弹性力学与有限元分析.ppt
弹性力学边值问题及有限元法(PPT)
(3)在边界上部分给定面力,部分给定位移——混合边界条件
基本解法
弹性力学边值问题——基本方程+边界条件
给定作用在物体全部边界或内部的外界作用(包括温度影响、 外力等),求解物体内由此产生的应力场和位移场。
具体地说,对物体内每一点,当它处在弹性阶段,其应力分 量、应变分量、位移分量等15个未知函数要满足平衡方程、几 何力程、本构方程这15个泛定方程,在边界上并要满足给定的 全部边界条件。
通过与原问题基本方程及边界条件等效的变分原理,建立求 解的代数方程组,求解有限个节点上的场变量值
用有限个节点场变量值插值得到全求解域任意位置的场变量
单元内近似函程形式必须一样 单元内近似函数一般取Lagrange多项式
单元位移函数
对三角形单元,假定单元内的位移分量是坐标的线性函数
x
x
xy
y
xz
z
Fbx
0
yx
x
y
y
yz
z
Fby
0
zx
x
zy
y
z
z
Fbz
0
平衡方程的意义
受力而平衡的弹性体内 各应力之间(及其与体 力之间)的相互制约关 系
几何方程
x
u x
y
v y
z
w z
xy
u y
v x
xy
v z
w y
xy
w x
u z
应变与位移之间的关系, 以及应变之间的关系
物理方程
也叫本构方程
应力应变之间的关系
x
E(1 ) (1 )(1 2)
( x
1
y
9第2章弹性力学平面问题及空间问题有限元
假定的位移函数是多项式,它是连续函数,可以肯定,在单元内部位移函数是单值连续的。由于单 元的位移函数 u 、 v 都是坐标 x 、 y 的线性函数,在单元边界上位移也是线性变化的,两个相邻单元在 公共节点上具有相同的节点位移,因而相邻单元在公共边界上位移连续,即协调条件得到满足。 由上面分析可以看出,三角形常应变单元的位移模式可以保证计算结果的收敛。
px
py
px
py ]
T
(2-1-7b)
(2 )若在 jm 边上受线性分布的水平方向的面力,它在 j 点的集度为 q ,在 m 点的集度为零 (如图 2-5) 。可预计由该面力求得的等效节点载荷只有 R xj 、
R xm ,其余节点载荷分量必为零。
将 jm 边上的分布面力写成 s 的函数,为
s { p} [ (1 ) q 0]T l 在 jm 边上的形函数也需用变量 s 表示,根据形函数的含义,
Ve
[k ii ] [k ij ] [ k im ] [k ji ] [k ij ] [k jm ] [k mi ] [ k mj ] [k mm ]
式中, t 为单元的厚度,当单元划分得足够小时,可以认为每个单元的厚度 t 为常值。子阵为
(2-1-5)
[k rs ] [ Br ]T [ D][B s ]tA
101
二、 单元刚度矩阵 1、单元几何矩阵 [ B ] 有了单元的位移模式,利用平面问题的几何方程求得应变分量
0 x x u e e 0 { } [ L][ N ]{} [B ]{} y y v xy y x
第3讲—弹性力学问题的有限单元法
1 T U d Kd 2
u1 d u 2 u 3
有限单元法
崔向阳
Step 3: 单元集成
单元集成——外力功
整体节点 位移列阵
整体等效节 点力列阵
u1 d u2 u 3
f1 R1 f f 2 0 f F 3
有限单元法
崔向阳
Step 2.单元特征分析
xi
单元节点位移列阵: 单元节点坐标列阵: 单元等效节点力列阵:
II=0
有限单元法 崔向阳
真实位移
6
最小势能原理
1 II ij ij dV bi ui dV pi ui dA 2 Sp 1 II Dijkl ij kl dV bi ui dV pi ui dA Sp 2
ij
ij
dV biui dV piui dA
Sp
弹性问题中等价于最小势能原理!
有限单元法 崔向阳
比较:虚功原理和能量变分原理
虚功原理是理论力学上的一个根本性原理,可以用于
一切非线性力学问题。
最小势能原理只是虚功原理对弹性体导出的一种表述
形式,但是对于线弹性问题,最小势能原理的应用非 常方便。
ij ui ij ui Dijkl ij kl dV bi ui dV pi ui dA Sp ij ij dV bi ui dV pi ui dA Sp
V= – W
弹性势能—弹性体变形后,产生弹性内力,这种力也具有对外作 功的能力,称为弹性势能,或弹性应变能。
第2章_弹性力学基础及有限元法的基本原理1
W U
当外力的形式是多样的时,外力的虚功等于:
W f Pc f Pv dV f Ps dS
T T T v s
• 1.4 平面问题定义
严格地讲,任何结构都是空间的。对于某些特殊情 况,空间问题可以转化为平面问题。
(1)平面应力问题 满足条件: 1)几何条件 厚度尺寸远远小于截面尺寸; 2)载荷条件 载荷平行于板平面且沿厚度方向均匀 分布,而板平面不受任何外力作用。
1)位移函数 分片插值→ 假设一种函数来表示单元位移分布 一般选取多项式(简单而且易求导)
可用于离散的单元: • 三角形单元; • 矩形单元; • 不规则四边形单元。 DOF 节点的自由度:节点所具有的位移分量的数量。 一个单元所有节点的自由度总和称为单元自由度。 (1)单元参数只能通过节点传递到相邻单元 (2)单元和节点必须统一编号
2.2 单元分析(位移、应力、应变) 任务:形成单元刚度矩阵,建立单元特性方程 因此必须建立坐标系,如下图:
1D问题的弹性模量
E杨氏弹性模量
泊松比是指材料在单向受拉或受压时,横向正应变与轴向 正应变的绝对值的比值,也叫横向变形系数,它是反映材 料横向变形的弹性常数。 若在弹性范围内加载,横向应变εx与纵向应变εy之间存 在下列关系: εx=- νεy 式中ν为材料的一个弹性常数,称为泊松比。泊松比是 量纲为一的量。 可以这样记忆:空气的泊松比为0,45#钢0.3,水的泊松 比为0.5,中间的可以推出。
• 未知数 应力 6个+应变 6个+位移 3个=15个 • 方程个数 平衡方程 3个+几何方程6个+物理方程6个=15个 原则上可以根据15个方程求出15个未知物理量 但实际求解时先求出一部分再通过方程求解剩下的。 目前有限元法主要采用的是位移法,以三个位移 分量为基本未知量。位移-应变-应力,应力和外力平衡
弹性力学与有限元完整版ppt课件
. 1
平面应变
• 4 变形协调方程
平面应力
平面应变
调和方程
由6个简化为1个
平面问题
方程数量: 平衡方程——2个 物理方程——3个 几何方程——3个
合计 8
未知量:
应力分量——3个 x、 y、 xy
应变分量——3个
x、 y z、 xy
位移分量——2个
u、v
合计 8
第三章 弹性力学问题求解方法简述
• 研究的内容:
– 外力作用下
应力、应变、位移
• 物体变形——弹性变形、塑性变形
• 弹性变形:
– 当外力撤去以后恢复到原始状态,没有变形残留,材 料的应力和应变之间具有一一对应的关系。与时间无 关,也与变形历史无关。
• 塑性变形:
– 当外力撤去以后尚残留部分变形量,不能恢复到原始 状态,——即存在永久变形。应力和应变之间的关系 不再一一对应,与时间、与加载历程有关。
1.3 几个基本概念
1. 外力 2. 一点的应力状态 3. 一点的形变 4. 位移分量
1 外力
• 作用于物体的外力可以分为3种类型: 体力、面力、集中力。
• 体力——就是分布在物体整个体积内部各个质点上的
力,又称为质量力。例如物体的重力,惯性力,电磁力等 等。
• 面力——是分布在物体表面上的力,例如风力,静水
大小和方向不同。
• 体力分量:将体力沿三个坐标轴xyz 分解,用X、
Y、Z表示,称为体力分量。
• 符号规定:与坐标轴方向一致为正,反之为
负。 应该注意的是:在弹性力学中,体力是指单位
体积的力 。
• 体力的因次:[力]/[长度]^3
• 表示:F={X Y Z}
弹性力学与有限元分析
m α 式中: = ∑i , α1,α2 ,⋯ 2m 为待定系数。把位移函
i=1
n+1
数的这种描述形式称为广义坐标形式。 在确定二维多项式的项数时,需参照二维帕斯卡三 角形,即在二维多项式中,若包含帕斯卡三角形对称轴 一侧的任意一项,则必须同时包含它在对称轴另一侧的 对应项。
1 x x2 x3 x4 y xy y2 y3
1、结构的离散化——单元划分 2、假设单元的位移插值函数和形函数 3、计算单元刚度矩阵 4、载荷移置——把非节点载荷等效地移置 到节点上 5、计算结构刚度矩阵,形成结构刚度方程 6、引入位移边界条件,求解方程 7、计算应力与应变
三、两种平面问题
平面问题分为平面应力问题和平面应变问题两大类。 体力——指分布于物体体积内的外力,它作用于 物体内部的各个质点上,如重力、磁力 和运动时的惯性力等。 面力——指均布于物体表面上的外力,它作用于 物体表面的各个质点上,如物体间的接 触力和气体压力等。
f (x, y),把位移函数的这种描述形式称为插值函数形
式。 形函数具有以下两个性质: 1、形函数 Ni在节点 处的值为0。 2、在单元中任意一点,3个形函数之和为1,即:
i处的值为1,而在其余两个节点
Ni (x, y) + N j (x, y) + Nm (x, y) = 1
六、计算单元刚度矩阵
U(x, y) Ni f (x, y) = = V(x, y) 0
0 Ni
Nj 0
0 Nj
Nm 0
Ui V i 0 U j Nm Vj Um Vm
其中 Ni , N j , Nm 称为单元位移的形状函数,简称形函 数,其值为:
1、用单元节点位移表示单元中任一点的应变,得
弹性力学ppt课件
弹性力学ppt课件•弹性力学基本概念与原理•弹性力学分析方法与技巧目录•一维问题分析与实例讲解•二维问题分析与实例讲解•三维问题分析与实例讲解•弹性力学在工程领域应用探讨01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内力分布规律的科学。
研究对象弹性体,即在外力作用下能够发生变形,当外力去除后又能恢复原状的物体。
弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。
约束条件几何约束(物体形状和尺寸的限制)、物理约束(物体材料属性的限制)。
单位面积上的内力,表示物体内部的受力状态。
应力物体在外力作用下产生的变形程度,表示物体的变形状态。
应变物体上某一点在外力作用下的位置变化。
位移应力与应变之间存在线性关系,位移是应变的积分。
关系应力、应变及位移关系虎克定律及其适用范围虎克定律在弹性限度内,物体的应力与应变成正比,即σ=Eε,其中σ为应力,ε为应变,E为弹性模量。
适用范围适用于大多数金属材料在常温、静载条件下的力学行为。
对于非金属材料、高温或动载条件下的情况,需考虑其他因素或修正虎克定律。
02弹性力学分析方法与技巧0102建立弹性力学基本方程根据问题的具体条件和假设,建立平衡方程、几何方程和物理方程。
选择适当的坐标系和坐标…针对问题的特点,选择合适的坐标系,如直角坐标系、极坐标系或柱坐标系,并进行必要的坐标系转换。
求解基本方程采用分离变量法、积分变换法、复变函数法等方法求解基本方程,得到位移、应力和应变的解析表达式。
确定边界条件和初始条件根据问题的实际情况,确定位移边界条件、应力边界条件以及初始条件。
验证解析解的正确性通过与其他方法(如数值法、实验法)的结果进行比较,验证解析解的正确性和有效性。
030405解析法求解思路及步骤将连续体离散化为有限个单元,通过节点连接各单元,建立单元刚度矩阵和整体刚度矩阵,求解节点位移和单元应力。
弹性力学有限元法详解
x
4
i1 4
Ni ( ,)xi
y
i1
Ni ( ,) yi
总体坐标系适用于整体结构,局部坐标系只适用于具体某个 单元。
常用的对于平面问题还有八节点等参元,空间问题有八节 点空间等参元,二十节点等参元等 。
第18页,共40页。
3.2 连续体离散化
5.轴对称单元
对于回转结构,如果约束条件和载荷都对称于回转轴,其 应力、应变和位移也都对称于回转轴线,这类应力应变问题称 为轴对称问题 ,通常用柱坐标来描述应力、应变和位移,单元 为实心圆环体,仅截面不同
1
2
ai
(1
0
)
ai (1 0 ) ai (1 0 )
1
2
ai
(1
0
)
(i, j,l,m)
对于平面应变问题:
E
E 1 2
1
第29页,共40页。
3.3 单元分析
2. 单元分析
由虚功原理得:
Fe
K e BT DBdxdyt A
BT DBdxdyt δe
A
Fe Keδe
单元刚度矩阵可分块表示为:
第10页,共40页。
3.2 连续体离散化
3. 薄板弯曲单元和薄板单元
A. 薄板弯曲单元
l
θxi
i
θyi
wi
m
j
四边形弯 曲单元
四边形单元有四个节点,每个节点有三个自由度,主要承 受横向载荷和绕水平轴的弯矩。
第11页,共40页。
3.2 连续体离散化
3.薄板弯曲单元和薄板单元
A. 薄板弯曲单元
m
θxi
对于平面应变问题:
E
E 1 2
4-有限元分析PPT模板
有限元分析
1.1 有限元法的基本概念和特点
1.有限元法基本概念
有限元法(Finite Element Method,FEM) 也称为有限单元法或有限元素法,其基本思想是 将物体(即连续求解域)离散成有限个且按一定 方式相互连接在一起的单元组合,来模拟或逼近 原来的物体,从而将一个连续的无限自由度问题 简化为离散的有限自由度问题进行求解。物体被 离散以后,通过对其中的各个单元进行单元分析, 最终得到对整个物体的分析。网络划分中每个小 的块体称为单元。确定单元形状、单元之间相互 连接的点称为节点。单元上节点处的结构内力为 节点力,外力为节点载荷。
提高自动化的
展到求解非线性问题
网格处理能力
现代设计技术
— 7—
先进制造技术
选择位移模式
分析单元的力学性质
计算等效节点力
根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,
找出单元节点力和节点位移的关系式,根据弹性力学的几何方程和物理
方程确定单元的刚度矩阵,形成如下所示的线性方程:
F=Kδ
①
式中:F——节点力向量;
K——单元刚度矩阵;
δ ——节点位移向量。
现代设计技术
04
这是有限元分析的后处理部分,在该步骤中,对
05
计算出来的结果进行加工处理,并以各种形式将计算结 果显示出来。
现代设计技术
— 6—
有限元分析
1.3 有限元分析的发展趋势
由单一场计算向多 物理耦合场问题的求解 方向发展
与CAD/CAM 等软件的集成
软件面向专业 用户的开放性
1
2
3
4
5
由求解线性问题发
现代设计技术
弹性力学及有限元
2
3
第一章 绪 论
§1–1 弹性力学的研究对象
§1–2 弹性力学中的几个基本概念
§1–3 弹性力学中的基本假设 §1–4 有限元分析的基本思想
4
在未知领域 我们努力探索 在已知领域 我们重新发现
5
初中物理-力学
高中物理-力学
大学物理-力学
的形式和尺寸并选择适宜的材料提供必
要的理论基础和计算方法。
9
结构力学的研究对象、内容和任务
对象——杆件系统(结构)
梁、刚架、桁架、组合结构和拱
内容——结构的组成规律、特性和外来因素作用
下的内力、位移及其分布规律。 任务——校核结构是否具有所需的强度、刚度和
稳定性,并寻求和改进它们的计算方法 以实现安全和经济的最优化。 三部分——静力学、动力学和稳定学。
c
p y l xy m y n zy pz l xz m yz n zy
b
P
y
25
x
a
正负号规定:
正面:外法向方向和坐标轴正向一致的面 负面:外法向方向和坐标轴正向反向的面
正面上应力沿坐标轴正向为正 负面上应力沿坐标轴负向为正
i j
+ + + + -
+
力学,包括固体力学和流体力学中的许多学科,弹
性力学仅是其中的一个分支。
35
2) 线性完全弹性:引起物体变形的外力除去后物体能
恢复原状(完全弹性),应变与引
起该应变的应力分量之间的关系服
从胡克定律(线性),弹性常数与
应力、应变大小无关,无需考虑应
力历史。 完全弹性:弹性极限以下 线性弹性:比例极限以下 该假定使本构关系(物理方程)成线性方程。 线性关系的Hooke定律是弹性力学特有的规律,是弹性力 36 学区别于连续介质力学其它分支的标识。
有限元分析第3章弹性力学基础知识2
有限元分析Finite Element Analysis李建宇天津科技大学内容Chp.3 弹性力学基础知识2:补充内容1. 边界条件2. 弹性力学中的能量表示3. 弹性力学边值问题要求理解:弹性力学边界条件的提法了解:弹性力学边值问题的内涵掌握:弹性力学中的能量表述课后作业继续检索、阅读弹性力学基本文献有限元分析——弹性力学补充内容弹性力学的“三个基本”1、基本假定2、基本变量3、基本方程弹性力学的基本假定五个基本假定:1、连续性(Continuity)2、线弹性(Linear elastic)3、均匀性(Homogeneity)4、各向同性(Isotropy)5、小变形假定(Small deformation)弹性力学基本变量变形体的描述:在外部力和约束作用下的变形体位移的描述形状改变的描述力的描述材料的描述弹性力学基本变量材料参数位移物体变形后的位置物体的变形程度物体的受力状态物体的材料特性应变应力描述变形体的三类变量:dyxyzuvwdzdx(x,y,z)S uS pΩT位移(displacement)是指位置的移动。
它在x, y 和z轴上的投影用u, v和w。
dyxyzuvwdzdx(x,y,z)S uS pΩT微元体( Representative volume)应力张量(stress tensor )x xy xz yx y yz zx zy z στττστττσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦应变张量(strain tensor )dyuvwdzdx(x,y,z )xu x d d =εd xxσxσuu +d uτβαγ=α+βx xy xz yx y yz zx zy z εγγγεγγγε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦弹性力学的基本方程应力应变位移几何方程物理方程平衡方程弹性力学三大方程上节回顾上节回顾弹性力学基本方程x y z xy yz zx u x v y w z u v y x v w z y w u x zεεεγγγ∂=∂∂=∂∂=∂∂∂=+∂∂∂∂=+∂∂∂∂=+∂∂几何方程00000000x y z xy yz zx x y u z v w y x z y zx εεεγγγ∂⎡⎤⎢⎥∂⎢⎥∂⎢⎥⎧⎫⎢⎥∂⎪⎪⎢⎥∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬∂∂⎢⎥⎪⎪⎪⎪⎩⎭⎢⎥∂∂⎪⎪⎢⎥⎪⎪∂∂⎢⎥⎪⎪⎩⎭⎢⎥∂∂⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦Luε=L :微分算子上节回顾弹性力学基本方程000yx x zx x xy y zyy yz xz z z b x y z b x y zb x y zτσττστττσ∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂平衡方程000000000x y x z y yx zzy xz x y z b b y x z b zyx σσστττ⎧⎫⎡⎤∂∂∂⎪⎪⎢⎥∂∂∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂∂∂⎪⎪⎪⎪+=⎨⎬⎨⎬⎢⎥∂∂∂⎪⎪⎪⎪⎢⎥⎩⎭⎪⎪⎢⎥∂∂∂⎪⎪⎢⎥∂∂∂⎪⎪⎣⎦⎩⎭A :微分算子A b σ+=TA L=上节回顾弹性力学基本方程物理方程()()()111x x y z y y z x z z x y xyxy yzyz zxzx E EE GGGεσνσσεσνσσεσνσστγτγτγ⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦===()()()()()()1000111000111000111121120000021120000021120021x x y y z z xy xy yz yz zx zx E ννννννσεννσεννννσενντγννντγντγννν⎡⎤⎢⎥--⎢⎥⎢⎥⎧⎫⎧⎫⎢⎥--⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥---⎪⎪⎪⎪⎢⎥=⎨⎬⎨⎬-+-⎢⎥⎪⎪⎪⎪-⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪-⎢⎥⎪⎪⎪⎪⎩⎭⎩⎭-⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦D :弹性矩阵D σε=对称上节回顾弹性力学基本方程dyxyzuvwdzdx(x,y,z )S uS pΩT0Lu A b D σεσε+===弹性力学三大方程in Ω边界上呢?一、弹性力学的边界条件(Boundary condition)dyxyzuvwdzdx(x,y,z)S uS pΩT两类边界条件:S p:力的边界S u:位移边界一、弹性力学的边界条件1、位移边界条件边界上已知位移时,应建立物体边界上点的位移与给定位移相等的条件dyxyzuvwdzdx(x,y,z )S uS pΩTuu u v v on S w w =⎧⎪=⎨⎪=⎩一、弹性力学的边界条件以二维问题为例2、力的边界条件边界上给定面力时,则物体边界上的应力应满足与面力相平衡的力的平衡条件∑X=注意ds为边界斜边的长度,边界外法线n的方向余弦l=dy/ds,m=dx/ds有:一、弹性力学的边界条件以二维问题为例Y =∑同理:M =∑一、弹性力学的边界条件以二维问题为例二维情形的力的边界条件00x x x y y yx y xy p n n n n p σστ⎧⎫⎧⎫⎡⎤⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭⎪⎪⎩⎭其中:n x =l ;n y =m一、弹性力学的边界条件扩展到三维情形的力的边界条件00000000x y xy z x z y x z y xy zyx z yz zx n n n p n n n p n n n p σσστττ⎧⎫⎪⎪⎪⎪⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎩⎭⎣⎦⎪⎪⎪⎪⎪⎪⎩⎭n ppon S σ=二、弹性力学中的能量表述功能原理的两个基本概念:功(work):外力功;能量(energy):如动能、势能、热能等弹性问题中的功和能量:外力功:施加外力在可能位移上所做的功应变能:变形体由于变形而储存的能量二、弹性力学中的能量表述1. 弹性力学中的外力功(work by force )弹性力学中的外力包括:面力和体力,故外力功包括:Part 1:面力p i 在对应位移上u i 上的功(on S p )Part 2:体力b i 在对应位移上u i 上的功(in Ω)外力总功为:()()d d pxyzxyzS W p u p v p w S b u b v b w Ω=+++++Ω⎰⎰二、弹性力学中的能量表述2. 弹性力学中的应变能(strain energy)设加载缓慢,系统功能可忽略,同时略去其它能量(如热能等)的消耗,则所做的功全部以应变能的形式储存于内部。
有限元课件第1讲有限元方法概述-PPT精品文档
ui 1 ui u ( x ) ui ( x xi ) Li ui 第i结点的位移 xi 第i结点的坐标
第i个单元的应变 应力 内力
du ui 1 ui i dx Li
E (ui 1 ui ) i E i Li
EA(ui 1 ui ) N i A i Li
基本思路:分割-组合
将连续系统分割成有限个分区或单元(离散化) 用标准方法对每个单元提出一个近似解(单元分 析) 将所有单元按标准方法组合成一个与原有系统近 似的系统(整体分析)
这种分割-组合思想古而有之,如求圆面积。
圆面积
自重作用下等截面直杆的解
受自重作用的等截面直杆 如图所示,杆的长度为L, 截面积为A,弹性模量为E, 单位长度的重量为q,杆的 内力为N。
这一时期的理论研究是比较超前的。
我国力学工作者的贡献
陈伯屏(结构矩阵方法) 钱伟长、胡海昌(广义变分原理) 冯康(有限单元法理论)
20世纪60年代初期,冯康等人在大型水坝 应力计算的基础上,独立于西方创造了有 限元方法并最早奠定其理论基础。--《数 学辞海》第四卷
1.2 有限元分析的基本原理和思路
试求:杆的位移分布,杆 的应变和应力。
材料力学解答
N ( x) q ( L x)
N ( x) q x ( L x) A A
q x ( L x) E EA du ( x) q x ( L x) dx EA
q x2 u ( x) ( Lx ) EA 2
2等参北京航空航天大学34进度安排?第1讲有限元方法概述?第2讲矩阵分析及弹性力学基础?第3讲弹性问题有限元方法?第4讲等参元和高斯积分?第4讲等参元和高斯积分?第5讲结构单元?第6讲材料非线性?第7讲几何非线性?第8讲有限元应用专题北京航空航天大学课程评估?出勤率10?课堂作业40?期末考试50北京航空航天大学主要参考书籍1
弹性力学-第5章 有限元法
(a)从上到下建模 从生成体(或面)开始,并结合其它方
法生成最终的形状。
加
用于产生最终形状的合并称为布尔运算
提示: 当生成二维体素时,ANSYS定义一个面及其它所包含 的线和关键点。当生成三维体素时,ANSYS定义一个 体及其所包含的面、线及关键点。 如果低阶的图元连在高阶图元上,则低阶图元不能删除.
§5-2 建模
一. 有限元模型的建立
a.建模的方法 b.坐标系统与工作平面 c.实体建模
1.建模方法
有限元模型的建立方法可分为: (1)直接法
直接根据机械结构的几何外型建立节点和单元,因此直接 法只适应于简单的机械结构系统。
(2)间接法(Solid Modeling)
适用于节点及单元数目较多的复杂几何外型机械结构系 统。该方法通过点、线、面、体积,先建立实体模型, 再进行网格划分,以完成有限元模型的建立。
第五章 有限元法解平面问题
§5-1有限元法简介 一. 有限元法的基本思想
1.将连续的问题域离散为有限数目的单元; 2.单元之间通过节点相连; 3.每一个单元都有精确的方程来描述它如何对一定载 荷去响应; 4.单元内部的待求量可由单元节点量通过选定的函数 关系插值得到; 5.模型中所有单元的响应之和给出设计的总响应。
由于单元形状简单,易于建立节点量的平衡关系和能量关 系方程式,然后将各单元方程集组成总体代数方程组,计 入边界条件后可对方程求解。
二. 有限元法的位移解法 1.有限元法的单元和节点
1.有限元法的单元和节点 2.有限元的基本未知量(DOFs) 3.单元形函数
节点自由度是随 单元类型 变化的。
J 三维杆单元 (铰接) UX, UY, UZ
有限元分析第3章弹性力学基础知识1
联立得到几何方程,表明应变分量与位移分量之间的关系:
¶u ¶v ¶w , y , z ¶x ¶y ¶z ¶u ¶v ¶v ¶w ¶w ¶u + , yz + , zx + ¶y ¶x ¶z ¶y ¶x ¶z
弹性力学的基本假定
4、各向同性(Isotropy)
物体的弹性性质在所有各个方向都相同 好处:物体材料常数不随坐标方向改变而改变
像木材,竹子以及纤维增强材料等,属于各向异 性材料。
弹性力学的基本假定
5、小变形假定(Small deformation):
物体的位移和形变是微小的. 即物体的位移 远小于物体原来的尺寸, 而且应变和转角都远小 于1
u+
¶u dy ¶y
C'
D" b D '
D C
A ' B ' AB x AB ¶u (u + dx) u ¶x dx ¶u ¶x
dy
u
v
A
A'
B'
a
v+
¶v dx ¶x
B dx
¶u u + dx ¶x
B"
x
0
¼ Í
1-5
弹性力学的基本方程之几何方程
(2)y方向的相对伸长量
y
¶u dy ¶y
切应力符号 的含义
受力面的法线方向
xy
力的方向
弹性力学的运动与变形
1、位移、形变、正应变、剪应变的概念
位移(displacement): 是指位置的移动. 它在 x, y and z 轴上的 投影用 u, v 和w。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、结构的离散化——单元划分 2、假设单元的位移插值函数和形函数 3、计算单元刚度矩阵 4、载荷移置——把非节点载荷等效地移置 到节点上 5、计算结构刚度矩阵,形成结构刚度方程 6、引入位移边界条件,求解方程 7、计算应力与应变
三、两种平面问题
平面问题分为平面应力问题和平面应变问题两大类。 体力——指分布于物体体积内的外力,它作用于 物体内部的各个质点上,如重力、磁力 和运动时的惯性力等。 面力——指均布于物体表面上的外力,它作用于 物体表面的各个质点上,如物体间的接 触力和气体压力等。
( ),可在求出 x , y 后再计算;这样要考 z x y
虑的应力分量只是x ,y ,xy 。
这样,平面应变问题只需研究以下8个独立未知函数:
x y xy
U V
单元划分是有限元分析的基本前提,也是有限元 法解题的重要步骤。常用的单元类型有: 杆单元 平面单元 轴对称单元
空间单元 对平面问题,一般采用三角形单元,此时单元划
分应注意以下问题:
任一三角形单元的顶点必须同时也是其相邻三角
形单元的顶点,而不能是其内点。
三角形单元的3条边长(或3个顶角)之间不应相
分割成彼此用节点(离散点)互相联系的有限个单元 ,在单元体内假设近似解的模式,用有限个节点上的 未知参数表征单元的特性,然后用适当的方法,将各 个单元的关系式组合成包含这些未知参数的方程组, 求解这个方程组,得出各节点的未知参数,利用插值 函数求出近似解。随着单元尺寸的缩小,单元数目也 就增加,解的近似程度不断提高,如果单元满足收敛 要求的话,近似解就收敛于真实解。
二、有限元法的分类与求解步骤
从选择基本未知量的角度来看,有限元法分为以下三类: 位移法——以节点位移作为基本未知量 力法——以节点力作为基本未知量 混合法——取一部分节点位移和一部分节点力作为 基本未知量 由于位移法比较简单,计算规律性强,便于编写 计算机通用程序,因此在用有限元法进行结构分析时, 大多采用位移法。其求解步骤如下:
x y xy
且它们只是
x, y 的函数,与 z 无关。工程实际中,炮
筒、桥梁支座的柱形辊轴等都可简化为平面应变问题。
所以无论是平面应力问题还是平面应变问题,都只 需研究3个应力分量 x ,y ,xy,3个应变分量 x , y , xy
2个位移分量 U和 V。
四、单元划分
第一部分:有限元基本理论与方法
长安大学 张青哲
一、有限元基本理论
有限元方法是一种有效的数值计算方法。目前,
它已广泛地应用于各类工程技术领域,如结构的应力 、应变分析,各种连续问题的场变量——温度、压力 、流速势、电磁场等问题的数值计算,并日益受到重 视。
其基本思想是:将一个连续的求解域离散化,即
同样有: z 0 ,z x z y 0
于是在6个应变分量中只需研究 oxy平面内的 3个 应分量 x , y , xy ,在 3个位移分量中也只需研究 oxy 平面内的 U和V ,所以称这种问题为平面应变问题。
z 0
zx zy 0 ,而 应力分量中,由广义虎克定律,
x y xy
x y xy
U V
且它们只是
x, y 的函数,与 z 无关。工程中的墙、梁,
高速旋转的薄圆盘等都可简化为平面应力问题。
2、平面应变问题
这类问题的位移分量中有一个为零(如 z 向位移W ), 其余两个方向的位移U 和 V与z 无关。其特点是:
Z
由于板很薄,在板面上不受力,且外力不沿板厚变 化,因此在整个板内有:
z
0 , 0 , 0
zx xz zy yz
于是在6个应力分量中只需研究 oxy平面内的 3个应力
分量 x ,y ,xy ,所以称这种问题为平面应力问题。
z W V U
应变分量中,由广义虎克定律,z x z y 0 ,而
差太大,即单元划分中不应出现过大的钝角或过 小的锐角,否则,计算误差较大。 在应力较大和应力集中的区域,单元应划分细一 些,以提高精度。 如果边界上有集中力作用,则该点应被划分为点。
单元的大小和数目应根据精度要求来确定,在保证
精度的前提下,力求采用较少的单元。
当物体的厚度有突变或物体由不同材料组成时,不 要把厚度不同或材料不同的区域划分在统一单元。
节点编号,原则上可任意,但它影响基本方程系数 矩阵的带宽,所以单元的两个相邻节点编号之差
应尽可能小。
五、位移插值函数与形函数
结构离散化后,要对单元进行力学特性分析,即 确定单元节点力与节点位移之间的关系。为分析并确 定这一关系,需要把单元中任一点的位移分量表示为 坐标的某种函数,这一函数称为单元的位移插值函数。 它反映了单元的位移形态并决定着单元的力学特性。 由于这种函数关系在解题前是未知的,而在单元分析
几何形状特点:物体沿一个方向很长(如 z 向),且垂
直于 z 轴的截面相同,即为一个等棱柱
z W V U
体,位移条件或支承条件沿z 向也相同。
所受外力特点:在柱体侧面上受到垂直于 z轴且不沿
长 度变化的面力(面力分量中 Z 0 )
作用,同时体力也垂直于 z轴且不沿 长度变化(体力分量中 Z 0 )。
( )E ,可在求出 x , y 后再计算;z向 z x y
位移 W 可通过应变与位移间关系,经积分后再考虑 位移边界条件求得。这样要考虑的应变分量只 是
x , y , xy ,位移分量只有U和 V。
x , y
这Hale Waihona Puke ,平面应力问题只需研究以下8个独立未知函数:
1、平面应力问题
在这类问题的应力分量中,凡带某一脚标的(如z) 都为零。其特点是: 几何形状特点:物体在一个方向(如z向)上的尺寸远 小于其他两个方向的几何尺寸,如薄 板。 所受外力特点:在薄板的两个侧面上无面力作用,只 在其边缘受到平行于板面且沿板厚均 匀分布的面力(面力分量中 Z 0 )作 用,同时体力也平行于板面且不沿板 厚变化(体力分量中Z 0 )。