高频电子线路试验

合集下载

高频电子线路实验报告

高频电子线路实验报告

实验一 高频小信号放大器1.1 实验目的1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、 熟悉谐振回路的调谐方法及测试方法。

3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。

MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。

波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,f(KHz)65 75 165 265 365 465 1065 1665 2265 2865 3465 4065U0 (mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。

,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。

BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。

高频电子线路实验课件

高频电子线路实验课件

| 1 | 10 | 1 | 10 | 0.8 | | 3 | 30 | 1 | 30 | 0.4 |
实验结果分析与讨论
实验结果分析
VS
根据实验数据记录,当输入信号频率 增加时,输出信号幅度逐渐减小。这 表明滤波器对高频信号的抑制作用较 强,而对低频信号的抑制作用较弱。 因此,该滤波器为高通滤波器。
系统集成与优化
未来的高频电子线路实验将更加注重系统集成和优化,将 不同的器件和电路模块进行整合,实现更高效、更可靠的 高频电子系统。
实验方法创新
未来的高频电子线路实验将不断创新实验方法,引入新的 实验技术和工具,提高实验的效率和精度。
结合实际应用
未来的高频电子线路实验将更加注重与实际应用的结合, 通过实验研究高频电子线路在各个领域中的应用,提高实 验的应用价值。
05
高频电子线路实验项目三 :滤波器
实验目的与原理
01
实验目的
02
1. 掌握滤波器的原理及设计方法;
03
2. 了解滤波器对信号频率成分的影响;
实验目的与原理
• 学会使用示波器和信号发生器等设备进行实验操作。
实验目的与原理
实验原理
滤波器是一种频率选择性器件,它可以通过抑制某些频率成分、而允许其他频率成分通过。在高频电 子线路中,滤波器常用于减小信号中的噪声、提取有用信号等。根据频率响应的不同,滤波器可分为 低通、高通、带通和带阻等类型。
• 讨论:调谐放大器在通信、雷达等高频电子系统中具有广泛应用。本实 验通过探究其工作原理及性能特点,为实际应用提供理论支持和实践经 验。同时,实验中可能存在的误差来源也需要进行讨论并加以修正,以 提高实验的准确性和可靠性。
04
高频电子线路实验项目二 :混频器

高频电子线路试验指导书

高频电子线路试验指导书

实验须知1.实验不得无故缺席,否那么取消期未考试资格;2.实验前认真做好预习,明确实验目的和原理,了解实验内容和步骤,以及考前须知;3.实验过程中必须服从指导教师的指导,严格遵守平安及设备操作规章制度;4.损坏设备、仪器根据情节轻重按学校规定进展全部或局部赔偿;5.在实验过程中认真记录好实验数据,实验完毕后,实验数据及结果经指导教师认可并签字前方能离开实验室;6.实验报告格式在本指导书后;目录实验一单调谐回路谐振放大器及通频带展宽1 实验二高频功率放大器3实验三LC电容反应三点式振荡器4实验四振幅调制器〔集成模拟乘法器〕7实验五调幅波信号的解调9实验六变容二极管频率调制电路实验11图〔1━1〕单调谐放大器电路 实验一单调谐回路谐振放大器及通频带展宽一、实验目的1. 熟悉高频电路实验箱的组成及其电路中各电子元器件的作用。

2. 熟悉并联谐振回路的幅频特性分析、频带与选择性。

3. 熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4. 熟悉和了解单谐振回路谐振放大器的性能指标及其测试方法。

二、预习要求1.复习选频网络的特性分析方法; 2.复习谐振回路的工作原理;3.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。

三、实验原理小信号调谐放大器是接收机和各种电子设备中广泛应用的一种电压放大器。

它的主要特点是晶体管的集电极〔共发射极电路〕负载不是纯电阻,而是由L 、C 组成的并联谐振回路。

调谐放大器具有较高的电压增益,良好的选择性,当元件器件性能适宜和构造布局合理时,其工作频段可以做得很高。

小信号调谐放大器的类型很多,按调谐回路区分:由单调谐回路,双调谐回路和参差调谐回路放大器。

按晶体管连接方法区分,有共基极、共发射极和共集电极放大器。

实用上,构成形式根据设计要求而不同。

典型的单调谐放大器电路如图〔1━1〕所示。

图中W 、R1,R2和Re1、Re2是直流偏置电阻,调节W 可改变直流工作点。

《高频电子线路》频率调制与解调实验报告

《高频电子线路》频率调制与解调实验报告

《高频电子线路》频率调制与解调实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:频率调制与解调一、实验目的和要求通过实验,学习频率调制与解调的工作原理、电路组成和调试方法,学习用锁相环电路实现频率调制、斜率鉴频实现调频信号的解调的设计方法,利用Multisim仿真软件进行仿真分析实验。

二、实验内容和原理1、实验原理所谓调制,就是用一个信号(原信号也称调制信号)去控制另一个信号(载波信号)的某个参量,从而产生已调制信号,解调则是相反的过程,即从已调制信号中恢复出原信号。

根据所控制的信号参量的不同,调制可分为:调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。

调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。

调相,利用原始信号控制载波信号的相位。

这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。

2、实验内容(1)设计实现中心频率为100kHz的调频信号发生器。

绘出电路原理图,采用锁相调频的方式,给出仿真结果图。

(2)对产生的调频信号,采用斜率鉴器进行鉴频,设计失谐网络和包络检波器,绘出电路图,给出仿真结果图。

三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、函数发生器、直流电源。

四、操作方法与实验步骤及实验数据记录和处理1、采用锁相环路实现调频信号,调频信号的中心频率为100kHz。

2、对调频信号进行解调,采用斜率鉴器,对调频信号进行解调。

将AD741输出的100kHz 的调频信号加到电容C7与地之间,设计失谐网络和包络检波器。

C21nFR65kΩR550ΩC71µF L11.2mHU2AD741CH3247651U3AD741CH3247651R131kΩR141kΩR152kΩR164kΩD21N4150D31N4150V712VV812VC81µFXSC1A BExt Trig++__+_C3160nFR810kΩR71kΩR111kΩR121kΩC4160nFC510µF C9160nF4、分析说明U2、U3、D2、D3的作用。

高频电子的实验报告

高频电子的实验报告

一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。

2. 熟悉高频电子线路中常用元件的性能和特点。

3. 培养实验操作技能,提高分析问题和解决问题的能力。

三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。

本实验主要研究高频放大器、振荡器和调制解调器等基本电路。

四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。

(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。

(3)测量放大器的输入输出阻抗,分析匹配网络的设计。

2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。

(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。

(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。

3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。

(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。

(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。

六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。

(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。

(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。

2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。

(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。

(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。

电子设计中的高频电子线路设计与实验

电子设计中的高频电子线路设计与实验

电磁场理论
了解电磁波的传播和辐射 原理,掌握电磁场的基本 规律。
电子元件与电路
熟悉电子元件的特性与参 数,掌握基本电路的分析 方法。
高频电子线路的特点
信号频率高
高频电子线路处理的信号频率通常在数百兆赫兹 甚至吉赫兹以上。
信号失真大
由于高频信号的特性,信号在传输过程中容易发 生失真和衰减。
噪声干扰严重
实例三:卫星通信系统中的高频电子线路设计
总结词
卫星通信系统中的高频电子线路设计利用卫 星作为中继站,实现全球范围内的信号传输 和通信。
详细描述
卫星通信系统中的高频电子线路设计需要考 虑信号的传输距离、覆盖范围和稳定性。设 计过程中需要优化信号的频率、功率和调制 方式,以提高信号传输的效率和可靠性。同 时,还需要考虑地球的自转和卫星的运动对 信号传输的影响,以及不同地区和国家对卫 星通信频率的管理和限制。
高频电子线路设计的未来展望
1 2 3
毫米波频段的应用
随着毫米波通信技术的发展,高频电子线路设计 将进一步拓展到毫米波频段,实现更高的传输速 率和更低的延迟。
人工智能与机器学习技术的应用
人工智能和机器学习技术将在高频电子线路设计 中发挥重要作用,通过智能化分析和优化设计, 提高设计的效率和性能。
定制化与个性化设计
随着消费需求的多样化,高频电子线路设计将更 加注重定制化和个性化,满足不同用户的需求和 偏好。
谢谢观看
03
高频电子线路实验
实验设备与工具
01
信号发生器:用于产生 高频信号,作为实验输 入。
02
示波器:用于观察信号 波形,分析信号的幅度 、频率等参数。
03
频谱分析仪:用于测量 信号的频谱分布,分析 信号的频率成分。

高频电子线路基础实验ppt课件

高频电子线路基础实验ppt课件
不要为了实验而实验,更不要为了考试而学习 !
23
基础实验二
丙类功率放大器的设计
哈尔滨工程大学电工电子教学基地
24
一、实验目的
1、了解丙类功率放大器的基本工作原理, 掌握丙类放大器的调谐特性,熟悉主要 技术指标的测量方法。
2、了解高频功率放大器丙类工作过程以及 当激励信号、负载、电源电压变化对功 率放大器工作状态的影响,加深对欠压 、过压、临界三种工作状态的理解。
标的测试以及仪器的使用。(15分)
5
实验报告要求
1、实验封皮统一采用采用实资处实验封皮,要求完整 填写实验名称、班级、学号、姓名、实验时间、实验 室名称、指导教师,成绩栏由实验教师评定实验报告 后填写。
2、实验报告统一采用A4纸手写,分为预习报告和实验 报告,最后装订数对振荡波形的影响。 步骤: ➢ 改变反馈电容C3和C4的大小,研究振荡
电路的性能指标。
54
五、思考题
(1)输出波形幅度达不到要求; (2)输出波形频率达不到指标; (3)输出波形失真。
55
基础实验四 振幅调制与解调电路的研究
哈尔滨工程大学电工电子教学基地
56
一、实验目的
30
实验步骤
2、调谐特性的测试(中心频率450kHz) 将高频信号发生器的输出峰峰值调至约1.8V,接至放
大器的输入端。示波器连接功率放大器输出,测量输 出电压大小,调节可调电容使谐振回路调谐于450kHz 。
31
实验步骤
3、研究激励电压变化对工作状态的影响 将高频信号发生器的输出频率调至谐振频率,改变输
33
实验步骤
5、研究电源电压对工作状态的影响 在临界状态下(RL=150,高频信号源输出幅度为步骤

《高频电子线路》超外差中波调幅收音机实验

《高频电子线路》超外差中波调幅收音机实验

《高频电子线路》超外差中波调幅收音机实验一、实验目的1、在模块实验的基础上掌握调幅收音机组成原理,建立调幅系统概念。

2、掌握调幅收音机系统联调的方法,培养解决实际问题的能力。

二、实验内容测试调幅收音机各单元电路波形。

三、实验仪器1、耳机 1副2、10 号板 1块3、9 号板 1块4、2 号板 1块5、4 号板 1块6、双踪示波器 1台7、万用表 1块四、实验电路说明AM广播:525—1605KHz混频图16-1超外差中波调幅接收机中波调幅收音机主要由磁棒天线、调谐回路、本振、混频器、中频放大、检波、音频功放、耳机构成。

磁棒天线:磁棒天线是利用磁棒的高导磁率,能有效的收集空间的磁力线,使磁棒线圈感应到信号电压。

同时磁棒线圈就是输入回路线圈,它身兼两职,避免了天线的插入损耗,另外,磁棒线圈具有较高的Q值,故磁棒天线是很优良的接收天线,它不但接收灵敏度高,而且还具有较好的选择性,为此中波调幅收音机几乎全采用磁棒天线。

调谐回路:从磁棒天线接收进来的高频信号首先进入输入调谐回路。

调谐回路的任务是选择信号。

在众多的信号中,只有载波频率与输入调谐回路相同的信号才能进入收音机。

混频和本机振荡级:从调谐回路送来的调幅信号和本机振荡器产生的等幅信号一起送到混频级,经过混频级产生一个新的频率,这一新的频率恰好是输入信号频率和本振信号频率的差值,称为差频。

例如,输入信号的频率是535kHz,本振频率是1000kHz ,那么它们的差频就是1000 kHz - 535 kHz = 465kHz;当输入信号是1605kHz时,本机振荡频率也跟着升高,变成2070kHz。

也就是说,在超外差式收音机中,本机振荡的频率始终要比输入信号的频率高一个465kHz。

这个在变频过程中新产生的差频比原来输入信号的频率要低,比音频却要高得多,因此我们把它叫做中频。

不论原来输入信号的频率是多少,经过变频以后都变成一个固定的中频,然后再送到中频放大器继续放大,这是超外差式收音机的一个重要特点。

高频电子线路实验说明书51DSB...

高频电子线路实验说明书51DSB...

目录目录 (1)实验1 单调谐回路谐振放大器 (2)实验2 双调谐回路谐振放大器 (8)实验3 电容三点式LC振荡器 (14)实验4 石英晶体振荡器 (21)实验5 晶体三极管混频实验 (24)实验6 集成乘法器混频器实验 (28)实验7 中频放大器 (32)实验8 集成乘法器幅度调制电路 (36)实验9 振幅解调器(包络检波、同步检波) (45)实验10 高频功率放大与发射实验 (54)实验11 变容二极管调频器 (64)实验12 斜率鉴频与相位鉴频器 (68)实验13 锁相、频率合成与频率调制 (72)实验14 脉冲计数式鉴频器 (81)实验15 自动增益控制(AGC) (85)实验16 调幅发送部分联试实验 (88)实验17 调幅接收部分联试实验 (89)实验18 调幅发射与接收完整系统的联调 (90)实验19 调频发射与接收完整系统的联调 (94)实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

高频电子实验报告

高频电子实验报告

一、实验目的1. 了解高频电子线路的基本原理和实验方法。

2. 掌握高频电子线路中LC振荡器、高频小信号放大器等电路的原理和设计方法。

3. 培养实验操作技能和数据分析能力。

二、实验原理1. LC振荡器:利用LC谐振电路产生正弦波信号,其振荡频率由LC电路的元件参数决定。

2. 高频小信号放大器:利用晶体管等电子元件,对高频信号进行放大,提高信号的幅度。

三、实验仪器1. 高频信号发生器:产生所需频率和幅度的高频信号。

2. 示波器:观察和分析实验信号。

3. 万用表:测量电压、电流等参数。

4. 高频电路实验板:进行实验操作。

四、实验步骤1. LC振荡器实验:(1)搭建LC振荡电路,根据元件参数计算振荡频率。

(2)用示波器观察振荡波形,分析波形特点。

(3)调整元件参数,观察振荡频率和波形的变化。

2. 高频小信号放大器实验:(1)搭建高频小信号放大电路,根据元件参数计算放大倍数。

(2)用示波器观察输入、输出信号波形,分析放大效果。

(3)调整元件参数,观察放大倍数和波形的变化。

五、实验数据与分析1. LC振荡器实验:(1)根据元件参数计算振荡频率,实际测量值与理论计算值基本一致。

(2)观察振荡波形,为正弦波,波形稳定。

2. 高频小信号放大器实验:(1)根据元件参数计算放大倍数,实际测量值与理论计算值基本一致。

(2)观察输入、输出信号波形,放大效果良好。

六、实验结论1. 通过实验,掌握了高频电子线路的基本原理和实验方法。

2. 培养了实验操作技能和数据分析能力。

3. 熟悉了LC振荡器、高频小信号放大器等电路的设计方法。

七、注意事项1. 实验过程中,注意安全操作,防止触电和火灾。

2. 实验数据要准确记录,便于分析。

3. 实验过程中,发现问题要及时解决,确保实验顺利进行。

八、实验报告评分标准1. 实验原理理解(20分)2. 实验步骤操作(20分)3. 实验数据与分析(40分)4. 实验结论与总结(20分)本实验报告得分:______分。

高频电子线路实验指导书通信技术专业适用

高频电子线路实验指导书通信技术专业适用

高频电子线路实验指导书通信技术专业适用高频电子线路实验是通信技术专业学生在学习通信电子技术时必须掌握的一项基础实验,本文将介绍一份适用于通信技术专业的高频电子线路实验指导书。

第一章实验介绍本章介绍实验目的和基本内容,包括实验原理、实验器材和实验要求。

在实验原理中,我们要强调实验的目的是让学生了解高频电路的基本原理和设计方法,提高学生的实际操作能力。

在实验器材中,要详细列出所需的仪器和设备,并说明各器材的功能和特点。

在实验要求中,要求学生严格按照实验流程操作,保证实验的准确性和安全性。

第二章实验内容本章介绍实验的详细内容,包括实验前准备、实验步骤、实验数据处理和实验结果分析。

在实验前准备中,要求学生掌握实验原理、理解实验要求、熟悉实验器材。

在实验步骤中,要求学生按照实验流程逐步操作,注意实验器材的调整和使用。

在实验数据处理中,要求学生根据实验数据进行计算和分析,得出结论。

在实验结果分析中,要求学生对实验结果进行总结和分析,发现其中的问题和改进方案。

第三章经验总结本章介绍学生在实验中遇到的问题和解决方案,以及实验过程中需要注意的事项。

在遇到问题时,要求学生及时向老师和同学请教,寻求解决方案,在实验中要注意安全问题,确保自身安全和实验器材的安全。

第四章实验报告本章介绍实验报告的要求和格式,包括实验报告的基本结构、实验数据分析、结论和建议。

在实验报告中,要求学生清晰明了地描述实验过程和结果,注重数据分析和实验过程中遇到的问题和解决方案,发表自己的见解和建议。

结语通过可靠的实验指导和系统的实践操作,学生能够更好地掌握实际操作技能,从而提高综合素质,为今后的学习和工作打下基础。

本文所介绍的高频电子线路实验指导可以成为通信技术专业学生实践操作的重要参考资料,让学生能够更好地理解实验原理和方法,提高实际操作能力。

高频电子线路实验

高频电子线路实验
4
根据自激振荡原理,在起振之初,振幅迅速增大,当反馈电压 Uf 对基极为 正半周时,基极上的瞬时偏压 UBE=UBEQ+Uf 变得更正,iC 增大,于是电流通过振 荡管向 Ce 充电,如图 1-5(b)所示。电流向 Ce 充电的时间常数 τ 充=RDCe,
(a)
(b)
图 1-5 自给编压形成 RD 是振荡管 BE 结导通时的电阻,一般较小(几十到几百欧),所以 τ 充较小,Ce 上的电压接近 Uf 的峰值。 当 Uf 负半周,偏置电压减小,甚至成为截止偏压,这时,Ce 上的电荷将通 过 Re 放电,放电的时间常数为 τ 放=ReCe,显然 τ 放>>τ 充,在 Vf 的一周期内, 积累电荷比释放的多,所以随着起振过程的不断增强,即在 Re 上建立起紧跟振 幅强度变化的自偏压, 经若干周期后达 到动态平衡,在 Ce 上建立了一个稳定 的平均电压 IEORe,这时振荡管 BE 之 间的电压: VBEO=VB-IEORe 因为 IEO > IEQ ,所以有 UBEO < UBEQ,可见振荡管 BE 间的偏压减小, 振荡管的工作点向截止方向移动。 这种 自偏压的建立过程如图 1-6 所示。 由图 看出,起振之初,(0~t1 之间),振幅较 小, 振荡管工作在甲类状态, 自偏压变 化不大, 随着正反馈作用, 振幅迅速增 大, 进入非线性工作状态, 自偏压急剧 增大, 使 UBE 变为截止偏压。 振荡管的 非线性工作状态, 反过来又限制了振幅 的增大。 可见, 这种自偏压电路起振时, 存在着振幅与偏压之间相互制约, 互为 因果的关系。在一般情况下,若 ReCe 的数值选得适当, 自偏压就能适时地紧 跟振幅的大小而变化。 正是由于这两种 作用相互依存, 又相互制约的结果。 如 图 1-6 所示,在某一时刻 t2 达到平衡。 图 1-6 起振时直流偏压的建立过程 这种平衡状态, 对于自偏压来说, 意味 着在反馈电压的作用下,Ce 在一周期

高频电子线路实验报告

高频电子线路实验报告

《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。

放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。

二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。

三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。

场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。

场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。

场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。

场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。

这种回路通常被调谐到待放大信号的中心频率上。

由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。

而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。

高频电子线路实验指导(20131129)

高频电子线路实验指导(20131129)

七、实验仪器
5
TP4 L3 22uH T5 6 1 5 7 3 C16 104 T4 TH6 4 2 E6 10uf/16V TP7 J4 Q4 3DG12 S1 Q3 3DG12 TH4 R16 18 R14 1.5K R15 100 C19 104 R17 18 C20 104 R18 100 R19 330 R20 820 1 2 3 4 R22 150 R21 1.5K J6 8 7 6 5 TH5 E5 22uf/16V U1 LM386 C15 ? R13 100 C17 104 +5 +5 E7 10uf/16V 8 +12 C14 104 TP6 T6 R12 200 TH3 C12 104 W1 510 RA3 10K C13 ?
o
v EQ I EQ R 15
I CQ I BQ v BQ v EQ 0 . 7 V
v CEQ V CC I CQ R 15
(2) 负载特性 如图 1-1 所示,甲类功率放大器的输出负载由丙类功放的输入阻抗决定,两级间通过变压器进
' 行耦合,因此甲类功放的交流输出功率 P0 可表示为: P0 PH B
2
1-4 谐振功放的负载特性大器
由图可见,当交流负载线正好穿过静态特性转移点 A 时,管子的集电极电压正好等于管子的饱 和压降 VCES,集电极电流脉冲接近最大值 Icm。 此时,集电极输出的功率 PC 和效率 都较高,此时放大器处于临界工作状态。Rq 所对应的值称 为最佳负载电阻,用 R0 表示,即: R 0
实验一
一、实验目的
1. 特性; 2. 响; 3. 4. 1. 2. 3. 4.
非线性丙类功率放大器实验
了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时的动态 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影 比较甲类功率放大器与丙类功率放大器的特点、功率、效率; 掌握丙类放大器的计算与设计方法。 观察高频功率放大器丙类工作状态的现象,并分析其特点; 测试丙类功放的调谐特性; 测试丙类功放的负载特性; 观察激励信号变化、负载变化对工作状态的影响。

高频电子线路试验报告-高频电子试验心得

高频电子线路试验报告-高频电子试验心得

一、试验目的把握 LC 三点式振荡电路的基本原理,把握 LC 电容三 点
输入电压 Vi ,将高频信号发生器的输出端接至 电路的输入端,调整频率 式振荡器设计及 电参数的计算把握振荡回路 Q 值对频率稳定度的影响
f,使其为,调整 Ct 使回路谐振, 使输出电压幅度为最大,此时的回路
把握振荡器反馈系数不同时,静态工作电流 IEQ 对振
振荡电压的峰峰值,并填入表 3-1 :表 3-1
表 3-4
CT 51pf 100pf 150pf f(MHz) Vp-p 3.测虽当
IEQ(m) Vp-p(V) 12 34
C,C 不同时,起振点,振幅与工作电流 IER 的关系(Rpf、C =C4=1200pf,调电位器 RP 使 IEQ 分另 U 为表
第1页共1页
表 1-2
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
度的失真的现象,是于经三极管放大后相对谐振回路输入过 大造成的。
Vi(V) Re=1K Vo Re=500 Re=2K 320mv 940mv 失 真失真失真失真失真 测放大器频率特性时,应留意选择谐振点附近的 频率下的输出,找出 Vo
表 1-1 实测 Vb Ve 实测计算是否工作在放大区 Ic Vce 是动态讨论 Vce 是 动态讨论 *Vb,Ve 是三极管的基极和发射极对地电压 3. 测虽放大器的动态范围 Vi ~ Vo 选 R=10K , Re=1K。把高频信号发生器接到电路输入 端,电路输出端接示波器。选择正常放大区的输入电压 Vi, 调整频率 f 使其为,调整 Ct,使回路“谐振〞,此时调整 Vi 变到, 逐点记录 Vo 电压,完成表 1-2 的第二行。当 Re 分别为 500 Q , 2KQ 时, 重复上述过程,完成 表 1-2 的第三、四行。在同一坐标纸上画出 Ic 不同时的动 态范围曲线 Vo— Vi,并进行比较与分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下半周, R2 和 R3 为正负半周共用电阻, R1 对输入的三角波进行降压。
在波形变换的过程中 , 由于二极管的非线性特性,加上输入函数的时间关 联性 , 不同时刻二极管上所承受的电压是不同的。
YANGTZE NORMAL UNIVERSITY
实验二
三、实验内容
利用二极管函数电路实现波形转换
1.将上下两端电阻R4、R11分别选1.2K接至±5V电源,测得A、B、C、D、E、 F各点的分压电压。选择函数波发生器输出的波形为三角波,频率调至2KHz, VP-P调至8V,然后接入电路IN端,观察记录OUT输出波形。 2.将R4、R11电阻,分别改接成2K和5.1K(即:R4=R11=2K、R4=R11=5K1),观察 记录波形,测各点分压电压,并分别与接1.2KΩ时相比较,分析原因。 四、实验报告要求
Vi(V) Re=1k
0.02 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
V0(V)
Re=500Ω
Re=2K
YANGTZE NORMAL UNIVERSITY
实验一
四 实验内容及步骤
单调谐放大电路
(2).当Re分别为500Ω、2K时,重复上述过程,将结果填入表1.2。在同一
实验一
四 实验内容及步骤
单调谐放大电路
(4).测量放大器的频率特性 当回路电阻R=10K时, 选择正常放大区的输入电压Vi,将高频信号发 生器输出端接至电路输入端,调节频率f使其为10.7MHz,调节CT使回 路谐振(输出电压幅度为最大),此时的回路谐振频率f0=10.7MHz为中 心频率,然后保持输入电压Vi不变,改变频率f由中心频率向两边逐点偏 离,测得在不同频率f时对应的输出电压V0,将测得的数据填入表1.3。 频率偏离范围可根据(各自)实测情况来确定。
2-1三角波→正弦波变换原理示意图
2-2 二极管三角波→正弦波变压器
YANGTZE NORMAL UNIVERSITY
实验二 二、实验原理
利用二极管函数电路实现波形转换
用二极管将三角波近似转换为正弦波的实验电路见图2-2 。图中 , R4 ~ R7,D1 ~ D3 负责波形的正半周, R8 ~ R11,D4 ~ D6 负责波形的的
坐标纸上画出IC不同时的动态范围曲线,并进行比较和分析。
(3).用扫频仪调回路谐振曲线。 仍选R=10K,Re=1K。将扫频仪射频输出送入电路输入端,电路输出

接至扫频仪检波器输入端。观察回路谐振曲线(扫频仪输出衰减档位应根据
实际情况来选择适当位置),调回路电容CT,使f0=10.7MHz。
YANGTZE NORMAL UNIVERSITY
总之,调谐放大器不仅具有对特定频率
信号的放大作用,同时一也起着滤波和 选频的作用。其电路如图1-1所示。
图1-1 单调谐放大电路
YANGTZE NORMAL UNIVERSITY
实验一
二 实验原理
单调谐放大电路
质量指标
谐振频率 谐振增益
通频带
选择性
YANGTZE NORMAL UNIVERSITY
性变换
YANGTZE NORMAL UNIVERSITY
实验二 二、实验原理
利用二极管函数电路实现波形转换
从三角波和正弦波的波形上看 , 二者主要的差别在波形的峰值附近 , 其余部分都很相似 . 因此只要设法将三角波的幅度按照一定的规律逐 段衰减 , 就能将其转换为近似正弦波 . 见图 2-1 所示 .
YANGTZE NORMAL UNIVERSITY
高频电子线路实验课件
1
YANGTZE NORMAL UNIVERSITY
实验一
单调谐放大电路

实验目的 1.熟悉电子元器件和高频电路实验箱 2.熟悉谐振回路的幅频特性分析--通频带与选择性 3.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展 4.熟悉和了解放大器的动态范围及其测试方法
实验一 三 实验仪器 1.双踪示波器
单调谐放大电路
2.扫频仪
3.高频信号发生器
4.高频毫伏表
5.万用表 6.实验板
YANGTZE NORMAL UNIVERSITY
实验一
四 实验内容及步骤
单调谐放大电路
1.实验电路见图1-1 (1)按图1-1所示连接电路 (注意接线前先测量+12V电源电压,无误后关断电源再接线)。 (2)接线后仔细检查,确认无误后接通电源。 2、静态测量 实验电路中选Re=1K,测量各静态工作点,计算并填表1.1 表1.1
实 测 VB VE 根据VCE 判断V是否工作在放大区 是 否
实测计算
原因
IC
VCE
YANGTZE NORMAL UNIVERSITY
实验一
四 实验内容及步骤
3.动态研究
单调谐放大电路
(1). 测放大器的动态范围Vi~V0(在谐振点)
选R=10K,Re=1K。把高频信号发生器接到电路输入端,电路输出端接 高频毫伏表,选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调 节CT使回路谐振,使输出电压幅度为最大。此时调节Vi由0.02伏变到0.8伏, 逐点记录V0电压,并填入 表1.2(仅供参考)。Vi的各点测量值可根据(各自)实 测情况来确定。 表1.2
YANGTZE NORMAL UNIVERSITY
实验一
单调谐放大电路
五、实验报告要求
1.写明实验目的。 2.画出实验电路的直流和交流等效电路,计算直流工作点,与实验实
测结果比较。
3.写明实验所用仪器、设备及名称、型号。 4.整理实验数据,并画出幅频特性。
单调谐回路接不同回路电阻时的幅频特性和通频带,整理并分析原因。
5.本放大器的动态范围是多少(放大倍数下降1dB的折弯点V0定义为 放大器动态范围),讨论IC对动态范围的影响。
YANGTZE NORMAL UNIVERSITY
实验二
利用二极管函数电路实现波形转换
一、实验目的

利用二极管函数电路实现三角波→正弦波的变,从
而掌握非线性器件二极管折线近似特性等进行非线
YANGTZE NORMAL UNIVERSITY
实验一
四 实验内容及步骤 表1.3
f(MHz) R=10KΩ V
0
单调谐放大电路
10.7
R= 2KΩ
R=470Ω
计算f0=10.7MHz时的电压放大倍数及回路的通频带和Q值。
(5).改变谐振回路电阻,即R分别为2KΩ,470Ω时,重复上述测试
,并填入表1.3。比较通频带情况。
YANGTZE NORMAL UNIVERSITY
实验一
二 实验原理
单调谐放大电路
晶体管集电极负载通常是一个由LC组
成的并联谐振电路。由于LC并联谐振
回路的阻抗是随着频率变化而变化。理 论上可以分析,并联谐振在谐振频率处
呈现纯阻,并达到最大值,即放大器在
回路谐振频率上将具有最大的电压增益。 若偏离谐振频率,输出增益减小。
相关文档
最新文档