九年级上册数学商品利润最大问题知识点讲解与经典例题答案与解析(人教版)

合集下载

人教版数学九年级上册:22.3 第2课时 最大利润问题 (含答案)

人教版数学九年级上册:22.3 第2课时 最大利润问题  (含答案)

第2课时最大利润问题1.将进货价为每件70元的某种商品按每件100元出售时每天能卖出20件,若这种商品每件的售价在一定范围内每降低1元,其日销售量就增加1件,为了获得最大利润,决定降价x 元,则单件的利润为________元,每日的销售量为________件,则每日的利润y(元)关于x(元)的函数关系式是y=________________,所以每件降价________元时,每日获得的利润最大,为________元.2.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150 B.160 C.170 D.1803.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y关于x的函数解析式是()A.y=x2+a B.y=a(x-1)2C.y=a(1-x)2D.y=a(1+x)24.[2019·丹东] 某服装超市购进单价为30元/件的童装若干件,物价部门规定其销售单价不低于30元/件,不高于60元/件.销售一段时间后发现:当销售单价为60元/件时,平均每月的销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元/件,平均月销售量为y件.(1)求出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当销售单价为多少时,销售这种童装每月可获利1800元?(3)当销售单价为多少时,销售这种童装每月获得的利润最大?最大利润是多少?5.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.经市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元/个)有如下关系:y=-x+60(30≤x≤60,且x 为整数).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包的销售单价定为多少元/个时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不能高于42元/个,该商店销售这种双肩包每天要获得200元的销售利润,那么销售单价应定为多少元/个?6. 某商店销售某种商品所获得的利润y(元)与所卖件数x(件)之间满足关系式y=-x2+1000x -200000,则当0<x≤450时的最大利润为()A.2500元B.47500元C.50000元D.250000元7.某种工艺品的进价为每件100元,当标价135元出售时,每天可售出100件.根据销售统计,该工艺品每件的价格每降低1元,每天可多售出4件.要使每天获得的利润最大,则每件需降价()A.5元B.10元C.15元D.20元8.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量y(件)与销售单价x(元/件)之间的关系符合一次函数y=-x+140.(1)直接写出x的取值范围:__________;(2)若销售该服装获得的利润为W元,试写出利润W与销售单价x之间的关系式:________________________________________________________________________.9.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元,试销期间发现每天的销售量y(袋)与销售单价x(元/袋)之间满足一次函数关系,部分数据如下表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果想每天获得160元的利润,那么销售单价应定为多少元/袋?(3)设每天的利润为w元,当销售单价定为多少元/袋时,每天的利润最大?最大利润是多少元?10.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y(件)与销售单价x(元/件)之间存在一次函数关系,如图22-3-9所示.(1)求y与x之间的函数解析式(不要求写出自变量的取值范围);(2)如果规定每天漆器笔筒的销售量不低于240件,那么当销售单价为多少时,每天获取的利润最大,最大利润是多少?图22-3-911.十一黄金周期间,由于7座以下小型车辆免收高速公路通行费,使汽车租赁市场需求旺盛.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当租出的车辆每减少1辆,每辆车的日租金将增加50元,另外公司平均每日的各项支出共4800元.设公司每日租出x(0≤x≤20)辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x(x≤20)辆车时,每辆车的日租金增加__________元,此时每辆车的日租金为__________元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司的日收益最多?最多是多少元?答案1.(30-x) (20+x) -x 2+10x +600 5 6252.A [解析] 设利润为w 元,则w =(x -100)(200-x)=-x 2+300x -20000=-(x -150)2+2500(100≤x≤200), 故当x =150时,w 有最大值.3.D4.解:(1)由题意得y =80+20×60-x 10, ∴y 与x 之间的函数关系式为y =-2x +200(30≤x≤60).(2)由题意得(x -30)(-2x +200)-450=1800,解得x 1=55,x 2=75(不符合题意,舍去).答:当销售单价为55元/件时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w 元.由题意得w =(x -30)(-2x +200)-450=-2(x -65)2+2000.∵-2<0,∴当x≤65时,w 随x 的增大而增大.∵30≤x≤60,∴当x =60时,w 取最大值,w 最大=-2(60-65)2+2000=1950.答:当销售单价为60元/件时,销售这种童装每月获得的利润最大,最大利润是1950元.5.解:(1)w =()x -30·y =(x -30)·(-x +60)=-x 2+90x -1800(30≤x≤60,且x 为整数).(2)w =-x 2+90x -1800=-()x -452+225.∵-1<0,∴当x =45时,w 有最大值,最大值为225.答:这种双肩包的销售单价定为45元/个时,每天的销售利润最大,最大利润是225元.(3)当w =200时,可得方程-()x -452+225=200,解得x 1=40,x 2=50. ∵50>42,∴x =50不符合题意,舍去.答:销售单价应定为40元/个.6.B [解析] 因为抛物线的对称轴为直线x =500,在对称轴左侧,y 随x 的增大而增大,因此在0<x≤450的范围内,当x =450时,函数有最大值为47500.7.A8.(1)60≤x≤90 (2)W =-x 2+200x -8400[解析] (1)∵规定试销期间销售单价不低于成本单价,且获利不得高于50%,∴60≤x≤90.(2)∵单件利润为(x -60)元,销售量为y =-x +140,∴销售该服装获得的利润W =(x -60)(-x +140)=-x 2+200x -8400.9.解:(1)设y =kx +b ,将x =3.5,y =280;x =5.5,y =120代入,得⎩⎪⎨⎪⎧3.5k +b =280,5.5k +b =120,解得⎩⎪⎨⎪⎧k =-80,b =560.则y 与x 之间的函数关系式为y =-80x +560(3.5≤x≤5.5). (2)由题意,得(x -3)(-80x +560)-80=160,整理,得x 2-10x +24=0,解得x 1=4,x 2=6.∵3.5≤x≤5.5,∴x =4.答:如果想每天获得160元的利润,那么销售单价应定为4元/袋.(3)由题意,得w =(x -3)(-80x +560)-80=-80x 2+800x -1760=-80(x -5)2+240.∵3.5≤x≤5.5,∴当x =5时,w 有最大值为240.故当销售单价定为5元/袋时,每天的利润最大,最大利润是240元.10.解:(1)设y 与x 之间的函数解析式为y =kx +b.由题意得⎩⎪⎨⎪⎧40k +b =300,55k +b =150, 解得⎩⎪⎨⎪⎧k =-10,b =700. 故y 与x 之间的函数解析式为y =-10x +700.(2)由题意,得-10x +700≥240,解得x≤46.设每天获得的利润为w 元,则w =(x -30)·y =(x -30)(-10x +700)=-10x 2+1000x -21000=-10(x-50)2+4000.∵-10<0,∴当x<50时,w随x的增大而增大.∴当x=46时,w最大=-10×(46-50)2+4000=3840.答:当销售单价为46元/件时,每天获取的利润最大,最大利润是3840元.11.解:(1)50(20-x)(-50x+1400)(2)由题意,得y=x(-50x+1400)-4800=-50x2+1400x-4800=-50(x-14)2+5000.∵-50<0,∴函数图象开口向下,函数有最大值,即当x=14时,在0≤x≤20范围内,y有最大值5000.答:当每日租出14辆时,租赁公司的日收益最多,最多是5000元.。

最新人教版初中数学九年级上册22.3 第2课时 商品利润最大问题过关习题及解析答案

最新人教版初中数学九年级上册22.3 第2课时 商品利润最大问题过关习题及解析答案

第2课时 商品利润最大问题知识点1、二次函数常用解决最优化的问题,这个问题实质是求函数的最大(小)值。

2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a-时,二次函数有最大(小)值y=244ac b a -。

一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。

若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。

若每件商品的售价为x 元,则可卖处(350-10x)件商品。

商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )[]A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.5 4.9h t t =-(t 单位s ,h 单位m )可用描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是()A、0.71sB、0.70sC、0.63sD、0.36s5、如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),2y PC=,则y关于x的函数图像大致为()[]A B 第5题 C D6、已知二次函数2(0)=++≠的图像如图所示,现有下列结论:①abcy ax bx c a>0;②24-<0;③c<4b;④a+b>0.则其中正确的结论的个数是()b acA、1B、2C、3D、47、如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A B C 第7题 D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A、x=10,y=14B、x=14,y=10C、x=12,y=15D、x=15,y=12第6题第8题二、填空题1、已知卖出盒饭的盒数x(盒)与所获利润y(元)满足关系式:21200357600y x x=-+-,则卖出盒饭数量为盒时,获得最大利润为元。

22.3商品利润最大问题(教案)-2021-2022学年九年级上册初三数学(人教版)

22.3商品利润最大问题(教案)-2021-2022学年九年级上册初三数学(人教版)
22.3商品利润最大问题(教案)-2021-2022学年九年级上册初三数学(人教版)
一、教学内容
《22.3商品利润最大问题》-2021-2022学年九年级上册初三数学(人教版)
1.理解并掌握利润的概念,以及影响利润的因素;
2.利用一元二次方程解决实际问题中的最大利润问题;
3.通过实际案例,分析并建立利润最大化的数学模型;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《商品利润最大问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过如何让商品卖出更高利润的情况?”(例如:商店打折时如何定价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何实现商品利润最大化的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调利润计算公式和一元二次方程求解这两个重点。对于难点部分,我会通过具体例子和直观图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与商品利润最大化相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过改变售价和成本来观察利润的变化。
五、教学反思
今天我们在课堂上探讨了商品利润最大问题,从理论到实践,让学生们尝试解决实际问题。回顾整个教学过程,我觉得有几个地方值得反思。
首先,我发现学生们在理解利润概念和计算公式上并没有太大困难,但在将实际问题抽象成数学模型时,部分学生感到困惑。这说明我们在教学中需要更加注重培养学生的数学建模能力,让他们学会如何将现实问题转化为数学语言。
4.掌握如何从数学角度提出问题、分析问题、解决问题的方法;

人教版九年级数学上知识点巩固与综合运用 第2课时 商品利润最大问题

人教版九年级数学上知识点巩固与综合运用 第2课时 商品利润最大问题

-10 x +50000.
∵-10<0,∴当 x =700时, W 有最小值,
最小值为-10×700+50000=43000.
∵42000<43000,
∴当种植甲种蔬菜的种植面积为400m2,
乙种蔬菜的种植面积为600m2时, W 最小.
1
2
3
4
5
6
7
8
谢谢观看
Thank you for watching!
= +,
= − ,
解得ቊ
∴ y =- x +140.
= .
1
2
3
4
5
6
7
8
(2)当护眼灯销售单价定为多少元时,商店每月出
售这种护眼灯所获的利润最大?最大月利润为多少
元?
解:(2)设每月出售这种护眼灯所获的利润为 w元.
根据题意得 w =( x -40) y =( x -40)(- x+
装按每件 x ( x ≥100)元出售,每天可销售(200-
x )件.若想获得最大利润,则 x 应定为( A
A. 150
B. 160
C. 170
D. 180
1
2
3
4
5
6
7
8

4. (2023-2024·石家庄赵县月考)某纪念品的进价
为每件40元,售价为每件50元,每星期可卖出200件.
经市场调查发现:以不低于现售价的价格销售该商
∵-4<0,50≤ x ≤68,
∴当 x =68时, w 取得最大值,
最大值为-4×(68-70)2+3600=3584.
答:单价定为68元时,每星期销售这种商品获得的
利润最大,最大利润是3584元.

22.3商品利润最大问题(教案)-2022-2023学年九年级上册初三数学同步备课(人教版)

22.3商品利润最大问题(教案)-2022-2023学年九年级上册初三数学同步备课(人教版)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解利润最大化的基本概念。商品利润是指销售商品后获得的收入与商品成本之间的差额。它是商家经营决策中的重要因素,决定了商家的盈利能力。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何通过设置合理的售价和销售数量,来实现商品利润的最大化。
-难点四:将问题解决策略应用到不同情境中。
-学生需要能够将学到的问题解决策略应用到新的类似问题中,这需要培养他们的迁移能力。
-举例:提供不同的实际问题案例,让学生尝试独立建立模型、求解并分析结果,以此检验他们是否真正掌握了问题解决的方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《商品利润最大问题》这一章节。在开始之前,我想先问大家一个问题:“你们是否想过,商店老板是如何决定商品的售价,以获得最大利润的呢?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何运用数学来解决这一问题。
在讲解重点难点时,我尝试使用了不同的教学方法,比如通过具体的例子来解释抽象的概念。这种教学方法似乎对学生很有帮助,他们能够更好地理解并应用这些概念。但我也在想,是否还有其他的教学手段可以进一步提高学生的理解力和应用能力。
最后,今天的课程也让我意识到,及时总结和回顾的重要性。在课程结束时,我鼓励学生提出问题,这有助于他们巩固知识点,也能够让我及时了解他们在哪些地方还存在疑惑。我会在接下来的课程中继续这种做法,并尝试引入更多形式的互动,比如小组竞赛或者角色扮演,以增加课堂的趣味性和互动性。
-举例:通过具体案例,பைடு நூலகம்导学生逐步使用代入法或消元法求解方程组,并解释每一步的操作原理。
-难点三:分析解的实际意义。

人教版九年级上册第22章 课时2 最大利润问题1(16页)

人教版九年级上册第22章  课时2 最大利润问题1(16页)

随堂练习
4.某种商品每天的销售利润 y(元)与销售单价x(元)之间满足关系:
y=ax2+bx-75.其图象如图.
(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元? y/元
解:由题中条件可求y=-x2+20x-75.
∵-1<0,对称轴为x=10, 16
∴当x=10时,y值最大,最大值为25.
y=(20+x)(300-10x)
建立函数关系式:y=(20+x)(300-10x), 即:y=-10x2+100x+6000.
新课讲授
②自变量x的取值范围如何确定? 营销规律是价格上涨,销量下降,因此只要考虑销售量就可 以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.
建立函数 关系式
总利润=单件利润×销售量 或总利润=总售价-总成本.
最大利润问题
确定自变量 取值范围
涨价:要保证销售量≥0; 降价:要保证单件利润≥0.
确定最 大利润
利用配方法或公式法求最大值 或利用函数简图和性质求出.
随堂练习
3.某体育馆可容纳四千人同时观看比赛,现C区有座位400个,某赛事试营销售阶 段发现:当票价为80元时,可售出C区票280张,若每降价1元,可多售出6张票, 设降价 x元( x 取正整数),写出总票价 y 关于 x 的函数关系式及自变量x取值范围.
解:y=(80-x)(280+6x)= -6x2+200x+22400 280+6x ≤ 400,且 x ≥ 0. 所以,0≤ x ≤20 ( x 取正整数).
22.3 实际问题与二次函数 课时2 最大利润问题
学习目标
1.会运用二次函数的性质解决商品销售中的最大利润问题. 2.能弄清商品销售问题中的数量关系及确定自变量的取值范围.

初三数学最大利润问题公式

初三数学最大利润问题公式

最大利润问题在初三数学中是一个常见的问题,通常涉及到成本、售价、利润等概念。

假设一件商品的成本是 c 元,售价是s 元,利润是p 元。

根据经济学和数学的基本概念,我们有以下公式:
利润p 是售价s 减去成本c,即p = s - c。

利润率r 是利润p 除以成本c,即r = p / c。

总利润T 是单个商品的利润p 乘以销售数量n,即T = n × p。

现在我们要来解这个问题,找出最大利润T 的表达式。

通过解方程和不等式,我们得到总利润T 的表达式为:T = p
最大利润T 的表达式为:T = p
因此,最大利润T 是由售价s 和成本 c 的关系决定的。

22.3.2商品利润最大问题(第2课时)(课件)2024-2025学年九年级数学上册(人教版)

22.3.2商品利润最大问题(第2课时)(课件)2024-2025学年九年级数学上册(人教版)
银行家说:“你看你的手指上是不是有油。”
服装厂生产某品牌的 T 恤衫成本是每件 10 元.根据市场调查,
以单价 13 元批发给经销商,经销商愿意经销 5000 件 ,并且表
示单价每降价 0.1 元,愿意多经销 500 件.
请你帮助分析,厂家批发单价是多少时可以获利最多?
总利润 = (销售单价 - 成本单价)×销量 = 单利润×销量
= −4x2 + 140x − 864
∴当
答:当
时,利润 w 有最大值,最大值为 361.
时,利润最大.
某网络玩具店引进一批进价为20元/件的玩具,如果以单价30元出
售,那么一个月内售出180件,根据销售经验,提高销售单价会导
致销售量的下降,即销售单价每上涨1元,月销售量将相应减少10
件,当销售单价为多少元时,该店能在一个月内获得最大利润?
13
10
假设批发单价12.8 5000 +
5000
− .
500×
.
3
12.8 - 10
① 设未知数,用含未知数的代数式表示相关量
解:设厂家批发单价是为 x 元,获利 y 元.
② 根据题意,求出自变量的取值范围
还有其他的设未
知数方法吗?
∵ 13 − x≥0,且 x>10,∴ 10<x≤13.
在日常生活中存在着许许多多的与数学知识有关的实际问题.商
品买卖过程中,作为商家追求利润最大化是永恒的追求.
有一个这样的故事:
银行家的儿子问爸爸:“爸爸,银行里的钱都是客户和储户的,
那你是怎么赚来房子、奔驰和游艇的呢?”
“儿子,冰箱里有一块肥肉,你把它拿来。”
儿子拿来了。“你再把它放回去。”

【初中数学】第2课时 最大利润问题 [人教版九年级上册] (练习题)

【初中数学】第2课时 最大利润问题 [人教版九年级上册] (练习题)

第2课时最大利润问题[人教版九年级上册] (2912) 1.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元/个)有如下关系:y=−x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包的销售单价定为多少时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元/个,该商店销售这种双肩包每天要获得200元的销售利润,那么销售单价应定为多少?2.某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销量为240个.(1)求遮阳伞每天的销出量y个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售润最大?最大利润是多少元?3.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件,为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=(写出自变量的取值范围),所以每件降价元时,每日获得的最大利润为元.4.某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?5.某商店销售某件商品所获得的利润y(元)与所卖的件数x之间的关系满足y=−x2+1000x−200000,则当0<x⩽450时的最大利润为()A.2500元B.47500元C.50000元D.250000元6.鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?7.红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.参考答案1(1)【答案】解:w=(x−30)·y=(x−30)·(−x+60)=−x2+90x−1800,∴w与x之间的函数关系式为w=−x2+90x−1800(30≤x≤60).(2)【答案】w=−x2+90x−1800=−(x−45)2+225.∵−1<0,∴当x=45时,w有最大值,w的最大值为225.答:这种双肩包的销售单价定为45元/个时,每天的销售利润最大,最大利润为225元.(3)【答案】当w=200时,可得方程−(x−45)2+225=200.解得x1=40,x2=50.∵50>42,∴x2=50不符合题意,应舍去.答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元/个.2(1)【答案】解:设函数关系式为y=kx+b,,由题意可得:{260=28k+b240=30k+b,解得:{k=−10b=540∴函数关系式为y=−10x+540;【解析】:设函数关系式为y=kx+b,由当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销量为240个.可列方程组,即可求解;(2)【答案】由题意可得:w=(x−20)y=(x−20)(−10x+540)=−10(x−37)2+2890,∵−10<0,∴当x=37时,W有最大值为2890,答:当销售单价定为37元时,才能使每天的销售润最大,最大利润是2890元.【解析】:由每天销售利润=每个遮阳伞的利润x销售量,列出函数关系式,由二次函数的性质可求解.3.【答案】:(30−x);(20+x);−x2+10x+600(0⩽x⩽30,且x为整数);5;625【解析】:根据题意用x表示出单件的利润、日销售量、日利润,进而根据二次函数的性质,求出每日获得的最大利润4(1)【答案】解:根据题意,y=300﹣10(x﹣60)=−10x+900,∴y与x的函数表达式为:y=−10x+900;【解析】:根据等量关系“利润=(售价−进价)×销量”列出函数表达式即可.(2)【答案】设利润为w,由(1)知:w=(x﹣50)(−10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件销售价为70元时,获得最大利润;最大利润为4000元.【解析】:根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值.5.【答案】:B【解析】:因为抛物线的对称轴为直线x=500,在对称轴左侧,y随x的增大而增大,因此在0<x⩽450的范围内,当x=450时,函数有最大值为475006(1)【答案】解:由题意,设y关于x的函数解析式为y=kx+b,把(280,40),(290,39)代入得:{280k+b=40290k+b=39,解得:{k=−1 10b=68,∴y与x之间的函数解析式为y=−110x+68(200≤x≤320);【解析】:根据图象设y关于x的函数解析式为y=kx+b,然后用待定系数法求函数解析式即可;(2)【答案】设宾馆的利润为w元,则w=(x﹣20)y=(x﹣20)(−110x+68)=−110x2+70x﹣1360=−110(x﹣350)2+10890,∵−1<0,10∴当x<350时,w随x的增大而增大,∵200≤x≤320,∴当x=320时,w取得最大值,最大值为10800元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是10800元.【解析】:根据宾馆利润数=单个房间的利润×游客居住房间数,列出二次函数的关系式,再根据二次函数的性质解决问题.7(1)【答案】解:由题知,y=5−(x−50)×0.1,整理得y=10−0.1x(40≤x≤100);【解析】:根据题意写出销售量和销售单价之间的关系式即可;(2)【答案】设月销售利润为z,由题知,z=(x−40)y=(x−40)(10−0.1x)=−0.1x2+14x−400=−0.1(x−70)2+90,∴当x=70时,z有最大值为90,即当月销售单价是70元时,月销售利润最大,最大利润是90万元;【解析】:根据销售量和销售单价之间的关系列出销售利润和单价之间的关系式求最值即可;(3)【答案】由(2)知,当月销售单价是70元时,月销售利润最大,即(70−40−a)×(10−0.1×70)=78,解得a=4,∴a的值为4.【解析】:根据(2)中的函数和月销售单价不高于70元/件的取值范围,确定a值即可.。

283.九年级新人教版数学上册22.3 第2课时 商品利润最大问题-教案

283.九年级新人教版数学上册22.3  第2课时  商品利润最大问题-教案

第2课时商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x档的产品一天的总利润为y元,则有y=[10+2(x-1)][76-4(x -1)]=-8x2+128x+640=-8(x-8)2+1152.当x=8时,y最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。

人教版九年级数学课件-商品利润最大问题

人教版九年级数学课件-商品利润最大问题

③漲價多少元時,利潤最大,最大利潤是多少?
y=-10x2+100x+6000,

x
2
100 (10)
5時,y=-10×52+100×5+6000=6250.
即定價65元時,最大利潤是6250元.
例1 某商品現在的售價為每件60元,每星期可賣出300件,
市場調查反映:每漲價1元,每星期少賣出10件;每降價1元,
當x=2時,y有最大值,且y最大=19440. 這時每間客房的日租金為160+10×2=180(元).
答:每間客房的日租金提高到180元時,客房日租金的總收入 最高,最大收入為19440.
當堂練習
1.某種商品每件的進價為20元,調25查表明:在某段時間內 若以每件x元(20 ≤x ≤30)出售,可賣出(300-20x)件,
3. 某種商品每天的銷售利潤y(元)與銷售單價x(元)之間滿足
關係:y=ax2+bx-75.其圖象如圖.
(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最
大利潤是多少元?
(2)銷售單價在什麼範圍時,該種商品每天的銷售利潤不低於
16元?
解:(1)由題中條件可求y=-x2+20x-75
y
∵-1<0,對稱軸x=10,
3
3
即定價57.5元時,最大利潤是6050元.
售由情(1綜況)(合,2你)可的知知討道,論應應及該定現如價在何6的5定元銷價時, 才能能使使利利潤潤最最大大了。嗎?
知識要點
求解最大利潤問題的一般步驟 (1)建立利潤與價格之間的函數關係式: 運用“總利潤=總售價-總成本”或“總利潤=單件利潤×銷售量” (2)結合實際意義,確定引數的取值範圍; (3)在引數的取值範圍內確定最大利潤: 可以利用配方法或公式求出最大利潤;也可以畫出函數的簡圖, 利用簡圖和性質求出.

人教版九年级上册数学同步教学课件-第22章-22.3 第2课时 商品利润最大问题

人教版九年级上册数学同步教学课件-第22章-22.3 第2课时  商品利润最大问题

最大利润 问题
确定自变量 取值范围
涨价:要保证销售量≥0 降件:要保证单件利润≥0
确定最大 利润
利用配方法或公式法求最大值 或利用函数简图和性质求出
数学课堂教学课件设计
第二十二章 二次函数
22.3 实际问题与二次函数
第2课时 商品利润最大问题
数学课堂品销售过程中的最大利润问题. (重点) 2.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点)
数学课堂教学课件设计
情景引入
在日常生活中存在着许许多多的与数学知识有关的实际问 题.商品买卖过程中,作为商家追求利润最大化是永恒的追求.
2.进价为80元的衬衣定价100元时,每月可卖出2000件,价格每 上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件) 与衬衣售价x(元)之间的函数关系式为 y=2000-5(x-100) . 每月利润w(元)与衬衣售价x(元)之间的函数关系式 为 w=[2000-5(x-100)](x-80) .(以上关系式只列式不化简)
正常销售 降价销售
20
300
6000
20-x
300+20x y=(20-x)(300+20x)
建立函数关系式:y=(20-x)(300+20x), 即:y=-20x2+100x+6000.
②自变量x的取值范围如何确定?
营销规律是价格下降,销量上升,因此只要考虑单件利润就可 以,故20-x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤20.
∵x≥0,且120-6x>0, ∴0≤x<20. 当x=2时,y有最大值,且y最大=19440. 这时每间客房的日租金为160+10×2=180(元).

人教版初中数学课标版九级上册第二十二章 商品销售最大利润问题ppt(精选文档)

人教版初中数学课标版九级上册第二十二章 商品销售最大利润问题ppt(精选文档)
例1:已知某商品的进价为每件40 元。现在的售价是每件60元,每星期 可卖出300件。市场调查反映:如调整 价格,每涨价一元,每星期要少卖出 10件;每降价一元,每星期可多卖出 20件。如何定价才能使利润最大?
例1:已知某商品的进价为每件40元。现 在的售价是每件60元,每星期可卖出300件。 市场调查反映:如调整价格,每涨价一元, 每星期要少卖出10件;每降价一元,每星期 可多卖出20件。如何定价才能使利润最大? 分析:
2在.数使学学中生渗能透根应据用问意题识的,实强际化情数况学,来确源定于函生数活变,量又x要的服取务值于范生围活。。
.
当a>0时,抛物线开口向 每若降不价 在一,元再,利每用星二期次可函多数卖的出增减20性件求。出二次函数的最大值或最小值。
若当不a>在0时,,再抛利物用线二开次口函向数的增,减有性最求出点二,次函函数数有的最最大值值或,最是小值。;
如今何天定 我价们才共能同使探利讨润了最哪大些?内容?你有什么收获?
,有最
点,函数
有最 值,是 。 如例何1:定已价知才某能商使品利的润进最价大为?每件40元。
根如据何销 定售价经才验能使,提利高润单最价大会?导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.
每并降求价 出一哪元个,月每的星利期润可最多大卖?出20件。
①涨价时:
设每件商品涨价x元,总利润为y元,则现 售价为 _6_0_+_x__元,每件商品的利润为 _6_0_+_x-_4_0___元,现销量为_3_0_0-_1_0_x件。
例1:已知某商品的进价为每件40元。现 在的售价是每件60元,每星期可卖出300件。 市场调查反映:如调整价格,每涨价一元, 每星期要少卖出10件;每降价一元,每星期 可多卖出20件。如何定价才能使利润最大?

最新人教版九年级数学上册《商品利润最大问题》优质教学课件

最新人教版九年级数学上册《商品利润最大问题》优质教学课件
销售量就可以,故180-10x ≥0,因此自变量的取值范 围是x ≤18.
③涨价多少元时,利润最大,最大利润是多少?
y=-10x2+80x+1800 =-10(x-4)2+1960.
当x=4时,即涨价4元时,y取最大值1960元. 答:当销售单价为34元时,该店在一个月内能获得最 大利润1960元.
1. 从课后习题中选取; 2. 完成练习册本课时
的习题.
结束 语
大千世界,充满着无 数的奥秘,希望同学们能 遇事独立,积极探索钻研, 解决更多的难题。
谢谢观看,再见! !
数量关系
(1)销售额= 售价×销售量; (2)利润= 销售额-总成本=单件利润×销售量; (3)单件利润=售价-进价.
典例精析
例1 某商品现在的售价为每件60元,每星期可卖出300 件,市场调查反映:如调整价格,每涨价1元,每星期 少卖出10件;每降价1元,每星期可多卖出20件,已知 商品的进价为每件40元,如何定价才能使利润最大?
∴售价x是55元时,获利最大,最大利润是1250元.
变式2 若该商店销售该商品所获利润不低于1218元,
试确定该商品的售价x的取值范围;
解:Q与x的函数关系式为:
60x-1800
(40≤x≤50 )
Q = -2(x-55)2 + 1250 (50≤x≤70)
①当40≤x≤50时, ∵Q最大= 1200<1218, ∴此情况不存在.
2
即降价2.5元能时使,利最润大最大利了润吗是? 6125元.
综上可知,定价57.5元时,最大利润是6125元.
变式 某电商在购物平台上销售一款小电器,其进价为 45元件,每销售一件需缴纳平台推广费5元,该款小电 器每天的销售量y(件)与每件的销售价格x(元)满足函数 关系:y=-2x+180.为保证市场稳定,供货商规定销售 价格不得低于75元/件且不得高于90元/件. (1)写出每天的销售利润w(元)与销售价格x(元)的函
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档