度来讲,为了使构件能正常的工作,必须使构件具有足够的()。

参考答案:其余选项都是2.材料力学研究的内力是构件各部分的相互作用力。

()参考答案:错3.因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

()参考答案:错4.材料力学只限于研究弹性范围内的小变形情况。

()参考答案:对5.角应变是变形后,构件中任意两根微线段夹角角度的变化量。

()参考答案:错第二章测试1.在下列说法中,正确的是()。

参考答案:内力随外力的增大而增大2.用截面法求内力时,是对()建立平衡方程而求解的。

参考答案:左段或右段3.关于轴向拉压杆件轴力的说法中,错误的是()。

参考答案:轴力是沿杆轴作用的外力4.计算M-M面上的轴力。

()参考答案:-P5.梁在某一段内作用有向下的分布载荷时,在该段内它的弯矩图为( )参考答案:上凸曲线第三章测试1.拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。

()参考答案:错2.虎克定律适用于弹性变形范围内。

()参考答案:错3.材料的延伸率与试件的尺寸有关。

()参考答案:对4.应用拉压正应力公式的条件是()。

参考答案:外力的合力沿杆轴线;5.一圆截面直杆,两端受的拉力相同,若将长度增大一倍其他条件不变,则下列结论错误的是( )。

参考答案:伸长量不变第四章测试1.挤压发生在局部表面,是连接件在接触面上的相互压紧;而压缩是发生在杆件的内部。

()参考答案:对2.剪断钢板时,所用外力使钢板产生的应力大于材料的屈服极限。

()参考答案:错3.在平板与螺栓之间加一垫片,可以提高()的强度。

参考答案:平板挤压4.在冲床上将钢板冲出直径为d的圆孔,冲力F与()。

参考答案:与直径d成正比5.对于圆柱形连接件的挤压强度问题,应该直接用受挤压的半圆柱面来计算挤压应力。

()参考答案:错第五章测试1.圆杆受扭时,杆内各点均处于纯剪切状态。

北京航空航天大学材料力学第十三章

北京航空航天大学材料力学第十三章

D
求节点H的垂直位移:
将单位载荷加在基本系统上
M ( x1 ) 0 M ( x2 ) 0
M ( x3 ) x3
D
H
f H

1 EI
a 0
(N

P )x3 ( x3 )dx3

4 Pa 3 27 EI
1
Page24
MECHANICS OF MATERIALS
思考: 图示桁架,各杆EA相同,求A点的铅垂位移
2 2
1 1
Page20
a
a
4
2
a 57
8 3
1
6
MECHANICS OF MATERIALS
m / m

8 i 1
Ni Nili EA
P
a [(2 EA
2)N7 (2
2)P] 0
N7
2P 2
思考:若求加载点的水平位移,如何选择单位载荷状态
4
2
5
8 3
1
1 4
Page8
平面曲杆:
MECHANICS OF MATERIALS
三度内力静不定 两度内力静不定 例:判断内力静不定度
内力静定
5度
5度
4度
Page9
混合(一般)静不定
MECHANICS OF MATERIALS
2度
6度
组合梁或梁杆结构的静不定度分析 2度
1度
Page10
MECHANICS OF MATERIALS
M
l
A
B
l
求解A 利用单位载荷法求解
C
1 A

1 EI

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

完整版材料⼒学性能课后习题答案整理材料⼒学性能课后习题答案第⼀章单向静拉伸⼒学性能1、解释下列名词。

1弹性⽐功:⾦属材料吸收弹性变形功的能⼒,⼀般⽤⾦属开始塑性变形前单位体积吸收的最⼤弹性变形功表⽰。

2.滞弹性:⾦属材料在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象称为滞弹性,也就是应变落后于应⼒的现象。

3.循环韧性:⾦属材料在交变载荷下吸收不可逆变形功的能⼒称为循环韧性。

4.包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载,规定残余伸长应⼒降低的现象。

5.解理刻⾯:这种⼤致以晶粒⼤⼩为单位的解理⾯称为解理刻⾯。

6.塑性:⾦属材料断裂前发⽣不可逆永久(塑性)变形的能⼒。

脆性:指⾦属材料受⼒时没有发⽣塑性变形⽽直接断裂的能⼒韧性:指⾦属材料断裂前吸收塑性变形功和断裂功的能⼒。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成⼀个⾼度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动⽽相互汇合,同号台阶相互汇合长⼤,当汇合台阶⾼度⾜够⼤时,便成为河流花样。

是解理台阶的⼀种标志。

9.解理⾯:是⾦属材料在⼀定条件下,当外加正应⼒达到⼀定数值后,以极快速率沿⼀定晶体学平⾯产⽣的穿晶断裂,因与⼤理⽯断裂类似,故称此种晶体学平⾯为解理⾯。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有⼀定韧性的⾦属材料当低于某⼀温度点时,冲击吸收功明显下降,断裂⽅式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列⼒学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应⼒ 2.0σ屈服强度 gt δ⾦属材料拉伸时最⼤应⼒下的总伸长率 n 应变硬化指数P153、⾦属的弹性模量主要取决于什么因素?为什么说它是⼀个对组织不敏感的⼒学性能指标?答:主要决定于原⼦本性和晶格类型。

第13章 课后习题答案 .doc

第13章 课后习题答案 .doc

第13章课后习题答案13-1解(1 )( 2 )==2879.13mm( 3 )不考虑带的弹性滑动时,( 4 )滑动率时,13-2解(1 )( 2 )=(3 )= =13-3解由图可知=图13.6 题13-3 解图13-4解(1 )=( 2 )由教材表13-2 得=1400mm( 3 )13-5解由教材表13-6 得由教材表13-4 得:△=0.17kW, 由教材表13-3 得:=1.92 kW, 由教材表13-2 得:,由教材表13-5 得:取z=313-6解由教材表13-6 得由图13-15 得选用 A 型带由教材表13-3 得选初选取==1979.03mm由教材表13-2 得=2000mm由教材表13-3 得:=1.92 kW,由教材表13-4 得:△=0.17kW 由教材表13-2 得:,由教材表13-5 得:取z=413-7解选用A 型带时,由教材表13-7 得,依据例13-2 可知:,=2240mm , a =757mm ,i=2.3 ,。

由教材表13-3 得=2.28 kW,由教材表13-4 得:△=0.17kW,由教材表13-2 得:取z =5由此可见,选用截面小的 A 型带较截面大的 B 型带,单根带的承载能力减小,所需带的根数增多。

13-8 解略。

13-9解由教材表13-9 得p =15.875mm ,滚子外径15.875(0.54+cot =113.90mm15.875(0.54+cot =276.08mm=493.43mm13-10解(1)由图13-33得查教材表13-11,得取由式(13-18)得P ≤( 2 )由图13-33 得可能出现链板疲劳破坏( 3 )由图13-34 查得可用滴油润滑。

13-11解( 1 )链轮齿数假定,由教材表13-10,取,,选实际传动比链轮节数初选中心距=取由教材表13-13查得取估计此链传动工作位于图13-33所示曲线的左侧,由教材表13-11得采用单排链,≤由教材图13-33得当=960r/min时,08A链条能传递的功率满足要求,节距p =12.7mm。

第十三章-压杆稳定

第十三章-压杆稳定
2.请读者思考:如果两根槽钢只在两端连接,这时上述稳定计算和强度计算会不会发生变化?
例题13.8图13-8所示正方形桁架结构,由五根圆截面钢杆组成,连接处均为铰链,各杆直径均为d=40 mm,a=1 m。材料的λp=110,λs=60,E=200 GPa,经验公式为 ,nst=1.8。试求结构的许可载荷。
第十三章压杆稳定
1基本概念及知识要点
1.1基本概念
理想受压直杆、理想受压直杆稳定性、屈曲、临界压力。
1.2临界压力
细长压杆(大柔度杆)用欧拉公式计算临界压力(或应力);中柔度杆用经验公式计算临界压力(或应力);小柔度杆发生强度破坏。
1.3稳定计算
为了保证受压构件不发生稳定失效,需要建立如下稳定条件,进行稳定计算:
压杆的柔度
iy=iz=i
由于
所以,λ>λP压杆为大柔度杆
用欧拉公式计算临界压力
例题13.4所示工字钢直杆在温度t1=20℃时安装,此时杆不受力,已知杆长l=6m,材料的λP=132,E= 200GPa,线膨胀系数α=12.5×10-6/℃。试问当温度升高到多少度时杆将失稳。
[解]
随着温度的升高,直杆在杆端受到压力FA=FB,当两端压力达到压杆的临界压力即:FA=FB=Fcr时,压杆将失稳。
由压杆稳定条件
则许用外载荷
FP≤139.2kN
3.计算由AC杆稳定条件确定的许用外载荷
AB杆的柔度
用欧拉公式计算压杆的临界应力:
由压杆稳定条件
则许用外载荷
FP≤240.6kN
4.确定整个结构的许用载荷
由稳定计算结果可知,结构的许用载荷为
[FP]=139.2kN
解题指导:
对于这类题目,所确定的载荷要确保整个结构所有受压杆件匀不失稳。

大学物理第十三章课后习题答案

大学物理第十三章课后习题答案

第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg-1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500DA BD ACB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V B A (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A ==(2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量.解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率.解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()BC AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122ln V V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=.解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln 23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。

第十三章钢筋混凝土设计原理课后习题答案

第十三章钢筋混凝土设计原理课后习题答案

第⼗三章钢筋混凝⼟设计原理课后习题答案第⼗三章1 什么是双向梁柱抗侧⼒体系?框架结构既要承受竖向重⼒荷载,⼜要承受⽔平风荷载,在地震区还要承受地震作⽤。

竖向荷载的⽅向是单⼀的,但⽔平荷载的⽅向却是随机的。

为了提⾼框架结构的侧向刚度,特别是要提⾼框架结构的抗扭刚度,以满⾜《规范》所规定的位移⾓限值、位移⽐限值和周期⽐限值。

框架结构师由梁板柱组成的空间结构,如果结构⼀个⽅向的抗侧⼒较弱时,会率先开裂和破坏,将导致结构丧失空间协调⼯作的能⼒,从⽽导致结构的严重破坏,甚⾄倒塌。

2柱⽹布置的基本要求是什么?(1),柱⽹布置应满⾜⽣产⼯艺的要求(2),柱⽹布置应满⾜建筑平⾯布置的要求(3),柱⽹布置要使结构受⼒合理(4),柱⽹布置应⽅便施⼯3承重框架有哪些布置⽅案?(1),横向框架承重⽅案(2),纵向框架承重⽅案(3),纵横向框架混合承重⽅案4如何确定框架结构的计算单元?其计算简图是什么?基本假定有哪些?为⽅便常忽略结构纵向和横向之间的空间联系,忽略各构件的抗扭作⽤,将横向框架和纵向框架分别按平⾯框架进⾏分析计算。

通常,横向框架的间距,荷载和间距都相同,因此取出有代表性的⼀品中间横向框架作为计算单元。

计算简图见书182页。

基本假定:1,没有⽔平位移。

2,某楼层的竖向荷载只对本层框架梁及与其相连的楼层产⽣内⼒。

5.竖向荷载如何简化到框架梁上⾯的?什么是等效荷载?如何等效?竖向荷载可以通过分层法简化到框架梁上假定(1)没有⽔平位移(2)某楼层的竖向荷载只对本层框架梁及与其相连的楼层柱产⽣内⼒。

分层法是利⽤叠加原理多层框架在多层荷载同时作⽤下的内⼒,可以看成是各层竖向荷载单独作⽤的内⼒的叠加。

等效荷载:等效荷载是指为了简化问题,⽤新的荷载代替原来复杂的荷载,但要保证两种荷载给构件带来的效应是相同的。

6.风荷载是如何简化到框架梁上的?风荷载对框架梁的作⽤⼀般都可以简化为作⽤于框架节点上的⽔平⼒采⽤反弯点法或者D值法将风荷载简化到框架梁上,⼆者的简化条件不同,D值法是反弯点法的改进,先求出个柱的杆端弯矩,然后根据节点平衡条件求得梁端弯矩,进⽽求出梁端剪⼒。

简明材料力学第二版课后答案

简明材料力学第二版课后答案

简明材料力学第二版课后答案1. 第一章。

1.1 选择题。

1. A。

2. B。

3. C。

4. D。

5. A。

1.2 填空题。

1. 应力。

2. 变形。

3. 弹性模量。

4. 泊松比。

5. 线弹性。

1.3 简答题。

1. 什么是应力?应力是单位面积上的内力。

2. 什么是应变?应变是材料单位长度上的变形量。

3. 弹性模量的意义是什么?弹性模量是材料在弹性阶段的应力和应变之比,代表了材料的刚度。

4. 什么是泊松比?泊松比是材料在拉伸时横向收缩的比例。

5. 什么是线弹性?线弹性是指材料在应力小于屈服强度时,应力和应变成正比。

2. 第二章。

2.1 选择题。

1. C。

2. A。

3. D。

4. B。

5. C。

2.2 填空题。

1. 弹性极限。

2. 屈服强度。

3. 断裂强度。

4. 韧性。

5. 脆性。

2.3 简答题。

1. 什么是弹性极限?弹性极限是材料在拉伸时,超过该极限会发生塑性变形。

2. 什么是屈服强度?屈服强度是材料在拉伸时开始发生塑性变形的应力值。

3. 断裂强度和韧性有何区别?断裂强度是材料在拉伸时发生断裂的最大应力值,而韧性是材料吸收能量的能力。

4. 什么是脆性?脆性是指材料在受力时发生突然断裂的性质。

3. 第三章。

3.1 计算题。

1. 根据公式σ=F/A,计算出应力值。

2. 利用杨氏模量公式计算材料的弹性模量。

3. 根据泊松比公式计算材料的泊松比值。

3.2 简答题。

1. 什么是拉伸?拉伸是指材料在受力时发生长度增加的现象。

2. 什么是压缩?压缩是指材料在受力时发生长度减小的现象。

3. 什么是剪切?剪切是指材料在受力时发生形状变化但体积不变的现象。

4. 第四章。

4.1 计算题。

1. 根据应变-位移曲线计算出材料的弹性模量。

2. 根据拉伸试验数据计算出材料的屈服强度。

3. 利用断裂强度公式计算出材料的断裂强度值。

4.2 简答题。

1. 什么是应力-应变曲线?应力-应变曲线是材料在受力时应力和应变之间的关系曲线。

2. 什么是屈服点?屈服点是应力-应变曲线上的一个特殊点,表示材料开始发生塑性变形的位置。

简明材料力学第二版课后答案

简明材料力学第二版课后答案

简明材料力学第二版课后答案1. 弹性力学基础。

1.1 什么是材料力学?材料力学是研究材料在外力作用下的力学性能和变形规律的学科。

它是力学的一个重要分支,主要研究材料的弹性、塑性、断裂等性能。

材料力学的研究对象包括金属材料、非金属材料、复合材料等。

1.2 弹性力学的基本概念。

弹性力学是研究材料在外力作用下的弹性变形规律的学科。

弹性变形是指材料在外力作用下发生的可逆变形。

弹性力学的基本概念包括应力、应变、弹性模量等。

2. 材料的应力应变关系。

2.1 应力和应变的定义。

应力是单位面积上的力,通常用σ表示,单位为Pa。

应变是材料单位长度上的变形量,通常用ε表示,是一个无量纲的物理量。

2.2 线弹性材料的应力应变关系。

对于线弹性材料,应力与应变之间的关系可以用胡克定律来描述,σ= Eε,其中E为弹性模量,是材料的基本力学性能之一。

3. 弹性力学的应用。

3.1 弹性力学在工程中的应用。

弹性力学理论在工程领域有着广泛的应用,例如在建筑设计、材料选择、结构分析等方面都需要考虑材料的弹性性能。

通过弹性力学理论,可以预测材料在外力作用下的变形情况,为工程设计提供依据。

3.2 弹性力学在材料研究中的应用。

在材料研究领域,弹性力学理论也扮演着重要的角色。

通过对材料的弹性性能进行研究,可以为材料的设计、改进提供理论支持,为新材料的开发提供指导。

4. 弹性力学的发展趋势。

4.1 多尺度弹性力学。

随着材料科学的发展,人们对材料力学的研究也越来越深入。

多尺度弹性力学是近年来的研究热点,它将宏观弹性力学与微观结构相结合,对材料的力学性能进行更加全面的研究。

4.2 弹性力学与计算机模拟的结合。

计算机模拟技术的发展为弹性力学的研究提供了新的途径。

通过建立材料的数值模型,可以对材料的力学性能进行更加精确的预测和分析,为材料设计和工程应用提供更可靠的依据。

总结:简明材料力学第二版课后答案,通过对弹性力学基础、材料的应力应变关系、弹性力学的应用以及弹性力学的发展趋势的讨论,使读者对材料力学有了更加全面的了解。

13简明材料力学习题_答案_第十三章

13简明材料力学习题_答案_第十三章

13.1. 两根圆截面杆材料相同,尺寸如图所示,一根为等截面杆,一根为变截面杆,试比较两杆的变形能。

解:方法1:两杆的变形()()()()()222213/8/447 2/442/4a b P L P L PL PL PLl l EA E d E d E d E d ππππ∆==∆=⨯+= 外力的功22()()()()221217 228a a b b P L P LW P l W P l E d E d ππ=∆==∆= 功能原理22()()()()2227 8a a b b P L P L U W U W E d E d ππ==== 方法2:两杆的内力()() a b N P N P ==变形能()()()222()22222()222222/43/8/4722/4822/4a b N L P L P LU EA E d E d P L P L P L U E d E d E d πππππ====⨯+=13.2. 图示杵架各杆的材料相同截面面积相等,在P 力作用下,试求桁架的变形能。

解:(1) 求约束力/8/8(a) (b)上海理工大学 力学教研室10 0 0 20 20 0 2AA AB B B A A X P X X PP MR l P l R P Y R Y Y =-===⨯-⨯===-==∑∑∑ (2) 分析铰B2BD B BC B P N R N ====(3) 分析铰D02DA DB BD DC PN N N N ==== (4) 分析铰CCA CB BC N N N ===(5) 桁架的变形能())22222222212211220.95722222i i BC BC AC AC BD BD DA DA N l U N l N l N l N l EA EAP P l P l l EA EA EA ==+++⎡⎤⎛⎫⎛⎫⎫⎢⎥=⨯⨯+⨯⨯== ⎪ ⎪⎪⎢⎥⎝⎭⎭⎝⎭⎣⎦∑ 13.3. 计算图示各杆的变形能。

简明材料力学习题解答

简明材料力学习题解答

3-1. 用截面法求图示各杆在截面1-1、2-2、3-3上的扭矩。

并于截面上有矢量表示扭矩,指出扭矩的符号。

作出各杆扭矩图。

解: (a)(1) 用截面法求1-1截面上的扭矩 110 202 .xmT T kN m=-+=∴=∑(2) 用截面法求2-2截面上的扭矩220 202 .xmT T kN m=--=∴=-∑(3) 画扭矩图(b)(1) 用截面法求1-1截面上的扭矩110 53204 .xmT T kN m=--+-=∴=-∑(2) 用截面法求2-2截面上的扭矩(a)xxxxx220 3201 .xmT T kN m=-+-=∴=∑(3) 用截面法求3-3截面上的扭矩330 202 .xmT T kN m=--=∴=-∑(4) 画扭矩图3.3. 直径D =50 mm 的圆轴受扭矩T =2.15 kN.m 的作用。

试求距轴心10 mm 处的切应力,并求横截面上的最大切应力。

解: (1) 圆轴的极惯性矩4474320.05 6.1410 3232P D I m π-⨯===⨯点的切应力372.15100.0135.0 6.1410p T MPa I ρτ-⨯⨯===⨯(2) 圆轴的抗扭截面系数7536.1410 2.45610 /20.05/2pt I W m D --⨯===⨯截面上的最大切应力3max52.151087.5 2.45610t T MPa W τ-⨯===⨯ 注:截面上的切应力成线性分布,所以也可以用比例关系求最大切应力。

max /20.05/235.087.5 0.01D MPa ττρ=⨯=⨯= 3.4. 发电量为1500 kW 的水轮机主轴如图示。

D =550 mm ,d =300 mm ,正常转速n =250 r/min 。

材料的许用剪应力[τ]=500 MPa 。

试校核水轮机主轴的强度。

x解:(1) 计算外力偶矩15009549954957.29 .250P m kN m n ==⨯= (2) 计算扭矩57.29 .T m kN m ==(3) 计算抗扭截面系数4433()29.810 16t W D d m Dπ-=-=⨯(4) 强度校核3357.291019.2[]29.810t T MPa W τσ-⨯===⨯p 强度足够。

简明材料力学习题答案

简明材料力学习题答案

弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。

题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。

试求梁内最大拉应力与最大压应力。

已知I z =10170cm 4,h 1=9.65cm ,h 2=15.35cm 。

工程力学第13章答案

工程力学第13章答案

工程力学(天津大学)第13章答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题 解 答13?1 木制构件中的单元体应力状态如图所示,其中所示的角度为木纹方向与铅垂线的夹角。

试求:(l )平行于木纹方向的切应力; (2)垂直于木纹方向的正应力。

解: 由图a 可知MPa0MPa,6.1,MPa 2.0=-=-=x y x τσσ(1)平行于木纹方向的切应力:则由公式可直接得到该斜截面上的应力MPa1.0)]15(2sin[26.12MPa 97.1)]15(2cos[26.1226.121515=-⨯+-=-=-⨯+-+--=--τσ (2)垂直于木纹方向的正应力MPa1.0)752sin(26.12MPa 527.1]752cos[26.1226.127575-=⨯+-=-=⨯+-+--=τσ 由图b 可知MPa 25.1,0,0-===x y x τσσ(1)平行于木纹方向的切应力:则由公式可直接得到该斜截面上的应力MPa08.1)]15(2cos[25.12cos MPa625.0)15(2sin 25.12sin 1515-=-⨯⨯-==-=-⨯=-=--αττατσx x(2)垂直于木纹方向的正应力MPa08.1)752cos(25.12cos MPa625.0)752sin(25.12sin 7575=⨯⨯-===⨯⨯=-=αττατσx x13?2 已知应力状态如图一所示(应力单位为MPa ),试用解析法计算图中指定截面的正应力与切应力解:(a )已知 MPa 20MPa,10,0MPa 3-===x y x τσσ则由公式可直接得到该斜截面上的应力习题13?1图(a)(b)MPa10)42cos(20)42sin(210302cos 2sin 2MPa40)42sin(20)42cos(21030210302sin 2cos 22=⨯⨯-⨯⨯-=+-==⨯⨯+⨯⨯-++=--++=ππατασστππατασσσσσααx y x x yx yx(b )已知 MPa20MPa,10,0MPa 3===x y x τσσ则:MPa21.21)5.222cos(20)5.222sin(210302cos 2sin 2MPa93.12)5.222sin(20)5.222cos(21030210302sin 2cos 22=⨯⨯+⨯⨯-=+-==⨯⨯-⨯⨯-++=--++=ατασστατασσσσσααx y x x yx y x (c )已知60MPa15MPa,20,MPa 10-====ατσσx y x则:60(2cos[15)]60(2sin[220102cos 2sin 2MPa49.30)]60(2sin[15)]60(2cos[22010220102sin 2cos 22-⨯⨯+-⨯⨯-=+-==-⨯⨯--⨯⨯-++=--++=ατασστατασσσσσααx yx x yx yx 13?3 已知应力状态如图所示(应力单位为MPa ),试用图解法(应力圆)计算图中指定截面的正应力与切应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.1.两根圆截面杆材料相同,尺寸如图所示,一根为等截面杆,一根为变截面杆,试比较两杆的变形能。
解:方法1:
两杆的变形
外力的功
功能原理
方法2:
两杆的内力
变形能
13.2.图示杵架各杆的材料相同截面面积相等,在P力作用下,试求桁架的变形能。
解:(1)求约束力
(2)分析铰B
(3)分析铰D
(4)分析铰C
(5)桁架的变形能
解:(1)约束反力
(2)弯矩方程
(3)在C处作用单位集中力
截面C的挠度
(4)在B处作用单位集中力偶
截面B的转角
顺时针转向
13.9.试求图示各梁截面B的挠度和转角。EI=常量
解:(1)在B处作用虚加力Pf和Mf,并列出弯矩方程
(2)上式分别对Pf和Mf求偏导数
(3)用卡氏定理求挠度和转角
(4)令上两式中的Pf和Mf为零
解:(1)写出曲杆的弯矩方程
(2)在B处垂直方向作用单位集中力
B的垂直位移
(3)在B处水平方向作用单位集中力
B的水平位移
13.28.图示折轴杆的横截面为圆形,在力偶矩m作用下,试求自由端的线位移和角位移。
解:(1)求水平杆的扭矩方程和垂直杆的弯矩方程
(2)在自由端分别单独作用一单位力和单位力偶,并求出相应的扭矩方程和弯矩方程
解:(1)由于结构和载荷对称,取刚架一半分析
(2)弯矩方程
(3)应用卡氏定理
(4)A、B间的相对位移
A、B两点相互靠近。
13.16.图示桁架各杆的材料相,截面面积相等,在载荷P作用下,试求节点B与D间的相对位移。
解:(1)在B处作用虚加力Pf,并求出约束反力
(2)求各杆的轴力
(3)上式分别对Pf求偏导数
(2)弯矩方程和扭矩方程
(3)变形能
(4)使用功能原理求解本题
13.6.试用互等定理求跨度中点C的挠度,设EI=常量。
解:(a)
(1)将P力移到C截面处,如下图
(2)由位移互等定理
方向向上
(b)
(1)将P力移到C截面处,如下图
(2)由位移互等定理
方向向下
13.8.车床主轴可简化成EI=常量的当量轴,如图所示,试求在载荷P作用下,截面C的挠度和前轴承B处的截面转角。
(3)用卡氏定理求C点垂直位移
方向向下。
13.23.平面刚架如图所示。刚架各部分截面相同,试求截面A的转角。
解:(1)求各杆的弯矩方程
(2)在梁上A处单独作用一单位力偶源自并列出弯矩方程(3)用莫尔定理求A截面的转角
转角的方向与单位力偶方向相同。
13.25.等截面曲杆BC的轴线为四分之三的圆周,如图所示。若AB可视为刚性杆,在P作用下,试求截面B的水平位移及垂直位移。
(4)用卡氏定理求B点沿BD方向的位移
(5)令上式中的Pf为零
方向为B向D靠近
13.20.图示简易吊车的撑杆AC长为2m,截面的惯性矩I=8.53×106mm4。拉杆BD的A=600mm2。P=2.83kN。如撑杆只考虑弯曲影响,试求C点的垂直位移,设E=200GPa。
解:(1)求出约束反力
(2)求BD杆的轴力和AC杆的弯矩
(3)用莫尔定理求C端的垂直位移
自由端的垂直位移单位力方向一致。
13.3.平均半径为R的细圆环,截面为直径为d的圆形。两个力P垂直于圆环轴线所在的平面(见图)。试求两个力P作用点的相对位移。
解:(1)求曲杆的扭矩方程和弯矩方程
(2)上两式分别对P求偏导数
(3)用卡氏定理求垂直位移
13.23.图示杆系各杆的材料相同,截面面积相等。试用力法求各杆的内力。
解:(1)属一次静不定问题,取C为多余约束,约束反力为X1
列出用力法求解的基本方程
(2)求1P
由上图知
分别对D点受力分析
由莫尔定理
(3)求δ11
(4)求出X1
(5)求杆的内力
2杆受拉,3杆受压。
挠度和转角的方向与虚加力的方向一致
13.9.图示刚架各杆的的EI相等。试求A的位移和截面C的转角。
解:(a)应用莫尔定理
(1)刚架各段的弯矩方程
(2)在A处垂直方向作用单位集中力
A的垂直位移
(3)在A处水平方向作用单位集中力
A的水平位移
(4) 在C处作用单位集中力偶
C截面的转角
顺时针转向
13.18.图示刚架各部分的EI相等,在一对P力作用下,求A、B两点间的相对位移。
13.3.计算图示各杆的变形能。
解:(b)
方法1:
(1)查表得C截面的转角
(2)由功能原理
方法2
(1)列出梁的弯矩方程
(2)求弯曲变形能
(c)
(1)列出梁的弯矩方程
(2)求弯曲变形能
13.4.传动轴受力情况如图所示,轴直径为40 mm,E=210 GPa,G=80 GPa。试计算轴的变形能。
解:(1)传动轴受力
(3)用莫尔定理求自由端的位移
自由端的线位移和角位移和方向与单位力和单位力偶方向一致。
13.26.图示曲拐的自由端C上作用集中力P。曲拐两段材料的相同,且均为同一直径的圆截面杆,试求C点的垂直位移。
解:(1)求BC杆的弯矩方程及AB杆的扭矩方程和弯矩方程
(2)在C端单独作用一单位力,并求出相应的扭矩方程和弯矩方程
相关文档
最新文档