立体几何证明方法汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

① 中位线定理

例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE

的中点. (1)求证:GH ∥平面CDE ;

(2)若2,CD DB ==,求四棱锥F-ABCD 的体积.

练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1;

2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证:

//1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积.

3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。

(1)证明://PA BDE 平面;

(2)求PAD ∆以PA 为轴旋转所围成的几何体体积。

A 1

C _ H

_ G

_ D

_ A

_ B

_ C

E

F

G

P

A

B

C

D

F

E

A B C D E

F

例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形)

练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ;

②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面

P

A

B

C

D

M

N

③ 如图,已知AB 平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ;

的交点.求证://1O C 面

④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线11

AB D .

D 1C 1

B 1

A 1

A B

C

D

E

F

③比例关系

例题3、P 是平行四边形ABCD 平面外一点,M 、N 分别是PB 、BC 上的点,且

NC

BN PM BM =,求证:MN//平面PCD(利用比

例关系)

练习:如图,四边形ABCD 为正方形,⊥EA 平面ABCD ,//EF AB ,=4,=2,=1AB AE EF .(Ⅱ)若点M 在线段AC 上,且满足1

4

CM CA =, 求证://EM 平面FBC ;

④面面平行-线面平行

例题4、如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,∠BCF=∠CEF=︒90,AD=3,EF=2。(Ⅰ)求证:平面ABE//平面CDF

(II )求证:AE//平面DCF ;(利用面面平行-线面平行)

练习:1、如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,PD ⊥平面ABCD ,2PD AB ==,E ,F ,

G 分别为PC 、PD 、BC 的中点.

(1)求证:;EFG PA 面//;

A

B

E F M

1A 1

C 1

B E

F

G

A

C

B

E

B

A

C

N

D

F

M

(2)求三棱锥P EFG -的体积.

2、如图,在直三棱柱

111

ABC A B C -中,0

90ACB ∠=,

,,E F G 分别是11,,AA AC BB 的中点,且1CG C G ⊥.

(Ⅰ)求证://CG BEF 平面;

3、如图所示,正方形ADEF 与梯形ABCD 所在的平面互相垂直, ,//,22AD CD AB CD CD AB AD ⊥==. 在EC 上找一点M ,使得//BM 平面ADEF ,请确定M 点的位置,并给出证明.

4、(2012山东文)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.

(Ⅰ)求证:BE DE =;

(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .

例题: 如图,已知四棱锥ABCD P -。 若底面ABCD 为平行四 边形,E 为PC 的中点,在DE 上取点F ,过AP

和点F 的平面与 平面BDE 的交线为FG ,求证:FG AP //。

证明:连AC 与BD ,设交点为O ,连OE 。

练习:1、如图,在四棱锥P ABCD -中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,60BAD ∠=︒,N 是PB 中点,过A 、N 、D 三点的平面交PC 于M .求证://AD MN ;

2、(2012浙江高考)如图,在侧棱锥垂直底面的四棱锥ABCD-A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB=2

。AD=2,BC=4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点。(1)证明:EF ∥A 1D 1;

D

A

B

C P M

N

相关文档
最新文档